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Abstract — Existing high-precision object detection algorithms for UAV (unmanned aerial vehicle) aerial images
often have a large number of parameters and heavy weight, which makes it difficult to be applied to mobile devices.
We  propose  three  YOLO-based  lightweight  object  detection  networks  for  UAVs,  named  YOLO-L,  YOLO-S,  and
YOLO-M, respectively. In YOLO-L, we adopt a deconvolution approach to explore suitable upsampling rules during
training  to  improve  the  detection  accuracy.  The  convolution-batch  normalization-SiLU  activation  function  (CBS)
structure  is  replaced  with  Ghost  CBS to  reduce  the  number  of  parameters  and  weight,  meanwhile  Maxpool  max-
imum pooling operation is proposed to replace the CBS structure to avoid generating parameters and weight. YOLO-S
greatly  reduces  the  weight  of  the  network  by  directly  introducing  CSPGhostNeck  residual  structures,  so  that  the
parameters and weight are respectively decreased by about 15% at the expense of 2.4% mAP. And YOLO-M adopts
the CSPGhostNeck residual  structure and deconvolution to reduce parameters  by 5.6% and weight by 5.7%,  while
mAP only by 1.8%. The results show that the three lightweight detection networks proposed in this paper have good
performance in UAV aerial image object detection task.
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I. Introduction
In recent years, with the rapid development of UAV

technology,  the  study  of  UAV image  has  become  a  hot
research hotspot [1]–[5]. However, UAV aerial images are
highly unstructured and cover wide areas, making it dif-
ficult  to  separate  the  target  and  background.  Besides,
UAV needs miniaturization of load and low energy con-
sumption.  It  can  be  seen  that  UAV aerial  image  object
detection based on deep learning faces many challenges.
Therefore,  it  is  important  to  study  the  object  detection
algorithm of UAV aerial image [6]–[10]. For small target
detection or overlapping target detection tasks, some re-
searches introduce the multi-mode fusion method [11]–[13],
which uses  the  information  of  multiple  modes  to  im-
prove  the  detection  performance.  Unfortunately,  UAV
aerial image  target  detection  networks  with  high  detec-

tion accuracy  are  often  characterized  by  many  parame-
ters  and  heavy  weight,  which  poses  certain  obstacles  to
the  application  of  deep  learning-based  target  detection
networks on UAV aerial images.

To  solve  this  problem,  researchers  have  proposed  a
series of lightweight deep networks, including MobileNet
[14]–[16],  ShuffleNet  [17],  [18],  GhostNet  [19],  [20],
YOLOv5n [21],  and so on.  Among them, networks such
as YOLOv5n are lightweight networks oriented to target
detection,  and  the  results  on  natural  scene  image
datasets show that it sharply reduces the number of net-
work parameters and ensures a certain detection accura-
cy compared with YOLO networks.

According to  the  characteristics  of  UAV  aerial  im-
ages,  we  propose  three  lightweight  networks  for  UAV
aerial  image  target  detection  under  the  framework  of
YOLOv5n, named YOLO-L, YOLO-M, and YOLO-S. 
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The main contributions of this paper are as follows:
1)  A  lightweight  CSPGhostNeck  residual  structure

is  designed. Using the CSPGhostNeck residual  structure
to fuse the sparse features of aerial images can effective-
ly  reduce  the  number  of  parameters  and  weight  of  the
detection network.

2) Combining the CSPGhostNeck residual structure
and deconvolution,  three  lightweight  networks  with  dif-
ferent  number  of  parameters,  YOLO-L,  YOLO-M,  and
YOLO-S,  are  proposed,  respectively.  Compared  to  the
baseline network, the three proposed networks all exhib-
it the capability to reduce network weight to varying de-
grees.  However,  different  network  architectures  have
varying impacts on accuracy. This allows for the applica-
tion of these three networks in different scenarios where
a balance  between  accuracy  and weight  reduction  is  re-
quired.

Compared  to  the  baseline  network,  YOLO-L intro-
duces deconvolution  to  enhance  the  accuracy,  and  re-
places  the  convolution-batch  normalization-SiLU activa-
tion function  (CBS)  structure  with  Ghost  CBS  to  re-
duce the number of parameters and weight. At the same
time,  the  Maximum  pooling  operation  is  used  to  avoid
the  increase  of  parameter  and  weight.  Therefore,  the
accuracy is improved while the weight of the network is
reduced, which allows YOLO-L to be applied to the situ-
ation  that  accuracy  needs  to  be  improved  while  weight
and  parameters  reduced.  And  the  proposed  YOLO-S
introduces the CSPGhostNeck residual  structure to pre-
vent gradient from disappearing, which enhances the fea-
ture extraction  ability  of  the  network,  and  the  parame-
ters  and  weight  can  be  greatly  reduced  compared  with
the  baseline  network.  Therefore,  YOLO-S  can  meet  the
needs of applications aiming at a significant reduction in
parameters and  weight,  but  can  tolerate  a  slight  reduc-
tion in accuracy. The YOLO-M adopts the combination
of the CSPGhostNeck residual  structure and deconvolu-

tion and  obtains  higher  detection  accuracy  while  reduc-
ing the number of parameters and weight of the network.
Compared  with  YOLO-S,  YOLO-M  has  less  accuracy
loss,  but  at  the  same  time  the  reduction  of  parameters
and  weight  is  relatively  weak.  Therefore,  YOLO-M  is
suitable for applications that require reduced weight and
parameters, but need the smallest possible accuracy loss. 

II. YOLO-M
This  paper  firstly  elaborates  on  the  YOLO-M net-

work for UAV aerial images and then introduces the other
networks. 

1. Overall network architecture
The YOLO-M mainly consists of feature extraction,

feature fusion [22], prediction, and post-processing stages.
Figure 1 shows the overview of our method, where CBS
stands  for  convolution-batch  normalization-SiLU activa-
tion function. We can set the convolution parameters of
CBS to adjust the channel of the input image or down-
sample the input image. SPPF [20] is a spatial pyramid
pooling  structure,  which  consists  of  CBS  structure  and
Maxpool  maximum  pooling  operation.  The  output  of
SPPF keeps the same size and channel as the input. Be-
sides,  Head  represents  prediction  head,  CG  represents
the proposed CSPGhostNeck residual structure, and CB
represents  CSPBottleNeck  residual  structure.  Red  CBS
represents setting the convolution parameters of CBS to
downsample. Gray  CBS  indicates  setting  the  convolu-
tion  parameters  of  CBS  to  adjust  the  channel  of  the
input image.

1) In the feature extraction stage, we use the CSP-
BottleNeck  residual  structure,  the  CBS  structure,  and
the SPPF structure to capture feature effectively in low-
resolution  aerial  images.  To  detect  targets  of  different
scales,  the  feature  extraction  network  downsamples  the
input image  five  times  to  obtain  feature  maps  of  differ-
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Figure 1  Network architecture of YOLO-M.
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ent sizes  and retains  the  last  three  of  them. The down-
sampling  is  implemented  by  CBS  structure,  setting  the
convolutional  kernel  size  to ,  stride  to  2,  and
padding to 1. After 5 times of downsampling, the width
and height of the minimum feature map become  of
the width and height of the input image. Since downsam-
pling decreases the image size and loses the effective fea-
tures, we supplement the features with the dimension of
the feature map. As downsampling proceeds, the dimen-
sionality  of  the  feature  map  gradually  increases.  The
CBS structure that plays the role of downsampling uses
the SiLU activation function. Its expression is shown as

 

SiLU(x) = x · σ(x) (1)

x σ(·)
σ(·) = 1/(1 + e−x)

where  is the input image and  denotes the sigmoid
function, i.e., 

5× 5

The residual structure after the downsampling oper-
ation can deepen the network and avoids gradient disap-
pearance. The residual structure has different representa-
tions.  YOLO-M uses  the  CSPBottleNeck  residual  struc-
ture  for  efficient  extraction  of  deep  features.  After  the
residual structure, the smallest feature map is fed to the
SPPF structure, containing three  maxpooling oper-
ations.  The  SPPF can  increase  the  perceptual  field  and
give the network a comprehensive perception of  the im-
age. The results of the last three downsampling and the
output of SPPF are taken as the input of the feature fu-
sion stage.

2) In the feature fusion stage, the PANet network is
used  to  fuse  the  extracted  features,  whose  component
units  include  CBS  structure,  CSPGhostNeck  residual
structure,  and  deconvolution  and  splicing  operations.
The functions of the CBS structure include adjusting the
dimensionality  of  feature  map  and  downsampling.  The
PANet  network  contains  two  channels,  the  bottom-up
channel and the top-down channel. The bottom-up chan-
nel  passes  the  information  from  the  lower  layer  to  the
upper  layer,  and  the  top-down  channel  does  the  same
thing in the opposite direction.  Since the size of  feature
maps varies from layer to layer, the feature maps need to
be  upsampled  or  downsampled  before  the  feature  maps
are transferred. In YOLO-M, the deconvolution is intro-
duced and the up-sampling operation is accomplished by
setting  the  parameters  of  the  deconvolution.  Since  the
deconvolution  has  learnable  parameters,  the  detection
network can learn upsampling rules effectively during the
training. The learnable parameters enable the network to
reduce  information  loss,  conduct  feature  fusion  better,
and  improve  detection  accuracy.  The  downsampling  in
YOLO-M is done through the CBS structure.

After connecting the upper and lower feature maps,
they are  sent  to  the  residual  structure  for  fusion  to  re-
duce the confounding effect. To reduce the number of pa-
rameters  and  weight  of  the  network,  a  lightweight
CSPGhostNeck  residual  structure  is  designed.  YOLO-M
uses  the  CSPGhostNeck  residual  structure  to  fuse  the

connected  features,  thus  effectively  reducing  the  size  of
the network.

C
n

3) In the prediction stage, three prediction heads are
used to predict targets of different scales for the charac-
teristic  of  large scale  span of  UAV aerial  image targets.
The prediction head contains the operations of  convolu-
tion and rearrangement matrix, which can adjust the di-
mension of the feature map to a uniform value. Let the
number of categories in the dataset be , the offset val-
ue be 4, the number of the prior box be , and the calcu-
lation process of the adjusted dimension is shown in (2).

 

C = n× (c+ k + 4) (2)

k
c

where  represents  whether  the  prior  box  contains  the
target  or  not,  and  is  the  number  of  categories,  which
represents  the  probability  of  the  prior  box  belongs  to
each category.

4)  In  the  post-processing  stage,  the  3  prediction
heads  are  post-processed  to  filter  out  the  valid  priori
boxes. The confidence threshold is set to remove the pri-
ori boxes  with  confidence  less  than  the  threshold.  Ac-
cording to the NMS algorithm, we set the IoU threshold
to compare the intersection and merging ratio of the pri-
ori frames with the ground true. For multiple prior box-
es with intersection ratio higher than the IoU threshold,
the one with the highest value is retained. The post-pro-
cessing outputs  of  the  three  prediction  heads  are  aggre-
gated to get the results. 

2. CSPGhostNeck residual structure
In order to construct a lightweight network, this pa-

per designs a residual structure named CSPGhostNeck.
1) CSPGhostNeck residual structure
The structure of CSPGhostNeck is shown in Figure

2,  where  CBS  means  convolution-batch  normalization-
SiLU activation  operation,  DWCBS  indicates  deep  con-
volution-batch  normalization-SiLU  activation  operation,
Conv  represents  convolution  operation,  Flatten  means
spreading operation,  Concat  represents  splicing  opera-
tion,  Add  indicates  summation  operation,  and  Multiply
denotes multiplication operation.

1× 1

1× 1

x

The overall structure of CSPGhostNeck is shown in
Figure  2(a),  which  contains  two  branches.  One  branch
performs  convolution  to  reduce  the  dimension  of
the input feature by half, and the other first feeds the in-
put  feature  into  the  Ghost  CBS  structure  to  reduce  its
dimension, and  then  feeds  the  output  into  the  Ghost-
Neck structure. The results of the two branches are con-
catenated  together,  and  then  fed  into  the  CBS
structure  to  restore  the  dimension  and  get  the  output
feature.  The  width,  height,  and  dimension  of  the  final
output  feature  do  not  change,  and  the  function  of
CSPGhostNeck is  to  fuse  the concatenated features  and
reduce the confounding effect. Using the CSPGhostNeck
residual  structure  can  effectively  reduce  the  number  of
parameters and weight of the detection network. The cal-
culation  of  CSPGhostNeck  is  shown  in  (3),  where  is
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ythe input feature and  is the output feature.
 

y =CBS1×1

(
Concat

(
Conv1×1(x),

GhostNeckN (GhostCBS(x))
))

(3)

1× 1

Figure 2(b) depicts the GhostNeck structure, which
plays  an  important  role  in  CSPGhostNeck.  GhostNeck
sends the input feature into the  Ghost CBS struc-
ture  to  reduce  the  dimension,  and  sends  the  result  into
the  SENet  structure  for  dimension  weighting.  Finally,
the output of  SENet and the input feature are concate-
nated and sent into the Ghost CBS structure to recover
the dimension and get the final output feature. The cal-
culation of GhostNeck is shown in (4).

 

y = GhostCBS
(
Concat

(
x, SENet(GhostCBS(x))

))
(4)

1× 1

1× 1

Figure  2(c) shows  the  SENet  structure  in  Ghost-
Neck,  which  is  an  attention  mechanism.  SENet  flattens
the input features and feeds them into a  convolu-
tion with  a  SiLU  activation  function  to  reduce  the  di-
mensionality. Then it feeds the output into a  con-
volution  with  a  sigmoid  activation  function  to  recover
the dimension and get the dimensional  weights.  Finally,
the  dimension-weighted  output  feature  is  obtained  by
multiplying  the  input  feature  with  the  dimensional
weights. The  width,  height,  and  dimension  of  the  fea-
tures  remain  unchanged  after  being  processed  by  the
SENet  structure.  The  calculation  process  of  SENet  is
shown in (5).

 

y=Multiply
(
x,Conv1×1,Sigmoid

(
Conv1×1,SilU(Flatten(x))

))
(5)

1× 1

Figure  2(d)  shows  the  Ghost  CBS structure,  which
is  involved  in  the  construction  of  both  CSPGhostNeck
and GhostNeck. Firstly, Ghost CBS feeds the input fea-
ture  into  a  CBS structure,  which  changes  the  di-

5× 5

mension to  half  of  the  output  dimension.  Then it  is  di-
vided  into  two  branches,  where  one  is  left  unprocessed
and the other feeds the output of the previous step into a

 DWCBS structure  for  deep  convolution.  The  re-
sults  of  the  two  branches  are  concatenated  together  to
obtain  the  output  feature.  After  being  processed  by the
Ghost CBS structure, the width and height of the input
and output  features  are  kept  the  same,  and  the  dimen-
sion of the output feature is set as needed. The calcula-
tion process of Ghost CBS is shown in (6).

 

y = Concat
(
CBS1×1(x),DWCBS5×5(CBS1×1(x))

)
(6)

2)  Theoretical  analysis  of  the  CSPGhostNeck  light-
weighting

CSPGhostNeck can be regarded as the combination
of  GhostNeck  and  CSPNet.  GhostNeck  is  the  internal
module of CSPGhostNeck, while CSPNet is the external
framework  of  CSPGhostNeck.  And  BottleNeck  can
achieve  the  function  of  GhostNeck,  while  CommonNet
has similiar  effects  to  CSPNet.  The  differences  are  re-
flected in the structure, number of parameters, and weight.

The  network  parameters  are  stored  in  the  storage
device  in  the  form  of  bytes,  which  is  visualized  as  a
weight file. Therefore, the number of parameters is posi-
tively correlated with the weight. We compare the struc-
ture and the number of parameters respectively between
GhostNeck and BottleNeck as well as CSPNet and Com-
monNet. It is proved at the theoretical level that Ghost-
Neck  and  CSPNet  can  effectively  reduce  the  number  of
parameters and  weight  of  the  network.  So  CSPGhost-
Neck is a lightweight residual structure.

3) Comparison of GhostNeck and BottleNeck
The GhostNeck and BottleNeck designed in this pa-

per  belong  to  the  same  residual  structure,  which  can
deepen  the  network  and  avoid  gradient  disappearance.
The structures of  GhostNeck and BottleNeck are shown
in Figure 3.
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Figure 2  Structure of CSPGhostNeck.
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Figure 3  Structure of GhostNeck and BottleNeck.
 

1× 1

3× 3

Firstly,  by comparing these two structures,  we find
that GhostNeck reduces dimension by Ghost CBS, while
BottleNeck reduces dimension by  CBS. GhostNeck
uses  the  attention  mechanism,  while  BottleNeck  does
not. GhostNeck stitches the input feature with the inter-
mediate result, and then sends it into Ghost CBS to re-
store dimension, while BottleNeck restores dimension by

 CBS and finally adds the input feature with the in-
termediate results.  The  size  and  dimension  of  the  fea-
ture do not change both in GhostNeck and BottleNeck.

Cin

Cout

n× n

Neither  concatenation  nor  summation  operations
generate additional parameters, and the network parame-
ters are  generated  primarily  by  the  convolution  opera-
tion.  Set  the  dimension  of  the  input  as , the  dimen-
sion of  the output as , and the size  of  the convolu-
tion kernel as  with no bias. The number of param-
eters of a CBS is shown as follows:

 

Params = Cin × n× n× Cout (7)

The number of parameters of a DWCBS is present-
ed as follows:

 

Params = Cin × n× n (8)

1× 1
For a SENet with a fixed convolution kernel size of
 and an output dimension equal to the input dimen-

sion, its number of parameters is as follows:
 

Params = 2× Cin × Cmed (9)

Cmed Cin

ratio Cmed = Cin × ratio

where  is  the  intermediate  dimension,  and  is
equal to the input dimension multiplied by the compres-
sion rate , i.e.  .

1× 1
5× 5

3× 3
0.5

For GhostNeck and BottleNeck, the input and out-
put  dimensions  are  both.  The  CBC  structure
halves  the  feature  dimension  and  the  DWCBS
structure  keeps  the  dimension  unchanged,  while  the

 CBS  structure  doubles  the  dimension.  In  the
SENet  structure,  the  compression  rate  is  set  to ,
which represents that the dimension of the intermediate

feature map is  equal  to half  of  the dimension of  the in-
put feature.  Then  the  number  of  parameters  of  Ghost-
Neck is shown in (10).

 

PGhost =

(
C × 1× 1× C

4
+

C

4
× 5× 5

)
+

(
2× C

2
× C

4

)
+

(
3C

2
× 1× 1× C

2
+

C

2
× 5× 5

)
=
5C2

4
+

75C

4
(10)

Equation  (11)  depicts  the  number  of  parameters  of
BottleNeck.

 

PBottle = C × 1× 1× C

2
+

C

2
× 3× 3× C = 5C2 (11)

The ratio  of  the  number  of  parameters  of  Ghost-
Neck and BottleNeck is as follows:

 

R =
PGhost

PBottle
=

5C2

4
+

75C

4
5C2

=
15

4C
+

1

4
(12)

C {64, 128,
256} R {0.26, 0.28, 0.31}

R

In  the  actual  network,  the  value  of  is 
,  then  the  value  of  is ,  and  the

minimum value  of  is  0.26,  while  the  maximum value
of it is 0.31. Using GhostNeck instead of BottleNeck, the
number  of  parameters  is  at  least  0.26  times  of  the  ori-
ginal,  and  the  maximum  number  becomes  the  original
0.31 times.  This  shows  GhostNeck  can  significantly  re-
duce the number of parameters, so the network becomes
lighter.

4) Comparison of CSPNet and CommonNet

3× 3

CSPNet is a two-branch structure, where the prima-
ry  branch  can  feed  the  input  feature  into  any  network
unit  and  the  secondary  branch  is  adjusted  as  needed;
CommonNet is a single-branch structure, which feeds the
input feature directly into the network unit. The idea of
CSPNet can be implemented in different forms. For the
CSPNet  implemented  in  this  section,  the  component
units include Ghost CBS structure, CBS structure, Conv
operation,  concatenate  operation,  and  the  main  branch
unit.  The  similarities  and  differences  between  CSPNet
and  CommonNet  are  shown  in Figure  4 by  comparing
two  network  structures,  with  CBS  as  the  main
branch unit as an example.

1× 1
1× 1

Firstly,  the  structures  of  the  two  are  compared.
CSPNet  contains  two  branches.  The  main  branch  of  it
feeds the input feature into the Ghost CBS structure to
halve its dimension before feeding it into the 3 × 3 CBS
structure,  and  the  secondary  branch  is  convolved  with

.  The  concatenation  of  the  results  of  the  two
branches is then fed into a  CBS structure to recov-
er the dimension and get the output feature. As for Com-
monNet, it directly feeds the input feature into a 3 × 3
CBS structure.

Secondly, the number of parameters of both is com-
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C
pared. Both the input and output dimensions of CSPNet
and  CommonNet  are .  The  number  of  parameters  of
CSPNet is as follows:

 

PCSPN =

(
C × 1× 1× C

2

)
+

(
C × 1× 1× C

4

+
C

4
× 5× 5

)
+

(
C

2
× 3× 3× C

2

)
+ (C × 1× 1× C)

= 4C2 +
25C

4
(13)

The  number  of  parameters  of  CommonNet  can  be
expressed as follows:

 

PCN = C × 3× 3× C = 9C2 (14)

The  ratio  of  the  number  of  parameters  of  CSPNet
and CommonNet is as follows.

 

R =
PCSPN

PCN
=

4C2 +
25C

4
9C2

=
25

36C
+

4

9
(15)

C ≥ 3

R ≤ 0.68

If  the  dimension  of  the  input  feature  is ,  the
ratio of  the  number  of  parameters  of  CSPNet  to  Com-
monNet is . Compared with CommonNet, CSP-
Net can effectively reduce the number of parameters and
weight, thus effectively reducing the network magnitude.

CSPGhostNeck combines  the  advantages  of  Ghost-
Neck  and  CSPNet,  and  it  is  more  effective  in  reducing
the number  of  parameters  and  weight,  making  the  net-
work more lightweight. 

3. Deconvolution
In the feature fusion stage, we need to upsample the

high-level feature map in order to fuse the features with
the low-level feature map. YOLO-M introduces deconvo-
lution  to  upsample,  so  that  the  high-level  feature  map
can retain more information and fuse with the low-level
feature map more effectively.

Deconvolution is  an  inverse  procession  of  convolu-

tion.  The  relationship  between  the  input  and  output  of
convolution  is  many-to-one,  while  the  input  and output
of  deconvolution  is  a  kind  of  one-to-many  relationship.
Figure  5 shows  the  difference  between  convolution  and
deconvolution.

Generally,  deconvolution  is  performed  on  the  input
feature, and the size of the output feature is as follows:

 

O = (I − 1)× s+ k − p× 2 + op (16)

O I s
k p

op

where  is the output size,  is the input size,  is the
step size,  is the size of the convolution kernel,  is the
input padding, and  is the output padding.

3× 3

The upsampling operation can be completed by set-
ting  parameters  for  deconvolution.  In  the  lightweight
YOLO network  of  this  paper,  it  is  necessary  to  upsam-
ple the high-level  feature map twice.  Therefore,  the size
of  the  convolution  kernel  of  the  deconvolution  is  set  to

,  the  stride  is  2,  the  padding  is  1,  and  the  output
fill  is  1.  From  (16),  it  can  be  seen  that  the  size  of  the
output feature is twice the size of the input feature. Fi-
nally,  batch normalization and SiLU function activation
are  performed  on  the  upsampled  results  to  obtain  the
features of normalized distribution.
 
 

(a) Schematic diagram of

convolution

(b) Schematic diagram of

deconvolution

Figure 5  The difference between convolution and deconvolution.
 

The traditional method uses the nearest-neighbor in-
terpolation  for  upsampling,  and  the  pixel  values  of  the
nearest neighbors are used as the pixel values of the sam-
pling points, which is simple and fast. However, the im-
age  is  prone  to  mosaic  and  jaggedness.  The  nearest-
neighbor  interpolation  uses  a  manually  set  upsampling
rule with fixed computational parameters, which is more
rigid.  Deconvolution  allows  the  detection  network  to
learn  the  upsampling  rule  with  unfixed  computational
parameters by itself, providing flexibility and versatility.
Compared  with  the  nearest-neighbor interpolation,  de-
convolution makes  the  upsampling  rules  more  compati-
ble  with  the  needs  of  target  detection,  thus  improving
detection accuracy. 

III. YOLO-L and YOLO-S
In some  application  scenarios,  the  network  is  re-

quired to have higher detection accuracy,  while in some
other application, the network is required to have lower
number of parameters and weight. From Section II, it is
known  that  deconvolution  can  improve  the  accuracy  of
detection, but  it  also  increases  the  number  of  parame-
ters and weight of the network. CSPGhostNeck residual

 

Ghost CBS

1×1 Conv

1×1 CBS

(a) CSPNet (b) CommonNet

3×3 CBS

3×3 CBS

Concat

Figure 4  Structures of CSPNet and CommonNet.
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structure can reduce the complexity of the network, but
it weakens the detection performance of the network. On
the  basis  of  the  characteristics  of  deconvolution  and
CSPGhostNeck  residual  structure,  YOLO-L  lightweight
network  with  higher  detection  accuracy  and  YOLO-S
lightweight  network  with  fewer  number  of  parameters

and lighter weight are designed.
 

1. YOLO-L
The  structure  of  YOLO-L  is  shown  in Figure  6,

which contains four stages: feature extraction, feature fu-
sion, prediction, and post-processing.
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Figure 6  Network architecture of YOLO-L.
 

Firstly, in the feature extraction stage, YOLO-L ex-
tracts  features  using  CBS  structure,  CSPBottleNeck
residual structure,  and SPPF structure.  The CBS is  ex-
ploited  to  downsample  and  extract  features  at  different
levels. The CSPBottleNeck is applied to deepen the net-
work, prevent gradient from disappearance, and enhance
the feature extraction ability of the network. The SPPF
is  used to  increase  the  perceptual  field  and coalesce  the
high-level semantic features. After several times of down-
sampling, five feature maps of different sizes are generat-
ed.  The  smallest  feature  maps  are  sent  into  the  SPPF
structure to  obtain  the  more  condensed  semantic  infor-
mation.  The results  of  the last  three downsampling and
the output of SPPF are retained as the input to the fea-
ture fusion network.

Then, in the feature fusion stage, PANet is selected
as  the  feature  fusion  network,  consisting  of  Ghost  CBS
structure, CSPBottleNeck  residual  structure,  deconvolu-
tion,  Maxpool  maximum pooling operation,  and splicing
operation.  In  the  bottom-up  pathway  of  PANet,  the
high-level  feature  maps  are  reduced  in  dimension  by
Ghost CBS  structure,  followed  by  deconvolution  to  up-
sample effectively. The concatenation of the deconvolut-
ed output and the upper feature map is then fed into the
CSPBottleNeck residual  structure  to  achieve  feature  in-
teraction. In the top-down pathway of PANet, the large-
size  feature  map  is  downsampled  using  the  maximum
pooling operation, concatenated with the lower-level fea-
ture map, and finally sent to the CSPBottleNeck residu-
al structure  to  fuse  the  concatenated features.  The  out-

puts of the feature fusion network PANet of three differ-
ent sizes are as the inputs to the prediction stage.

Finally, in the prediction and post-processing stages,
the  feature  maps  of  the  three  sizes  are  predicted  and
post-processed,  and  the  outputs  of  the  post-processing
are summarized to obtain the detection results.

YOLO-L uses the CSPBottleNeck residual structure,
which can fuse features more effectively. Compared with
CSPGhostNeck,  CSPBottleNeck  has  a  large  number  of
parameters,  more  weight,  more  complex  computation,
and better feature processing. In the feature fusion stage,
YOLO-L introduces  deconvolution  to  complete  the  up-
sampling operation, which maximizes the information re-
tention of high-level feature maps and enhances the per-
formance of  the  feature  fusion  network.  Although  CSP-
BottleNeck and deconvolution improve the detection ac-
curacy of the network, it increases the magnitude of the
network. To offset the effects of CSPBottleNeck and de-
convolution,  YOLO-L  replaces  the  CBS  structure  with
Ghost  CBS  structure  for  dimension  adjustment  of  the
high-level feature map in the feature fusion stage, and re-
duces  the  number  of  parameters  and  weight.  Maxpool
maximum pooling  operation  replaces  the  CBS  structure
to achieve  the  downsampling  function  without  generat-
ing additional parameters and weight. Therefore, YOLO-
L  has  high  detection  accuracy  under  the  condition  of
lower weight and a smaller number of parameters. 

2. YOLO-S
The structure of YOLO-S is shown in Figure 7. Sim-

Lightweight Object Detection Networks for UAV Aerial Images Based on YOLO 1003  



ilarly,  it  contains four stages:  feature extraction, feature
fusion,  prediction,  and  post-processing.  In  the  figure,

Nearest represents the upsampling operation of the near-
est-neighbor interpolation.
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Figure 7  Network architecture of YOLO-S.
 

In  the  feature  extraction  stage,  YOLO-S  extracts
deep-level features  using the CBS structure,  CSPBottle-
Neck residual  structure,  and  SPPF  structure,  and  out-
puts feature maps of three different sizes. In the feature
fusion  stage,  YOLO-S  uses  PANet  as  a  feature  fusion
network  to  fuse  the  features  extracted  in  the  previous
stage.  In  the  prediction  and  post-processing  stages,
YOLO-S  predicts  three  sizes  of  feature  maps,  detects
multiple scales of targets through post-processing such as
NMS algorithm, and adds target boxes of different scales
to obtain detection results.

To  achieve  fewer  parameters  and  lighter  weight,
YOLO-S  uses  the  CSPGhostNeck  residual  structure  to
fuse features, and adopts the nearest-neighbor interpola-
tion  to  complete  the  upsampling  operation.  Compared
with CSPBottleNeck, CSPGhostNeck has fewer parame-
ters, lighter  weight,  and  simpler  computation.  Com-
pared with deconvolution, the nearest-neighbor interpola-
tion  has  no  learnable  parameters  and  does  not  increase
the number of parameters or weight. Therefore, YOLO-S
has  fewer  parameters,  less  weight,  and a  higher  level  of
lightness. 

IV. Experiments and Analysis
Firstly, to prove the effectiveness of CSPGhostNeck

residual  structure  and  deconvolution,  both  of  them  are
added to  the  benchmark  network  for  ablation  experi-
ments.  Then,  to  verify  the  performance  of  YOLO-L,
YOLO-M,  and  YOLO-S, algorithm  comparison  experi-
ments are conducted. 

1. Dataset
To verify the design of this paper and the effective-

ness  of  YOLO-L,  YOLO-M,  and  YOLO-S,  the  publicly

available  datasets  VisDrone2021-DET  and  CARPK  are
selected for the experiments.

1) Dataset VisDrone2021-DET
VisDrone2021-DET is  a  UAV aerial  feature  dataset

introduced by the AISKYEYE team of Tianjin Universi-
ty, which  is  obtained  from  UAVs  equipped  with  differ-
ent types of cameras under different scenes, weather, and
lighting conditions.  The  dataset  is  annotated  and  con-
tains 10 classes: pedestrians, people, bicycles, cars, vans,
trucks, tricycles,  tricycles  with  awnings,  buses,  and mo-
torcycles.  The  dataset  VisDrone2021-DET  is  uneven,
showing  a  long-tail  distribution.  The  largest  number  of
samples  is  cars,  with  144625  vehicles,  and  the  smallest
number of samples is tricycles with canopies, with only 3244
vehicles.  VisDrone2021-DET  is  divided  into  a  training
set, a validation set, and a test set. The training set con-
tains 6471 images, the  validation  set  contains  548  im-
ages,  and  the  test  set  contains 1610 images. Figure  8
shows some images of the dataset VisDrone2021-DET.
  

Figure 8  Selected images of the dataset VisDrone2021-DET.
 

2) Dataset CARPK
Figure 9 shows some images of the dataset CARPK.

From the figures, we can see that some of the images are
overexposed,  with  large  differences  between  light  and
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dark images. The targets are small and dense, but there
are obvious  boundaries  between  them.  Some of  the  tar-
gets  fail  to  enter  the  viewfinder  frame  in  full  and  are
truncated by the image boundaries. Target detection for
the dataset CARPK requires to locate the targets accu-
rately.
  

Figure 9  Selected images of the dataset CARPK.
  

2. Experimental setting and evaluation indicators
The  proposed  three  lightweight  networks  are  used

for UAV aerial image target detection with batch size set
to 32, and stochastic gradient descent (SGD) is chosen as
the optimizer. The loss function is obtained by summing
the confidence loss, classification loss and regression loss,
and  is  used  and  trained  on  a  single  GPU.  The  training
process is performed on the dataset CARPK, setting the
epoch of  training to  200,  and on dataset  VisDrone2021-
DET, setting the epoch of training to 300. Other networks
are trained according to the official training strategy.

The evaluation  metrics  include  the  number  of  pa-
rameters,  weight,  and mAP.  The number  of  parameters
is  the  number  of  trainable  parameters  of  the  network,
and the more parameters,  the heavier  the network.  The
weight is the size of the weight file of the network, which
is the most intuitive reflection of whether the network is
lightweight or not, and the lightweight network is easier
to deploy on mobile devices. mAP is mean average preci-
sion, each category has an AP value, and mAP is the av-
erage  AP  value  of  all  categories.  mAP  is  an  important
evaluation metric for the object detection task, which re-
flects the detection accuracy of the network. The higher
the mAP value, the better the network detection effect. 

3. Ablation experiments

640× 640

In this paper, the benchmark network is YOLOv5n,
and  the  ablation  experiments  are  conducted  on  the
datasets  CARPK  and  VisDrone2021-DET, with  the  in-
put image size set to . Firstly, the CSPGhost-
Neck residual  structure  and  deconvolution  are  separate-
ly  used  in  the  benchmark  network  to  verify  the  effects.
Then, the  CSPGhostNeck  residual  structure  and  decon-
volution are  simultaneously  used in  the  benchmark net-
work to verify the mutual exclusivity of the two.

1)  Ablation  experiments  of  CSPGhostNeck  residual
structure and deconvolution

Experiments  are  conducted on the  dataset  CARPK
using the CSPGhostNeck residual structure and deconvo-
lution,  respectively.  The  experimental  results  are  shown

in Table 1 (M stands for 106). Baseline denotes the base-
line  network,  Baseline+CSPGhostNeck  denotes  the  first
variant that  the  baseline  network  uses  the  CSPGhost-
Neck  residual  structure  in  the  feature  fusion  stage,  and
Baseline+Deconv denotes the second variant that the de-
convolution  is  introduced  in  the  baseline  network.  We
analyze  the  effect  of  CSPGhostNeck  and  deconvolution
by comparing the performance of these two variants with
Baseline.
  
Table 1  Results of the ablation experiments on the dataset CARPK

Network Param (M) Weight (MB) mAP (%)

Baseline 1.76 3.83 82.0

Baseline+CSPGhostNeck 1.48 3.24 80.0

Baseline+Deconv 1.95 4.20 83.2
 

As shown in  the  table  above,  compared  with  Base-
line,  the  parameter  amount  of  Baseline+CSPGhostNeck
is  reduced  by  0.28M,  the  weight  by  0.59  MB,  and  the
mAP  by  2.0%.  The  CSPGhostNeck  residual  structure
can  reduce  the  number  of  parameters  and  the  weight.
The  first  reason  is  that  CSPGhostNeck  sends  the  input
image into two branches and concatenates the results of
two  branches  as  the  output,  reducing  the  dimension  of
the intermediate feature maps. Moreover, the CSPGhost-
Neck contains multiple GhostNeck structures, which gen-
erate  most  feature  maps  by  deep  convolution,  reducing
the  number  of  parameters  and  weight.  However,  the
lightweight  CSPGhostNeck  residual  structure  degrades
the performance of the detection network.

In comparison, Baseline+Deconv improves the mAP
by  1.2%,  while  the  number  of  parameters  increases  by
0.19M and  the  weight  by  0.37  MB.  Deconvolution  im-
proves  the  detection  accuracy  of  the  network,  since  the
deconvolution  allows  the  network  to  learn  appropriate
upsampling rules,  so  that  the  image  retains  more  com-
plete  semantic  information  for  better  feature  fusion,
which  in  turns  improves  the  detection  accuracy.  How-
ever, deconvolution  requires  the  assistance  of  convolu-
tional  kernels,  so  it  increases  the  number  of  parameters
and weight of the network.

Experiments are  conducted  on  the  dataset  Vis-
Drone2021-DET using the CSPGhostNeck residual struc-
ture and deconvolution, respectively, and the experimen-
tal results are shown in Table 2.
  
Table 2  Results of the ablation experiments on the dataset
VisDrone2021-DET

Network Param (M) Weight (MB) mAP (%)

Baseline 1.77 3.85 13.0

Baseline+CSPGhostNeck 1.49 3.26 11.7

Baseline+Deconv 1.96 4.23 13.2
 

As shown in the table above, the number of parame-
ters and  weight  of  the  network  grow  when  the  experi-
ments  are  performed  on  dataset  VisDrone2021-DET.
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This is due to the fact that dataset CARPK has only one
category, while dataset VisDrone2021-DET has 10, which
leads to the difference between prediction heads and the
increase of  the number of  parameters and weight of  the
network. The mAP on dataset VisDrone2021-DET has a
significant  decline  compared  to  the  mAP  on  dataset
CARPK.  There  are  many  reasons  of  low  mAP  such  as
the difficulty of detection, the large number of categories,
and complex background of dataset VisDrone2021-DET.
In  general,  the  same  trend  is  observed  on  both  the
dataset  VisDrone2021-DET  and  dataset  CARPK  using
CSPGhostNeck residual structure and deconvolution, re-
spectively.  With  CSPGhostNeck,  the  residual  structure
leads  to  a  reduction  in  the  number  of  parameters  and
weight,  as  well  as  a decrease in mAP. The introduction
of  deconvolution  increases  the  number  of  parameters  of
the network and the weight as well as mAP.

The experimental  results  show that  the  CSPGhost-
Neck residual  structure  can  effectively  reduce  the  num-
ber of  parameters  and weight of  the network at the ex-
pense of some accuracy. The deconvolution can effective-
ly improve the detection accuracy of the network but in-
crease  a  small  number  of  parameters  and  weight.  The
CSPGhostNeck and  deconvolution  show  the  same  char-
acteristics  in  different  datasets  and  have  good  applic-
ability.

2)  Mutual  exclusion  verification  of  CSPGhostNeck
residual structure and deconvolution

Experiments  are  conducted on the  dataset  CARPK
using both the CSPGhostNeck residual structure and de-
convolution,  and  the  experimental  results  are  shown  in
Table 3.
  
Table 3  Experimental  results  of  mutual  exclusivity  validation  on
the dataset CARPK

Network Param
(M)

Weight
(MB)

mAP
(%)

Baseline 1.76 3.83 82.0

Baseline+CSPGhostNeck+Deconv 1.66 3.61 80.5
 

As  illustrated  in Table  3,  compared  with  Baseline,
Baseline+CSPGhostNeck+Deconv has  0.1M  fewer  pa-
rameters, 0.22 MB less weight, and 1.5% lower mAP. As
can  be  seen  from Table  1,  using  the  CSPGhostNeck
residual  structure  alone  reduces  the  parameter  amount
by 0.28M,  the  weight  by  0.59  MB,  but  the  mAP is  re-
duced by 2.0%. Introducing deconvolution alone increas-
es  the  parameter  amount  by 0.19M, the  weight  by 0.37
MB, but the mAP is improved by 1.2%. The differences
between them are 0.09M decrease in parameter amount,
0.22 MB decrease in weight, and 0.8% decrease in mAP,
which  is  similiar  to  the  situation  using  both  the
CSPGhostNeck  residual  structure  and  deconvolution.
Structurally, using CSPGhostNeck instead of CSPBottle-
Neck to fuse features reduces the number of parameters
and weight  and  lowers  mAP;  using  deconvolution  in-
stead  of  the  nearest-neighbor  interpolation  to  upsample

increases the  number  of  parameters  and weight  but  im-
proves mAP. To sum up, the effect of  using two blocks
approximately  equals  to  the  sum of  the  effects  of  using
them separately.

Experiments are conducted on dataset VisDrone2021-
DET,  using  both  the  CSPGhostNeck  residual  structure
and  deconvolution,  and  the  experimental  results  are
shown in Table 4.
 
 

Table 4  Experimental results of mutual exclusion verification on the
dataset VisDrone2021-DET

Network Param (M) Weight (MB) mAP (%)

Baseline 1.77 3.85 13.0

Baseline+CSPGhostNeck+
Deconv 1.67 3.64 12.2

 

In this table, the experimental results on the dataset
VisDrone2021-DET  have  the  same  changes  as  those  on
the dataset CARPK. Compared with Baseline, using the
CSPGhostNeck residual structure alone decreases the pa-
rameter amount by 0.28M, the weight by 0.59 MB, and
the mAP  by  1.3%.  Introducing  deconvolution  alone  in-
creases  the number of  parameters  by 0.19M, the weight
by  0.38  MB,  and  the  mAP  by  0.2%.  The  adoption  of
CSPGhostNeck residual  structure  and  deconvolution  si-
multaneously decreases the number of parameters by 0.1M,
the weight by 0.21 MB, and the mAP by 0.8%. The ef-
fect of  using  CSPGhostNeck  residual  structure  and  de-
convolution simultaneously is approximately equal to the
sum of the effect of using CSPGhostNeck residual struc-
ture and deconvolution alone.

The experimental  results  show that  the  CSPGhost-
Neck residual structure and deconvolution are not mutu-
ally exclusive, and the effects of using them together are
approximately  equal  to  the  sum  of  the  effects  of  using
them alone.  They have  the  same performance  on differ-
ent datasets and have good applicability. 

4. Comparison experiments

640× 640

Comparison  experiments  are  conducted  on  the
datasets  CARPK  and  VisDrone2021-DET with  the  in-
put image size set to . The three networks pro-
posed  in  this  paper  are  compared  with  several  existing
algorithms, including the YOLOv3-Tiny, YOLOv4-Tiny,
YOLOX-Nano  YOLOv5n,  YOLO-L,  YOLO-M,  and  the
YOLO-S.

1) Comparison experiments on the dataset CARPK
Comparative  experiments  are  conducted  on  the

dataset CARPK, and the experimental results are shown
in Table 5.

In  the  table,  YOLOv5n  is  the  benchmark  network,
and  YOLOv3-Tiny,  YOLOv4-Tiny,  and  YOLOX-Nano
are involved into the comparison. From the table, we can
see  that  the  ordering  of  the  number  of  parameters  of
these  networks  is  different  from the  ordering  of  weight.
The reason is that these methods use different encoding
methods and  generate  different  weight.  In  practical  ap-
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plications, weight is a more important influencing factor.
Firstly, compared with YOLOv5n, YOLO-L reduces

the  parameters  and  weight  and  improves  the  mAP.
YOLO-M  and  YOLO-S reduce  the  number  of  parame-
ters, weight, and mAP. Specifically, YOLO-L reduces the
number of parameters by 1.1%, the weight by 0.8%, and
the mAP by 1.0%. According to the proof above, mAP is
improved by using deconvolution to complete the upsam-
pling operation. However, deconvolution uses a convolu-
tion kernel  to  offset  the  effect  of  deconvolution  on  net-
work magnitude.  YOLO-L uses  Ghost  CBS structure to
adjust the dimensionality in addition with the maximum
pooling  operation  for  downsampling,  which  successfully
reduces the number of parameters and weight. YOLO-M
reduces  the  number  of  parameters  by  5.7%  and  weight
by 5.7%,  while  mAP is  reduced by only 1.8%.  YOLO-S
reduces the number of parameters by 15.9% and weight
by 15.4%, while mAP is reduced by only 2.4%. YOLO-S
uses the CSPGhostNeck residual structure to reduce the
parameter quantity  and  weight,  but  the  processing  ca-
pacity of CSPGhostNeck is  lower than that of CSPBot-
tleNeck,  so  the  mAP  decreases.  YOLO-M  uses  both
CSPGhostNeck  residual  structure  and  deconvolution,
taking  into  account  the  accuracy  while  pursuing  light
weight,  so  the  magnitude  of  YOLO-M  is  smaller  than
YOLO-L  and  the  detection  accuracy  is  higher  than
YOLO-S.

Then,  YOLO-L,  YOLO-M,  and  YOLO-S are  com-
pared  with  the  rest  of  the  networks.  Among  them,
YOLOX-Nano  has  the  smallest  number  of  parameters
with 0.90 MB, YOLO-S has the smallest weight with 3.24
MB, and YOLO-L has the largest mAP with 82.8%. To
visually  compare  the  performance  of  each  network,  a
scatter  plot  is  drawn  with  the  weight  and  mAP as  the
horizontal and vertical coordinates, as shown in Figure 10.

In Figure 10, the closer the network is to the top left
corner, the lighter the weight and the higher the mAP it
uses. From the figure, we can see that YOLOv4-Tiny has
the  largest  weight  and  the  lowest  mAP,  which  is  the
weakest  comprehensive  network;  YOLOX-Nano  has  a
lighter  weight  and  the  second  lowest  mAP,  while
YOLOv3-Tiny has a higher mAP and the second lowest
weight, which are all weak comprehensive networks. The
network with the strongest comprehensive performance is
YOLO-L, YOLO-M and YOLO-S, which have high mAP
and are near the upper left corner of the scatter plot.

2) Comparison experiments on the dataset VisDrone-
2021-DET

The  comparison  experiments  are  conducted  on  the
dataset VisDrone2021-DET, and the experimental results
are shown in Table 6.
 
 

Table 6  Comparative experimental results on the dataset
VisDrone2021-DET

Network Param (M) Weight (MB) mAP (%)

YOLOv3-Tiny 8.69 17.46 5.9

YOLOv4-Tiny 5.89 23.72 9.9

YOLOX-Nano 0.90 7.61 11.7

YOLOv5n 1.77 3.85 13.0

YOLO-L 1.75 3.82 13.1

YOLO-M 1.67 3.64 12.2

YOLO-S 1.49 3.26 11.7
 

Comparing with the benchmark network YOLOv5n,
the  experimental  results  on  the  dataset  VisDrone2021-
DET  have  the  same  trend  as  those  on  the  dataset
CARPK.  YOLO-L  reduces  the  number  of  parameters
and weight and improves the mAP, while YOLO-M and
YOLO-S sacrifice some of the mAP and significantly re-
duce the number of parameters and weight.

A comparison with the rest of the networks on data-
set  VisDrone2021-DET  has  some  different  experimental
results from those on the dataset CARPK. Among them,
YOLOX-Nano  has  the  smallest  number  of  parameters
with 0.90M, YOLO-S has  the smallest  weight  with 3.26
MB,  and  YOLO-L  has  the  largest  mAP with  13.1%.  A
scatter plot is drawn with the weight and mAP as hori-
zontal and vertical coordinates, as shown in Figure 11.

From the figure, we can see that YOLOv3-Tiny has
the  lowest  mAP  and  the  second  lowest  weight,  while
YOLOv4-Tiny  has  the  largest  weight  and  the  second
lowest mAP. All of them perform weak comprehensively,
YOLOX-Nano  has  a  higher  mAP,  lighter  weight,  and
stronger  comprehensive  performance.  YOLO-L,  YOLO-
M, and YOLO-S have small weight and high mAP, near
the upper  left  corner  of  the  scatter  plot,  and  outstand-
ing comprehensive performance. On the two UAV aerial
photography  datasets,  the  comprehensive  performances
of YOLOv3-Tiny, YOLOv4-Tiny, and YOLOX-Nano are
unstable,  while  YOLO-L,  YOLO-M,  and  YOLO-S al-

 

Table 5  Experimental results of comparison on the dataset CARPK

Network Param (M) Weight (MB) mAP (%)

YOLOv3-Tiny 8.67 17.42 73.9

YOLOv4-Tiny 5.87 23.59 70.8

YOLOX-Nano 0.90 7.59 73.0

YOLOv5n 1.76 3.83 82.0

YOLO-L 1.74 3.80 82.8

YOLO-M 1.66 3.61 80.5

YOLO-S 1.48 3.24 80.0
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Figure 10  Comparison scatter plot on the dataset CARPK.
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ways perform well in the upper left corner of the scatter
plot and have better applicability.

The  experimental  results  show  that  YOLO-L re-
duces  the  magnitude  of  the  network  and  improves  the
detection  accuracy,  which  is  an  excellent  lightweight
UAV  aerial  image  target  detection  network;  YOLO-M
and YOLO-S can significantly reduce the number of pa-
rameters and weight of the network under the condition
of sacrificing some detection accuracy and they are high-
ly  lightweight  UAV  aerial  image  detection  networks.
YOLO-L, YOLO-M, and YOLO-S have small weight and
high mAPs,  and perform stably  in  different  UAV aerial
image  datasets,  showing  superiority  in  comparison  with
other networks. Figure 12 shows the visual detection re-
sults of YOLO-L, YOLO-M, and YOLO-S on the dataset
CARPK.
 
 

(a) YOLO-L

(b) YOLO-M

(c) YOLO-S

Figure 12  Visual  detection  results  of  YOLO-L,  YOLO-M,  and
YOLO-S on the dataset CARPK.
  

V. Conclusions
Based  on  the  design  idea  and  network  structure  of

lightweight  convolutional  neural  networks,  this  paper
proposes  three  lightweight  target  detection networks  for
UAV  aerial  images:  YOLO-L,  YOLO-M  and  YOLO-S.
The CSPGhostNeck is composed of CSPNet and Ghost-
Neck, which can effectively reduce the number of param-
eters and weight of the detection network. The deconvo-
lution enables  the  network  to  explore  suitable  upsam-
pling  rules  during  training  process,  so  that  small-sized
feature  maps  retain  more  feature  information,  making
feature fusion more effective and the network’s detection
accuracy higher. The experimental results show that the
three  designed  lightweight  networks  all  perform  well  in
the target detection task of UAV aerial images. 
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