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Abstract — The current  intelligent  auxiliary  diagnosis  models  all  follow the  closed-set  recognition  setting.  After
the model is deployed online, the input data is often not completely controlled. Diagnosing an untrained disease as a
known category would lead to serious medical malpractice. Therefore, realizing the open-set recognition is significant
to  the  safe  operation  of  the  intelligent  auxiliary  diagnosis  model.  Currently,  most  open-set  recognition  models  are
studied for natural images, and it is very challenging to obtain clear and concise decision boundaries between known
and unknown classes when applied to fine-grained medical images. We propose an open-set recognition network for
medical  images based on fine-grained data mixture and spatial  position constraint  loss  (FGM-SPCL) in this  work.
Considering the fine graininess of medical images and the diversity of unknown samples, we propose a fine-grained
data mixture (FGM) method to simulate unknown data by performing a mixing operation on known data to expand
the coverage of unknown data difficulty levels. In order to obtain a concise and clear decision boundary, we propose a
spatial position constraint loss (SPCL) to control the position distribution of prototypes and samples in the feature
space and maximize the distance between known classes and unknown classes. We validate on a private ophthalmic
OCT  dataset,  and  extensive  experiments  and  analyses  demonstrate  that  FGM-SPCL  outperforms  state-of-the-art
models.
Keywords — Few-shot class-incremental learning, Embedding augmentation, Classifier adaptation, Image clas-
sification.
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 I. Introduction
In recent  years,  deep  learning  has  achieved  or  ex-

ceeded human-level performance in medical image recog-
nition and classification tasks [1]–[3]. Most current intel-
ligent auxiliary diagnosis models are developed for one or
a few specific diseases in a closed-set recognition setting,
which  assumes  that  all  test  classes  are  known  or  seen
during  training.  However,  actual  medical  scenarios  are
usually  dynamic  and  open.  After  the  model  is  deployed
and  launched,  it  is  inevitable  to  encounter  situations
such  as  disease  samples  from unknown sources,  changes

in  hardware  equipment,  and  unqualified  differentiated
samples.  Since  these  types  of  samples  are  not  in  the
training set, traditional deep neural networks cannot de-
tect  unknown  classes  while  assigning  high  confidence
scores to  classify  them as  one  of  the  known  classes,  re-
sulting  in  misdiagnosis  or  missed  diagnosis.  To  address
these issues, researchers have proposed open-set recogni-
tion (OSR) to robustly identify unknown diseases in test
samples, while correctly classifying known diseases.

Since the unknown class has never been seen in the
training process  of  OSR, improving the  distribution dif-
ferences between unknown and known classes in the fea- 
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ture space and clarifying the decision boundary between
known and unknown classes is a crucial issue. One of the
most common research approaches is to learn the bound-
aries  of  known  class  regions  and  identify  the  remaining
feature space as unknown. Among them, spatial location
constraint  prototype  loss  (SLCPL)  [4]  pointed  out  that
unknown categories usually tend to be distributed in the
central area of the feature space, so the study controlled
the  distribution  of  known  category  features  at  the  edge
of the feature space to clarify the decision boundary be-
tween known and unknown categories. However, focusing
on controlling the potential spatial distribution of known
categories may not be enough to reduce open space risk
solely based on limited known categories  during testing.
Therefore, researchers have made great efforts to simulate
virtual open sets [5]–[7] or virtual open spaces [8]. Among
them, using generative adversarial network (GAN) gener-
ators [5], [9] to generate virtual data or features is a com-
mon method. However, difficulty-aware simulator (DIAS)
[6] pointed out that images generated using GAN are not
very challenging for classifiers, and introduced the Copy-
cat method to generate samples of different levels of diffi-
culty to simulate open sets. However, since it is impossi-
ble  to  accurately  obtain  the  distribution  of  unknown
classes,  simply  separating  the  generated  virtual  images
from known classes  does  not  guarantee  the  effectiveness
for other unknown samples. For this reason, reference [8]
combined the  above  two  ideas,  proposed  adversarial  re-
ciprocal  point  learning  (ARPL)  to  model  the  potential
open space of each known class in the feature space, and
proposed  an  adversarial  marginal  constraint  to  reduce
the open space risk. Meanwhile, an instantiated adversar-
ial  enhancement  method  is  designed  to  generate  diverse
virtual open-set samples.

Although researchers have made great contributions
to the OSR task, there are still many problems to be ex-
plored in medical scenarios. We find that for fine-grained
natural images, there are visually distinguishable features
between categories  (e.g.,  dog,  car,  airplane,  etc.),  mak-
ing detecting unknown samples relatively easy. While for
fine-grained  medical  images,  the  unknown samples  span
a  wider  area  and  are  more  similar  to  the  features  of
known  samples.  Therefore,  the  medical  imaging  OSR
task  faces  the  following  problems:  1)  The  deep  learning
model  is  highly  dependent  on  discriminative  features  to
distinguish  categories,  and  the  virtual  unknown  classes
generated  by  the  method  based  on  feature  simulation
cannot  cover  the  area  of  fine-grained  open  data.  Thus,
classifiers  learned  through  them  are  still  vulnerable  to
unknown  classes  with  similar  semantics.  2)  Due  to  the
mismatch between the unknown class and the model con-
volution  kernel,  the  unknown  class  usually  tends  to  be
distributed in the central area of the feature space [4], so
most studies  have  improved  the  open-set  detection  per-
formance by making the known class far away from the
center of the space. But for fine-grained images, the dis-
tribution  of  unknown classes  is  relatively  wide,  and  the

decision  boundary  in  the  feature  space  is  relatively
blurred. Therefore, maximizing the decision boundary be-
tween  known  and  unknown  classes  is  the  key  challenge
we are currently facing.

Based  on  the  above  problems,  we  propose  a  new
framework  OSR  network  for  medical  images  based  on
fine-grained data mixture and spatial position constraint
loss (FGM-SPCL). We design a simple yet effective fine-
grained data  mixture  (FGM)  approach  to  predict  un-
known class  instances.  Specifically,  we  propose  to  per-
form a  blending  operation  between known class  data  to
obtain  virtual  unknown  samples.  These  samples  can  be
close  to  or  far  from  known  class  samples,  which  aligns
more with the real-world distribution of unknown classes.
At the same time, this method can promote the model to
learn more discriminative features, realize the correction
of known class distribution boundaries, and learn a more
compact  and  robust  feature  space.  To  further  increase
the  distance  between  known  and  unknown  classes,  we
propose a spatial position constraint loss (SPCL), which
includes a prototype position constraint loss (PPCL) and
an  asymmetric  instance  contrastive  loss  (AICL).  First,
we  use  PPCL  to  constrain  the  location  distribution  of
prototypes  and  samples  in  the  feature  space,  forcing  all
known classes to be distributed in the peripheral area of
the space and virtual  unknown classes to be distributed
between  the  center  of  the  feature  space  and  the  known
class distribution area. In this way, the virtual unknown
data can play a role  in isolating the real  unknown data
and the known data. Then, we use AICL to better clus-
ter samples of  known classes and push them away from
virtual unknown  samples  to  clarify  the  boundary  be-
tween  the  known  and  unknown  classes.  In  addition,  we
collaborated  with  a  Grade  III  Level  A  ophthalmology
hospital to  collect  an  ophthalmic  OCT  dataset  and  de-
signed various experiments on this dataset. At the same
time,  to  verify  the  generality  of  the  model,  we  conduct
experiments on an additional public medical dataset and
three natural image datasets.  Experimental results show
that  the  performance  of  FGM-SPCL  for  fine-grained
OSR reaches the state-of-the-art level,  reflecting the ex-
cellent robustness  of  the model.  Our main contributions
are summarized as follows:

1) A simple and effective FGM method is proposed
to predict open-set data to obtain virtual unknown class
samples covering the range of open areas;

2) An  SPCL  is  proposed  to  maximize  the  distance
between the  known class  and  the  unknown class  to  ob-
tain a concise and clear decision boundary;

3) Experimental results on two medical datasets and
three  natural  image  datasets  show  that  FGM-SPCL
achieves state-of-the-art  performance,  reflecting  the  ro-
bustness of the model to unknown samples.

 II. Related Work
Early work on the OSR task mainly used traditional

methods  such  as  support  vector  machines  [10],  extreme
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value theory (EVT), and nearest-to-class mean classifiers
[11]–[13].  Then,  deep  learning  algorithms  are  widely
adopted  with  the  development  of  convolutional  neural
network  (CNN).  Regarding  the  study  of  OSR  in  this
paper,  its  related work can be roughly divided into two
categories:  OSR based on prototype classifiers  and OSR
based on generative models.
 1. OSR based on generative models

Generator  methods  use  GANs,  auto-encoders  [14],
flow-based  models  [15],  and  data  augmentation-based
methods  [7]  to  generate  unknown  or  known  samples  to
help  the  classifier  learn  the  decision  boundary  between
known  and  unknown  classes.  Reference  [16]  proposed  a
classification-reconstruction learning for open-set recogni-
tion (CROSR),  which exploits  latent representations for
reconstruction  and  enables  unknown  detection  without
compromising the classification accuracy of known class-
es.  Reference  [17]  proposed  the  class  conditioned  auto-
encoder (C2AE) algorithm, which uses a class-conditional
auto-encoder with a novel training and testing method to
model  the  reconstruction  error  by  EVT  to  find  the
threshold  for  identifying  known/unknown class  samples.
Reference [14] proposed the conditional Gaussian distribu-
tion learning  (CGDL)  algorithm to  classify  known sam-
ples  by  forcing  different  latent  features  to  approximate
different  Gaussian  models.  Reference  [15]  proposed  the
OpenHybrid framework,  which  implements  an  embed-
ding space jointly learned by a classifier and a flow-based
density  estimator.  Reference  [7]  proposed  PlaceholdeRs
for  open-set  recognition  (PROSER),  which  prepares  for
unknown  categories  by  assigning  placeholders  to  data
and classifiers.  Concretely,  the  method efficiently  gener-
ates new classes through manifold mixing and adaptive-
ly sets  the  value  of  the  retained  open-set  classifier  dur-
ing  training.  Reference  [8]  proposed  ARPL.  Specifically,
each interchange point is learned via an open space with
the corresponding known category, and the open space is
augmented  by  generated  fake  samples.  To  obtain  open-
set  data  with  different  difficulties,  Reference  [6] pro-
posed  a  DIAS,  which  can  generate  fake  samples  with
varying  levels  of  difficulty  to  simulate  the  real  world.
This  method  generates  medium-difficulty  samples  via
GAN and easy and hard samples via the Copycat form.
However,  the  implementation  process  of  this  method  is
more complicated, and it also increases the complexity of
the model.
 2. OSR based on prototype classifiers

In order to obtain more discriminative feature repre-
sentations,  some  methods  exploit  prototypes  to  repre-
sent each known class in the embedded feature space, en-
courage  the  features  of  training  samples  to  be  close  to
the corresponding  prototypes,  and  identify  open-set  im-
ages  based on the distance to the prototypes.  Reference
[18]  proposed  a  convolutional  prototype  network  (CPN)
and  designed  a  new  discriminative  loss  and  generation
loss  to  increase  the  inter-class  distance  and  reduce  the

intra-class  distance.  Reference  [19]  proposed  prototype-
based open deep network (P-ODN), which jointly trains
prototypes  and prototype  radii  to  guide  CNN to  obtain
more  discriminative  features,  and  applies  a  multi-class
triplet thresholding  method  based  on  the  distance  met-
ric between features and prototypes to detect unknowns.
Reference  [20] proposed generalized convolutional  proto-
type learning (GCPL) with a prototype loss as a regular-
ization method to improve the intra-class compactness of
feature  representations.  Prototype-based  methods  are
crucial  to  the  selection  of  prototype  sets,  so  [21] pro-
posed  a  new  prototype  mining  and  learning  (PMAL)
framework  considering  the  high  quality  and  diversity  of
prototype  sets.  The  framework  selects  prototype  sets
based on data uncertainty learning and a diversity-based
prototype set  filtering  strategy.  In  order  to  further  en-
large  the  decision  boundary  between  known  classes  and
unknown  classes,  Reference  [4] pointed  out  that  un-
known  classes  usually  tended  to  be  distributed  in  the
central area of the feature space and proposed spatial lo-
cation constraint  prototype  loss  to  control  the  distribu-
tion of known class prototypes in the feature space edge
area.  Reference  [22]  proposes  a  method  of  reciprocal
point learning (RPL), which constructs a bounded space
based on reciprocal points, and at the same time, it can
indirectly  introduce  unknown information into  a  feature
space to learn more compact and discriminative represen-
tations.  However,  the  above  studies  are  still  unable  to
achieve a clearer decision boundary for the OSR of fine-
grained medical images.

We propose a simple and effective FGM method to
generate virtual  unknown samples spanning open-set in-
tervals.  And  through  the  SPCL,  the  decision  boundary
between the known class and the unknown class is maxi-
mized on the basis of the FGM method. This significantly
improves the robustness of the model.

 III. Methods

 1. Problem statement

Dtr = {(xi, yi)}Ni=1 ⊂ X × C xi

yi ∈ {1, 2, . . . , C} N

X
C

Dte = {(xi, yi)}Mi=1 ⊂ X × C

Dtr Dte

Din M

Du

Dteopen = Dte ∪ Du = {(xi, yi)}M
′

i=1 ⊂ X × (C ∪ U)

M ′

U

Dte Du

We  formalize  the  OSR  problem  and  emphasize  its
differences from closed-set recognition. First, the model is
trained  using ,  where  is
an image,  is its class label,  is the to-
tal number of training samples,  is  the input space of
the images,  and  is  the set of “known” classes.  In the
closed-set  assumption,  use 
for  testing.  Here,  and  come  from  the  same
known  dataset ,  and  is  the  total  number  of  test
samples. Conversely, in the open-set setting, the test im-
ages  may  also  come  from the  unknown dataset , us-
ing   to
test.  Here  is  the  total  number  of  test  samples  of
known and unknown classes,  is  the  set  of  ‘unknown’
classes, and the known class and the unknown class test
sets are represented by  and , respectively.
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 2. Overview
Prototype-based classifiers can reduce the intra-class

distance  and  increase  the  inter-class  distance,  thereby
improving  the  robustness  of  the  classifier,  which  is
proved to be very effective for learning fine-grained fea-
tures  [23].  Therefore,  we  design  our  network  framework
based on the prototype classifier, as shown in Figure 1.

F (x)

First,  we  obtain  virtual  unknown  classes  with  a
broader range of difficulty through FGM and participate
in  model  training  together  with  known  classes.  We  use
ResNet-34  [24]  and  Classifier32  [4],  [8]  as  the  backbone
network F and map the image to a feature vector 
(the feature of the last global pooling layer is used as the
final feature vector). Among them, Classifier32 is a com-

Dvirtual x = FGM(x)

C N

O = {Ok,

k = 1, 2, . . . , N} N

x y

k

monly used  backbone  network  in  OSR-related  algo-
rithms. It is worth noting that after obtaining the virtu-
al  unknown  class  by ,  the  total
number of categories is expanded from  to , and we
set  a  prototype  for  each  category,  that  is, 

.  The  prototype points  are  initialized
from a uniform distribution. For any data , label  be-
longs  to  classes,  and  its  prototypical  contrastive  loss
(PCL) can be expressed as

 

PCL(x) = − log
exp

(
−d

(
F̃ (x), Õk

))
∑N

i=1
exp

(
−d

(
F̃ (x), Õi

)) (1)

 
 

FGM

F

Feature vector

PCL

AICL

PPCL

SPCL

Figure 1  Overall network architecture.
 

F̃ (x) = F (x)/∥F (x)∥2 Õk = Ok/∥∥Ok
∥∥
2

d
(
F̃ (x), Õk

)
F̃ (x) Õk

Among them,  and 
 means feature vectors and prototypes are normal-

ized.  is  the  Euclidean  distance  between
 and .

PCL(x)Based  on ,  an  SPCL is  proposed,  including
AICL and PPCL. Therefore,  the overall  loss function of
the model is expressed as

 

L(x) = PCL(x) +AICL(x) + PPCL(x) (2)

L (x)By  minimizing ,  each  sample  is  clustered
around  the  corresponding  prototype,  the  known  classes
are  distributed  in  the  peripheral  area  of  the  space,  and
the virtual  unknown classes are distributed between the
center of the feature space and the known class distribu-
tion  area.  It  makes  the  decision  boundary  between
known and unknown classes more explicit.  The distance
between the sample and the nearest prototype is the cri-
terion. If the distance is below a threshold, the sample is
considered to belong to the corresponding category. Other-
wise, it is considered unknown.
 3. Fine-grained data mixture (FGM)

The goal of FGM is to transform the closed medical
image training  set  into  an open training  set.  This  mod-
ule  should  have  two  main  features:  1)  For  fine-grained
medical images, produce a virtual unknown dataset that
can cover a wider open space; 2) The generation process
should be simple and fast without any additional model
complexity.

(xi, yi) (xj , yj)

Mixup has become very popular in the field of data
augmentation and has been proved to be effective in alle-
viating  adversarial  disturbances  in  neural  networks,
better-estimating uncertainty, and helping models create
better  decision  boundaries  between  different  categories.
Specifically, each new example consists of two randomly
sampled examples  and , weighted by lin-
ear interpolation as follows:

 

x̂ = λxi + (1− λ)xj

ŷ = λyi + (1− λ)yj (3)

λ ∈ [0, 1]where  is sampled from a Beta distribution, con-
trolling the contribution of  each sample  to  the mixture.
This  generates  new  instances  across  multiple  decision
boundaries,  driving the  feature  vectors  of  known classes
to be more compact.

xa xb a b

xab = λxa + (1− λ)xb

C
C × (C − 1)/2

C
N = C + C × (C − 1)/2

Inspired by  Mixup,  we  randomly  sample  two  sam-
ples,  and , from any two different classes,  and ,
and generate virtual unknown class samples by weighted
linear  interpolation: . The  differ-
ence  from  Mixup  is  that  we  hope  the  mixed  samples
produced by every two categories are an independent vir-
tual  class.  For  example,  if  there  are  categories,

 virtual classes will  be generated after ev-
ery  two  classes  are  mixed.  Therefore,  we  changed  a -
class  classification  task  into -
class  classification.  To  demonstrate  the  effect  of  mixing
samples, we visualize seen, virtual, and unknown classes
in  the  feature  space,  as  shown  in Figure  2.  Gray  areas
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represent real samples of unknown classes, and pink areas
represent generated virtual samples, the remaining 8 col-
ored  clusters  correspond to  each  known class.  It  can  be
found that the virtual samples can cover the area where
the real unknown samples are located, and also cover the
area where the known samples are located. In this  way,
not only the possible distribution of unknown classes can
be  predicted,  but  also  in  order  to  better  distinguish
known  classes  from  virtual  unknown  classes,  the  model
will be  prompted  to  learn  more  discriminative  informa-
tion  for  each  class,  thereby  correcting  the  known  class
decision  boundary,  and  further  improve  the  recognition
accuracy of known classes.
 
 

Figure 2  Visualize  the  feature  distribution  of  real  unknown classes
and virtual unknown classes.
 

 4. Spatial position constraint loss (SPCL)
SPCL aims to learn a constrained feature space that

reduces the  overlap  of  known  and  unknown  class  fea-
tures. SPCL mainly includes PPCL and AICL.

Prototype  position  constraint  loss  (PPCL)  Refer-
ence [4] pointed out that unknown classes usually tend to
be distributed in the central region of the feature space.
Therefore, we constrain all known class prototypes to the
edge region  of  the  feature  space  and  make  the  proto-
types as far as possible from the feature center. The im-
plementation method is as follows:

 

Ocenter =
1

N

N∑
k=1

Õk

rk = d
(
Õk

I ,Ocenter

)
RI =

1

C

C∑
k=1

rk

PPCL (RI) = − logRI

PPCL (OI) =
1

C − 1

C∑
k=1

(rk −RI)
2 (4)

Õk = Ok

∥Ok∥2

k Ocenter

OI = O[: C, :]

Here,  means to  normalize  the  proto-
type of  the -th class,  and  represents  the  center
of  all  prototypes,  which  is  also  the  center  of  feature
space.   represents  the  prototypes  for  the

rk k
Ocenter . RI

OI Ocenter

OI Ocenter

PPCL (RI)
PPCL (RI) RI OI

Ocenter

Ocenter

OI Ocenter

PPCL (OI)
rk, k ∈ {1, 2, . . . , C}

known classes.  represents the distance of the -th pro-
totype  from  the  center  represents the  aver-
age Euclidean distance between  and . We want

 to  be  as  far  away  from  as  possible,  and
achieve  this  by ,  where  a  smaller  value  of

 indicates  a  larger ,  meaning  that  is
farther away from . To ensure that all prototypes
for the known classes are far away from , we calcu-
late the variance of the distance between  and 
using .  A smaller  variance indicates  that the
size of   is more similar, i.e., the cir-
cular distribution  of  known  class  prototypes  in  the  pe-
ripheral region  of  the  feature  space  is  more  regular,  en-
suring that all known class prototypes are far away from
the center of the feature space.

For fine-grained  images,  there  are  more  similar  se-
mantic  features  between  unknown  classes  and  known
classes.  Therefore,  we  hope  that  the  decision  boundary
between known and unknown classes  can be further  en-
larged. We distribute the virtual unknown classes in the
region  between  the  center  of  the  feature  space  and  the
distribution of  known  classes.  In  this  way,  the  real  un-
known class distribution space is compressed and isolat-
ed from the  known  class  distribution  space.  The  imple-
mentation method is as follows:

 

rk′ = d
(
Õk′

O ,Ocenter

)
RO =

1

N − C

N−C∑
k′=1

rk′

PPCL (RO) = − logRO

PPCL (OO) =
1

N − C − 1

N−C∑
k′=1

(rk′ −RO)
2

PPCL(R) = max
(
RO −RI +m

√
D, 0

)
(5)

OO = O[C :, :]
rk′ , RO,PPCL (RO) PPCL (OO)

rk, RI ,PPCL (RI) PPCL (OI)
PPCL(R) RI

RO

m
√
D D

m

Among them,  represents virtual class
prototypes. ,  and  have
similar meanings to ,  and ,
respectively.  means  to  limit  to  be  a  little
larger than  so that in the feature space, the virtual
data can isolate the distribution area of known class da-
ta and unknown class data to a certain extent. In order
to easily  set  the  hyper-parameters,  the  margin  is  de-
signed as .  represents the feature dimension, and

 is  a  hyper-parameter  used  to  adjust  the  distribution
distance  between  known  classes  and  virtual  unknown
classes in the feature space. PPCL can be expressed as

 

PPCL(x) =αPPCL (OI) + βPPCL (OO) + γPPCL(R)

+ µ (PPCL (RI) + PPCL (RO)) (6)

α, β, γ, µwhere,  are hyper-parameters.
Asymmetric instance contrast loss (AICL)  The tra-

ditional instance contrast loss strengthens the intra-class
compactness  for  each  category  in  the  feature  space  and
pushes  out  other  categories.  In  contrast,  we  hope  that
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only the intra-class compactness of known classes can be
strengthened and push away the virtual  unknown class-
es as a whole. In this way, we further widen the distance
from  unknown  classes  while  calibrating  the  decision
boundary of  known classes.  The implementation process
of AICL is as follows:

 

AICL(x)

= − 1

|P(x)|
∑

p∈P(x)

log
exp

(
F (x)TF (p)/τ

)∑
a∈A(x)

exp
(
F (x)TF (a)/τ

)
(7)

F (x), F (p) F (a)
F (x)T

F (x), P(x) =
{p | y(p) = y(x),p ∈ Din\{x}}

x
x, A(x) = Din ∪ Dvirtual\{x}

x
x

1
|P(x)|

τ

Among them, ,  and  represent  the
feature vectors of different types of samples.  rep-
resents  the  transpose  operation  on 

 is the positive sample set
of , that is, samples with the same ground-truth labels
as  is  the set of  all  negative
samples about ,  that is,  samples with different ground
truth labels from  and all virtual unknown samples. Fi-
nally,  the  contrastive  learning  loss  of  all  samples  is
summed and normalized by , and the scaling tem-
perature  is added as in contrastive learning.

 IV. Experiments

 1. Dataset
Ophthalmic  OCT  dataset  We  collected  electronic

medical  records  (EMRs)  of  11829  patients  from  the
Grade III Level A ophthalmology hospital and extracted
7917 ophthalmic  OCT  images.  We  built  an  ophthalmic
image labeling  system,  and  11  ophthalmologists  partici-
pated in the labeling work. The dataset contains 13 oph-
thalmic diseases, including epiretinal membranes (ERMs,
2083),  central  serous  chorioretinopathy  (CSCR, 1436),
age-related  macular  degeneration  (AMD,  876),  macular
hole (MH, 763), branch retinal vein occlusion (BRVO, 503),
macular splitting (MS, 480), retinal detachment (RD, 436),
vitreous macular traction syndrome (VMT, 392), retinal
artery occlusion (RAO, 304), polypoidal choroidal vascu-
lopathy (PCV, 258), central retinal vein occlusion (CRVO,
162), papilledema (PE, 139), and Harada disease (HD, 85).
We take 8 of these categories as known datasets and di-
vide  the  dataset  into  80%–20%  training-testing  parts.
The  rest  of  the  classes  are  treated  as  unknown  class
datasets.

HyperKvasir  dataset  It is  one  of  the  largest  pub-
licly  available  gastrointestinal  endoscopy  datasets  under
CC BY 4.0 (Creative Commons Attribution 4.0 Interna-
tional)  [25]. The  dataset  includes  labeled  images,  seg-
mented  images,  unlabeled  images,  and  labeled  videos,
and we  choose  labeled  images  among  them  for  experi-
ments. The dataset contains a total of 10662 labeled im-
ages,  23  categories,  including  BBPS  2–3  (1148),  Polyps
(1028), Cecum (1009), Dyed lifted polyps (1002), Pylorus
(999), Dyed resection margins (989), Z-line (932), Retro-

flex  stomach  (764),  BBPS  0–1  (646),  Ulcerative  colitis
grade-2 (443),  Esophagitis  grade A (403),  Retroflex  rec-
tum (391), Esophagitis grade B–D (260), Ulcerative coli-
tis grade-1  (201),  Ulcerative  colitis  grade-3  (133),  Im-
pacted  stool  (131),  Barrett’s short  segments  (53),  Bar-
retts  (41),  Ulcerative  colitis  grade-0–1  (35),  Ulcerative
colitis  grade-2–3  (28),  Ulcerative  colitis  grade-1–2  (11),
Ileum (9), and Hemorrhoids (6). We take 8 of these cate-
gories  as  known  datasets  and  divide  the  dataset  into
80%–20%  training-testing  parts.  The  rest  of  the  classes
are treated as unknown class datasets.

CIFAR10, CIFAR+10, and CIFAR+50 datasets  CI-
FAR10 [26] contains 60000 images divided into 10 class-
es.  Each  class  has  6000  images,  with  5000  images  used
for  training,  and  1000  for  testing.  CIFAR100  [26] con-
tains 60000 images divided into 100 classes, with 600 im-
ages per class. Of these, 500 images are used for training
and 100 for testing. In this experiment, CIFAR10 repre-
sents a dataset in which 6 classes are randomly selected
as known classes and the remaining 4 classes are unknown.
CIFAR+10 and CIFAR+50 represent  datasets  in  which
4 classes are randomly selected from CIFAR10 as known
classes, and 10 and 50 classes, respectively, are random-
ly selected from CIFAR100 as unknown classes.
 2. Implementation details and evaluation metrics

224×224×3

α = β = 0.5, γ = µ = 0.1 m = 0.003

Ophthalmic OCT dataset experiment setup  We use
ResNet-34  and  Classifier32  as  backbone  architectures
and train the models using the Adam optimizer with an
initial learning rate of 0.01. We trained all the models for
200 epochs with a batch size of 128. We resize the input
image to  and apply standard data augmen-
tation  with  random  cropping  and  horizontal  cropping.
Models  are  trained  only  on  known  categories.  In  whole
experiment, , and .

α = β = 0.1 γ = µ = 0.1 m = 0.003

HyperKvasir  dataset  experiment  setup  We  use
ResNet-34 as the backbone architecture. In whole experi-
ment, , ,  and .  Other
settings are the same as the OCT dataset.

32× 32

α = β = 0.1,
γ = µ = 0.1 m = 0.003

CIFAR10, CIFAR+10, and CIFAR+50 datasets ex-
periment setup  We use Classifier32 as the backbone ar-
chitecture. All  classifiers  are  trained  with  the  momen-
tum stochastic gradient descent (SGD-M) optimizer. The
initial learning  rate  of  the  network  is  set  to  0.1,  drop-
ping  to  one-tenth  of  the  original  rate  every  30  epochs,
and  we  train  the  network  for  100  epochs  with  a  batch
size of 128. We resize the input image to  and ap-
ply  standard  data  augmentation  with  random  cropping
and horizontal cropping. In whole experiment, 

, and .
We use  accuracy  (Acc)  as  the  performance  evalua-

tion  metric  of  the  closed  set,  that  is,  the  known  class,
and  use  area  under  the  receiver  operating  characteristic
(AUROC) curve and open-set classification rate (OSCR)
as the evaluation metrics of the open set.  Among them,
AUROC is the most commonly used standard measure to
measure  the  performance  of  OSR  task  models.  OSCR
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δ

c
δ

weighs correct  classification  rate  (CCR)  and  false  posi-
tive rate (FPR). Specifically,  let  be a score threshold.
The CCR is  the  sample  fraction that  correctly  classifies
the  image  as  and  has  the  maximum  probability,  and
the probability is greater than :

 

CCR(δ)

=
|{x | x ∈ Dc

te ∧ argmaxc P (c | x) = ĉ ∧ P (ĉ | x) ≥ δ}|
|Dc

te|
(8)

Du c
δ

FPR is  the  fraction of  samples  from unknown data
 that are classified into any known class  with proba-

bility greater than :
 

FPR(δ) =
|{x | x ∈ Du ∧maxc P (c | x) ≥ δ}|

|Du|
(9)

Therefore, OSCR based on CCR and FPR is an in-
dicator  similar  to  AUROC. The  larger  the  OSCR value
of  the model,  the stronger  the recognition ability of  the
model.
 3. State-of-the-art methods

In  order  to  better  evaluate  the  overall  performance
of our model, in addition to the introduced baselines, we
also  compare  FGM-SPCL  with  state-of-the-art  methods
in the OSR domain, including Softmax, G-OpenMax [9],
open-set recognition with counterfactual images (OSRCI)
[27], CROSR [16], C2AE [17], DIAS [6],  RPL [22], GCPL
[20], SLCPL [4], ARPL+confusing samples (CS) [8], and
maximum logit score (MLS) [28].

The Softmax model is trained with the cross-entropy
loss on the known classes, and during testing, the maxi-
mum value of the Softmax probability vector is  used to
determine  whether  the  input  belongs  to  a  known  class.
MLS uses the maximum logit score as an open-set score
rule.  GCPL  learns  generalized  convolutional  prototypes
that  effectively  improve  intra-class  feature  compactness,
bringing  the  same  samples  closer  around  corresponding
prototypes  and  thus  calibrating  known  class  decision
boundaries.  The  PCL  baseline  model,  compared  to  the
calculation  process  of  the  prototype  contrastive  loss  in
the GCPL  model,  the  prototype  in  the  PCL  uses  uni-
form distribution  initialization  and normalization  opera-
tions. RPL introduces the concept of reciprocal points to
model  the  potential  open  spaces  of  each  known class  in
the  feature  space.  SLCPL  controls  the  distribution  of
known  class  prototypes  in  the  marginal  regions  of  the
feature space.

In generative models, OSRCI generates images simi-
lar to those in the training set but not belonging to any
known  class  and  uses  them to  train  open-set  classifiers.
CROSR combines supervised learning prediction and un-
supervised reconstruction of latent representations to re-
assign  probability  distribution.  C2AE  uses  class-condi-
tional  auto-encoders  to  obtain  decision  boundaries  from
reconstruction errors through EVT. DIAS generates vir-

tual  samples  of  varying  difficulty  using  a  GAN  model
and  Copycat.  ARPL+CS  further  introduces  adversarial
margin constraints  based  on  the  RPL  and  adds  an  in-
stantiated  adversarial  enhancement  method  to  generate
diverse and confusing training samples based on the ad-
versarial  mechanism  between  reciprocal  points  and
known classes.
 4. Comparison with state-of-the-art methods

The  experimental  results  on  the  ophthalmic  OCT
dataset are shown in Table 1. Due to the particularity of
the generative models ARPL+CS and DIAS, we used the
original  backbone  network  Classifier32ABN  [8]  in  these
two models  for  experiments,  and  the  FGM-SPCL  net-
work also used Classifier32 as the backbone network for
experiments.  Compared  with  DIAS,  our  model  (PCL+
FGM)  improves  Acc  by  3.1%  and  AUROC  by  5.68%
with only FGM added. It is proved that FGM’s method
of  generating  virtual  unknown  classes  is  simpler  and
more  effective.  Compared  with  ARPL+CS,  FGM-SPCL
also combines virtual class generation and clear decision
boundary, its Acc is increased by 5.01%, and AUROC is
increased by 11.93%, respectively, which shows the supe-
riority  of  the  FGM-SPCL  method.  For  the  prototype
classifier models PCL, GCPL, RPL, and SLCPL, and the
linear  classifier-based  MLS,  we  used  ResNet-34  as  the
backbone  architecture  and  pre-trained  on  the  ImageNet
dataset.  Compared  with  the  baseline  model  PCL,  the
effect of the FGM-SPCL model has been significantly im-
proved  after  the  introduction  of  FGM  and  SPCL,  and
two  key  indicators:  AUROC  increased  by  5.68%  and
OSCR  increased  by  7.54%.  Compared  with  MLS  and
GCPL, models RPL, SLCPL, and FGM-SPCL adopt cer-
tain strategies  to  further  improve  the  semantic  differ-
ence between known and unknown classes,  and the per-
formance of the models has been improved. It is proved
that  a  clear  decision  boundary  can  further  enhance  the
ability of OSR ability. Compared with RPL and SLCPL,
FGM-SPCL generates  virtual  unknown  samples  to  par-
ticipate  in  model  training  through  FGM.  This  method
 

Table 1  Experimental results on the ophthalmic OCT

Method Acc AUROC OSCR

F: Classifier32

ARPL+CS [8] 88.54 74.94 –

DIAS [6] 88.75 78.70 –

PCL+FGM 91.85 84.38 78.72

FGM-SPCL 93.55 86.87 82.11

F: ResNet34

PCL 92.70 82.07 75.90

MLS [28] 92.29 81.59 75.37

GCPL [20] 93.13 78.94 72.97

SLCPL [4] 92.71 82.67 77.71

RPL [22] 93.54 83.43 76.25

FGM-SPCL 93.75 87.75 83.44

FGM-SPCL: Open-Set Recognition Network for Medical Images Based on Fine-Grained Data Mixture and... 1029  



not  only  improves  the  intra-class  compactness  but  also
calibrates the decision boundary of known classes. At the
same  time,  SPCL  is  used  to  constrain  the  distribution
range  of  known  classes  and  virtual  unknown  classes,
which helps to maximize the decision boundary between
known classes and unknown classes.

The experimental results on the HyperKvasir dataset
are shown in Table 2. Experimental results show that the
FGM-SPCL model  achieves  state-of-the-art  or  compara-
ble  results  on the  HyperKvasir  dataset,  further  showing
that FGM-SPCL achieves better and more stable results
when dealing with real-world medical data problems.
 
 

Table 2  Experimental results on the HyperKvasir

Method Acc AUROC OSCR

PCL 98.73 81.12 79.83

MLS [28] 98.92 82.46 81.10

GCPL [20] 98.66 82.91 78.72

SLCPL [4] 98.98 83.53 82.12

RPL [22] 98.66 76.54 75.22

FGM-SPCL 98.92 88.09 87.44
 

PCL(x) PPCL(x)

The experimental results on the CIFAR10, CIFAR+
10,  and  CIFAR+50  are  shown  in Table  3. The  experi-
ments were conducted on the backbone network Classifi-
er32,  and  the  performance  of  all  baseline  models  was
evaluated using  the  AUROC metric.  During  the  experi-
ment, it was found that  and  had bet-
ter performance when the feature vectors and prototype
vectors were not normalized. Therefore, we only normal-
ized  the  feature  and  prototype  vectors  when  computing
the  AICL  loss.  The  experimental  results  on  the  three
datasets demonstrate that FGM-SPCL achieved the best
performance  compared  to  state-of-the-art  discriminative
models and generative models.
 
 

Table 3  Experimental  results  on  the  CIFAR10,  CIFAR+10,  and
CIFAR+50

Method CIFAR10 CIFAR+10 CIFAR+50

PCL 90.83 97.08 95.00

Softmax 67.7 81.6 80.5

G-OpenMax [9] 67.5 82.7 81.9

OSRCI [27] 69.9 83.8 82.7

CROSR [16] 88.3 91.2 90.5

C2AE [17] 89.5 95.5 93.7

RPL [22] 86.1 85.6 85.0

GCPL [20] 82.8 88.1 87.9

SLCPL [4] 86.1 91.6 88.8

ARPL+CS [8] 91.0 97.1 95.1

FGM-SPCL 92.73 97.57 96.01
 

 5. Ablation experiments
The  proposed  method  comprises  three  elements:

FGM, PPCL, and AICL. Here,  we perform ablation ex-
periments and  further  discuss  the  impact  of  each  ele-
ment. Table 4 shows the experimental results for the four
variants, Figure 3 shows the visualization results.
  
Table 4  Results of ablation experiments on ophthalmic OCT dataset

Method Acc AUROC OSCR

PCL 92.70 82.07 75.90

PCL+FGM 93.33 85.19 79.96

PCL+FGM+AICL 94.17 86.20 82.14

PCL+FGM+PPCL 93.75 86.52 82.11

FGM-SPCL 93.75 87.75 83.44
 

  

(a) PCL (b) PCL+FGM

(c) PCL+FGM+AICL (d) PCL+FGM+AICL+PPCL

Figure 3  FGM, PPCL, and AICL effect visualization.
 

The experimental results show that with the sequen-
tial  addition  of  the  three  elements,  the  comprehensive
performance  of  the  model  on  the  three  indicators  has
been continuously  improved,  which proves  the  effective-
ness of the three elements.  At the same time, combined
with the visualization results, it can be found that:

1) From the visualization results shown in Figures 3
(a) and (b),  it  can be seen that the FGM module helps
the  model  learn  a  more  compact  feature  representation
space,  which  is  more  conducive  to  the  improvement  of
the decision-making performance of  closed-set classifiers.
The number of samples in the open set distributed in the
region  of  known class  features  is  reduced  and is  further
compressed to a position that tends to the center of the
feature space. At the same time, the decision boundaries
between  known  classes  and  known  classes  and  between
known classes and unknown classes are calibrated. Com-
pared  with  PCL,  the  recognition  accuracy  (Acc)  of
known classes  is  improved  by  0.63%,  the  OSR  perfor-
mance AUROC is improved by 3.12%, and OSCR is im-
proved by 4.06%.

2)  As  can  be  seen  from  the  visualization  results
shown  in Figures  3(b)  and  (c),  after  adding  the  AICL
function, the known class features are more compact, and
the unknown classes are further pushed away, which en-
hances the OSR ability. Compared with PCL+FGM, the
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Acc of  known classes is  further improved by 0.84%, the
OSR  performance  AUROC  is  improved  by  1.01%,  and
the OSCR is improved by 2.18%.

3)  As  can  be  seen  from  the  visualization  results
shown  in Figures  3(c)  and  (d),  after  adding  the  PPCL
loss function, all known classes are distributed in the pe-
ripheral area  of  the  embedding  space.  The  virtual  un-
known data has a certain isolation effect between the re-
al  unknown  data  and  the  known  data  and  widens  the
distance between the known and unknown data. It makes
the decision boundary between the known class and the
unknown class more concise and clearer. Compared with
PCL+FGM+AICL, the OSR performance of AUROC is
improved by 1.55%, and the OSCR is improved by 1.30%.

Tables  5 and 6 present the  ablation experiment  re-
sults on the HyperKvasir dataset and CIFAR10 dataset,
achieving consistent performance with the OCT dataset.
The results indicate that with the sequential introduction
of the three components, the model’s comprehensive per-
formance on the three indicators continuously improves,
further  demonstrating  the  effectiveness  and  universality
of the three components.
  
Table 5  Results of ablation experiments on HyperKvasir dataset

Method Acc AUROC OSCR

PCL 98.73 81.12 79.83

PCL+FGM 98.86 83.17 82.16

PCL+FGM+AICL 98.92 85.84 85.21

PCL+FGM+PPCL 98.98 85.72 84.14

FGM-SPCL 98.92 88.09 87.44

 
 

Table 6  Results of ablation experiments on CIFAR10 dataset

Method Acc AUROC OSCR

PCL 95.39 90.83 87.99

PCL+FGM 95.73 91.73 88.94

PCL+FGM+PPCL 96.32 92.23 89.71

FGM-SPCL 96.74 92.73 90.43
 

 6. Effect of hyperparameters

α β α β

α β

α β

In order  to  make  a  trade-off  between  OSR  perfor-
mance  and  closed-set  accuracy,  we  tested  the  effect  of
different  and  on the experimental results.  and ,
respectively, control the regularity of the location distri-
bution of known classes and virtual classes in space. On
the  one  hand,  when  and  are  too  small,  the  model
cannot  gather  all  category  prototypes  to  the  peripheral
area of the feature space well. On the other hand, given
larger values of  and , the classification accuracy will
be affected due to excessively restricting the spatial loca-
tion. The results are shown in Table 7.

α βWith  the  increase  of  and ,  the  performance  of
AUROC and OSCR is getting better and better. The re-
sults  show that  by moderately  increasing  the  constraint
on the  prototype  position,  the  semantic  difference  be-

tween the known and unknown classes can be improved,
the decision boundary can be widened, and the OSR per-
formance  can  be  improved.  But  at  the  same  time,  the
Acc  decreased  slightly,  probably  because  the  control  of
the position of the prototype points will limit the learn-
ing of the semantic features of the known images, result-
ing in a downward trend in the accuracy rate.

 V. Conclusions
In  this  paper,  we  propose  an  open-set  recognition

network  for  medical  images  based  on  fine-grained  data
mixture and  spatial  position  constraint  loss,  which  im-
proves the robustness of the intelligent auxiliary diagno-
sis system for fine-grained image recognition tasks. First,
the  proposed  fine-grained  data  mixture  module  expands
the coverage of virtual unknown data identification diffi-
culty levels  and  calibrates  the  decision  boundary.  Sec-
ondly, the proposed spatial position constraint loss maxi-
mizes  the  distance  between  the  known  and  unknown
classes. A large number of experiments and analyses have
proved the effectiveness of this method.
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