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Abstract — With  the  increasing  deployment  of  deep  learning-based  systems  in  various  scenes,  it  is  becoming
important to conduct sufficient testing and evaluation of deep learning models to improve their interpretability and
robustness.  Recent  studies  have  proposed  different  criteria  and  strategies  for  deep  neural  network  (DNN)  testing.
However, they rarely conduct effective testing on the robustness of DNN models and lack interpretability. This paper
proposes a new priority testing criterion, called DeepLogic, to analyze the robustness of the DNN models from the
perspective  of  model  interpretability.  We first  define  the  neural  units  in  DNN with  the  highest  average  activation
probability as “interpretable logic units”. We analyze the changes in these units to evaluate the model’s robustness
by conducting adversarial attacks. After that, the interpretable logic units of the inputs are taken as context attri-
butes, and the probability distribution of the softmax layer in the model is taken as internal attributes to establish a
comprehensive test prioritization framework. The weight fusion of context and internal factors is carried out, and the
test  cases  are  sorted according to  this  priority.  The experimental  results  on four  popular  DNN models  using eight
testing metrics show that our DeepLogic significantly outperforms existing state-of-the-art methods.
Keywords — Deep learning testing, Interpretable logic units, Adversarial test, Model interpretability, Defect de-
tection.
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 I. Introduction
Deep learning  techniques  have  been  extensively  re-

searched and applied in safety-related fields, such as au-
tonomous  driving  [1],  medical  diagnosis  and  treatment
[2],  air  traffic  management  [3],  and  face  recognition  [4].
Existing studies have revealed that deep neural networks
(DNNs)  are  vulnerable  to  both  natural  cross-domain
samples  and  specifically  designed  adversarial  examples,
causing growing concern regarding widely deployed DNN-
based  systems.  Evaluating  the  robustness  and  safety  of
DNN models before they are applied to real-world appli-
cations has become a challenging and important task.

Deep learning testing  techniques  [5] have  been pro-
posed to detect potential defects in DNN models to help
guarantee their safety and robustness. Unlike traditional
software systems, deep learning systems typically contain

DNNs  with  complex  structures,  where  even  a  small
anomaly  in  the  input  data  could  lead  to  inappropriate
system decisions. A large-scale and reasonable set of test
cases  is  required  to  achieve  adequate  and effective  deep
learning testing. Unfortunately, these test cases are often
unavailable  and  require  manual  labeling.  An alternative
approach to prioritizing test cases and testing those that
could expose deep learning systemic errors to detect more
model  defects  at  an  earlier  stage  could  help  to  reduce
testing costs and improve testing effectiveness.

In recent years, research has progressed in DNN pri-
ority testing from multiple perspectives, including neuron
coverage (NC) [6]–[8] and output probability distribution
[9].  However,  many existing testing techniques based on
the NC measure [10], such as NC, neuron boundary cover-
age (NBC), and k-multisection neuron coverage (KMNC)
[7], are not applicable for testing the robustness of DNN 
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models. It can be difficult to distinguish defect test cases,
particularly  adversarial  ones,  resulting  in  a  low  average
defect  detection  rate,  also  called  average  percentage  of
fault detection (APFD). A more recent approach, namely
DeepGini [9], does consider adversarial tests. However, it
only considers the absolute value of the output probabili-
ty as the measurement index, ignoring the offset direction,
which  results  in  poor  performance  in  target  adversarial
attack scenarios. Additionally, existing test prioritization
methods  usually  lack  interpretability  and  fail  to  build
connections  between  different  test  cases,  which  could
make for more effective testing.

To address  the  existing  limitations,  this  study  pro-
posed DeepLogic to examine the priority testing of DNNs
using interpretable  logic  units.  First,  from  the  perspec-
tive of DNN model interpretability, the average channel
activation value sorted according to the weight is  taken
to  be  the  neural  unit  (channel).  The  top-k neural  units
are  selected  as  interpretable  logic  units  to  establish  the
degree of correlation with the model prediction and serve
as a  measurement  index  in  deep  learning  tests.  Subse-
quently, a comprehensive priority testing framework can
be established. Each class of interpretable logic units and
the probability distribution of the model outputs are cal-
culated as context and internal attributes in the test pro-
cess. Finally, these two attributes are combined and used
to generate the test-case set.

To validate  the  effectiveness  of  the  proposed  Deep-
Logic framework, several experiments were conducted on
two popular datasets and four popular DNNs, and seven
evaluation  metrics,  including  APFD  and  risk  detection
ability (RDA), were adopted. Additionally, three popular
adversarial attacks were implemented. The experimental
results showed that compared with several existing state-
of-the-art (SOTA) deep learning testing approaches, Deep-
Logic could achieve a higher average fault detection rate
of 95%.

The main contributions of this paper are as follows:
•  We  proposed  a  priority  testing  framework  for

DNN models called DeepLogic that enables the effective
generation of natural and adversarial tests.

• From the perspective of model interpretability, we
proposed a new logic unit test criterion in which context
attributes and internal attributes are integrated to evalu-
ate the capability of defect detection.

•  We  demonstrated  the  effectiveness  of  DeepLogic
using both natural  and adversarial  samples  on standard
and adversarial training models. DeepLogic achieved great-
ly  improved  performance  compared  with  several  SOTA
testing methods.

The remainder of this paper is organized as follows.
In Section II, we introduce the research progress in deep
learning  test  criteria,  channel  interpretability,  and  test-
case priority.  Section  III  defines  the  concept  of  inter-
pretable  logic  units  and proposes  a  technical  framework
based on the priorities  of  logic unit  test  cases.  We then
describe the details of the proposed DeepLogic method in

Section IV. Section V discusses the experimental verifica-
tion  of  the  validity  of  our  previous  theory,  focusing  on
evaluating the  effect  of  the  proposed  technique  com-
pared to other baseline methods.  Finally,  we summarize
the study and introduce further research in Section VI.

 II. Related Work

 1. Deep learning testing
Recently, several testing criteria have been proposed

to improve the effectiveness of DNN model testing. Pei et
al. [6]  proposed,  for  the  first  time,  the  use  of  NC  as  a
metric  index,  namely  DeepXplore,  to  jointly  optimize  a
solution  to  the  white  box  differential  testing  problem.
This  method  uses  test  inputs  that  enable  a  group  of
DNN models with the same function to produce differen-
tial behaviors and achieve high NC. Ma et al. [7] further
extended  the  concept  of  NC  by  introducing  three  new
neuron-level  coverage  standards  and  two  hierarchical
coverage standards,  namely  DeepGauge,  which  dynami-
cally sets different neuron activation thresholds with multi-
granularity to better reflect the differences between natu-
ral  and  adversarial  samples.  Sun et  al.  [8],  referring  to
modified  condition/decision  coverage  (MC/DC)  metrics
in the traditional software testing field, proposed four in-
dicators,  that  is,  conformity-sign  coverage,  distance-sign
coverage, sign-value coverage, and distance-value coverage
to  measure  the  difference  in  neuron  activation  values
between  adjacent  layers  and  implemented  them  in  the
DeepCover  tool.  Wang et  al.  [11],  referring  to  path-ori-
ented testing  methods  in  traditional  software  engineer-
ing,  proposed  a  set  of  path-driven  test  metrics  called
DeepPath, using a single neuron in the model as a node
and the neuron connections between different layers as a
path, and proposed three path coverage metrics.  To en-
sure  more  accurate  measurements  of  DNN  robustness,
Weng et al. [12] proposed a DNN robustness index name-
ly  Clever,  based  on  the  Lipschitz  continuous  extremum
theory. Katz et al. [13] proposed the concept of adversar-
ial robustness, that is, the ability of a model to correctly
classify attack  samples  generated  through  small  pertur-
bations.  Gehr et  al.  [14]  introduced  AI2,  which  utilizes
abstract interpretation theory to test deep learning mod-
els. The authors defined an abstract transformer to ana-
lyze the behavior of the implicit layer and employed the
zonotope abstraction domain to identify potential adver-
sarial inputs. Additionally, they established a benchmark
for measuring  model  robustness  by  outputting  the  ab-
straction domain range.

Despite  these  achievements,  some  results  [10],  [15],
[16]  show  that  there  is  no  positive  correlation  between
the existing test criteria and the robustness of the DNN
model.  Moreover,  existing test  standards rarely  consider
test problems from a high-level  semantics perspective of
deep learning tasks and fail to identify the importance of
different neurons in deep learning testing.

More recently, Wang et al. [17] presented RobOT, a
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reinforcement learning-based testing technique that gen-
erates challenging and diverse test cases, providing an ef-
ficient  and  accurate  method  for  robust  testing  of  deep
learning systems. Hu et al. [18] proposed a data distribu-
tion-aware test selection framework based on data impor-
tance and test case coverage. This framework adaptively
selects  test  cases  with  high  coverage  to  improve  model
robustness and stability. However, these studies focus on
testing the adversarial robustness after model retraining,
which is significantly different from our task of test case
prioritization.
 2. Interpretability of DNNs

The visualization  method  based  on  channel  activa-
tion mapping  can  generate  specific  class-related  activa-
tion maps for  DNN decision results,  making it  a  widely
used  DNN  interpretation  method.  Simonyan et  al. [19]
introduced two  visualization  techniques  that  use  gradi-
ent information to compute classification scores. The first
technique  reconstructs  the  maximized  class  score  image
from  ConvNet  and  captures  features  such  as  edges  and
stripes.  The  second  one  calculates  the  contribution  of
each pixel point to the output result, generating a salien-
cy map with the same dimensionality as the input image.
These  techniques  successfully  establish  the  connection
between gradient-based  convolutional  networks  and  de-
convolutional  neural  networks.  After  that,  the  channel
activation  mapping  (CAM)  method  was  proposed  by
Zhou et al. [20], i.e., CAM by inserting a global average
pooling (GAP) layer into a DNN to form a DNN network
with a full convolution structure and visualizing the con-
nection  weight  of  the  SoftMax  layer  as  the  weighted
weight of the top channel feature map. Selvaraju et al. [21]
improved the CAM method using gradient weighting and
proposed Grad-CAM with a wider range of DNNs.

More  recently,  Bau et  al. [22]  proposed  a  general
framework  called  Network  Dissection,  where  the  basic
unit of calculation was the corresponding channel of the
convolutional  filter  (by  comparing  the  activities  of  each
channel  with  a  series  of  human-explainable  pattern-
matching tasks,  such as the detection of  object  classes).
The semantic units were then given conceptual labels, in-
cluding  objects,  components,  scenes,  textures,  materials,
and colors.  Bai et  al. [23]  introduced channel  activation
into a robustness test and proposed a channel-wise acti-
vation suppressing (CAS) strategy. The basic idea was to
screen  feature  channels  with  important  contributions  to
the  classification  results,  suppressing  feature  channels
with low correlation. Inspired by the existing studies [24]
on the interpretability of  DNNs,  we proposed the intro-
duction  of  the “logic” displayed  by  high-level  channels
into  DNN  priority  testing,  making  the  testing  process
more effective and interpretable.
 3. Test-case prioritization

The main research objectives  of  test-case prioritiza-
tion technology can be summarized as follows: analyzing
and determining positive contributions to the test, calcu-

lating the  priority  of  test  cases,  and  achieving  an  effec-
tive  method  of  test-case  ranking.  Recent  studies  have
proposed the use of test prioritization techniques to find
defects as early as possible to evaluate DNN models.

T
′ ∈ PT ∀T ′′(T ′′ ∈ PT)(T ′′ ̸= T ′)[f(T ′) ≥

f(T ′′)]

Rothermel et al. [25] formalized the test-case priori-
tization  problem  as  follows:  Given  the  test-case  set T,
the full preordering set of T is PT and the sorting objec-
tive function is f. The domain of f is PT and the range is
real. The  purpose  of  test-case  prioritization  is  to  deter-
mine  to make: 

.  As  is  evident  from  the  above  description,  PT
contains  all  possible  test-case  ordering  in T;  function f
can be used to quantitatively describe the effect of evalu-
ation ranking. The larger the f value, the better the test-
case  ranking  effect.  Kim et  al.  [26]  proposed  a  test-case
prioritization method based on the test history. Li et al.
[27] proposed  several  search  algorithms  to  prioritize  re-
gression test  cases.  They focused on test-case  prioritiza-
tion techniques for code coverage, including block cover-
age, decision (branching) coverage, and statement cover-
age, which have all  been extensively studied in previous
work.  Leon et al. [28] experimentally compared four ex-
isting  methods  of  screening  large  test  suites,  namely,
fault-tracking  sampling,  test  suite  minimization,  cluster
filtering  using  single-cluster  sampling,  and  prioritization
via additional coverage. By introducing logic unit corre-
lation constraints, they evaluated the importance of each
test case in the test-case set before selecting and execut-
ing  the  test  cases  in  order  of  importance  (from high  to
low).  Consequently,  test  cases  of  high  importance  could
be executed as soon as possible, improving test efficiency
under limited test resource conditions.

Feng et  al.  [9]  proposed  DeepGini  and  designed  a
test-case  preference-selection  technology  based  on  the
probabilistic statistical perspective of the statistical DNN
model classification decisions. DeepGini proved to be more
effective and more efficient than existing overcover-based
technologies, helping improve DNN robustness. However,
it  only used the output probability  as  the measurement
index, and  when  strong  adversarial  attacks  were  imple-
mented, its effectiveness was greatly reduced. Entropy [29],
also known as  Shannon entropy,  is  a  widely  used  infor-
mation-theoretic  metric  that  measures  the  average  level
of  information  required  to  obtain  a  possible  prediction.
Similar  to  DeepGini,  the  ranking  criterion  of  entropy  is
the classification decision of statistical probability distri-
bution based on the DNN model.

More  recently,  Shen et  al.  [30]  proposed  a  multi-
boundary clustering  algorithm  (multiple-boundary  clus-
tering and prioritization,  MCP),  capable  of  dividing the
training  data  into  multiple  clusters,  each  with  different
boundaries and importance. The authors also proposed a
clustering cluster-based  prioritization  method  to  priori-
tize  each  cluster  in  retraining  based  on  its  boundaries
and importance. Experimental results indicated that the
method can  improve  the  efficiency  and  accuracy  of  re-
training, while  reducing training time and resource  con-
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sumption.  Kim et  al.  [31]  proposed  a  test  case  selection
method  based  on “surprise  adequacy”,  where  distance-
based surprise coverage (DSC) computed the surprise ad-
equacy using the Euclidean distance between the model’s
behaviors represented by the activation traces of the test
sample and the training set. DSC improved test coverage
and accuracy by prioritizing data points that cannot be
correctly predicted by the model.

After  that,  Sharif et  al. [32]  introduced DeepOrder,
a test  case  prioritization  technique  for  continuous  inte-
gration  testing.  DeepOrder  utilizes  supervised  learning
and incorporates  the  test  history  from the  last  four  cy-
cles of continuous integration testing to enhance the fault
detection efficiency of prioritized test suites. Li et al. [33]
also proposed a testing technique that combines intrinsic
and contextual features of untagged test cases for priori-
tization. This technique constructs a similarity graph on
test  instances  and  training  samples,  followed  by  semi-
supervised learning based on the graph to extract contex-
tual features.  The  test  cases  are  prioritized  in  descend-
ing order based on their probability values. Unfortunate-
ly,  the  focus  of  these  studies  differs  substantially  from
ours and they cannot be employed to effectively test the
robustness of DNN models.

 III. Interpretable Logic Units

 1. Motivation
The explanatory theory of deep learning models [21],

[34]  indicates  that  different  channels  in  the  convolution

layer have  different  modes  and  focus  on  learning  differ-
ent image features, which implies different logical seman-
tics.  In  this  study,  the  average  activation  value  of  the
neurons in these different channels is defined as a neural
unit.  Using  the  convolutional  neural  network  of  visual
recognition tasks,  such as the VGG-16 model,  as an ex-
ample,  GAP  [35] can  be  used  to  replace  the  fully  con-
nected  layer  of  the  model.  The  weighted  sum  of  the
channel  weight  and  the  corresponding  feature  map  are
determined  before  being  superimposed  onto  the  pixel
area  of  the  original  sample  after  up-sampling.  The  512
channels of the last convolution layer, that is L40, are vi-
sualized,  as  shown  in Figure  1,  several  feature  maps
showing  the “turtle  shell” nerve  unit, “feather” nerve
unit, and “butterfly wing” nerve unit to be “logical”.
 
 

(c) Butterfly wings (d) Cat skin(b) Feather of bird(a) Turtle shell

Figure 1  The “logic” exhibited by several VGG-16 neural units.
 

To further explore the correlation between the aver-
age  activation  value  of  the  neural  units  and  the  model
decision, we selected several samples and plotted the ac-
tivation curve of each neural unit. Figure 2 shows the re-
sults  of  the  activated  nerve  units  No.  281  and No.  125,
corresponding  to  two  different  samples  of  persian_cat,
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Figure 2  The considered judgment of the VGG-16 model is related to the “logic” of the neural units, the performance of different types of
samples differing. Column (a) indicates the selected sample images of the two distinct classes Persian_cat and Box_turtle. Column (b) in-
dicates the average activation value of 512 channels of the convolution layer L40 of the sample images. Column (c) indicates the visual-
ized image corresponding to the neural unit with the highest activation value.
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the visualized neural units showing the logical character-
istics  of  the  cat  skin  and  ears.  Additionally,  the  neural
unit  (No.  302)  with the maximum activation value of  a
box_turtle sample shows the logical characteristics of the
turtle shell.

Based  on  the  explanatory  theory  and  visualized
analyses, we proposed the following hypothesis:

Hypothesis  The internal neural units in DNN mod-
els  are  similar  to  human neurons  with “logic”, the  acti-
vated “logical” neural units helping the model make cor-
rect  predictions.  Additionally,  we  found  that  only  parts
of the logical neural units were interpretable and had an
effect on the model decision. For example, a sample was
identified  as  a  cat  because  the “ear” nerve  unit, “paw”
nerve unit, “cat skin” nerve unit, and other logic units in
the model were activated.

Based  on  the  statistics  of  neuron  unit  activation
probability,  we  found  that  for  a  given  DNN model,  the
activation probability of neurons corresponding to differ-
ent  types  of  samples  varied  considerably.  This  phenom-
enon also appeared when the input samples were adver-
sarial  examples.  Based  on  the  above  analyses,  we  argue
that  the  same  neuron  could  have  completely  different
roles in different prediction tasks and that the logic units
could affect the robustness of the model. Additionally, a
correct prediction depends, to a large extent, on the com-
bined action of multiple neuron units.

Thus, we  define  these  neuron  units  to  be  inter-
pretable logic units. We then rank them by importance,
classify them, and track their activation in the DNN test
task  as  the  basis  for  the  testing  effect  to  determine  the
logic unit test criteria.
 2. Two types of logic units

In [22] and [23], the authors demonstrated that mul-
tiple  neural  units  (channels)  could  be  regarded  as  a
causal structure  of  deep network behavior  to  detect  ob-
jects,  parts,  textures,  tense,  context,  and  so  forth.  The
prediction results of a DNN rely on small-scale important
units  (20  most  important  units)  rather  than  large-scale
least-important units (492). Additionally, they discovered
that certain important channels are highly correlated to
the prediction results when the inputs are adversarial ex-
amples. This property of units in DNNs inspires us to de-
sign  two  types  of  logic,  i.e.,  sample  logic  units  (SLUs)
and class logic units (CLUs), which are calculated to se-
lect  the  units  (channels)  that  affect  the  model  decision,
helping the model identify as many abnormal samples as
possible in the adversarial attack test environment. SLU
illustrates  the  prediction  mechanism  of  deep  learning
models,  i.e.,  the  decision  is  based  on  several  important
logic units (channels). Conversely, CLU reflects that the
various  classes  exhibit  statistically  significant  discrep-
ancies in accuracy due to the cumulative differences of a
large number of individual samples.

Figure 3 shows the logic unit calculation process. The
training samples are processed using various convolution

kernels for each convolution layer. The output feature map
shows the different activation conditions for the captured
information. With the training data input into the mod-
el, the parameters of the convolution kernel are gradually
trained and optimized.  When the  training  is  completed,
the DNN model makes predictions by aggregating infor-
mation from different channels/feature graphs.

D x ∈ X
y ∈ Y

M : X → Y M
L Ml lth

M l = 1, 2, . . . , L

k kth
Mk

l ∈ Ml

Mk
l

Mk
l ∈ R H W

Given  dataset ,  data  sample ,  and  label
, the deep learning model is a learning mapping or

classification  function ,  model  consist-
ing of  hidden layers.  denotes the  hidden layer
of  model ,  where .  It  contains  several
channels corresponding to a group of neurons, which are
defined here as neuron units, the output being a feature
map. The superscript  denotes the  channel, and the
activation  of  all  neurons  satisfies .  We  apply
the Frobenius norm to the original activated matrix ,
and  the  average  channel  from  the  activation  values

 can be calculated.  and  denote the height
and width of the channel, respectively.

 

Mk
l = 2

√√√√ H∑
i=1

W∑
j=1

(M2
l,i,j)

2 (1)

σ Mk
l >

σ

k

Given the hyperparameter threshold , when 
, it indicates that the nerve unit is activated; otherwise,

the nerve unit is not activated. The activated neural units
can be sorted based on their activation values, the top-
units being selected as the SLUs of a single sample:

 

Ωl = TOPk(Mk
l , σ) (2)

Definition 1  SLUs: a series of neural units that can
cause  the  activation  of  a  specific  logical  region.  Specific
logical region refers to the channel corresponding to each
neural unit.

Owing to the poor stability of single-SLUs, it is nec-
essary  to  further  calculate  the  CLUs  of  each  category.
The idea is to design a fully connected network, with all
the  samples  of  the  category  as  the  input,  the  category
one-hot vector  as  the  output,  and  the  network  parame-
ters obtained after training as the channel weight matrix.

xi (i = 1, 2, . . . , n)
yi Ωl = Ω1,Ω2, . . . ,Ωl

Assuming that all samples  of cat-
egory ,  the  SLUs  are  denoted  as ,
by mapping:

 

W ∗Ωl → y (3)

∗

CLUs

the channel weight matrix can be obtained and split ac-
cording  to  the  row  vector,  where  the  asterisk  means
the  matrix  multiplication.  After  sorting,  the  sequence
number  of  the  top-k corresponding  neural  units  can  be
selected to obtain the corresponding .

 

Ωi = TOPk(argsort(Wi)) (4)

Definition  2  CLUs:  the  probability  statistics  of  all
sample  sets  of  logic  units  to  which  the  class  belongs.  It
should be noted that CLUs are divided for a certain cate-
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gory rather than the whole dataset, and CLUs of differ-
ent categories may intersect.

The CLU can be calculated using Algorithm 1.

Algorithm 1  Algorithm for CLU calculation
x ∈ X y ∈ Y

l σ
Input: data sample , labeled , convolution lay-

er number , and activation threshold .
ΩlOutput: logic unit vector .

 1: Load DNN model and initialize parameters;
x1, x2, . . . , xn c 2: Obtain all samples  of class ;

i = 1 : n 3: for  do
xi 4:　　Sample  input model;

M1
l ,M

2
l , . . . ,M

k
l 5:　　Calculate  according to (1);

Mk
l 6:　　Calculate ;

 8: end for

random(K,C)
 9:　Randomly  initialize  the  weight  matrix W =

.  Here K denotes  the  total  number  of
channels and C denotes the total number of categories;

i = 1 : n10:  for  do
mi

yi xi

11:　　 Calculate  neural  unit  activation  value  and la-
bel  of sample ;

ykl = Mk
l ∗W12:　　 Calculate ;

θ = 1
2N

∑N
i=1(y

k
l − yi)

213:　　 Calculate ;

W ′ = W − δ ▽l and W = W ′ ▽

δ

14:　　 Update .  de-
notes  the  weight  update  using  gradient  descent,
and  denotes the step size;

15:  end for
W =

Wi,1

max(W0,1,W1,1,...,Wi,1)
16:  Calculate ;

W > σ

Ω = TOPk(W )

17:  Select  top-k  as  a  logical  sequence  of  neurons
;
Ωl18:  Output sequence .

Note  that  as  described  in  prior  studies  [20],  [22],
[23],  not all  important units with high activation values
are  human-interpretable.  Nevertheless,  these  units  are

predominantly positively correlated with their associated
classes and assist the network in making the correct deci-
sions.  Similarly,  not all  units  of  logic  units  in this  work
are human-interpretable yet they can contribute to exe-
cuting effective priority testing.
 3. Measurement of logic units

∪
∩

∥·∥

We measure the similarity and distance between the
SLU and CLU from two perspectives. The Jaccard simi-
larity  coefficient  is  introduced,  the  operation  denotes
the  union  of  sets,  the  operation  denotes the  intersec-
tion of sets, and the operation  denotes the number of
set elements.

1) Single-sample logic degree
Given sample  SLU and CLU of  a  certain  class,  the

similarity between these two units can be calculated as
 

SJ =
∥SLU ∩ CLU∥

∥SLU∥+ ∥CLU∥ − ∥SLU ∩ CLU∥
(5)

SJ

SJ

The  larger  the  value,  the  more  similar  the  two
units, that is, the more overlapping the set elements. The
smaller the  value, the less overlapping the set elements.

Given sample  SLU and CLU of  a  certain  class,  the
distance between these two units can be calculated as

 

DJ =
∥SLU ∪ CLU∥ − ∥SLU ∩ CLU∥

∥SLU ∪ CLU∥
(6)

DJ

DJ

The  larger  the  value,  the  lower  the  number  of
overlapping set elements between the two units, and the
smaller the  value, the higher the number of overlap-
ping set elements between the two units.

x
Ωx = Ω1,

Ω2, . . . ,Ωk yc
Y = y1, . . . , yc, . . . ,

yk yc ∈ Y

Given  a  clean  sample  or  an  adversarial  sample ,
the SLU can be obtained using Algorithm 1, i.e., 

. Let the model judgment classification be ,
and the sample category label set be 

, .  The subscript k denotes  the top-k hyperpa-
rameter  selected by the logic  unit.  We can measure  the

 

Feature map

ReLU

SLU

CLU

ReLU

Conv
Conv

G
A

P

FC

FC

Input

Class B

Class A

W*Ωl→y

Figure 3  Schematic of the logic units calculation process. First, the samples from different classes (e.g., Class A and Class B) are input in-
to the neural network. The output feature maps of the convolutional layers are calculated according to equation (1) for their average acti-
vation values. These values are then sorted. The red dots indicate the important neural units, i.e., SLUs, whereas the blue dots indicate
the neural units that can be ignored. The input of FC is the SLUs of a certain class, and the weight matrix W is calculated according to
equation (3) and split according to the row vectors. Finally, the top-k is selected as the output CLUs in order. The different classes corre-
spond to different CLUs.
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yc

deviation between  the  sample  and  the  model  to  deter-
mine the classification  by calculating the sample logic
degree:

 

L =
DJ(SLUx,CLUyc

)∑k

l
DJ(SLUx,CLUyi

)
, yi ∩ yc = ∅ (7)

Definition  3  Logical  degree:  a  measure  of  whether
the DNN model correctly classifies a given sample.

L

yc

L
yc

If  the  logic  units  of  a  single  sample  deviate  from
their  CLUs  and  the  value  is  too  large,  this  indicates
that the sample has been attacked and the model predic-
tion  result  is  probably  incorrect.  We  can  then  place
this  sample  in  the  priority  test  queue.  Otherwise,  if  the
logic  units  of  a  single  sample  deviate  from  their  CLUs
and the  value is small, it indicates that the sample is
probably clean. The  predicted by the model is correct,
and this sample is not placed in the priority test queue.

2) Class logic unit correlation
Given two different classes of logic units, i.e., CLU1

and CLU2, the similarity or distance between them can
be expressed as follows:

 

CJ =
∥CLU1 ∩ CLU2∥
∥CLU1 ∪ CLU2∥

(8)

CJ

CJ

The smaller the value of ,  the lower the number
of  overlapping  set  elements  between the  two logic  units
from  different  classes.  The  larger  the  value  of ,  the
higher  the  number  of  overlapping  set  elements  between

the two units. It is not difficult to conclude that the log-
ic units of different classes should be independent of each
other and that their distance should be large. Consequently,
logic units can be more effective during the testing pro-
cess. The experimental results validate this argument.

 IV. DNN Priority Testing via
Interpretable Logic Units

 1. Overview
This  paper  proposes  a  deep  logic  framework  based

on the priority of logic units. It integrates the weights of
internal attributes and context attributes in the test pro-
cess and prioritizes a large number of test cases, helping
to  detect  more  model  defects  during  the  early  stages.
The overall structure of the deep logic test framework is
shown  in Figure  4.  The  main  body  of  the  framework
comprises four  parts,  that  is,  preprocessing,  internal  at-
tribute extraction, context attribute extraction, and pri-
ority sorting.

The preprocessing  module  performs  two main  func-
tions. The first is to reclassify the samples based on the
decision classification. Using the CIFAR-10 dataset as an
example,  there  are  10  different  categories,  the  samples
being divided based on the above 10 categories instead of
being mixed together. The second function is to produce
adversarial examples and incorporate them into the test-
case  set  for  data  augmentation.  Adversarial  training  is
applied to generate defense models and improve the gen-
eralization ability of the test-case priority.

 
 

A

B

N

STD models

ADV models
Preprocessing

Adversarial
attack

Context
attribute

extraction

attribute
extraction

Table of attributes

CLU & SLU

Multi-attribute priority sorting

Items

Test dataset
Internal

..
.

Figure 4  Overview of DNN priority testing via logic units. The test cases go through two paths (contextual attribute extraction and inter-
nal  attribute  extraction)  after  pre-processing.  Both  standard  (STD) trained  models  and  adversarial  (ADV) trained  models  are  used  for
testing. The attribute table records the serial number, logic degree, defect severity, etc., of the test cases.
 

The  context  attribute  extraction  module  introduces
the test criteria of interpretable logic units and extracts
the  sequence  of  CLUs by  traversing  all  samples  of  each
class.  It  compares the deviations between test-case logic
units and their CLUs.

Inspired by DeepGini, the internal attribute extrac-
tion module calculates the probability distribution of the
SoftMax output vector after the current test case is input
into the DNN model. The fusion comparator accepts the

context and internal  attribute extraction modules as in-
puts and calculates their weights. Subsequently, the out-
put  is  used as  the  test-case  priority  evaluation criterion
of the priority sorting module.
 2. Context attributes extraction

According  to  the  algorithm  flow  of  logic  units  (see
Figure  3) introduced  in  Section  III.2,  the  average  chan-
nel activation values of the divided multiple training-set
subsets  based  on  the  classification  categories  are  calcu-
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lated, after which the channel weight matrix can be ob-
tained  accordingly.  The  top-k channel  is  selected  as  the
CLU channel. Adversarial examples can then be generat-
ed to expand the test-case set and feed it into the DNN
models. The SLU calculates the logic degree according to
the method presented in Section III.3 for each test case.
The results  are  filled in the multiple  attribute table  en-
tries and then prioritized based on the sorting rules. Pri-
ority  is  defined  as  the  logical  degree  of  each  test  case.
The  smaller  the  logical  value,  the  higher  the  priority.
Finally,  we  place  it  in  the  header  of  the  sorted  test  set
until the test set is empty and the sorting ends.

If the logic units of a single sample deviate from its
CLUs, it indicates that the sample has been attacked, and
the model prediction is probably incorrect. The sample is
placed in the priority test queue. Otherwise, it indicates
that the sample has not been attacked by the adversary
and the prediction result is correct. Thus, it is not placed
in the priority test queue.
 3. Internal attribute extraction

x ∈ X M : X → Y

p1, p2, . . . , pK

ε = 1−
∑N

i=1 (pi(x))
2

Reference [29] demonstrated that the attributes of a
single test case were also important factors to be consid-
ered  in  the  prioritization  process.  For  a  given  sample

 and DNN model , the output of the
last layer of the model,  for example,  the SoftMax layer,
is the probability confidence . DeepGini uses
the probability confidence mean square as a test-case pri-
oritization  criterion,  i.e., .  Because
information  entropy,  also  known  as  Shannon  entropy,
can  be  used  to  measure  the  uncertainty  of  DNN model
output predictions,  its  introduction can more accurately
represent the characteristics of test cases. Thus, inspired
by DeepGini, we propose the use of information entropy,
selecting  the  sample  data  with  the  largest  uncertainty
to be  the  internal  attribute,  which  can  be  formally  ex-
pressed as

 

τ(t) = −
N∑
i=1

(pi(x))
2logpi(x) (9)

According to the Lagrange multiplier,
 

L(pt,i, λ) = τ(t) + λ×
N∑
i=1

pi(x) (10)

pt,i t
i

pt,1 , pt,2, ..., pt,n

where  represents  the probability that the test  be-
longs to the class , we calculate the partial  differentia-
tion of  and let

 

∂L

∂pt,N
= −2pt,N × logpt,N − pt,N + λ

= λ− pt,N (2logpt,N + 1) = 0 (11)

i j
If any  two  of  the  above  equations  (such  as  equa-

tions  and ) are calculated, we can obtain 

pt,i(2logpt,i + 1) = pt,j(2logpt,j + 1) ⇒ pt,i = pt,j (12)

pt,1 = pt,2 = · · · = pt,N =

1/N τ(t)

p1, p2, . . . , pK
C1 → CK

τ(t1) < τ(t2)

t2
τ

N D

Therefore,  if  and  only  if 
,  has the  highest  value.  The  probability  confi-

dence  for  the  classification  task  of  the
DNN  model  corresponding  to  the  category 
cannot  be  distinguished,  leading  to  an  incorrect  model
prediction.  Based on the  above  discussion, 
indicates that  is more likely to be misclassified. There-
fore,  is used  as  one  of  the  prioritization  metric  at-
tributes for  test cases in dataset .
 4. Multi-attribute priority sorting

After extracting context attributes and intrinsic  at-
tributes,  this  module  stores  several  key  attribute  values
to  form  a  multi-attribute  table  corresponding  to  each
test  case  and  uses  these  attribute  fields  to  analyze  and
judge  whether  the  model  makes  the  correct  prediction.
We  can  compare  the  degree  of  logical  deviation  of  the
context attributes for each test case. If it exceeds a giv-
en threshold,  an  incorrect  model  prediction  can  be  con-
firmed. Otherwise, it is difficult to verify the accuracy of
the model prediction. The internal attributes of the test
case  can  then  be  compared  to  determine  whether  the
model  is  classified  incorrectly.  The  higher  the  deviation
degree and the larger the internal attributes, the smaller
the number  of  test  cases  in  the  sorted  test  queue.  Dur-
ing  the  test  process,  the  sample  number  (from small  to
large) is input into the model to be tested for the predic-
tion of results.  The error detection efficacy can be mea-
sured using the relationship between the number of test
cases  and  the  number  of  errors  that  can  be  detected  in
those test cases.
 5. Defect detection capability assessment

To measure defect  detection capability,  we adopted
two existing evaluation metrics and proposed a new met-
ric as well.

1) Average percentage of fault detection
The  average  percentage  of  fault  detection  (APFD)

index  proposed  by  Mor  [36]  is  introduced  to  evaluate
whether  using  logic  as  guidance  to  select  test  cases  can
improve the error detection ability. This metric can mea-
sure it using the relationship between the number of test
cases  and  the  number  of  errors  that  can  be  detected  in
those  test  cases.  Moreover,  the  APFD can  measure  the
performance of various test-case prioritization techniques
using the same criteria.

T

n

F
F = {f1, f2, . . . , fm}
F T ′ T

tf ∈ T ′

f T ′

T ′

Suppose  there  is  a  set  of  test  cases ,  including  a
total  of  test  cases,  among  which  the  wrong  test-case
set  is ,  which  is  composed  of  all  errors.  Assume  that

,  i.e.,  there  is  a  total  of m errors  in
.  denotes the  test-case set based on the coverage

of test cases after picking the order set. If we use 
to  represent  the  first  error  test  case  detected  in ,
then APFD values of  can be calculated as follows: 
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TAPFD =

(
1− tf1+tf2+· · ·+tfm

n×m
+

1

2n

)
× 100% (13)

[0, 1]The range of the APFD is , and the larger the
value of the APFD, the faster the error detection speed
of the test sort and the better the sorting efficacy of the
test set.

2) Risk detection ability

RDA =
0

RDA =5

RDA =10

RDA =100

Reference [29] proposed a testing metric called RDA
in the traditional software testing field. In this study, we
adopt  this  metric  and  extend  it  into  the  deep  learning
testing field. First, we define the quantitative representa-
tion of the RDA. Based on the impact of defects on mod-
el  classification,  the  defect  severity  can  be  divided  into
several groups, that is, no defects, general defects, major
defects,  and  serious  defects.  To  measure  the  severity  of
defects, quantitative values of the severity of various de-
fects can be defined, that is, 0, 5, 10, and 100, respective-
ly. If the classification is correct, the maximum classifica-
tion probability is equal to the correct label; then 
 represents  no  defects.  If  the  classification  is  incorrect

and the  second largest  classification probability  is  equal
to the correct label, then  represents general de-
fects.  If  the  classification  is  incorrect  and  the  third-
largest classification probability is equal to the correct la-
bel, then  represents major defects. If the clas-
sification is  incorrect  and the  top-3  classification  proba-
bility  has  no  correct  label,  then  represents
serious defects. Thus, the RDA can be computed as

 

TRDA =

∑N

i
RDA ∗ F
n

(14)

[0,+∞]The RDA range is . In (14), the smaller the
RDA  value,  the earlier  serious  defects  can  be  detected,
and the better the sorting effect of the test set. It is im-
portant to note that the RDA values need to be calculat-
ed  during  the  test-case  sequencing  process  and  also
recorded in  the  table  of  attributes,  after  which  the  de-
fect severity detection capability assessment is performed

during the evaluation.

 V. Experimental Results
In this study, the experimental environment includ-

ed an Ubuntu 20.04 LTS platform, running an NVIDIA
TITAN  XP  GPU,  and  an  Intel  Core  i7-8700K  CPU  @
4.30 GHz × 8. We used the PyTorch 1.7.0 deep learning
framework to implement our method.

To  verify  the  rationality  and  validity  of  our  deep
logic testing  based  on  interpretable  logic  units,  we  con-
ducted  experiments  on  several  datasets  and  models  to
seek answers to the following research questions:

RQ1  Feasibility:  In the decision-making process of
the model, is the correct prediction related to the activa-
tion modes of the different channels? (Some channels are
frequently activated, while others are less likely to be ac-
tivated)

RQ2  Effectiveness: Can  DeepLogic  distinguish  be-
tween clean samples and adversarial samples?

RQ3  Availability:  Does  DeepLogic  have  a  higher
error detection rate in test-case prioritization than exist-
ing methods?
 1. DNN models and datasets

In our experiments, the widely used VGG-16, ResNet-
18, and ResNet-34 models were adopted as DNN models
to be tested. A convolutional neural network, SmallCNN,
was designed and trained for universality validation. The
popular  CIFAR-10  and  FashionMNIST  datasets  were
adopted. The CIFAR-10 dataset contains 60000 32 × 32
color images in 10 categories,  including 50000 images in
the training set and 10000 images in the verification set.
And the FashionMNIST dataset contains 70000 28 × 28
black and white images in 10 categories, including 60000
images in the training set and 10000 images in the verifi-
cation set.  The DNN models  were trained separately on
the original sets, and the accuracy rate was greater than
85%. Table 1 summarizes the details of the experimental
setting.

 
 

Table 1  DNN models and datasets in our experiments

Model Parameters Dataset Class Size Accuracy

VGG-16 138357544 CIFAR-10 10 60K 93.1%

ResNet34 63470656 CIFAR-10 10 60K 92.7%

ResNet18 33161024 FashionMNIST 10 70K 93.4%

SmallCNN 12582912 FashionMNIST 10 70K 92.2%

Note: K=103.
 

 2. Adversarial sample generation and defense
model

Several popular  adversarial  attack  techniques,  in-
cluding the fast gradient sign method (FGSM) [37], pro-
jected  gradient  descent  (PGD)  [38],  and  Carlini  and
Wagner (C&W) attacks [39] have been used to generate

ϵ = 0.093

ϵ = 0.1

ϵ = 0.2

adversarial samples. The implementation details of these
methods are as follows. For FGSM, we set . For
PGD, specifically including PGD20 and PGD100, we set

, Inf  normal  form,  step_size  =  0.003,  and  itera-
tion times  being  epoch  =  20  and  epoch  =  100,  respec-
tively.  For  C&W,  we  set ,  confidence k = 0,  L2
normal  form,  step_size  =  0.01,  and  iteration  time  as
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epoch = 10000.
First, we  expanded  the  test-case  set  by  incorporat-

ing adversarial samples into the set and comprehensively
evaluated the robustness of the model. The final test-case
set  consisted  of  7/10  clean  samples,  1/10  FGSM attack
samples, 1/10 PGD attack samples,  and 1/10 C&W at-
tack samples.

Conversely,  adversarial  training  was  carried  out  on
the  DNN  models,  and  the  tradeoff-inspired  adversarial
defense  via  surrogate  loss  minimization  (TRADES)  [40]
method  was  adopted.  Subsequent  experiments  verified
the  effectiveness  of  the  DeepLogic  method  proposed  in
this paper for the standard model and the defense model.
Table 2 summarizes the details.

 
 

Table 2  Comparison of accuracy of the standard model and defense model

Model Clean FGSM PGD20 PGD100 C&W

VGG-16 0.931/0.822 0.122/0.597 0.028/0.498 0.025/0.483 0.000/0.472

ResNet34 0.927/0.856 0.161/0.652 0.001/0.535 0.001/0.517 0.001/0.528

ResNet18 0.934/0.911 0.421/0.878 0.001/0.863 0.001/0.855 0.005/0.863

SmallCNN 0.922/0.887 0.586/0.849 0.291/0.834 0.288/0.829 0.261/0.830
 

 3. Channel activation mode (RQ1)
We  validated  the  positive  relationship  between  the

correct prediction of the DNN models and the activation
modes  of  different  channels.  Specifically,  to  explore  the
activation  frequency  of  the  different  neural  units  using
the samples in each category, the proportion of the acti-
vation times of each channel, i.e., the average activation
value greater than the threshold, was calculated for each
category.  We  then  arranged  them  in  descending  order

based on the channel activation proportion, as shown in
Figure  5.  The  horizontal  axis  represents  the  channel
number from the  largest  to  the  smallest  activation  pro-
portion. Channel 0 represents the channel with the high-
est activation frequency under the current category, and
channel  0  could  have  different  channels  under  different
categories. The vertical axis represents the proportion of
activation times  of  the  different  channels,  i.e.,  the  fre-
quency.
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(a) CIFAR-10+VGG-16 (b) CIFAR-10+ResNet34

(c) FashionMNIST+ResNet18 (d) FashionMNIST+SmallCNN

Figure 5  Abrupt decrease of channel activation probability in different samples.  (a)–(d) show the results of different models on different
datasets.
 

Figure 5(a) shows the results of the VGG-16 models
on the CIFAR-10 dataset. It is evident that for the sam-
ples in each category, the activation ratio shows a sharp
decline  when  the  channel  is  No.  200  and  the  decline

ranges  from  80%–100%. Figure  5(b)  also  shows  similar
results.  For  the  combination  of  FashionMNIST  and
SmallCNN,  as  shown  in Figure  5(c)  and 5(d),  although
the decline in the channel activation ratio is not as obvi-

DeepLogic: Priority Testing of Deep Learning Through Interpretable Logic Units 957  



ous as that on CIFAR-10, a similar trend is also evident.
Figures 6 and 7 illustrate the top-10 logic units and their
activation  probability  for  10  different  categories  on  the
CIFAR-10 dataset of the VGG-16 and ResNet34 models,
respectively. It is evident that the activation frequencies

of the first 10 channels of the same category (e.g., plane
category) are quite different, suggesting that the channel
activation frequencies  of  the  same  dataset  under  differ-
ent models are inconsistent and the other logic units also
have their characteristics in different models.
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Figure 6  Top-10 logic units with the highest average activation values for different categories on VGG-16 model.
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Figure 7  Top-10 logic units with the highest average activation values for different categories on ResNet34 model.
 

Additionally,  the  activation  probabilities  of  some
neural  units  in  different  classes  are  shown  in Table  3.
The  activation  probability  of  neural  unit  No.  120  in
“car” is as high as 99.5%, while that of the horse catego-
ry is  0.6%. This means that 995 out of 1000 samples of
the former were activated, and only six of the latter sam-
ples  had  an  average  activation  value  of  unit  No.  120
above the threshold.  Based on the statistics  of  neuronal
unit  activation  probability,  we  found  that  for  a  given
DNN model, the activation probability of neurons corre-
sponding  to  samples  from  different  categories  varied
greatly. This phenomenon also appears in the activation

probability of neurons when the inputs are clean and ad-
versarial. Consequently, the results and analysis indicate
that correct DNN predictions greatly depend on the com-
bined action of multiple logic units.
 4. Different logic unit distance (RQ1)

The logic  units  of  each  category  represent  the  fea-
tures  extracted  from  that  category  by  the  DNN.  The
samples  in  each  category  have  different  characteristics,
and the logic units of each category differ. To verify this,
we  calculated  the  Jaccard  similarity  coefficient  between
each class of logic units and other classes of logic units.
We  first  converted  two  different  CLUs  into  two  sets  of
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integers  and then  used  Jaccard  similarity  coefficients  to
measure the similarity between them. The larger the Jac-
card similarity  coefficient,  the  more similar  the two dif-
ferent classes of logic units. And the results are shown in
Figure  8.  Using  the  CIFAR-10  dataset  as  an  example,
the similarity of the logic units of the samples from dif-
ferent categories is less than 0.25, that is, the logic units
are  very  different.  Among  them,  the  Jaccard  similarity
between the “car” and “truck” categories is the highest,
reaching  0.32,  which  may be  because  several  logic  units
of these two categories overlap.

 5. Validity verification of logic units (RQ2)
To  answer  RQ2,  for  a  given  test  sample  set,  we

counted the number of successful attacks of the adversar-
ial samples and the number of changes in the logic units
before and after the attacks on the standard and defense
models, respectively. We then calculated the ratio of the
two to be the effectiveness index. To determine whether
the  logic  units  changed  before  and  after  the  attack,  we
calculated the SLU of  the sample before the attack and
the CLU of the class to which the sample belonged after
the attack.  The  distance  between  them was  then  calcu-
lated based on (6) (Section III.3). If  the result exceeded
the hyperparameter  threshold,  the  logic  units  were  con-
sidered to have changed; otherwise, there was no change.
Both standard and defense models  were adopted in this
experiment.  The  FGSM,  PGD,  and  C&W  adversarial
samples  were  used  for  adversarial  training.  The  logic
units of the clean and adversarial samples were calculat-
ed for the two DNN models for comparison.

The  results  are  presented  in Table  4.  We  analyze
the  experimental  data  of  the  standard  model  testing.  It
can be seen that before and after the FGSM attack, the
change  rates  of  the  logic  units  in  the  samples  of  the
VGG16, Resnet34, and Resnet18 models are 90.9%, 83.4%,
and 80.5%, respectively. The change rates of the SLUs in
the VGG-16, ResNet34, and ResNet18 models before and
after the PGD20 attack are 89.4%, 94.6%, and 89.1%, re-
spectively. The change rates of the SLU before and after
the C&W attack are  over  88% except for  the ResNet18
model (64.7%). These results demonstrate that a consid-
erable number  of  adversarial  samples  can  achieve  suc-
cessful attacks owing to changes in the interpretable log-

 

Table 3  The activation probabilities of some neural units in different classes differ (VGG-16+CIFAR-10)

Class Unit120 Unit176 Unit233 Unit284 Unit305 Unit391 Unit431 Unit474 Unit502

Plane 4.20% 2.00% 88.70% 15.70% 0.90% 45.60% 96.60% 2.00% 96.10%

Car 99.50% 0.10% 0.40% 1.10% 4.80% 5.40% 96.50% 49.90% 0.30%

Bird 89.60% 93.30% 93.50% 95.20% 2.70% 4.10% 92.80% 90.60% 95.40%

Cat 6.90% 79.70% 3.30% 90.10% 74.00% 5.20% 3.30% 10.00% 3.50%

Deer 0.70% 88.50% 1.40% 2.00% 1.10% 97.00% 2.20% 2.20% 95.50%

Dog 65.30% 5.10% 1.90% 95.90% 2.80% 8.80% 2.80% 89.80% 2.80%

Frog 0.90% 2.10% 96.10% 8.60% 96.30% 2.90% 4.60% 1.70% 2.20%

Horse 0.60% 3.10% 0.80% 1.70% 78.50% 3.60% 96.00% 94.80% 2.90%

Ship 97.40% 0.60% 1.20% 97.00% 1.50% 98.70% 3.80% 1.80% 97.90%

Truck 96.70% 0.20% 0.60% 0.60% 96.90% 98.60% 36.60% 98.30% 2.00%

 

Table 4  Average  change  rate  of  logic  units  before  and  after  the
standard model and defense model against the sample attack

Model FGSM PGD20 C&W

VGG-16 0.909/0.910 0.894/0.898 0.913/0.918

ResNet34 0.834/0.841 0.946/0.934 0.882/0.900

ResNet18 0.805/0.877 0.891/0.909 0.647/0.734

SmallCNN 0.972/0.987 0.954/0.981 0.957/0.994

 

0 1 2 3 4 5
Class label

C
la

ss
 l

ab
el

6 7 8 9

0

1

2

3

4

5

6

7

8

9

1.0

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5
Class label

C
la

ss
 l

ab
el

6 7 8 9

0

1

2

3

4

5

6

7

8

9

1.0

0.8

0.6

0.4

0.2

0

SmallCNN+FashionMNIST logic_similarity

of CLNU

VGG-16+CIFAR-10 logic_similarity of CLNU

Figure 8  Different logic unit distances in different experimental set-
tings.
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ic  units.  These  results  also  illustrate  that  the  SLUs
change rate of the standard model is lower than that of
the  defense  model  under  the  FGSM/PGD20/C&W  at-
tack. The reason for this phenomenon could be that the
attack  success  rate  decreases  under  the  defense  model.
The  total  number  of  sample  changes  decreases,  and the
number  of  logic  units  changed  does  not  differ  much,
which eventually leads to an increase in the proportion of

logic units. The cumulative relationship between the rate
of  change  of  the  SLUs  and  the  number  of  samples  was
further analyzed, as shown in Figure 9. As the number of
successful attacks increases, the number of samples with
changed  logic  units  also  increases.  We  then  calculated
their  Pearson  correlation,  the  positive  correlation  of
which is  0.86,  indicating that our logic  units  can reflect
the robustness problem in the test.

 
 

0.60

0.65

0.75

0.70

0.80

0.90

0.85

0.95

1.00

200 60 100 12080 14040

Logic validity [ResNet18+FashionMNIST]

L
o
g
ic

 u
n
it

s 
ch

an
g
e 

ra
ti

o

FGSM attack
PGD attack

0.800

0.825

0.875

0.850

0.900

0.950

0.925

0.975

1.000

200 60 100 12080 14040

L
o
g
ic

 u
n
it

s 
ch

an
g
e 

ra
ti

o FGSM attack
PGD attack

0.800

0.825

0.875

0.850

0.900

0.950

0.925

0.975

1.000

200 60 100 12080 14040

Logic validity [ResNet34+CIFAR-10]

L
o
g
ic

 u
n
it

s 
ch

an
g
e 

ra
ti

o FGSM attack
PGD attack

0.800

0.825

0.875

0.850

0.900

0.950

0.925

0.975

1.000

200 60 100 12080 14040

Logic validity [SmallCNN+FashionMNIST]
L

o
g
ic

 u
n
it

s 
ch

an
g
e 

ra
ti

o

FGSM attack
PGD attack

Logic validity [VGG-16+CIFAR-10]

C&W attack C&W attack

C&W attack

C&W attack

N×batch_size

N×batch_size

N×batch_size

N×batch_size

Figure 9  The average change rate of logic units before and after the standard model against the sample attack.
 
 6. Logic units guide test-case prioritization (RQ3)

1) State-of-the-art methods
Given a DNN model and a set of test cases, our aim

is  to  prioritize  test  cases  based  on  metrics  and  find  as
many hidden defects of the model as possible in a short
time. Consequently, the proposed method was compared
with several SOTA test priority techniques:

•  DeepGini  [9]: DeepGini  is  one  of  the  most  ad-
vanced  test  case  prioritization  techniques.  The  ranking
criterion  of  this  method  is  the  classification  decision  of
statistical  probability  distribution  based  on  the  DNN
model.

• MCP [30]:  In  addition  to  the  output  confidence,
MCP  also  considers  the  balance  among  different  class
boundaries of the selected test inputs.

•  DSC  [31]:  It  proposes  to  use  the  distance-based
surprise score DSC as a test input prioritization metric.

•  Entropy  [29]:  Similar  to  DeepGini,  the  ranking
criterion  of  this  method  is  the  classification  decision  of
statistical  probability  distribution  based  on  the  DNN
model.

• NAC [6]:  NAC (neuron activation coverage) digs
for  test  inputs  that  make  a  group of  DNN models  with

the  same  function  produce  differential  behaviors  and
achieve high NC.

•  NBC  [7]:  NBC  measures  how  many  corner-case
regions have been covered by the given test input set T.
It is defined as the ratio of the number of covered corner
cases and the total number of corner cases.

•  Random:  Test  cases  are  randomly  selected  for
testing.

The  configurable  parameters  in  the  above  methods
were set to the default values in the original paper. Each
comparison  experiment  was  then  conducted  using  four
models. A test-case set consisting of clean and adversari-
al samples was used, and APFD and RDA metrics were
applied for evaluation.

2) Experimental procedure
Based on the discussion in Section IV, the test-case

prioritization  experiment  was  divided  into  two  stages,
that is, attribute extraction and prioritization. First, the
training samples were input into the model to extract the
CLUs of various categories using context attributes. Ad-
versarial attack methods were applied to test samples to
generate  adversarial  samples  and  form  a  new  test  set.
The model was then input to calculate the SLUs of each
use  case  and  extract  the  intrinsic  attributes,  the  SLUs
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being  used  to  calculate  the  logic  degree.  Subsequently,
we created multiple attribute table entries, including log-
ic  degree,  test  time,  classification  accuracy,  and  defect
severity, prioritized according to the sorting rules, and fi-
nally evaluated the defect detection ability.

3) Experimental results and analysis
The  comparative  experimental  results  for  different

DNN  models  on  the  CIFAR-10  dataset  are  shown  in
Table  5.  Comparing  the  average  APFD  values  of  each
method  under  different  models,  NAC and  DSC are  less
effective, with a fault detection rate of 51%, close to the
random method.  NBC and MCP are  generally  effective,

with APFD  values  of  82%  and  72%,  respectively.  En-
tropy and DeepGini methods show superior performance
and  achieve  around  91%  APFD  value.  In  comparison,
the proposed DeepLogic is the best, with an APFD val-
ue  of  95%.  Comparing  the  average  RDA values  of  each
method  under  different  models,  NAC  is  less  effective,
with an RDA value of 22.38 close to the random method.
NBC,  MCP,  and  DSC are  comparatively  effective,  with
RDA values  of  7.31,  19.30,  and  10.22,  respectively.  En-
tropy and DeepGini have similar performance, with 11.01
RDA,  and  the  proposed  DeepLogic  also  illustrates  the
best result with an RDA value of 3.47.

 
 

Table 5  Compare the effectiveness of various test prioritization methods from multiple perspectives

Metrics Model+Dataset APFD Average RDA Average

DeepGini
ResNet18+FashionMNIST

VGG-16+CIFAR-10
ResNet34+CIFAR-10

0.90
0.92
0.92

0.91
11.64
10.94
10.44

11.01

DSC
ResNet34+CIFAR-10

ResNet18+FashionMNIST
VGG-16+CIFAR-10

0.50
0.51
0.51

0.51
10.68
8.94
11.06

10.22

Entropy
ResNet34+CIFAR-10

ResNet18+FashionMNIST
VGG-16+CIFAR-10

0.92
0.90
0.92

0.91
10.18
11.20
10.66

10.68

MCP
ResNet34+CIFAR-10

ResNet18+FashionMNIST
VGG-16+CIFAR-10

0.64
0.72
0.79

0.72
21.87
19.36
16.66

19.30

NAC
ResNet18+FashionMNIST

VGG-16+CIFAR-10
ResNet34+CIFAR-10

0.53
0.55
0.45

0.51
21.87
19.27
23.81

22.38

NBC
VGG-16+CIFAR-10

ResNet18+FashionMNIST
ResNet34+CIFAR-10

0.81
0.82
0.82

0.82
7.24
8.21
6.48

7.31

Random
ResNet34+CIFAR-10
VGG-16+CIFAR-10

ResNet18+FashionMNIST

0.50
0.50
0.49

0.50
18.25
19.58
25.61

21.15

DeepLogic
VGG-16+CIFAR-10

ResNet18+FashionMNIST
ResNet34+CIFAR-10

0.96
0.94
0.96

0.95
3.37
4.26
2.78

3.47

 

Additionally, we plotted the cumulative error curves
of the above eight test criteria on the four DNN models
and two datasets, as shown in Figure 10(a), (b), and (c).
The horizontal axis of the cumulative error curve repre-
sents  the  number  of  test  cases  tested  after  prioritizing
the test set, and the vertical axis represents the cumula-
tive number  of  errors.  The  short  red  dotted  line  repre-

sents the cumulative error curve in the ideal state,  that
is, the test cases that trigger deep learning system errors
are ranked in front of the test set. The closer the cumu-
lative  error  curve  after  ranking  to  the  cumulative  error
curve in the ideal state, the better the method.

From Figure 10(b), it can be seen that when testing
25%  of  the  test  cases,  the  average  defect  rates  of  the
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Figure 10  The cumulative error curves of the eight test criteria on the three DNN models and two datasets. X-axis is the percentage of pri-
oritized tests and Y-axis denotes the percentage of detected misclassified tests.
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NAC,  NBC,  MCP,  and  DSC  methods  are  26%,  49%,
58%, and 26%, respectively. Compared with the more ad-
vanced  entropy,  and  DeepGini  (orange  triangle  line)
methods (68% of fault detected), the proposed DeepLog-
ic (red dotted line) method also exhibits higher effective-
ness  and  can  detect  80%  of  the  model  defects.  The
APFD  value  of  the  DeepLogic  model  is  much  higher
than  that  of  the  NBC,  entropy,  and  MCP  methods.  It
can  detect  95%  of  the  model  defects.  Additionally,  the
DeepLogic  model  outperforms  the  SOTA  DeepGini
method with a higher APFD value. In addition, we can
see  that  all  the  methods  except  NAC  illustrate  better
performance  than  the  random  one.  The  number  of  test
cases  that  reach  a  higher  APFD is  similar  for  different
models. For VGG-16, when testing 55% of the test cases,
the APFD value is 96%. For ResNet34, when testing 46%
of the test cases, the APFD value is 98%. For ResNet18,
when testing 50% of the test cases, the APFD value is 95%.
We also find that the prioritization of test cases based on
the Gini coefficient at the output layer and the prioriti-
zation based on the entropy function at the output layer
almost  overlap  because  these  two  methods  are  similar.
Compared  with  the  other  state-of-the-art  methods,  our
DeepLogic is  closer  to  the  accumulated  error  curve  un-
der the ideal condition, indicating that the DeepLogic is
superior  to  other  methods,  with  a  better  sorting  effect
and higher error detection rate.
 7. Ablation studies

1) Impact of activation threshold

σ

σ = 7×10−2 σ = 10×10−2 σ =
13×10−2 σ = 15×10−2 σ = 18×10−2 σ = 21×
10−2

As  illustrated  in  Section  III.2  (equation  (1)),  we
used  the  hyperparameter  threshold  to  determine
whether  the  neural  unit  is  activated.  The  effect  of  this
activation threshold on the performance of the logic unit
test is evaluated in this section. Specifically, six different
activation thresholds of , , 

, , ,  and 
 were used for the experiments.  Moreover,  we used

the variance to measure the overall difference in the per-
centage of frequency activation between each class in the
plateau and trailing periods. The experimental results are
summarized in Table 6.
 
 

Table 6  Effect of  different  activation  thresholds  on  frequency  acti-
vation percentage analysis

Activation
threshold

Activation frequency
dip start point

Platform period
variance

Trailing period
variance

7E−2 104 0.078 0.293

10E−2 101 0.097 0.260

13E−2 99 0.120 0.207

15E−2 91 0.161 0.150

18E−2 89 0.193 0.112

21E−2 87 0.220 0.894
 

We  further  selected  three  activation  thresholds  for
visualized  analysis.  The  experimental  results  are  shown
in Figure 11.

σ

σ

σ
σ = 21×10−2

σ σ = 7×
10−2

σ

σ = 13×10−2

From Table 6 and Figure 11, we can see that if the
threshold  increases,  the  starting  point  of  the  neural
unit plunge gradually approaches zero. Conversely, if the
threshold  decreases,  the  starting  point  of  the  neural
unit  plunge  gradually  approaches  the  total  number  of
channels (e.g., 512). However, if  is substantially large,
e.g., , a  large  difference  arises  in  the  per-
centage  of  frequency  activation  of  each  class  in  the
plateau period. In contrast, if  is minimal, e.g., 

, a  large  difference  arises  in  the  percentage  of  fre-
quency activation of each class in the trailing period af-
ter the plunge point. The threshold  also indirectly af-
fects  the  size  of  the  threshold k for  logic  unit  selection
because the threshold k must be smaller than the start-
ing point of the frequency plunge. Therefore, we selected

 in this paper to achieve better performance
of DeepLogic.
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Figure 11  Effect of different activation thresholds on frequency activation percentage analysis.
 

2) Impact of top-k value
The impact of the k-value on the performance of the

logic unit test was also examined. Specifically, the effect
of four different k-values, namely k = 20, 30, 40, and 50,
on  the  percentage  change  of  the  logic  unit  before  and
after  the  adversarial  attack  was  compared  (CIFAR-10

+VGG-16). The experimental results are summarized in
Table 7.

As can be seen from Table 7, the selection of logical
unit with different top-k values has a slight effect on the
experimental results. This is further corroborated by (6)
and (7), which indicate that altering both SLU and CLU
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simultaneously has  a  negligible  impact  on  the  percent-
age change of logic units before and after the adversarial
attack. We selected k = 50 in this paper.

 VI. Conclusions
This paper has defined interpretable logic units and

proposed  a  DeepLogic  framework  for  priority  testing  of
DNN models from the perspective of model interpretabil-
ity.  The effectiveness  of  two types of  interpretable  logic
units,  SLU and CLU, for  testing the robustness  of  both
standard  and  defended  DNN models  has  been  explored.
By  integrating  context  attributes  and  inner  attributes,
DeepLogic  is  able  to  perform  effective  priority  testing.
Experimental  results  on  several  datasets  with  multiple
DNN  models  demonstrate  that  DeepLogic  significantly
outperforms several  baseline  and  state-of-the-art  meth-
ods.  Since  deep  learning  testing  usually  requires  a  large
number of labels, we can benefit from the proposed prior-
itization  testing  method  even  if  the  labeling  process  is
halted due to  resource  limits.  This  study currently  only
targets DNNs for classification, and its generalization ca-
pabilities  for  other  DNN-based  tasks,  such  as  clustering
and detection, will be investigated in the future.
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