

Special Focus on Explainability, Robustness, and Security in AI Systems
RESEARCH ARTICLE

DeepLogic: Priority Testing of Deep Learning
Through Interpretable Logic Units

Chenhao LIN, Xingliang ZHANG, and Chao SHEN

Faculty of Electronic and Infomation Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Corresponding author: Chao SHEN, Email: chaoshen@xjtu.edu.cn
Manuscript Received December 27, 2022; Accepted June 5, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — With the increasing deployment of deep learning-based systems in various scenes, it is becoming
important to conduct sufficient testing and evaluation of deep learning models to improve their interpretability and
robustness. Recent studies have proposed different criteria and strategies for deep neural network (DNN) testing.
However, they rarely conduct effective testing on the robustness of DNN models and lack interpretability. This paper
proposes a new priority testing criterion, called DeepLogic, to analyze the robustness of the DNN models from the
perspective of model interpretability. We first define the neural units in DNN with the highest average activation
probability as “interpretable logic units”. We analyze the changes in these units to evaluate the model’s robustness
by conducting adversarial attacks. After that, the interpretable logic units of the inputs are taken as context attri-
butes, and the probability distribution of the softmax layer in the model is taken as internal attributes to establish a
comprehensive test prioritization framework. The weight fusion of context and internal factors is carried out, and the
test cases are sorted according to this priority. The experimental results on four popular DNN models using eight
testing metrics show that our DeepLogic significantly outperforms existing state-of-the-art methods.
Keywords — Deep learning testing, Interpretable logic units, Adversarial test, Model interpretability, Defect de-
tection.
Citation — Chenhao LIN, Xingliang ZHANG, and Chao SHEN, “DeepLogic: Priority Testing of Deep Learn-
ing Through Interpretable Logic Units,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 948–964, 2024. doi: 10.23919/
cje.2022.00.451.

 I. Introduction
Deep learning techniques have been extensively re-

searched and applied in safety-related fields, such as au-
tonomous driving [1], medical diagnosis and treatment
[2], air traffic management [3], and face recognition [4].
Existing studies have revealed that deep neural networks
(DNNs) are vulnerable to both natural cross-domain
samples and specifically designed adversarial examples,
causing growing concern regarding widely deployed DNN-
based systems. Evaluating the robustness and safety of
DNN models before they are applied to real-world appli-
cations has become a challenging and important task.

Deep learning testing techniques [5] have been pro-
posed to detect potential defects in DNN models to help
guarantee their safety and robustness. Unlike traditional
software systems, deep learning systems typically contain

DNNs with complex structures, where even a small
anomaly in the input data could lead to inappropriate
system decisions. A large-scale and reasonable set of test
cases is required to achieve adequate and effective deep
learning testing. Unfortunately, these test cases are often
unavailable and require manual labeling. An alternative
approach to prioritizing test cases and testing those that
could expose deep learning systemic errors to detect more
model defects at an earlier stage could help to reduce
testing costs and improve testing effectiveness.

In recent years, research has progressed in DNN pri-
ority testing from multiple perspectives, including neuron
coverage (NC) [6]–[8] and output probability distribution
[9]. However, many existing testing techniques based on
the NC measure [10], such as NC, neuron boundary cover-
age (NBC), and k-multisection neuron coverage (KMNC)
[7], are not applicable for testing the robustness of DNN

Guest Editor: Prof. Qian WANG, Wuhan University.

Chinese Journal of Electronics
vol. 33, no. 4, pp. 948–964, July 2024
https://doi.org/10.23919/cje.2022.00.451

models. It can be difficult to distinguish defect test cases,
particularly adversarial ones, resulting in a low average
defect detection rate, also called average percentage of
fault detection (APFD). A more recent approach, namely
DeepGini [9], does consider adversarial tests. However, it
only considers the absolute value of the output probabili-
ty as the measurement index, ignoring the offset direction,
which results in poor performance in target adversarial
attack scenarios. Additionally, existing test prioritization
methods usually lack interpretability and fail to build
connections between different test cases, which could
make for more effective testing.

To address the existing limitations, this study pro-
posed DeepLogic to examine the priority testing of DNNs
using interpretable logic units. First, from the perspec-
tive of DNN model interpretability, the average channel
activation value sorted according to the weight is taken
to be the neural unit (channel). The top-k neural units
are selected as interpretable logic units to establish the
degree of correlation with the model prediction and serve
as a measurement index in deep learning tests. Subse-
quently, a comprehensive priority testing framework can
be established. Each class of interpretable logic units and
the probability distribution of the model outputs are cal-
culated as context and internal attributes in the test pro-
cess. Finally, these two attributes are combined and used
to generate the test-case set.

To validate the effectiveness of the proposed Deep-
Logic framework, several experiments were conducted on
two popular datasets and four popular DNNs, and seven
evaluation metrics, including APFD and risk detection
ability (RDA), were adopted. Additionally, three popular
adversarial attacks were implemented. The experimental
results showed that compared with several existing state-
of-the-art (SOTA) deep learning testing approaches, Deep-
Logic could achieve a higher average fault detection rate
of 95%.

The main contributions of this paper are as follows:
• We proposed a priority testing framework for

DNN models called DeepLogic that enables the effective
generation of natural and adversarial tests.

• From the perspective of model interpretability, we
proposed a new logic unit test criterion in which context
attributes and internal attributes are integrated to evalu-
ate the capability of defect detection.

• We demonstrated the effectiveness of DeepLogic
using both natural and adversarial samples on standard
and adversarial training models. DeepLogic achieved great-
ly improved performance compared with several SOTA
testing methods.

The remainder of this paper is organized as follows.
In Section II, we introduce the research progress in deep
learning test criteria, channel interpretability, and test-
case priority. Section III defines the concept of inter-
pretable logic units and proposes a technical framework
based on the priorities of logic unit test cases. We then
describe the details of the proposed DeepLogic method in

Section IV. Section V discusses the experimental verifica-
tion of the validity of our previous theory, focusing on
evaluating the effect of the proposed technique com-
pared to other baseline methods. Finally, we summarize
the study and introduce further research in Section VI.

 II. Related Work

 1. Deep learning testing
Recently, several testing criteria have been proposed

to improve the effectiveness of DNN model testing. Pei et
al. [6] proposed, for the first time, the use of NC as a
metric index, namely DeepXplore, to jointly optimize a
solution to the white box differential testing problem.
This method uses test inputs that enable a group of
DNN models with the same function to produce differen-
tial behaviors and achieve high NC. Ma et al. [7] further
extended the concept of NC by introducing three new
neuron-level coverage standards and two hierarchical
coverage standards, namely DeepGauge, which dynami-
cally sets different neuron activation thresholds with multi-
granularity to better reflect the differences between natu-
ral and adversarial samples. Sun et al. [8], referring to
modified condition/decision coverage (MC/DC) metrics
in the traditional software testing field, proposed four in-
dicators, that is, conformity-sign coverage, distance-sign
coverage, sign-value coverage, and distance-value coverage
to measure the difference in neuron activation values
between adjacent layers and implemented them in the
DeepCover tool. Wang et al. [11], referring to path-ori-
ented testing methods in traditional software engineer-
ing, proposed a set of path-driven test metrics called
DeepPath, using a single neuron in the model as a node
and the neuron connections between different layers as a
path, and proposed three path coverage metrics. To en-
sure more accurate measurements of DNN robustness,
Weng et al. [12] proposed a DNN robustness index name-
ly Clever, based on the Lipschitz continuous extremum
theory. Katz et al. [13] proposed the concept of adversar-
ial robustness, that is, the ability of a model to correctly
classify attack samples generated through small pertur-
bations. Gehr et al. [14] introduced AI2, which utilizes
abstract interpretation theory to test deep learning mod-
els. The authors defined an abstract transformer to ana-
lyze the behavior of the implicit layer and employed the
zonotope abstraction domain to identify potential adver-
sarial inputs. Additionally, they established a benchmark
for measuring model robustness by outputting the ab-
straction domain range.

Despite these achievements, some results [10], [15],
[16] show that there is no positive correlation between
the existing test criteria and the robustness of the DNN
model. Moreover, existing test standards rarely consider
test problems from a high-level semantics perspective of
deep learning tasks and fail to identify the importance of
different neurons in deep learning testing.

More recently, Wang et al. [17] presented RobOT, a

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 949

reinforcement learning-based testing technique that gen-
erates challenging and diverse test cases, providing an ef-
ficient and accurate method for robust testing of deep
learning systems. Hu et al. [18] proposed a data distribu-
tion-aware test selection framework based on data impor-
tance and test case coverage. This framework adaptively
selects test cases with high coverage to improve model
robustness and stability. However, these studies focus on
testing the adversarial robustness after model retraining,
which is significantly different from our task of test case
prioritization.
 2. Interpretability of DNNs

The visualization method based on channel activa-
tion mapping can generate specific class-related activa-
tion maps for DNN decision results, making it a widely
used DNN interpretation method. Simonyan et al. [19]
introduced two visualization techniques that use gradi-
ent information to compute classification scores. The first
technique reconstructs the maximized class score image
from ConvNet and captures features such as edges and
stripes. The second one calculates the contribution of
each pixel point to the output result, generating a salien-
cy map with the same dimensionality as the input image.
These techniques successfully establish the connection
between gradient-based convolutional networks and de-
convolutional neural networks. After that, the channel
activation mapping (CAM) method was proposed by
Zhou et al. [20], i.e., CAM by inserting a global average
pooling (GAP) layer into a DNN to form a DNN network
with a full convolution structure and visualizing the con-
nection weight of the SoftMax layer as the weighted
weight of the top channel feature map. Selvaraju et al. [21]
improved the CAM method using gradient weighting and
proposed Grad-CAM with a wider range of DNNs.

More recently, Bau et al. [22] proposed a general
framework called Network Dissection, where the basic
unit of calculation was the corresponding channel of the
convolutional filter (by comparing the activities of each
channel with a series of human-explainable pattern-
matching tasks, such as the detection of object classes).
The semantic units were then given conceptual labels, in-
cluding objects, components, scenes, textures, materials,
and colors. Bai et al. [23] introduced channel activation
into a robustness test and proposed a channel-wise acti-
vation suppressing (CAS) strategy. The basic idea was to
screen feature channels with important contributions to
the classification results, suppressing feature channels
with low correlation. Inspired by the existing studies [24]
on the interpretability of DNNs, we proposed the intro-
duction of the “logic” displayed by high-level channels
into DNN priority testing, making the testing process
more effective and interpretable.
 3. Test-case prioritization

The main research objectives of test-case prioritiza-
tion technology can be summarized as follows: analyzing
and determining positive contributions to the test, calcu-

lating the priority of test cases, and achieving an effec-
tive method of test-case ranking. Recent studies have
proposed the use of test prioritization techniques to find
defects as early as possible to evaluate DNN models.

T
′ ∈ PT ∀T ′′(T ′′ ∈ PT)(T ′′ ̸= T ′)[f(T ′) ≥

f(T ′′)]

Rothermel et al. [25] formalized the test-case priori-
tization problem as follows: Given the test-case set T,
the full preordering set of T is PT and the sorting objec-
tive function is f. The domain of f is PT and the range is
real. The purpose of test-case prioritization is to deter-
mine to make:

. As is evident from the above description, PT
contains all possible test-case ordering in T; function f
can be used to quantitatively describe the effect of evalu-
ation ranking. The larger the f value, the better the test-
case ranking effect. Kim et al. [26] proposed a test-case
prioritization method based on the test history. Li et al.
[27] proposed several search algorithms to prioritize re-
gression test cases. They focused on test-case prioritiza-
tion techniques for code coverage, including block cover-
age, decision (branching) coverage, and statement cover-
age, which have all been extensively studied in previous
work. Leon et al. [28] experimentally compared four ex-
isting methods of screening large test suites, namely,
fault-tracking sampling, test suite minimization, cluster
filtering using single-cluster sampling, and prioritization
via additional coverage. By introducing logic unit corre-
lation constraints, they evaluated the importance of each
test case in the test-case set before selecting and execut-
ing the test cases in order of importance (from high to
low). Consequently, test cases of high importance could
be executed as soon as possible, improving test efficiency
under limited test resource conditions.

Feng et al. [9] proposed DeepGini and designed a
test-case preference-selection technology based on the
probabilistic statistical perspective of the statistical DNN
model classification decisions. DeepGini proved to be more
effective and more efficient than existing overcover-based
technologies, helping improve DNN robustness. However,
it only used the output probability as the measurement
index, and when strong adversarial attacks were imple-
mented, its effectiveness was greatly reduced. Entropy [29],
also known as Shannon entropy, is a widely used infor-
mation-theoretic metric that measures the average level
of information required to obtain a possible prediction.
Similar to DeepGini, the ranking criterion of entropy is
the classification decision of statistical probability distri-
bution based on the DNN model.

More recently, Shen et al. [30] proposed a multi-
boundary clustering algorithm (multiple-boundary clus-
tering and prioritization, MCP), capable of dividing the
training data into multiple clusters, each with different
boundaries and importance. The authors also proposed a
clustering cluster-based prioritization method to priori-
tize each cluster in retraining based on its boundaries
and importance. Experimental results indicated that the
method can improve the efficiency and accuracy of re-
training, while reducing training time and resource con-

 950 Chinese Journal of Electronics, vol. 33, no. 4

sumption. Kim et al. [31] proposed a test case selection
method based on “surprise adequacy”, where distance-
based surprise coverage (DSC) computed the surprise ad-
equacy using the Euclidean distance between the model’s
behaviors represented by the activation traces of the test
sample and the training set. DSC improved test coverage
and accuracy by prioritizing data points that cannot be
correctly predicted by the model.

After that, Sharif et al. [32] introduced DeepOrder,
a test case prioritization technique for continuous inte-
gration testing. DeepOrder utilizes supervised learning
and incorporates the test history from the last four cy-
cles of continuous integration testing to enhance the fault
detection efficiency of prioritized test suites. Li et al. [33]
also proposed a testing technique that combines intrinsic
and contextual features of untagged test cases for priori-
tization. This technique constructs a similarity graph on
test instances and training samples, followed by semi-
supervised learning based on the graph to extract contex-
tual features. The test cases are prioritized in descend-
ing order based on their probability values. Unfortunate-
ly, the focus of these studies differs substantially from
ours and they cannot be employed to effectively test the
robustness of DNN models.

 III. Interpretable Logic Units

 1. Motivation
The explanatory theory of deep learning models [21],

[34] indicates that different channels in the convolution

layer have different modes and focus on learning differ-
ent image features, which implies different logical seman-
tics. In this study, the average activation value of the
neurons in these different channels is defined as a neural
unit. Using the convolutional neural network of visual
recognition tasks, such as the VGG-16 model, as an ex-
ample, GAP [35] can be used to replace the fully con-
nected layer of the model. The weighted sum of the
channel weight and the corresponding feature map are
determined before being superimposed onto the pixel
area of the original sample after up-sampling. The 512
channels of the last convolution layer, that is L40, are vi-
sualized, as shown in Figure 1, several feature maps
showing the “turtle shell” nerve unit, “feather” nerve
unit, and “butterfly wing” nerve unit to be “logical”.

(c) Butterfly wings (d) Cat skin(b) Feather of bird(a) Turtle shell

Figure 1 The “logic” exhibited by several VGG-16 neural units.

To further explore the correlation between the aver-
age activation value of the neural units and the model
decision, we selected several samples and plotted the ac-
tivation curve of each neural unit. Figure 2 shows the re-
sults of the activated nerve units No. 281 and No. 125,
corresponding to two different samples of persian_cat,

0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200 400281

M
ea

n
ac

tiv
at

io
n

0
0

0.1
0.2
0.3
0.4
0.5
0.6

200 400281

M
ea

n
ac

tiv
at

io
n

0
0

0.5
1.0
1.5
2.0

200 400302

M
ea

n
ac

tiv
at

io
n

Persian cat

Box turtle

Filter No.

Filter No.

Filter No.

Unit125

Unit281

Unit302

(a)

(b)

(c)

Figure 2 The considered judgment of the VGG-16 model is related to the “logic” of the neural units, the performance of different types of
samples differing. Column (a) indicates the selected sample images of the two distinct classes Persian_cat and Box_turtle. Column (b) in-
dicates the average activation value of 512 channels of the convolution layer L40 of the sample images. Column (c) indicates the visual-
ized image corresponding to the neural unit with the highest activation value.

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 951

the visualized neural units showing the logical character-
istics of the cat skin and ears. Additionally, the neural
unit (No. 302) with the maximum activation value of a
box_turtle sample shows the logical characteristics of the
turtle shell.

Based on the explanatory theory and visualized
analyses, we proposed the following hypothesis:

Hypothesis The internal neural units in DNN mod-
els are similar to human neurons with “logic”, the acti-
vated “logical” neural units helping the model make cor-
rect predictions. Additionally, we found that only parts
of the logical neural units were interpretable and had an
effect on the model decision. For example, a sample was
identified as a cat because the “ear” nerve unit, “paw”
nerve unit, “cat skin” nerve unit, and other logic units in
the model were activated.

Based on the statistics of neuron unit activation
probability, we found that for a given DNN model, the
activation probability of neurons corresponding to differ-
ent types of samples varied considerably. This phenom-
enon also appeared when the input samples were adver-
sarial examples. Based on the above analyses, we argue
that the same neuron could have completely different
roles in different prediction tasks and that the logic units
could affect the robustness of the model. Additionally, a
correct prediction depends, to a large extent, on the com-
bined action of multiple neuron units.

Thus, we define these neuron units to be inter-
pretable logic units. We then rank them by importance,
classify them, and track their activation in the DNN test
task as the basis for the testing effect to determine the
logic unit test criteria.
 2. Two types of logic units

In [22] and [23], the authors demonstrated that mul-
tiple neural units (channels) could be regarded as a
causal structure of deep network behavior to detect ob-
jects, parts, textures, tense, context, and so forth. The
prediction results of a DNN rely on small-scale important
units (20 most important units) rather than large-scale
least-important units (492). Additionally, they discovered
that certain important channels are highly correlated to
the prediction results when the inputs are adversarial ex-
amples. This property of units in DNNs inspires us to de-
sign two types of logic, i.e., sample logic units (SLUs)
and class logic units (CLUs), which are calculated to se-
lect the units (channels) that affect the model decision,
helping the model identify as many abnormal samples as
possible in the adversarial attack test environment. SLU
illustrates the prediction mechanism of deep learning
models, i.e., the decision is based on several important
logic units (channels). Conversely, CLU reflects that the
various classes exhibit statistically significant discrep-
ancies in accuracy due to the cumulative differences of a
large number of individual samples.

Figure 3 shows the logic unit calculation process. The
training samples are processed using various convolution

kernels for each convolution layer. The output feature map
shows the different activation conditions for the captured
information. With the training data input into the mod-
el, the parameters of the convolution kernel are gradually
trained and optimized. When the training is completed,
the DNN model makes predictions by aggregating infor-
mation from different channels/feature graphs.

D x ∈ X
y ∈ Y

M : X → Y M
L Ml lth

M l = 1, 2, . . . , L

k kth
Mk

l ∈ Ml

Mk
l

Mk
l ∈ R H W

Given dataset , data sample , and label
, the deep learning model is a learning mapping or

classification function , model consist-
ing of hidden layers. denotes the hidden layer
of model , where . It contains several
channels corresponding to a group of neurons, which are
defined here as neuron units, the output being a feature
map. The superscript denotes the channel, and the
activation of all neurons satisfies . We apply
the Frobenius norm to the original activated matrix ,
and the average channel from the activation values

 can be calculated. and denote the height
and width of the channel, respectively.

Mk
l = 2

√√√√ H∑
i=1

W∑
j=1

(M2
l,i,j)

2 (1)

σ Mk
l >

σ

k

Given the hyperparameter threshold , when
, it indicates that the nerve unit is activated; otherwise,

the nerve unit is not activated. The activated neural units
can be sorted based on their activation values, the top-
units being selected as the SLUs of a single sample:

Ωl = TOPk(Mk
l , σ) (2)

Definition 1 SLUs: a series of neural units that can
cause the activation of a specific logical region. Specific
logical region refers to the channel corresponding to each
neural unit.

Owing to the poor stability of single-SLUs, it is nec-
essary to further calculate the CLUs of each category.
The idea is to design a fully connected network, with all
the samples of the category as the input, the category
one-hot vector as the output, and the network parame-
ters obtained after training as the channel weight matrix.

xi (i = 1, 2, . . . , n)
yi Ωl = Ω1,Ω2, . . . ,Ωl

Assuming that all samples of cat-
egory , the SLUs are denoted as ,
by mapping:

W ∗Ωl → y (3)

∗

CLUs

the channel weight matrix can be obtained and split ac-
cording to the row vector, where the asterisk means
the matrix multiplication. After sorting, the sequence
number of the top-k corresponding neural units can be
selected to obtain the corresponding .

Ωi = TOPk(argsort(Wi)) (4)

Definition 2 CLUs: the probability statistics of all
sample sets of logic units to which the class belongs. It
should be noted that CLUs are divided for a certain cate-

 952 Chinese Journal of Electronics, vol. 33, no. 4

gory rather than the whole dataset, and CLUs of differ-
ent categories may intersect.

The CLU can be calculated using Algorithm 1.

Algorithm 1 Algorithm for CLU calculation
x ∈ X y ∈ Y

l σ
Input: data sample , labeled , convolution lay-

er number , and activation threshold .
ΩlOutput: logic unit vector .

 1: Load DNN model and initialize parameters;
x1, x2, . . . , xn c 2: Obtain all samples of class ;

i = 1 : n 3: for do
xi 4:　　Sample input model;

M1
l ,M

2
l , . . . ,M

k
l 5:　　Calculate according to (1);

Mk
l 6:　　Calculate ;

 8: end for

random(K,C)
 9:　Randomly initialize the weight matrix W =

. Here K denotes the total number of
channels and C denotes the total number of categories;

i = 1 : n10: for do
mi

yi xi

11:　　 Calculate neural unit activation value and la-
bel of sample ;

ykl = Mk
l ∗W12:　　 Calculate ;

θ = 1
2N

∑N
i=1(y

k
l − yi)

213:　　 Calculate ;

W ′ = W − δ ▽l and W = W ′ ▽

δ

14:　　 Update . de-
notes the weight update using gradient descent,
and denotes the step size;

15: end for
W =

Wi,1

max(W0,1,W1,1,...,Wi,1)
16: Calculate ;

W > σ

Ω = TOPk(W)

17: Select top-k as a logical sequence of neurons
;
Ωl18: Output sequence .

Note that as described in prior studies [20], [22],
[23], not all important units with high activation values
are human-interpretable. Nevertheless, these units are

predominantly positively correlated with their associated
classes and assist the network in making the correct deci-
sions. Similarly, not all units of logic units in this work
are human-interpretable yet they can contribute to exe-
cuting effective priority testing.
 3. Measurement of logic units

∪
∩

∥·∥

We measure the similarity and distance between the
SLU and CLU from two perspectives. The Jaccard simi-
larity coefficient is introduced, the operation denotes
the union of sets, the operation denotes the intersec-
tion of sets, and the operation denotes the number of
set elements.

1) Single-sample logic degree
Given sample SLU and CLU of a certain class, the

similarity between these two units can be calculated as

SJ =
∥SLU ∩ CLU∥

∥SLU∥+ ∥CLU∥ − ∥SLU ∩ CLU∥
(5)

SJ

SJ

The larger the value, the more similar the two
units, that is, the more overlapping the set elements. The
smaller the value, the less overlapping the set elements.

Given sample SLU and CLU of a certain class, the
distance between these two units can be calculated as

DJ =
∥SLU ∪ CLU∥ − ∥SLU ∩ CLU∥

∥SLU ∪ CLU∥
(6)

DJ

DJ

The larger the value, the lower the number of
overlapping set elements between the two units, and the
smaller the value, the higher the number of overlap-
ping set elements between the two units.

x
Ωx = Ω1,

Ω2, . . . ,Ωk yc
Y = y1, . . . , yc, . . . ,

yk yc ∈ Y

Given a clean sample or an adversarial sample ,
the SLU can be obtained using Algorithm 1, i.e.,

. Let the model judgment classification be ,
and the sample category label set be

, . The subscript k denotes the top-k hyperpa-
rameter selected by the logic unit. We can measure the

Feature map

ReLU

SLU

CLU

ReLU

Conv
Conv

G
A

P

FC

FC

Input

Class B

Class A

W*Ωl→y

Figure 3 Schematic of the logic units calculation process. First, the samples from different classes (e.g., Class A and Class B) are input in-
to the neural network. The output feature maps of the convolutional layers are calculated according to equation (1) for their average acti-
vation values. These values are then sorted. The red dots indicate the important neural units, i.e., SLUs, whereas the blue dots indicate
the neural units that can be ignored. The input of FC is the SLUs of a certain class, and the weight matrix W is calculated according to
equation (3) and split according to the row vectors. Finally, the top-k is selected as the output CLUs in order. The different classes corre-
spond to different CLUs.

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 953

yc

deviation between the sample and the model to deter-
mine the classification by calculating the sample logic
degree:

L =
DJ(SLUx,CLUyc

)∑k

l
DJ(SLUx,CLUyi

)
, yi ∩ yc = ∅ (7)

Definition 3 Logical degree: a measure of whether
the DNN model correctly classifies a given sample.

L

yc

L
yc

If the logic units of a single sample deviate from
their CLUs and the value is too large, this indicates
that the sample has been attacked and the model predic-
tion result is probably incorrect. We can then place
this sample in the priority test queue. Otherwise, if the
logic units of a single sample deviate from their CLUs
and the value is small, it indicates that the sample is
probably clean. The predicted by the model is correct,
and this sample is not placed in the priority test queue.

2) Class logic unit correlation
Given two different classes of logic units, i.e., CLU1

and CLU2, the similarity or distance between them can
be expressed as follows:

CJ =
∥CLU1 ∩ CLU2∥
∥CLU1 ∪ CLU2∥

(8)

CJ

CJ

The smaller the value of , the lower the number
of overlapping set elements between the two logic units
from different classes. The larger the value of , the
higher the number of overlapping set elements between

the two units. It is not difficult to conclude that the log-
ic units of different classes should be independent of each
other and that their distance should be large. Consequently,
logic units can be more effective during the testing pro-
cess. The experimental results validate this argument.

 IV. DNN Priority Testing via
Interpretable Logic Units

 1. Overview
This paper proposes a deep logic framework based

on the priority of logic units. It integrates the weights of
internal attributes and context attributes in the test pro-
cess and prioritizes a large number of test cases, helping
to detect more model defects during the early stages.
The overall structure of the deep logic test framework is
shown in Figure 4. The main body of the framework
comprises four parts, that is, preprocessing, internal at-
tribute extraction, context attribute extraction, and pri-
ority sorting.

The preprocessing module performs two main func-
tions. The first is to reclassify the samples based on the
decision classification. Using the CIFAR-10 dataset as an
example, there are 10 different categories, the samples
being divided based on the above 10 categories instead of
being mixed together. The second function is to produce
adversarial examples and incorporate them into the test-
case set for data augmentation. Adversarial training is
applied to generate defense models and improve the gen-
eralization ability of the test-case priority.

A

B

N

STD models

ADV models
Preprocessing

Adversarial
attack

Context
attribute

extraction

attribute
extraction

Table of attributes

CLU & SLU

Multi-attribute priority sorting

Items

Test dataset
Internal

..
.

Figure 4 Overview of DNN priority testing via logic units. The test cases go through two paths (contextual attribute extraction and inter-
nal attribute extraction) after pre-processing. Both standard (STD) trained models and adversarial (ADV) trained models are used for
testing. The attribute table records the serial number, logic degree, defect severity, etc., of the test cases.

The context attribute extraction module introduces
the test criteria of interpretable logic units and extracts
the sequence of CLUs by traversing all samples of each
class. It compares the deviations between test-case logic
units and their CLUs.

Inspired by DeepGini, the internal attribute extrac-
tion module calculates the probability distribution of the
SoftMax output vector after the current test case is input
into the DNN model. The fusion comparator accepts the

context and internal attribute extraction modules as in-
puts and calculates their weights. Subsequently, the out-
put is used as the test-case priority evaluation criterion
of the priority sorting module.
 2. Context attributes extraction

According to the algorithm flow of logic units (see
Figure 3) introduced in Section III.2, the average chan-
nel activation values of the divided multiple training-set
subsets based on the classification categories are calcu-

 954 Chinese Journal of Electronics, vol. 33, no. 4

lated, after which the channel weight matrix can be ob-
tained accordingly. The top-k channel is selected as the
CLU channel. Adversarial examples can then be generat-
ed to expand the test-case set and feed it into the DNN
models. The SLU calculates the logic degree according to
the method presented in Section III.3 for each test case.
The results are filled in the multiple attribute table en-
tries and then prioritized based on the sorting rules. Pri-
ority is defined as the logical degree of each test case.
The smaller the logical value, the higher the priority.
Finally, we place it in the header of the sorted test set
until the test set is empty and the sorting ends.

If the logic units of a single sample deviate from its
CLUs, it indicates that the sample has been attacked, and
the model prediction is probably incorrect. The sample is
placed in the priority test queue. Otherwise, it indicates
that the sample has not been attacked by the adversary
and the prediction result is correct. Thus, it is not placed
in the priority test queue.
 3. Internal attribute extraction

x ∈ X M : X → Y

p1, p2, . . . , pK

ε = 1−
∑N

i=1 (pi(x))
2

Reference [29] demonstrated that the attributes of a
single test case were also important factors to be consid-
ered in the prioritization process. For a given sample

 and DNN model , the output of the
last layer of the model, for example, the SoftMax layer,
is the probability confidence . DeepGini uses
the probability confidence mean square as a test-case pri-
oritization criterion, i.e., . Because
information entropy, also known as Shannon entropy,
can be used to measure the uncertainty of DNN model
output predictions, its introduction can more accurately
represent the characteristics of test cases. Thus, inspired
by DeepGini, we propose the use of information entropy,
selecting the sample data with the largest uncertainty
to be the internal attribute, which can be formally ex-
pressed as

τ(t) = −
N∑
i=1

(pi(x))
2logpi(x) (9)

According to the Lagrange multiplier,

L(pt,i, λ) = τ(t) + λ×
N∑
i=1

pi(x) (10)

pt,i t
i

pt,1 , pt,2, ..., pt,n

where represents the probability that the test be-
longs to the class , we calculate the partial differentia-
tion of and let

∂L

∂pt,N
= −2pt,N × logpt,N − pt,N + λ

= λ− pt,N (2logpt,N + 1) = 0 (11)

i j
If any two of the above equations (such as equa-

tions and) are calculated, we can obtain

pt,i(2logpt,i + 1) = pt,j(2logpt,j + 1) ⇒ pt,i = pt,j (12)

pt,1 = pt,2 = · · · = pt,N =

1/N τ(t)

p1, p2, . . . , pK
C1 → CK

τ(t1) < τ(t2)

t2
τ

N D

Therefore, if and only if
, has the highest value. The probability confi-

dence for the classification task of the
DNN model corresponding to the category
cannot be distinguished, leading to an incorrect model
prediction. Based on the above discussion,
indicates that is more likely to be misclassified. There-
fore, is used as one of the prioritization metric at-
tributes for test cases in dataset .
 4. Multi-attribute priority sorting

After extracting context attributes and intrinsic at-
tributes, this module stores several key attribute values
to form a multi-attribute table corresponding to each
test case and uses these attribute fields to analyze and
judge whether the model makes the correct prediction.
We can compare the degree of logical deviation of the
context attributes for each test case. If it exceeds a giv-
en threshold, an incorrect model prediction can be con-
firmed. Otherwise, it is difficult to verify the accuracy of
the model prediction. The internal attributes of the test
case can then be compared to determine whether the
model is classified incorrectly. The higher the deviation
degree and the larger the internal attributes, the smaller
the number of test cases in the sorted test queue. Dur-
ing the test process, the sample number (from small to
large) is input into the model to be tested for the predic-
tion of results. The error detection efficacy can be mea-
sured using the relationship between the number of test
cases and the number of errors that can be detected in
those test cases.
 5. Defect detection capability assessment

To measure defect detection capability, we adopted
two existing evaluation metrics and proposed a new met-
ric as well.

1) Average percentage of fault detection
The average percentage of fault detection (APFD)

index proposed by Mor [36] is introduced to evaluate
whether using logic as guidance to select test cases can
improve the error detection ability. This metric can mea-
sure it using the relationship between the number of test
cases and the number of errors that can be detected in
those test cases. Moreover, the APFD can measure the
performance of various test-case prioritization techniques
using the same criteria.

T

n

F
F = {f1, f2, . . . , fm}
F T ′ T

tf ∈ T ′

f T ′

T ′

Suppose there is a set of test cases , including a
total of test cases, among which the wrong test-case
set is , which is composed of all errors. Assume that

, i.e., there is a total of m errors in
. denotes the test-case set based on the coverage

of test cases after picking the order set. If we use
to represent the first error test case detected in ,
then APFD values of can be calculated as follows:

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 955

TAPFD =

(
1− tf1+tf2+· · ·+tfm

n×m
+

1

2n

)
× 100% (13)

[0, 1]The range of the APFD is , and the larger the
value of the APFD, the faster the error detection speed
of the test sort and the better the sorting efficacy of the
test set.

2) Risk detection ability

RDA =
0

RDA =5

RDA =10

RDA =100

Reference [29] proposed a testing metric called RDA
in the traditional software testing field. In this study, we
adopt this metric and extend it into the deep learning
testing field. First, we define the quantitative representa-
tion of the RDA. Based on the impact of defects on mod-
el classification, the defect severity can be divided into
several groups, that is, no defects, general defects, major
defects, and serious defects. To measure the severity of
defects, quantitative values of the severity of various de-
fects can be defined, that is, 0, 5, 10, and 100, respective-
ly. If the classification is correct, the maximum classifica-
tion probability is equal to the correct label; then
 represents no defects. If the classification is incorrect

and the second largest classification probability is equal
to the correct label, then represents general de-
fects. If the classification is incorrect and the third-
largest classification probability is equal to the correct la-
bel, then represents major defects. If the clas-
sification is incorrect and the top-3 classification proba-
bility has no correct label, then represents
serious defects. Thus, the RDA can be computed as

TRDA =

∑N

i
RDA ∗ F
n

(14)

[0,+∞]The RDA range is . In (14), the smaller the
RDA value, the earlier serious defects can be detected,
and the better the sorting effect of the test set. It is im-
portant to note that the RDA values need to be calculat-
ed during the test-case sequencing process and also
recorded in the table of attributes, after which the de-
fect severity detection capability assessment is performed

during the evaluation.

 V. Experimental Results
In this study, the experimental environment includ-

ed an Ubuntu 20.04 LTS platform, running an NVIDIA
TITAN XP GPU, and an Intel Core i7-8700K CPU @
4.30 GHz × 8. We used the PyTorch 1.7.0 deep learning
framework to implement our method.

To verify the rationality and validity of our deep
logic testing based on interpretable logic units, we con-
ducted experiments on several datasets and models to
seek answers to the following research questions:

RQ1 Feasibility: In the decision-making process of
the model, is the correct prediction related to the activa-
tion modes of the different channels? (Some channels are
frequently activated, while others are less likely to be ac-
tivated)

RQ2 Effectiveness: Can DeepLogic distinguish be-
tween clean samples and adversarial samples?

RQ3 Availability: Does DeepLogic have a higher
error detection rate in test-case prioritization than exist-
ing methods?
 1. DNN models and datasets

In our experiments, the widely used VGG-16, ResNet-
18, and ResNet-34 models were adopted as DNN models
to be tested. A convolutional neural network, SmallCNN,
was designed and trained for universality validation. The
popular CIFAR-10 and FashionMNIST datasets were
adopted. The CIFAR-10 dataset contains 60000 32 × 32
color images in 10 categories, including 50000 images in
the training set and 10000 images in the verification set.
And the FashionMNIST dataset contains 70000 28 × 28
black and white images in 10 categories, including 60000
images in the training set and 10000 images in the verifi-
cation set. The DNN models were trained separately on
the original sets, and the accuracy rate was greater than
85%. Table 1 summarizes the details of the experimental
setting.

Table 1 DNN models and datasets in our experiments

Model Parameters Dataset Class Size Accuracy

VGG-16 138357544 CIFAR-10 10 60K 93.1%

ResNet34 63470656 CIFAR-10 10 60K 92.7%

ResNet18 33161024 FashionMNIST 10 70K 93.4%

SmallCNN 12582912 FashionMNIST 10 70K 92.2%

Note: K=103.

 2. Adversarial sample generation and defense
model

Several popular adversarial attack techniques, in-
cluding the fast gradient sign method (FGSM) [37], pro-
jected gradient descent (PGD) [38], and Carlini and
Wagner (C&W) attacks [39] have been used to generate

ϵ = 0.093

ϵ = 0.1

ϵ = 0.2

adversarial samples. The implementation details of these
methods are as follows. For FGSM, we set . For
PGD, specifically including PGD20 and PGD100, we set

, Inf normal form, step_size = 0.003, and itera-
tion times being epoch = 20 and epoch = 100, respec-
tively. For C&W, we set , confidence k = 0, L2
normal form, step_size = 0.01, and iteration time as

 956 Chinese Journal of Electronics, vol. 33, no. 4

epoch = 10000.
First, we expanded the test-case set by incorporat-

ing adversarial samples into the set and comprehensively
evaluated the robustness of the model. The final test-case
set consisted of 7/10 clean samples, 1/10 FGSM attack
samples, 1/10 PGD attack samples, and 1/10 C&W at-
tack samples.

Conversely, adversarial training was carried out on
the DNN models, and the tradeoff-inspired adversarial
defense via surrogate loss minimization (TRADES) [40]
method was adopted. Subsequent experiments verified
the effectiveness of the DeepLogic method proposed in
this paper for the standard model and the defense model.
Table 2 summarizes the details.

Table 2 Comparison of accuracy of the standard model and defense model

Model Clean FGSM PGD20 PGD100 C&W

VGG-16 0.931/0.822 0.122/0.597 0.028/0.498 0.025/0.483 0.000/0.472

ResNet34 0.927/0.856 0.161/0.652 0.001/0.535 0.001/0.517 0.001/0.528

ResNet18 0.934/0.911 0.421/0.878 0.001/0.863 0.001/0.855 0.005/0.863

SmallCNN 0.922/0.887 0.586/0.849 0.291/0.834 0.288/0.829 0.261/0.830

 3. Channel activation mode (RQ1)
We validated the positive relationship between the

correct prediction of the DNN models and the activation
modes of different channels. Specifically, to explore the
activation frequency of the different neural units using
the samples in each category, the proportion of the acti-
vation times of each channel, i.e., the average activation
value greater than the threshold, was calculated for each
category. We then arranged them in descending order

based on the channel activation proportion, as shown in
Figure 5. The horizontal axis represents the channel
number from the largest to the smallest activation pro-
portion. Channel 0 represents the channel with the high-
est activation frequency under the current category, and
channel 0 could have different channels under different
categories. The vertical axis represents the proportion of
activation times of the different channels, i.e., the fre-
quency.

0

20

40

60

80

100

1000 300 400 500200
Channel

Fr
eq

ue
nc

y
of

 a
ct

iv
at

io
n

(%
) Plane

Car
Bird
Cat
Deer
Dog
Frog
Horse
Ship
Truck

0

20

40

60

80

100

1000 300 400 500200
Channel

Fr
eq

ue
nc

y
of

 a
ct

iv
at

io
n

(%
)

Plane
Car
Bird
Cat
Deer
Dog
Frog
Horse
Ship
Truck

0

20

40

60

80

100

1000 300 400 500200
Channel

Fr
eq

ue
nc

y
of

 a
ct

iv
at

io
n

(%
)

T-shirt
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

0

20

40

60

80

100

1050 20 25 3015
Channel

Fr
eq

ue
nc

y
of

 a
ct

iv
at

io
n

(%
)

T-shirt
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

(a) CIFAR-10+VGG-16 (b) CIFAR-10+ResNet34

(c) FashionMNIST+ResNet18 (d) FashionMNIST+SmallCNN

Figure 5 Abrupt decrease of channel activation probability in different samples. (a)–(d) show the results of different models on different
datasets.

Figure 5(a) shows the results of the VGG-16 models
on the CIFAR-10 dataset. It is evident that for the sam-
ples in each category, the activation ratio shows a sharp
decline when the channel is No. 200 and the decline

ranges from 80%–100%. Figure 5(b) also shows similar
results. For the combination of FashionMNIST and
SmallCNN, as shown in Figure 5(c) and 5(d), although
the decline in the channel activation ratio is not as obvi-

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 957

ous as that on CIFAR-10, a similar trend is also evident.
Figures 6 and 7 illustrate the top-10 logic units and their
activation probability for 10 different categories on the
CIFAR-10 dataset of the VGG-16 and ResNet34 models,
respectively. It is evident that the activation frequencies

of the first 10 channels of the same category (e.g., plane
category) are quite different, suggesting that the channel
activation frequencies of the same dataset under differ-
ent models are inconsistent and the other logic units also
have their characteristics in different models.

0

20

40

60

80

100

342187 480 356319

Plane: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

229238 46 300368

Car: activation

frequency of neuron
A

ct
iv

at
io

n
 f

re
q
u
en

cy

0

20

40

60

80

100

471364 288 46198

Bird: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

21455 36 109373

Cat: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

316286 227 114217

Deer: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

5055 180 390433

Dog: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

364325 471 18361

Frog: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

5055 394 26350

Horse: activation

frequency of neuron
A

ct
iv

at
io

n
 f

re
q
u
en

cy

0

20

40

60

80

100

504361 196 2304

Ship: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

167238 240 19911

Truck: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

Figure 6 Top-10 logic units with the highest average activation values for different categories on VGG-16 model.

0

20

40

60

80

100

404149 201 44357

Plane: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

254420 97 321383

Car: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

335230 190 68203

Bird: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

313129 458 248298

Cat: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

417335 401 331190

Deer: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

73315 38 357230

Dog: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

298296 411 267322

Frog: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

261206 257 129433

Horse: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

184404 57 406230

Ship: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

0

20

40

60

80

100

222483 477 3148

Truck: activation

frequency of neuron

A
ct

iv
at

io
n
 f

re
q
u
en

cy

Figure 7 Top-10 logic units with the highest average activation values for different categories on ResNet34 model.

Additionally, the activation probabilities of some
neural units in different classes are shown in Table 3.
The activation probability of neural unit No. 120 in
“car” is as high as 99.5%, while that of the horse catego-
ry is 0.6%. This means that 995 out of 1000 samples of
the former were activated, and only six of the latter sam-
ples had an average activation value of unit No. 120
above the threshold. Based on the statistics of neuronal
unit activation probability, we found that for a given
DNN model, the activation probability of neurons corre-
sponding to samples from different categories varied
greatly. This phenomenon also appears in the activation

probability of neurons when the inputs are clean and ad-
versarial. Consequently, the results and analysis indicate
that correct DNN predictions greatly depend on the com-
bined action of multiple logic units.
 4. Different logic unit distance (RQ1)

The logic units of each category represent the fea-
tures extracted from that category by the DNN. The
samples in each category have different characteristics,
and the logic units of each category differ. To verify this,
we calculated the Jaccard similarity coefficient between
each class of logic units and other classes of logic units.
We first converted two different CLUs into two sets of

 958 Chinese Journal of Electronics, vol. 33, no. 4

integers and then used Jaccard similarity coefficients to
measure the similarity between them. The larger the Jac-
card similarity coefficient, the more similar the two dif-
ferent classes of logic units. And the results are shown in
Figure 8. Using the CIFAR-10 dataset as an example,
the similarity of the logic units of the samples from dif-
ferent categories is less than 0.25, that is, the logic units
are very different. Among them, the Jaccard similarity
between the “car” and “truck” categories is the highest,
reaching 0.32, which may be because several logic units
of these two categories overlap.

 5. Validity verification of logic units (RQ2)
To answer RQ2, for a given test sample set, we

counted the number of successful attacks of the adversar-
ial samples and the number of changes in the logic units
before and after the attacks on the standard and defense
models, respectively. We then calculated the ratio of the
two to be the effectiveness index. To determine whether
the logic units changed before and after the attack, we
calculated the SLU of the sample before the attack and
the CLU of the class to which the sample belonged after
the attack. The distance between them was then calcu-
lated based on (6) (Section III.3). If the result exceeded
the hyperparameter threshold, the logic units were con-
sidered to have changed; otherwise, there was no change.
Both standard and defense models were adopted in this
experiment. The FGSM, PGD, and C&W adversarial
samples were used for adversarial training. The logic
units of the clean and adversarial samples were calculat-
ed for the two DNN models for comparison.

The results are presented in Table 4. We analyze
the experimental data of the standard model testing. It
can be seen that before and after the FGSM attack, the
change rates of the logic units in the samples of the
VGG16, Resnet34, and Resnet18 models are 90.9%, 83.4%,
and 80.5%, respectively. The change rates of the SLUs in
the VGG-16, ResNet34, and ResNet18 models before and
after the PGD20 attack are 89.4%, 94.6%, and 89.1%, re-
spectively. The change rates of the SLU before and after
the C&W attack are over 88% except for the ResNet18
model (64.7%). These results demonstrate that a consid-
erable number of adversarial samples can achieve suc-
cessful attacks owing to changes in the interpretable log-

Table 3 The activation probabilities of some neural units in different classes differ (VGG-16+CIFAR-10)

Class Unit120 Unit176 Unit233 Unit284 Unit305 Unit391 Unit431 Unit474 Unit502

Plane 4.20% 2.00% 88.70% 15.70% 0.90% 45.60% 96.60% 2.00% 96.10%

Car 99.50% 0.10% 0.40% 1.10% 4.80% 5.40% 96.50% 49.90% 0.30%

Bird 89.60% 93.30% 93.50% 95.20% 2.70% 4.10% 92.80% 90.60% 95.40%

Cat 6.90% 79.70% 3.30% 90.10% 74.00% 5.20% 3.30% 10.00% 3.50%

Deer 0.70% 88.50% 1.40% 2.00% 1.10% 97.00% 2.20% 2.20% 95.50%

Dog 65.30% 5.10% 1.90% 95.90% 2.80% 8.80% 2.80% 89.80% 2.80%

Frog 0.90% 2.10% 96.10% 8.60% 96.30% 2.90% 4.60% 1.70% 2.20%

Horse 0.60% 3.10% 0.80% 1.70% 78.50% 3.60% 96.00% 94.80% 2.90%

Ship 97.40% 0.60% 1.20% 97.00% 1.50% 98.70% 3.80% 1.80% 97.90%

Truck 96.70% 0.20% 0.60% 0.60% 96.90% 98.60% 36.60% 98.30% 2.00%

Table 4 Average change rate of logic units before and after the
standard model and defense model against the sample attack

Model FGSM PGD20 C&W

VGG-16 0.909/0.910 0.894/0.898 0.913/0.918

ResNet34 0.834/0.841 0.946/0.934 0.882/0.900

ResNet18 0.805/0.877 0.891/0.909 0.647/0.734

SmallCNN 0.972/0.987 0.954/0.981 0.957/0.994

0 1 2 3 4 5
Class label

C
la

ss
 l

ab
el

6 7 8 9

0

1

2

3

4

5

6

7

8

9

1.0

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5
Class label

C
la

ss
 l

ab
el

6 7 8 9

0

1

2

3

4

5

6

7

8

9

1.0

0.8

0.6

0.4

0.2

0

SmallCNN+FashionMNIST logic_similarity

of CLNU

VGG-16+CIFAR-10 logic_similarity of CLNU

Figure 8 Different logic unit distances in different experimental set-
tings.

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 959

ic units. These results also illustrate that the SLUs
change rate of the standard model is lower than that of
the defense model under the FGSM/PGD20/C&W at-
tack. The reason for this phenomenon could be that the
attack success rate decreases under the defense model.
The total number of sample changes decreases, and the
number of logic units changed does not differ much,
which eventually leads to an increase in the proportion of

logic units. The cumulative relationship between the rate
of change of the SLUs and the number of samples was
further analyzed, as shown in Figure 9. As the number of
successful attacks increases, the number of samples with
changed logic units also increases. We then calculated
their Pearson correlation, the positive correlation of
which is 0.86, indicating that our logic units can reflect
the robustness problem in the test.

0.60

0.65

0.75

0.70

0.80

0.90

0.85

0.95

1.00

200 60 100 12080 14040

Logic validity [ResNet18+FashionMNIST]

L
o
g
ic

 u
n
it

s
ch

an
g
e

ra
ti

o

FGSM attack
PGD attack

0.800

0.825

0.875

0.850

0.900

0.950

0.925

0.975

1.000

200 60 100 12080 14040

L
o
g
ic

 u
n
it

s
ch

an
g
e

ra
ti

o FGSM attack
PGD attack

0.800

0.825

0.875

0.850

0.900

0.950

0.925

0.975

1.000

200 60 100 12080 14040

Logic validity [ResNet34+CIFAR-10]

L
o
g
ic

 u
n
it

s
ch

an
g
e

ra
ti

o FGSM attack
PGD attack

0.800

0.825

0.875

0.850

0.900

0.950

0.925

0.975

1.000

200 60 100 12080 14040

Logic validity [SmallCNN+FashionMNIST]
L

o
g
ic

 u
n
it

s
ch

an
g
e

ra
ti

o

FGSM attack
PGD attack

Logic validity [VGG-16+CIFAR-10]

C&W attack C&W attack

C&W attack

C&W attack

N×batch_size

N×batch_size

N×batch_size

N×batch_size

Figure 9 The average change rate of logic units before and after the standard model against the sample attack.

 6. Logic units guide test-case prioritization (RQ3)

1) State-of-the-art methods
Given a DNN model and a set of test cases, our aim

is to prioritize test cases based on metrics and find as
many hidden defects of the model as possible in a short
time. Consequently, the proposed method was compared
with several SOTA test priority techniques:

• DeepGini [9]: DeepGini is one of the most ad-
vanced test case prioritization techniques. The ranking
criterion of this method is the classification decision of
statistical probability distribution based on the DNN
model.

• MCP [30]: In addition to the output confidence,
MCP also considers the balance among different class
boundaries of the selected test inputs.

• DSC [31]: It proposes to use the distance-based
surprise score DSC as a test input prioritization metric.

• Entropy [29]: Similar to DeepGini, the ranking
criterion of this method is the classification decision of
statistical probability distribution based on the DNN
model.

• NAC [6]: NAC (neuron activation coverage) digs
for test inputs that make a group of DNN models with

the same function produce differential behaviors and
achieve high NC.

• NBC [7]: NBC measures how many corner-case
regions have been covered by the given test input set T.
It is defined as the ratio of the number of covered corner
cases and the total number of corner cases.

• Random: Test cases are randomly selected for
testing.

The configurable parameters in the above methods
were set to the default values in the original paper. Each
comparison experiment was then conducted using four
models. A test-case set consisting of clean and adversari-
al samples was used, and APFD and RDA metrics were
applied for evaluation.

2) Experimental procedure
Based on the discussion in Section IV, the test-case

prioritization experiment was divided into two stages,
that is, attribute extraction and prioritization. First, the
training samples were input into the model to extract the
CLUs of various categories using context attributes. Ad-
versarial attack methods were applied to test samples to
generate adversarial samples and form a new test set.
The model was then input to calculate the SLUs of each
use case and extract the intrinsic attributes, the SLUs

 960 Chinese Journal of Electronics, vol. 33, no. 4

being used to calculate the logic degree. Subsequently,
we created multiple attribute table entries, including log-
ic degree, test time, classification accuracy, and defect
severity, prioritized according to the sorting rules, and fi-
nally evaluated the defect detection ability.

3) Experimental results and analysis
The comparative experimental results for different

DNN models on the CIFAR-10 dataset are shown in
Table 5. Comparing the average APFD values of each
method under different models, NAC and DSC are less
effective, with a fault detection rate of 51%, close to the
random method. NBC and MCP are generally effective,

with APFD values of 82% and 72%, respectively. En-
tropy and DeepGini methods show superior performance
and achieve around 91% APFD value. In comparison,
the proposed DeepLogic is the best, with an APFD val-
ue of 95%. Comparing the average RDA values of each
method under different models, NAC is less effective,
with an RDA value of 22.38 close to the random method.
NBC, MCP, and DSC are comparatively effective, with
RDA values of 7.31, 19.30, and 10.22, respectively. En-
tropy and DeepGini have similar performance, with 11.01
RDA, and the proposed DeepLogic also illustrates the
best result with an RDA value of 3.47.

Table 5 Compare the effectiveness of various test prioritization methods from multiple perspectives

Metrics Model+Dataset APFD Average RDA Average

DeepGini
ResNet18+FashionMNIST

VGG-16+CIFAR-10
ResNet34+CIFAR-10

0.90
0.92
0.92

0.91
11.64
10.94
10.44

11.01

DSC
ResNet34+CIFAR-10

ResNet18+FashionMNIST
VGG-16+CIFAR-10

0.50
0.51
0.51

0.51
10.68
8.94
11.06

10.22

Entropy
ResNet34+CIFAR-10

ResNet18+FashionMNIST
VGG-16+CIFAR-10

0.92
0.90
0.92

0.91
10.18
11.20
10.66

10.68

MCP
ResNet34+CIFAR-10

ResNet18+FashionMNIST
VGG-16+CIFAR-10

0.64
0.72
0.79

0.72
21.87
19.36
16.66

19.30

NAC
ResNet18+FashionMNIST

VGG-16+CIFAR-10
ResNet34+CIFAR-10

0.53
0.55
0.45

0.51
21.87
19.27
23.81

22.38

NBC
VGG-16+CIFAR-10

ResNet18+FashionMNIST
ResNet34+CIFAR-10

0.81
0.82
0.82

0.82
7.24
8.21
6.48

7.31

Random
ResNet34+CIFAR-10
VGG-16+CIFAR-10

ResNet18+FashionMNIST

0.50
0.50
0.49

0.50
18.25
19.58
25.61

21.15

DeepLogic
VGG-16+CIFAR-10

ResNet18+FashionMNIST
ResNet34+CIFAR-10

0.96
0.94
0.96

0.95
3.37
4.26
2.78

3.47

Additionally, we plotted the cumulative error curves
of the above eight test criteria on the four DNN models
and two datasets, as shown in Figure 10(a), (b), and (c).
The horizontal axis of the cumulative error curve repre-
sents the number of test cases tested after prioritizing
the test set, and the vertical axis represents the cumula-
tive number of errors. The short red dotted line repre-

sents the cumulative error curve in the ideal state, that
is, the test cases that trigger deep learning system errors
are ranked in front of the test set. The closer the cumu-
lative error curve after ranking to the cumulative error
curve in the ideal state, the better the method.

From Figure 10(b), it can be seen that when testing
25% of the test cases, the average defect rates of the

0
20
40
60
80

100

200 60 80 10040
Percentage of test case executed

Pe
rc

en
ta

ge
 o

f
fa

ul
t d

et
ec

te
d

DSC
MCP
NAC
NBC

0
20
40
60
80

100

200 60 80 10040
Percentage of test case executed

(b) ResNet34+CIFAR-10

Pe
rc

en
ta

ge
 o

f
fa

ul
t d

et
ec

te
d

DSC
MCP
NAC
NBC

0
20
40
60
80

100

200 60 80 10040
Percentage of test case executed

Pe
rc

en
ta

ge
 o

f
fa

ul
t d

et
ec

te
d

DSC
MCP
NAC
NBC

(a) VGG-16+CIFAR-10

DeepLogic
Entropy
DeepGini

Random

(c) ResNet18+FashionMNIST

DeepLogic
Entropy
DeepGini

Random Random

DeepGini
Entropy
DeepLogic

Figure 10 The cumulative error curves of the eight test criteria on the three DNN models and two datasets. X-axis is the percentage of pri-
oritized tests and Y-axis denotes the percentage of detected misclassified tests.

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 961

NAC, NBC, MCP, and DSC methods are 26%, 49%,
58%, and 26%, respectively. Compared with the more ad-
vanced entropy, and DeepGini (orange triangle line)
methods (68% of fault detected), the proposed DeepLog-
ic (red dotted line) method also exhibits higher effective-
ness and can detect 80% of the model defects. The
APFD value of the DeepLogic model is much higher
than that of the NBC, entropy, and MCP methods. It
can detect 95% of the model defects. Additionally, the
DeepLogic model outperforms the SOTA DeepGini
method with a higher APFD value. In addition, we can
see that all the methods except NAC illustrate better
performance than the random one. The number of test
cases that reach a higher APFD is similar for different
models. For VGG-16, when testing 55% of the test cases,
the APFD value is 96%. For ResNet34, when testing 46%
of the test cases, the APFD value is 98%. For ResNet18,
when testing 50% of the test cases, the APFD value is 95%.
We also find that the prioritization of test cases based on
the Gini coefficient at the output layer and the prioriti-
zation based on the entropy function at the output layer
almost overlap because these two methods are similar.
Compared with the other state-of-the-art methods, our
DeepLogic is closer to the accumulated error curve un-
der the ideal condition, indicating that the DeepLogic is
superior to other methods, with a better sorting effect
and higher error detection rate.
 7. Ablation studies

1) Impact of activation threshold

σ

σ = 7×10−2 σ = 10×10−2 σ =
13×10−2 σ = 15×10−2 σ = 18×10−2 σ = 21×
10−2

As illustrated in Section III.2 (equation (1)), we
used the hyperparameter threshold to determine
whether the neural unit is activated. The effect of this
activation threshold on the performance of the logic unit
test is evaluated in this section. Specifically, six different
activation thresholds of , ,

, , , and
 were used for the experiments. Moreover, we used

the variance to measure the overall difference in the per-
centage of frequency activation between each class in the
plateau and trailing periods. The experimental results are
summarized in Table 6.

Table 6 Effect of different activation thresholds on frequency acti-
vation percentage analysis

Activation
threshold

Activation frequency
dip start point

Platform period
variance

Trailing period
variance

7E−2 104 0.078 0.293

10E−2 101 0.097 0.260

13E−2 99 0.120 0.207

15E−2 91 0.161 0.150

18E−2 89 0.193 0.112

21E−2 87 0.220 0.894

We further selected three activation thresholds for
visualized analysis. The experimental results are shown
in Figure 11.

σ

σ

σ
σ = 21×10−2

σ σ = 7×
10−2

σ

σ = 13×10−2

From Table 6 and Figure 11, we can see that if the
threshold increases, the starting point of the neural
unit plunge gradually approaches zero. Conversely, if the
threshold decreases, the starting point of the neural
unit plunge gradually approaches the total number of
channels (e.g., 512). However, if is substantially large,
e.g., , a large difference arises in the per-
centage of frequency activation of each class in the
plateau period. In contrast, if is minimal, e.g.,

, a large difference arises in the percentage of fre-
quency activation of each class in the trailing period af-
ter the plunge point. The threshold also indirectly af-
fects the size of the threshold k for logic unit selection
because the threshold k must be smaller than the start-
ing point of the frequency plunge. Therefore, we selected

 in this paper to achieve better performance
of DeepLogic.

0

20

40

60

80

100

1000 300 400 500200

Channel

F
re

q
u
en

cy
 o

f
ac

ti
v
at

io
n
 (

%
) FashionMNIST+ResNet18:

activation frequency of channel

t-shirt
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

0

20

40

60

80

100

1000 300 400 500200

Channel

F
re

q
u
en

cy
 o

f
ac

ti
v
at

io
n
 (

%
) FashionMNIST+ResNet18:

activation frequency of channel

t-shirt
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

0

20

40

60

80

100

1000 300 400 500200

Channel

F
re

q
u
en

cy
 o

f
ac

ti
v
at

io
n
 (

%
) FashionMNIST+ResNet18:

activation frequency of channel

t-shirt
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

(a) σ=7E−2 (b) σ=13E−2 (c) σ=21E−2

Figure 11 Effect of different activation thresholds on frequency activation percentage analysis.

2) Impact of top-k value
The impact of the k-value on the performance of the

logic unit test was also examined. Specifically, the effect
of four different k-values, namely k = 20, 30, 40, and 50,
on the percentage change of the logic unit before and
after the adversarial attack was compared (CIFAR-10

+VGG-16). The experimental results are summarized in
Table 7.

As can be seen from Table 7, the selection of logical
unit with different top-k values has a slight effect on the
experimental results. This is further corroborated by (6)
and (7), which indicate that altering both SLU and CLU

 962 Chinese Journal of Electronics, vol. 33, no. 4

simultaneously has a negligible impact on the percent-
age change of logic units before and after the adversarial
attack. We selected k = 50 in this paper.

 VI. Conclusions
This paper has defined interpretable logic units and

proposed a DeepLogic framework for priority testing of
DNN models from the perspective of model interpretabil-
ity. The effectiveness of two types of interpretable logic
units, SLU and CLU, for testing the robustness of both
standard and defended DNN models has been explored.
By integrating context attributes and inner attributes,
DeepLogic is able to perform effective priority testing.
Experimental results on several datasets with multiple
DNN models demonstrate that DeepLogic significantly
outperforms several baseline and state-of-the-art meth-
ods. Since deep learning testing usually requires a large
number of labels, we can benefit from the proposed prior-
itization testing method even if the labeling process is
halted due to resource limits. This study currently only
targets DNNs for classification, and its generalization ca-
pabilities for other DNN-based tasks, such as clustering
and detection, will be investigated in the future.

 Acknowledgements
This work was supported by the National Key Re-

search and Development Program of China (Grant No.
2020AAA0107702), the National Natural Science Foun-
dation of China (Grant Nos. 62006181, 62161160337,
62132011, U21B2018, U20A20177, and 62206217), and
the Shaanxi Province Key Industry Innovation Program
(Grant No. 2021ZD LGY01-02).

References

 K. Eykholt, I. Evtimov, E. Fernandes, et al., “Robust physi-
cal-world attacks on deep learning visual classification,” in
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, pp.
1625–1634, 2018.

[1]

 X. J. Ma, Y. H. Niu, L. Gu, et al., “Understanding adversari-
al attacks on deep learning based medical image analysis sys-
tems,” Pattern Recognition, vol. 110, article no. 107332,
2021.

[2]

 K. D. Julian, J. Lopez, J. S. Brush, et al., “Policy compres-
sion for aircraft collision avoidance systems,” in Proceedings
of the 2016 IEEE/AIAA 35th Digital Avionics Systems Con-
ference (DASC), Sacramento, CA, USA, pp. 1–10, 2016.

[3]

 K. Eykholt, I. Evtimov, E. Fernandes, et al., “Physical adver-
sarial examples for object detectors,” in Proceedings of the
12th USENIX Conference on Offensive Technologies, Balti-
more, MD, USA, p. 1, 2018.

[4]

 J. M. Zhang, M. Harman, L. Ma, et al., “Machine learning
testing: Survey, landscapes and horizons,” IEEE Transac-
tions on Software Engineering, vol. 48, no. 1, pp. 1–36, 2022.

[5]

 K. X. Pei, Y. Z. Cao, J. F. Yang, et al., “DeepXplore: Auto-
mated whitebox testing of deep learning systems,” in Pro-
ceedings of the 26th Symposium on Operating Systems Prin-
ciples, Shanghai, China, pp. 1–18, 2017.

[6]

 L. Ma, F. Juefei-Xu, F. Y. Zhang, et al., “DeepGauge: Multi-
granularity testing criteria for deep learning systems,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, Montpellier, France,
pp. 120–131, 2018.

[7]

 Y. C. Sun, X. W. Huang, D. Kroening, et al., “Testing deep
neural networks,” arXiv preprint, arXiv: 1803.04792, 2018.

[8]

 Y. Feng, Q. K. Shi, X. Y. Gao, et al., “DeepGini: Prioritiz-
ing massive tests to enhance the robustness of deep neural
networks,” in Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, Vir-
tual Event, pp. 177–188, 2020.

[9]

 Y. Z. Dong, P. X. Zhang, J. Y. Wang, et al., “There is limit-
ed correlation between coverage and robustness for deep neu-
ral networks,” arXiv preprint, arXiv: 1911.05904, 2019.

[10]

 D. Wang, Z. Y. Wang, C. R. Fang, et al., “DeepPath: Path-
driven testing criteria for deep neural networks,” in Proceed-
ings of the 2019 IEEE International Conference on Artifi-
cial Intelligence Testing (AITest), Newark, CA, USA, pp.
119–120, 2019.

[11]

 T. W. Weng, H. Zhang, P. Y. Chen, et al., “Evaluating the
robustness of neural networks: An extreme value theory ap-
proach,” in Proceedings of the 6th International Conference
on Learning Representations, Vancouver, BC, Canada, 2018.

[12]

 G. Katz, C. Barrett, D. L. Dill, et al., “Reluplex: An efficient
SMT solver for verifying deep neural networks,” in Proceed-
ings of the 29th International Conference on Computer Aid-
ed Verification, Heidelberg, Germany, pp. 97–117, 2017.

[13]

 T. Gehr, M. Mirman, D. Drachsler-Cohen, et al., “AI2: Safe-
ty and robustness certification of neural networks with ab-
stract interpretation,” in Proceedings of the 2018 IEEE Sym-
posium on Security and Privacy (SP), San Francisco, CA,
USA, pp. 3–18, 2018.

[14]

 Z. N. Li, X. X. Ma, C. Xu, et al., “Structural coverage crite-
ria for neural networks could be misleading,” in Proceedings
of the 2019 IEEE/ACM 41st International Conference on
Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), Montreal, QC, Canada, pp. 89–92, 2019.

[15]

 F. Harel-Canada, L. X. Wang, M. A. Gulzar, et al., “Is neu-
ron coverage a meaningful measure for testing deep neural
networks?” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Virtual
Event, pp. 851–862, 2020.

[16]

 J. Y. Wang, J. L. Chen, Y. C. Sun, et al., “RobOT: Robust-
ness-oriented testing for deep learning systems,” in Proceed-
ings of the 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), Madrid, Spain, pp.
300–311, 2021.

[17]

 Q. Hu, Y. J. Guo, M. Cordy, et al., “An empirical study on
data distribution-aware test selection for deep learning en-
hancement,” ACM Transactions on Software Engineering
and Methodology, vol. 31, no. 4, article no. 78, 2022.

[18]

 K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside
convolutional networks: Visualising image classification mod-
els and saliency maps,” in Proceedings of the 2nd Interna-
tional Conference on Learning Representations, Banff, AB,
Canada, 2014.

[19]

 B. L. Zhou, A. Khosla, A. Lapedriza, et al., “Learning deep
features for discriminative localization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-

[20]

Table 7 Effect of top-k on the average change rate of logic units
after the adversarial sample attack

Top-k of logic unit FGSM PGD20 C&W

Top-20 0.861 0.874 0.865

Top-30 0.892 0.906 0.907

Top-40 0.816 0.860 0.802

Top-50 0.909 0.894 0.913

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 963

tion, Las Vegas, NV, USA, pp. 2921–2929, 2016.
 R. R. Selvaraju, M. Cogswell, A. Das, et al., “Grad-CAM: Vi-
sual explanations from deep networks via gradient-based lo-
calization,” in Proceedings of the IEEE International Con-
ference on Computer Vision, Venice, Italy, pp. 618–626,
2017.

[21]

 D. Bau, J. Y. Zhu, H. Strobelt, et al., “Understanding the
role of individual units in a deep neural network,” Proceed-
ings of the National Academy of Sciences of the United
States of America, vol. 117, no. 48, pp. 30071–30078, 2020.

[22]

 Y. Bai, Y. Y. Zeng, Y. Jiang, et al., “Improving adversarial
robustness via channel-wise activation suppressing,” in Pro-
ceedings of the 9th International Conference on Learning
Representations, Virtual Event, pp. 1−19, 2021.

[23]

 S. C. Han, C. H. Lin, C. Shen, et al., “Interpreting adversari-
al examples in deep learning: A review,” ACM Computing
Surveys, vol. 55, no. 14s, article no. 328, 2023.

[24]

 G. Rothermel, R. H. Untch, C. Y. Chu, et al., “Prioritizing
test cases for regression testing,” IEEE Transactions on Soft-
ware Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[25]

 J. M. Kim and A. Porter, “A history-based test prioritiza-
tion technique for regression testing in resource constrained
environments,” in Proceedings of the 24th International Con-
ference on Software Engineering, Orlando, FL, USA, pp.
119–129, 2002.

[26]

 Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Transactions on
Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[27]

 D. Leon and A. Podgurski, “A comparison of coverage-based
and distribution-based techniques for filtering and prioritiz-
ing test cases,” in Proceedings of the 14th International Sym-
posium on Software Reliability Engineering, 2003. ISSRE
2003, Denver, CO, USA, pp. 442–453, 2003.

[28]

 M. Tyagi and S. Malhotra, “An approach for test case priori-
tization based on three factors,” International Journal of In-
formation Technology and Computer Science, vol. 7, no. 4,
pp. 79–86, 2015.

[29]

 W. J. Shen, Y. H. Li, L. Chen, et al., “Multiple-boundary
clustering and prioritization to promote neural network re-
training,” in Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Mel-
bourne, VIC, Australia, pp. 410–422, 2020.

[30]

 J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system
testing using surprise adequacy,” in Proceedings of the 2019
IEEE/ACM 41st International Conference on Software En-
gineering (ICSE), Montreal, QC, Canada, pp. 1039–1049,
2019.

[31]

 A. Sharif, D. Marijan, and M. Liaaen, “DeepOrder: Deep
learning for test case prioritization in continuous integration
testing,” in Proceedings of the 2021 IEEE International
Conference on Software Maintenance and Evolution (IC-
SME), Luxembourg, Luxembourg, pp.525–534, 2021.

[32]

 Y. Li, M. Li, Q. X. Lai, et al., “TestRank: Bringing order in-
to unlabeled test instances for deep learning tasks,” in Pro-
ceedings of the 35th International Conference on Neural In-
formation Processing Systems, Virtual Event, pp.
20874–20886, 2021.

[33]

 H. Noh, S. Hong, and B. Han, “Learning deconvolution net-
work for semantic segmentation,” in Proceedings of the IEEE
International Conference on Computer Vision, Santiago,

[34]

Chile, pp. 1520–1528, 2015.
 M. Lin, Q. Chen, and S. C. Yan, “Network in network,” arX-
iv preprint, arXiv: 1312.4400, 2013.

[35]

 A. Mor, “Evaluate the effectiveness of test suite prioritiza-
tion techniques using APFD metric,” IOSR Journal of Com-
puter Engineering, vol. 16, no. 4, pp. 47–51, 2014.

[36]

 I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in Proceedings of the 3rd
International Conference on Learning Representations, San
Diego, CA, USA, pp. 448−456, 2015.

[37]

 A. Madry, A. Makelov, L. Schmidt, et al., “Towards deep
learning models resistant to adversarial attacks,” in Proceed-
ings of the 6th International Conference on Learning Repre-
sentations, Vancouver, BC, Canada, pp. 1−18, 2018.

[38]

 N. Carlini and D. Wagner, “Towards evaluating the robust-
ness of neural networks,” in Proceedings of the 2017 IEEE
Symposium on Security and Privacy (SP), San Jose, CA,
USA, pp. 39–57, 2017.

[39]

 H. Y. Zhang, Y. D. Yu, J. T. Jiao, et al., “Theoretically prin-
cipled trade-off between robustness and accuracy,” in Pro-
ceedings of the 36th International Conference on Machine
Learning, Long Beach, CA, USA, pp. 7472–7482, 2019.

[40]

Chenhao LIN received the B.E. degree in
automation from Xi’an Jiongtong University,
Xi’an, China, in 2011, the M.S. degree in elec-
trical engineering from Columbia University,
New York, USA, in 2013, and the Ph.D. de-
gree from The Hong Kong Polytechnic Uni-
versity, Hong Kong, China, in 2018. He is cur-
rently a Research Fellow at the Xi’an Jiong-
tong University. His research interests include

artificial intelligence security, adversarial attack and robust-
ness, identity authentication, and pattern recognition.
(Email: linchenhao@xjtu.edu.cn)

Xingliang ZHANG received the B.E. degree
from the Information Engineering University,
Zhengzhou, China. He is currently pursuing the
M.S. degree in cyberspace security with Xi’an
Jiaotong University, Xi’an, China. His current
research interest focuses on artificial intelli-
gence security.
(Email: zhangxliang@stu.xjtu.edu.cn)

Chao SHEN received the B.S. degree in auto-
mation and Ph.D. degree in control theory and
control engineering from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2007 and 2014, respect-
ively. He is currently a Professor with the
Faculty of Electronic and Information Engin-
eering, Xi’an Jiaotong University. His current
research interests include AI security, insider/
intrusion detection, behavioral biometrics, and

measurement and experimental methodology.
(Email: chaoshen@xjtu.edu.cn)

 964 Chinese Journal of Electronics, vol. 33, no. 4

