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Abstract — Aiming at the low accuracy of existing binocular stereo matching and depth estimation methods, this
paper proposes a multi-scale binocular stereo matching network based on semantic association. A semantic associa-
tion  module  is  designed  to  construct  the  contextual  semantic  association  relationship  among  the  pixels  through
semantic  category and attention mechanism. The disparity of  those regions where the disparity is  easily  estimated
can be used to assist the disparity estimation of relatively difficult regions, so as to improve the accuracy of disparity
estimation of the whole image. Simultaneously, a multi-scale cost volume computation module is proposed. Unlike the
existing methods, which use a single cost volume, the proposed multi-scale cost volume computation module designs
multiple cost volumes for features of different scales. The semantic association feature and multi-scale cost volume are
aggregated, which fuses the high-level semantic information and the low-level local detailed information to enhance
the feature representation for accurate stereo matching. We demonstrate the effectiveness of the proposed solutions
on the KITTI2015 binocular stereo matching dataset, and our model achieves comparable or higher matching perfor-
mance, compared to other seven classic binocular stereo matching algorithms.
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I. Introduction
Depth estimation from RGB images has been stud-

ied  for  many  years,  and  stereo  matching  is  one  of  the
most widely used solutions [1]–[3] because it is closely re-
lated  to  the  human  binocular  vision  system.  Stereo
matching  of  binocular  images  mainly  provides  dense
matching  pairs  for  the  left-view  and  right-view  images,
and thus estimates the disparity of each pixel in the ref-
erence image according to the matching pairs. Then, the
disparity  map  can  be  converted  into  the  depth  map,
which is applied to many scenarios. It is of great signifi-
cance in the fields of autonomous driving, virtual reality,
3D model reconstruction, 3D object detection and recog-
nition, etc. [4], [5].

The existing  stereo  matching  algorithms  of  binocu-
lar  images  are  divided  into  traditional  methods  [6],  [7]
and deep learning methods [8]–[10]. In traditional meth-

ods,  stereo  matching  is  achieved  by  matching  manual
features in left-view and right-view images through glob-
al  cost  aggregation  [11],  [12]  or  local  cost  aggregation
[13], [14]. Although a lot of research has been done, tra-
ditional methods have poor matching results in ill-posed
regions, such as occlusion areas, repeated patterns, weak
texture regions, and reflective surfaces [15], [16]. In addi-
tion, the  processing  of  traditional  stereo  matching  algo-
rithms  is  complex.  Recently,  with  the  development  of
deep  convolution  neural  networks,  binocular  stereo
matching based  on  deep  learning  has  been  widely  stud-
ied, which yields significant gains compared to tradition-
al methods in accuracy and speed [17]–[20].

For ill-posed regions, solely applying the local pixel-
based consistency  constraints  in  support  window  be-
tween the matching pairs of different viewpoints is insuf-
ficient for accurate correspondence estimation, and some
researchers proposed  that  regional  support  from contex- 
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tual information must be incorporated into the consisten-
cy constraints of stereo matching to improve the accura-
cy  [17],  [21]. However,  the  matching  result  of  some  ex-
tremely difficult  regions,  such as textureless regions and
small  objects,  is  still  poor.  For  example, Figure  1(a)
shows the disparity estimation results using PsmNet [17],
which is a pyramid stereo matching network incorporat-
ing global contextual information into pixel-based image
features and extending the regional support of contextu-
al information in the computation of cost volume. Obvi-
ously,  PsmNet  can  estimate  the  disparity  of  vehicle  in
near-distance,  but  the  different  parts  of  the  vehicle  at
different distances from the camera have similar dispari-
ties. To make matters worse, it is not effective for small
vehicles at  a  far  distance,  which  poses  a  greater  chal-
lenge for  disparity  estimation.  The  disparity  of  the  re-
gion where the small object is located cannot be well dis-
tinguished from the disparity of background. In addition,
for the textureless region, such as the sky, PsmNet can-
not  handle  well  either,  and  the  estimated  disparity
boundary between the sky and the ground is not smooth,
as  shown  in  the  dotted  box.  Improving  the  accuracy  of
stereo matching for complex scenes is still a challenge.
 
 

(a) PsmNet [17] (b) Our method

Figure 1  Visual  comparison  of  disparity  estimation.  Compared  to
PsmNet, our  method obtains  better  estimation  results  (near  vehi-
cles) and identifies distant vehicles (three small vehicles in the far-
distance).
 

Aiming at the problem, this paper proposes a multi-
scale binocular stereo matching network based on seman-
tic association, and attempts to use the semantic associa-
tion between the  easy region and difficult  region to  im-
prove the  stereo  matching  accuracy  of  the  difficult  re-
gion. Based on the analysis of image characteristics and
existing  problems,  PsmNet,  as  an  end-to-end  learning
framework, is adopted as the basic network. Then, a se-
mantic  association  module  is  proposed,  which  uses  the
semantic segmentation result and combines the attention
mechanism  to  obtain  the  semantic  association  among
pixels. Thus, through semantic association, the disparity
of  those  regions  where  the  disparity  is  easily  estimated
can be used to assist the disparity estimation of relative-
ly  difficult  regions.  Simultaneously,  a  multi-scale  cost
volume computation  module  is  proposed,  which  con-
structs multiple cost volumes instead of a single cost vol-

ume to distinguish the contribution of different scale fea-
tures. Furthermore, the semantic association feature and
multi-scale  cost  volume  are  aggregated,  which  fuses  the
high-level  semantic  information  and  the  low-level  local
detailed information  to  enhance  the  feature  representa-
tion, and is beneficial to disparity estimation of different
scale  objects.  Finally,  the  effectiveness  of  the  proposed
method  is  illustrated.  For  example,  as  shown  in Figure
1(b), the proposed method can estimate the disparity of
foreground  pixels  better,  which  is  very  meaningful  for
subsequent 3D object detection tasks. In our disparity es-
timation results, not only the different parts of the vehi-
cle  in  near-distance  have  different  disparities,  but  also
the far-distance small vehicles can be distinguished from
the background. Although the boundary of disparity re-
sults  is  still  not  smooth  in  some  weak  texture  regions,
such as the junction area of sky and ground, its impact
on  subsequent  tasks  is  relatively  small.  More  generally,
acting on the KITTI2015 official evaluation set, the pro-
posed  method  has  significant  improvement  compared
with  other  state-of-the-art  (SOTA)  methods,  such  as
PsmNet [17] and SGNet [22]. 

II. Related Work
The  related  work  is  analyzed,  including  the  main

steps of  stereo matching,  context  and semantics  embed-
ding,  attention  mechanism,  and  multi-scale  features  for
cost volume construction. 

1. Main steps of stereo matching
A typical stereo matching algorithm consists of four

steps: matching cost computation,  cost aggregation,  dis-
parity computation, and disparity refinement [23].

Matching cost calculation  It is used to measure the
correlation between a pixel and other pixels. It is critical
to choose an appropriate cost calculation method for fea-
tures in multi-scale and multi-channel [24].

Cost  aggregation  It constructs  the  correlation  be-
tween adjacent pixels and achieves a global optimization
for  accurate  matching  cost.  Through  cost  aggregation,
such as the aggregation constraint that the disparities of
continuous pixels are also continuous, the matching cost
calculation  matrix  is  optimized,  so  that  the  cost  value
can  be  adjusted  according  to  other  adjacent  pixels,  and
a more accurate cost value can be obtained. Cost aggre-
gation can  integrate  the  disparity  of  other  pixels,  espe-
cially  suitable  for  regions  with  high  noise  and  weak
texture [25].

Disparity computation  It carries  out  disparity  cal-
culation usually based on the WTA (winner takes all) al-
gorithm. According to the cost matrices, the cost values
of  each pixel  under  all  possible  disparities  are  obtained,
and then the disparity corresponding to the smallest cost
is taken as the optimal result.

Disparity refinement  It is a post-processing step of
disparity  calculation,  aiming  to  improve  and  refine  the
disparity  results.  Filtering  operation  [26],  consistency
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constraint check [27], and outlier removal [28] are gener-
ally used to improve the accuracy of disparity estimation.

Although  the  above  processes  can  be  carried  out
step by  step,  and  each  module  can  be  trained  indepen-
dently of other ones, more attention has been paid to the
end-to-end framework, which integrates these operations
into a network, so as to allow an end-to-end training and
return the final disparity map. 

2. Context or semantics embedding
Considering  that  images  can  provide  rich  context

and semantics,  some  stereo  matching  methods  use  con-
text  or  semantics  to  improve  the  accuracy  of  stereo
matching. Typical algorithms that combine contextual or
semantic  information  to  refine  disparity  maps  include
PsmNet [17], GC-Net [29], NLCA-Net [21], Displets [30],
SegStereo [31], DispSegNet [32], SSPCV-Net [33], SGNet
[22], PGNet [34], and so on.

Among them, PsmNet [17] proposes spatial pyramid
pooling  (SPP)  and  stacked  hourglass  3D  convolutional
neural network  (CNN)  architecture.  The  pyramid  pool-
ing  structure  takes  advantage  of  the  capacity  of  global
information  by  aggregating  context  in  different  scales
and  locations  to  form  a  cost  volume,  and  the  3D  CNN
learns  to  regularize  cost  volume  using  stacked  multiple
hourglass networks in conjunction with intermediate su-
pervision.  GC-Net  [29] incorporates  contextual  informa-
tion using 3D convolutions over  the cost  volume,  and a
differentiable  soft  argmin  operation  regresses  disparity
values  from  the  cost  volume.  NLCA-Net  [21]  designs  a
non-local context attention module to exploit the global
contextual  information  for  regularizing  the  cost  volume,
and uses  a  variance-based method instead of  traditional
concatenate operation to build the cost volume. Further-
more, Displets [30] obtains 3D models of vehicles, which
are semantic  embedding,  to  resolve  matching  ambigui-
ties  in  reflective  and  textureless  regions.  SegStereo  [31]
aggregates the left segmentation feature map into a dis-
parity branch as semantic feature embedding, and warps
the  right  segmentation  feature  map  to  the  left  view  for
per-pixel semantic prediction with softmax [35] loss regu-
larization,  which  incorporates  semantic  information  to
improve the accuracy of disparity estimation. DispSegNet
[32]  utilizes  pyramid scene parsing (PSP) to obtain rich
semantic  information  for  auxiliary  segmentation  tasks,
and embeds PSP as contextual information into the dis-
parity  computation  module  to  improve  the  accuracy  of
stereo  matching.  SSPCV-Net  [33]  proposes  semantic
stereo  matching  with  pyramid  cost  volumes,  including
pyramid cost volumes for describing semantic and spatial
information on multiple levels. The semantic features are
inferred  by  a  semantic  segmentation  sub-network  while
the  spatial  features  are  derived  by  hierarchical  spatial
pooling. SGNet [22] considers that high-level semantic in-
formation can be helpful to handle accurate disparity es-
timation  in  low texture  and  illumination  changes  scene,
and  proposes  semantics  guided  deep  stereo  matching.

PGNet  [34]  proposes  a  panoptic  parsing  guided  deep
network,  which  provides  valuable  high-level  scene  clues,
including  semantic  and instance  segmentation,  to  tackle
these challenges, such as low texture, occlusion, or large
illumination  changes.  These  methods  embed  semantics
from the semantic features or geometric layouts.

These  above  networks  consider  the  effectiveness  of
contextual and semantic information for binocular stereo
matching, but the use of contextual semantic association
is not sufficient. Actually, semantic information is not in-
dependent,  and  there  is  a  semantic  association  among
pixels, which can assist in disparity estimation, especial-
ly  for  ill-posed  regions.  How  to  build  the  contextual
semantic  association  between  easy  regions  and  ill-posed
regions,  and  thus,  how  to  estimate  the  disparity  of  ill-
posed  regions  based  on  the  disparity  of  those  regions
where the disparity is  easily estimated, is  an interesting
problem. 

3. Attention mechanism
Another  study  for  stereo  matching  is  to  introduce

the  attention  mechanism  into  the  disparity  estimation
network, which can extract more valid features and im-
prove  the  accuracy  of  stereo  matching.  For  example,
MCANet  [36]  proposes  a  multi-scale  context  attention
network with  three  main  modules:  atrous  spatial  pyra-
mid pooling attention, richer convolutional features, and
attention mechanism. MRDA-Net [37] uses the 2D resid-
ual  dense  attention  network  for  feature  extraction  and
the  3D  convolutional  attention  network  for  matching.
ACAR-Net  [38] introduces  a  convolutional  block  atten-
tion  module  (CBAM)  [39] combining  spatial  and  chan-
nel  dimensions  into  the  binocular  disparity  estimation
network,  and uses  2D CBAM and 3D CBAM to obtain
features in  2D  feature  extraction  and  3D  cost  aggrega-
tion  processing,  respectively.  The  features  obtained
through the attention mechanism have a larger receptive
field  containing  rich  contextual  feature  associations.
NLCA-Net [21] introduces the 3D non-local attention [40]
in the 3D cost aggregation module to obtain the correla-
tion within the features, but the 3D attention is compu-
tationally intensive and time-consuming.

Generally, the existing methods directly use the at-
tention of  feature  layer  to  obtain  the  correlation of  fea-
tures,  and  do  not  take  into  account  the  combination  of
attention and semantic segmentation results to build se-
mantic associations among different semantic categories.
If the attention mechanism can be combined with seman-
tic segmentation,  it  will  provide  more  effective  informa-
tion for the calculation of cost volume, so as to improve
the matching accuracy. 

4. Multi-scale features for cost volume
construction

Due to the various distances and sizes of objects, the
existing  methods  often  use  multi-scale features  to  con-
struct the cost volume [41], [42]. Image features are com-
puted  by  deep  convolutional  networks,  which  build  a
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multi-scale,  different-spatial-resolution feature  represen-
tation hierarchy layer by layer.  Multi-scale  means using
different receptive fields to observe objects, and different-
spatial-resolution  means  using  multi-layer  feature  maps.
The  shallow  layer  high-resolution  maps  represent  low-
level  features,  and  the  deep  layer  low-resolution  maps
represent  high-level  features.  Due  to  the  high-resolution
of  shallow  features,  they  are  conducive  to  expressing
local  details.  From  the  shallow  layer  to  the  deep  layer,
the features are more abstract and more able to express
semantics.  For  those  pixels  with  large  disparity  or  in
near-distance, they tend to rely on high-level features to
provide more  semantics;  for  those  pixels  with small  dis-
parity or in far-distance, besides semantics, they tend to
rely  on  low-level  features  to  provide  more  local  details.
Therefore,  for  the  objects  with  different  scales  in  far  or
near  distance,  it  is  necessary  to  make  full  use  of  multi-
scale,  high-level,  and  low-level  features  to  provide  rich
semantic and detailed information.

The existing methods usually obtain the multi-scale
features from the backbone network, thus, fuse these fea-
tures  and  construct  one  cost  volume  for  matching  cost
computation  [43]. But  this  approach  has  obvious  disad-
vantages:  For  multi-scale  feature  fusion,  different  scale
features  are  upsampled  to  restore  to  the  original  size,
which leads to the loss of detailed features; for cost vol-
ume construction, the different scale features have differ-
ent contributions to disparity calculation of objects with
different  sizes,  and  the  features  of  different  scales  can
provide a variety of local details as well as semantic and
contextual  information  for  disparity  calculation.  Hence,
considering  multi-scale  feature  fusion,  CFNet  (cascade
fusion network) [44] introduces several cascaded stages to
learn  multi-scale  representations.  Through  inserting  the
feature  integration  operation  into  the  backbone,  a  large
proportion of the whole backbone can be utilized to fuse
the multi-scale features effectively. Considering cost vol-
ume construction,  reference  [45]  also  proposes  a  cascade
and  fused  cost  volume  (CFnet).  It  finds  that  different
scale  low-resolution  cost  volumes  can  cover  multi-scale
receptive  fields  and  are  complementary  to  each  other,
and  proposes  a  fused  cost  volume  representation  and  a
cascade  cost  volume  representation  for  stereo  matching.

Actually, only one cost volume based on the fused multi-
scale features cannot effectively distinguish the contribu-
tions of  different  scale  features.  Thus,  a  fused  or  a  cas-
cade cost  volume formulation [24]  should be considered.
Besides  fused  or  cascaded  multi-scale  features,  ACVNet
[46]  proposes  attention  concatenation  volume  (ACV),
which  generates  attention  weights  based  on  similarity
measures to filter concatenation volume. Thus, more fea-
tures are introduced for cost volume construction.

Inspired  by  CFNet  and  its  variants,  we  design  a
multi-scale cost  volume  computation  module  to  con-
struct multiple cost volumes, which cover multi-scale fea-
tures and distinguish the contributions of different scale
features.  More  importantly,  we  aggregate  the  semantic
association  feature  with  multi-scale cost  volume  to  en-
hance the feature representation and improve the expres-
siveness  of  the  cost  volume,  and  in  turn  improve  the
performance in ill-posed regions. 

III. Methodology
The existing binocular stereo matching methods still

have  notable  weaknesses  when  facing  ill-posed  regions
such  as  occlusion,  textureless  regions,  and  far-distance
small objects. This paper analyzes the image characteris-
tics  in  real  outdoor  scenes  and  introduces  the  semantic
association  module  to  construct  semantic  association
among  pixels.  Thus,  according  to  continuous  disparities
of  associated  regions,  this  paper  uses  the  disparity  of
those  regions  where  the  disparity  is  easily  estimated,
such as the ground, to assist the disparity estimation of
relatively difficult  regions,  such as small  vehicle  objects.
At  the  same  time,  considering  the  influence  of  different
scale features on binocular stereo matching, a multi-scale
cost volume computation module is designed, which con-
structs  multiple  cost  volumes  for  multi-scale  features,
and  the  features  of  different  scales  are  comprehensively
aggregated with semantic association feature. These fea-
tures  can  provide  richer  semantic  information  and  local
detail information,  thereby effectively  improving the ac-
curacy of the binocular stereo matching network. 

1. Network architecture
The  overall  structure  of  the  proposed  multi-scale
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Figure 2  The network architecture.
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IL
IR

Iseg

binocular stereo matching network based on semantic as-
sociation  is  shown  in Figure  2.  Similar  to  PsmNet  [17],
the  main  process  includes  three  steps:  matching  cost
computation, cost  aggregation,  and  disparity  computa-
tion. The input of the network is the left-view image ,
the right-view image , and the semantic segmentation
result  of the left-view image.

fseg Iseg

First,  CNN,  as  a  2D  feature  extraction  network,  is
used  to  extract  semantic  features  of ,  which  is
the segmentation result of  the left-view image. In CNN,
three  small  convolution  filters  (3  ×  3)  are  cascaded  to
construct a simple network with the same receptive field.
The output feature map size is (1/4) × (1/4) of the in-
put  image  size.  The  detailed  parameters  are  shown  in
Table 1.
  
Table 1  Parameters of the proposed CNN and backbone network

Name Layer setting Output dimension
IL – H ×W × 3

IR – H ×W × 3

Iseg – H ×W × 1

IsegCNN for 

conv0_1 3× 3, 32 1
2
H × 1

2
W × 32

conv0_2 3× 3, 32 1
2
H × 1

2
W × 32

conv0_3 3× 3, 32 1
4
H × 1

4
W × 32

Backbone

conv0_1 3× 3, 32 1
2
H × 1

2
W × 32

conv0_2 3× 3, 32 1
2
H × 1

2
W × 32

conv0_3 3× 3, 32 1
2
H × 1

2
W × 32

conv1_x
[
3× 3, 64
3× 3, 64

]
× 4 1

2
H × 1

2
W × 32

conv2_x
[
3× 3, 64
3× 3, 64

]
× 9 1

4
H × 1

4
W × 64

conv3_x
[
3× 3, 128
3× 3, 128

]
× 4 1

4
H × 1

4
W × 128

conv4_x
[
3× 3, 128
3× 3, 128

]
× 4, dila = 2

1
4
H × 1

4
W × 128

fpBackbone-Extract 

attconv 3× 3, 32 1
4
H × 1

4
W × 32

Note: The construction of residual blocks is designated in brackets with
the  number  of  stacked  blocks.  Down-sampling  is  performed  by
conv0_1 (backbone), conv2_x (backbone), conv0_1 (CNN), and
conv0_3  (CNN)  with  stride  of  2. H and W denote  the  height
and width of the input image, respectively.

 

IL IR

Moreover, another backbone network is used for fea-
ture  extraction  acting  on  and .  Here,  Resnet50,
Resnet101,  Vggnet,  Densenet,  or  U-net  can  be  used  as
the  backbone.  In  our  experiment,  Resnet50  is  adopted.
The parameters of the backbone network used in our ex-
periment are also shown in Table 1. The conv1_x, conv2_
x,  conv3_x,  and  conv4_x  are  the  basic  residual  blocks
for  learning  the  unary  feature  extraction.  For  conv4_x,

fl

fr

IL IR

dilated convolution  is  applied  to  further  enlarge  the  re-
ceptive  field.  Finally,  a  half  dilation  rate  (1,  2)  is  used,
like  PsmNet.  Thus,  the  multi-scale  2D  features,  and

,  containing  contextual  information  are  obtained.  In
addition,  and  share  the weights  in  the backbone
network.

fl fr

fl

fr

C

Second,  and  are  sent  to  the  multi-scale  cost
volume  computation  module,  which  is  proposed  in  this
paper. In this module, the multiple cost volumes are con-
structed  according  to  the  input  multi-scale  features  (
and ), and the output is the final multi-scale cost vol-
ume .

fseg fp

F
fp

fp

Meanwhile,  and  are fed into the proposed se-
mantic association module together to get the semantic-
association  feature .  Here,  the  low-level  image  feature

 is the result of applying an extra simple convolution
operation  on  the  output  of  the  backbone,  which  means
the input of the extra simple convolution is the result of
conv4_x. The parameters of extra convolution are shown
in Table 1 (Backbone-Extract ).

C
F

F C

Third,  the  subsequent  3D  CNN  module  performs
cost aggregation based on the multi-scale cost volume 
and the semantic-association feature  provided by the
multi-scale cost volume computation module and seman-
tic association module, respectively.  is imposed on 
as  weights,  which  enhances  the  feature  representations.
The 3D  CNN  module  includes  a  stacked  hourglass  en-
coder-decoder  structure,  and  this  structure  can  learn
richer  contextual  information  to  refine  the  cost  volume,
and thus,  the 3D CNN module  outputs  the refined cost
volume.

d
cd

cd
d̂

Finally,  for  disparity  computation,  all  the  possible
disparity values  for each pixel correspond to a dispari-
ty cost . After the processing of the softmax layer, the
disparity  cost  is  converted  into  a  probability  value.
The  final  disparity  prediction  value  for  each  pixel  is
calculated as follows:

 

d̂ =

Dmax∑
d=0

d× σ(−cd) (1)

d
cd

d Dmax

σ(·)

where  represents  a  specific  value  within  the  disparity
range,  is  the  corresponding  disparity  cost  when  the
disparity  value  is ,  and  denotes  the  maximum
value of disparity.  represents the softmax operation.
Therefore, the disparity map is regressed. 

2. Semantic association module
Most  existing  binocular  stereo  matching  algorithms

directly use channel attention or spatial attention at the
feature level to construct the correlation among features.
This  paper  proposes  a  semantic  association  module,
which combines semantic segmentation results with multi-
scale  features  and  adopts  a  self-attention  mechanism to
obtain  contextual  information  and  semantic  association
among pixels.  The  detailed  design  of  the  proposed  se-
mantic association module is shown in Figure 3.
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fseg

fp

fseg fp

fw

First,  the semantic feature  containing semantic
category is obtained from the semantic segmentation re-
sult, and it is used as the input of the semantic associa-
tion  module  together  with  the  low-level  feature  ob-
tained from the left-view image.  Then,  Hadamard prod-
uct operation is performed on  and  to get the se-
mantic weighted feature . The calculation formula is

 

fw = fseg ◦ fp (2)

fp

fseg

According  to  the  visualized  feature  map,  the  low-
level image feature  extracted from RGB image has a
strong positioning ability for details, while being relative-
ly cluttered. The semantic feature  is suitable for ob-
serving the outline of the objects, such as small vehicles,
while  being  weak  in  identifying  the  internal  features  of
the  object.  The  Hadamard  product  achieves  semantic
weighting for image features, which embeds high-level se-
mantics into shallow image features.

fw

Second, 2D self-attention is adopted to get the asso-
ciation among the features of . The calculation formu-
la is as follows:

 

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V (3)

Q = Wqfw K = Wkfw V = Wvfw dk
Wq Wk Wv

θ ϕ g
⊗ ⊕

where , , and .  rep-
resents  the  feature  dimension. , ,  and  repre-
sent different weight parameters, respectively. The above
calculation  can  be  carried  out  through  a  non-local net-
work [40]. The detailed network structure and tensor size
are shown in Figure 4. , , and  are three 1 × 1 con-
volutions. “ ” denotes  matrix  multiplication,  and “ ”
denotes element-wise sum.

fw fc

fc

Through the attention mechanism, an internal asso-
ciation  is  constructed  for  the  semantic  weighted  feature

,  and  a  temporary  semantic  association  feature  is
obtained.  Each  pixel  in  can  autonomously  fuse  the
features of other pixels that are beneficial to its dispari-
ty  estimation  according  to  the  surrounding  contextual
and semantic information.

fc

B × CN×H ×W B × CN×D ×H ×W B

Finally,  the  temporary  semantic  association  feature
 is  expanded  in  the  disparity  dimension  through  the

repeat  operation,  and  the  dimension  is  changed  from
 to . Here,  is

CN D
W H

F
C

the batch size,  is the number of channels, and  is
the  maximum disparity  value.  and  are  the  width
and height of the input image, respectively. In this way,
the dimension of the final semantic association feature 
is consistent with the dimension of the cost volume .

fw

fc

F

F

In  the  semantic  association  module,  the  semantic
weighted  feature  distinguishes the  different  cate-
gories of objects through semantic labels, and the seman-
tic  association  feature  establishes  the  association
relationship  between  objects  through  the  self-attention
mechanism. Finally, the obtained  combines the advan-
tages  of  high-level  semantic  features  and  low-level de-
tailed  features,  implying  explicit  semantic  association
and accurate location. Therefore,  is used to assist the
generation of refined cost volumes in the subsequent 3D
CNN cost aggregation module. 

3. Multi-scale cost volume computation module
The sizes of objects are varied, so it is necessary to

obtain multi-scale  features  and consider  the influence of
different scale features on disparity estimation, as well as
perform  multi-scale cost  volume  computation.  The  pro-
posed  multi-scale  cost  volume  computation  module  is
shown in Figure 5.

 

Hadamard

product
H

Semantic feature fseg

Low-level feature fp

Semantic weighted feature fw Semantic association feature fc

2D self

B×CN×H×W
Repeat

attention

B×CN×H×W B×CN×H×W Final semantic association feature F
B×CN×D×H×W

B×CN×H×W

Figure 3  Semantic association module.
 

(H×W/4)×16

Maxpool 2×2

32×H×W

θ: 1×1×1 ϕ: 1×1×1 g: 1×1×1

1×1×1

fw

fc

(H×W/4)×16

Maxpool 2×2

(H×W)×16

(H×W)×16

(H×W)×16

16×(H×W/4)

(H×W)×(H×W/4)

Divide by √dk
softmax

32×H×W

32×H×W

view 16×H×W

Figure 4  Non-local network.
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For  the  multi-scale  features  and  correspond-
ing  to  the  left-view  image  and  the  right-view  image

, they both have multiple scales. Typically, they have
three scales and can be denoted as  and .
The cost  volumes  are  constructed  separately  for  differ-
ent scale features. Through the cost volume construction,
three cost volumes , , and  containing different
scale  features  can  be  obtained.  In  order  to  fuse  these
multi-scale  features,  this  paper  uses  3D  convolutions  to
reduce  the  dimension  of  cost  volumes  and  then  carries
out concat operation along the channel dimension to ob-
tain  the  final  multi-scale  cost  volume , which  com-
bines the multi-scale features and has stronger represen-
tation ability. The calculation formula is

 

C(x, y,D,G) = Concat{Conv3d{Ci(x, y,D, gi)}},
i = 1, 2, 3 (4)

ithTake  the  cost  volume  as  an  example,  and  the

detailed  cost  volume  construction  process  is  shown  in
Figure 6.

First,  the  feature  similarity  is  calculated  in  groups
on all  possible  disparity values.  The calculation formula
is expressed as

 

Corri(x, y, d, gi) =
1

(Ncn/Ngi)
⟨f i

l (x, y),f
i
r(x− d, y)⟩ (5)

x y
d

gi
ith N cn

Ngi

⟨f i
l (x, y),f

i
r(x−d, y)⟩

where  and  represent the width and height of the fea-
ture, respectively,  represents a specific value within the
disparity range,  represents the number of groups when
constructing  the  cost  volume,  represents  the
number of feature channels, and  represents the num-
ber  of  channels  for  each  group  of  features.  In  addition,

 denotes the similarity computation.
H ×W ×D ×GSecond,  the  4D  cost  volume  of  is

obtained through concat  operation  in  different  disparity
dimensions, and the result is

 

Ci(x, y,D, gi)=Concat
{
Corri(x, y, 1, gi),Corri(x, y, 2, gi),

. . . ,Corri(x, y,D, gi)
}

(6)

D
D = 192
Here,  represents  the  maximum  disparity  value

and  in the experiment. 

IV. Experiments
This  part  shows  the  advantages  of  the  proposed

method  through  ablation  experiments  and  comparison
with other methods. 

1. Experimental setting
Datasets  The  KITTI  dataset  [47]  is  one  of  the

commonly  used  evaluation  datasets  for  computer  vision
algorithms in the field of autonomous driving. In particu-
lar,  KITTI2015,  a  binocular  stereo  matching  dataset,

 

Multi-scale

disparity cost

Concat

f il: Multi-scale features

of the left-view image

f ir: Multi-scale features

of the right-view image
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Figure 5  Multi-scale cost volume construction module.

 

Grouping
by channel

Grouping

f i
rf i

l

by channel

Calculate the feature
similarity on all possible
disparity values

Concats

Corri(x, y, 1, gi) Corri(x, y, 2, gi) Corri(x, y, D, gi)

Ci(x, y, D, gi)

Number of groups gi Number of groups gi

Figure 6  Multi-scale cost volume construction module.
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provides  a  total  of  400  pairs  of  binocular  images,  of
which  200  pairs  have  dense  disparity  map  annotation.
The  other  200  pairs  are  used  as  the  official  algorithm
evaluation and  their  annotation  information  is  not  dis-
closed. For the 200 pairs of binocular images with public
annotation  information,  there  are  two  common  ways  to
divide the training set and the verification set. One is the
division of PsmNet [17], with 160 as the training set and
40  as  the  verification  set;  the  other  is  the  division  of
GwcNet [19], with 180 as the training set and 20 as the
verification  set.  In  this  paper,  the  data  division  way  is
consistent with the comparison method.

Considering  insufficient  image  pairs  in  the  training
set of KITTI2015, this paper expands the training set by
using the KITTI3D object detection dataset, which pro-
vides  binocular  images  and  corresponding  laser  point
clouds.  We project  laser  point  clouds  onto  RGB images
to obtain sparse depth maps. In addition, the depth com-
pletion algorithm [48] is used to complete the depth, and
thus, a  dense  depth  map  is  obtained.  Furthermore,  ac-
cording to the camera parameters, the depth map can be
transformed  into  a  disparity  map,  which  is  regarded  as
the  ground  truth  of  disparity  estimation.  We  processed
3712 pairs  of  binocular  images  in  the  KITTI3D  object
detection  dataset  and  obtained 3712 disparity  maps.  A
typical generated depth map is shown in Figure 7.
 
 

(a) Original image

(c) Completed depth map

 (b) Sparse depth map

Figure 7  A depth map after depth completion.
 

In our experiment, the training set we used is differ-
ent from PsmNet’s. For our proposed network, these 3712
image pairs  in  KITTI3D were used for  the pre-training,
and  200  image  pairs  in  KITTI2015  were  used  for  fine-
tuning. For PsmNet, the model is pre-trained with Scene
Flow data and fine-tuned on the KITTI2015 training set.
The  reason  why  we  choose  KITTI3D  instead  of  Scene
Flow for pre-training is  that PsmNet is  mainly used for
disparity  estimation,  but  we  believe  that  the  ultimate
purpose of disparity estimation is for downstream tasks,
such  as  3D  object  detection,  especially  in  autonomous

driving. Hence, we focus on the autonomous driving sce-
nario, that is, we use the KITTI3D dataset for pre-train-
ing, hoping to obtain a disparity estimation model that is
more suitable for the autonomous driving scenario.

Evaluation  metrics  The  evaluation  index  adopts
the D1  index,  which  is  the  percentage  of  disparity  esti-
mation outliers in the total pixels. In detail, D1-all, D1-
fg,  D1-bg,  and  D1-car represent  the  proportion  of  out-
liers  in  all  pixels,  in  foreground  pixels,  in  background
pixels,  and in vehicle pixels,  respectively.  For a pixel,  if
the absolute error of disparity estimation is greater than
or equal to 3 pixels, or the relative error is greater than
or equal to 5%, the pixel is regarded as an outlier. In ad-
dition, if just counting the pixels in non-occluded region
as the total pixels, we can get “Noc” results. For the D1
index, the lower D1, the better matching results.

β1 = 0.9 β2 = 0.999

Training  settings  All  the  comparison  experiments
have  the  same  hyper-parameter  settings.  Adam  [49]  is
used  as  the  optimizer,  and  its  parameters  are  set  to

 and .  The batch size  of  the  training
is set to 12. First, 50 epochs are trained on the 3712 dis-
parity maps, which are generated based on KITTI3D ob-
ject detection dataset, and the learning rate is set to 0.001.
Then,  300 epochs are  fine-tuned on KITTI2015 training
set.  The  learning  rate  for  the  first  200  epochs  is  set  to
0.001, and the learning rate for the last 100 epochs is set
to 0.0001, that is, the learning rate decreases to 1/10 of
the original after 200 epochs. The input images are uni-
formly cropped to 256 × 256 pixels. 

2. Ablation study about pre-training dataset
Although we prefer to use KITTI3D for pre-training

and KITTI2015 training set for fine-tuning, for fair com-
parison,  we  also  pre-train  our  model  using  Scene  Flow
dataset, which is consistent with PsmNet.

In  detail,  we  pre-train  our  model  using  Scene  Flow
dataset for 10 epochs, and fine-tune using KITTI2015 for
300 epochs. This test uses all three datasets of Scene Flow
(FlyingThings  3D,  Driving,  Monkaa).  Since  our  method
requires a semantic segmentation result, the pre-training
uses  the  segmentation  result  provided  by  Mmsegmen-
tation  (OcrNet_hr48_512×1024_160k_cityscapes).  All
other training parameters are consistent with PsmNet’s.

Finally,  the  stereo  matching  results  of  KITTI2015
are submitted to the official  website,  and the results  on
the  official  KITTI2015  evaluation  set  are  compared  to
PsmNet, which are shown in Table 2.

Obviously,  even  though  our  method  uses  the  same
pre-training dataset as PsmNet, it can also get better ac-
curacy  than  PsmNet,  indicating  the  effectiveness  of  the
proposed  method.  Meanwhile,  our  method  based  on
“KITTI3D  pre-train+KITTI2015  fine-tune” can  achieve
better  performance  than  our  method  based  on “Scene
Flow  pre-train+KITTI2015  fine-tune”,  which  means
KITTI3D  is  more  effective  for  pre-training.  Therefore,
the  following  ablation  experiment  and  comparison  with
other  methods  are  conducted  based  on “pre-trained  on
KITTI3D and fine-tunned on KITTI2015”. 
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3. Ablation study about the semantic  association
and multi-scale cost volume computation

The  proposed  semantic  association  module  as  well
as  the  multi-scale  cost  volume computation  module  can
adapt  to  many  existing  networks.  Typically,  this  paper
conducts ablation experiments on PsmNet [17] and Gwc-
Net  [19] respectively,  and  obtains  the  experimental  re-
sults  on  the  KITTI2015  validation  set,  as  illustrated  in
Table 3.

 
 

Table 3  Ablation study on KITTI2015 validation set

Experimental model D1-car (%)↓ D1-all (%)↓

PsmNet [17] paper results – 1.83

PsmNet reproduction results 2.484 1.851

PsmNet+semantic association 2.182 1.754

PsmNet+multi-scale computation 1.984 1.653

PsmNet+semantic association+multi-scale computation 1.842 1.607

GwcNet [19] paper results – 1.41

GwcNet reproduction results 1.413 1.373

GwcNet+semantic association 1.222 1.229

GwcNet+multi-scale computation 1.183 1.174

GwcNet+semantic association+multi-scale computation 1.156 1.158

Note: Except for “PsmNet [17] paper results” and “GwcNet [19] paper results”, which use the training dataset mentioned in the corresponding pa-
per, the other methods are pre-trained on KITTI3D and fine-tunned on KITTI2015.

 

It can  be  seen  that  the  proposed  semantic  associa-
tion module improves the overall accuracy by 0.10% based
on PsmNet,  and the accuracy on the foreground vehicle
is  improved  by  0.30%;  similarly,  based  on  GwcNet,  the
overall  improvement  is  0.14%,  and  the  accuracy  on  the
foreground vehicle is improved by 0.19%. Obviously, the
semantic association module is applicable to various net-
works,  which  can  improve  the  overall  performance  of
image matching,  especially  for  the accurate  matching of
foreground objects.

The  proposed  multi-scale  cost  volume  computation
module,  whether  it  acts  on  PsmNet  or  GwcNet,  has  an
improvement in the overall  or foreground vehicle pixels.
Based  on  PsmNet,  the  overall  improvement  is  0.20%,
and that on the foreground vehicle is improved by 0.50%;
similarity,  the overall  improvement based on GwcNet is
0.20%,  and  that  on  the  foreground  vehicle  is  0.23%.
Although  PsmNet  uses  SPP  to  obtain  multi-scale fea-
tures,  the features are then upsampled to restore to the
original size via bilinear interpolation, which leads to the
loss of detailed features. In addition, the feature maps of
different scales  are  concatenated  as  the  final  SPP  fea-
ture  maps;  therefore,  SPP  uses  the  final  SPP  feature
maps to construct one cost volume. This process simply
aggregates  the  features  of  different  scales  and  does  not
realize that the different scale features have different-level
contributions to disparity estimation.

Finally, this  paper  also  conducts  a  comparative  ex-
periment  on  the  superposition  of  semantic  association

and multi-scale cost volume computation. The experimen-
tal  results  show  that  the  overall  improvement  is  0.24%
based on PsmNet, 0.64% on the foreground object vehi-
cle,  0.22%  on  the  basis  of  GwcNet,  and  0.26%  on  the
foreground object vehicle.

Thus,  the  two  modules  are  universal  and  can  be
adapted to different networks, such as PsmNet and Gwc-
Net. More importantly, the two modules proposed in this
paper are effective for binocular disparity estimation, es-
pecially on foreground vehicles, which are very beneficial
for subsequent 3D object detection.

fw fc

fp

fp fc

fp

fw fp

f seg fp

Furthermore,  in  order  to  fully  illustrate  the  role  of
the proposed semantic association module, we directly re-
place  and  in the semantic association module with

. The results are shown in Table 4. The low-level im-
age  feature  is  relatively  cluttered,  and  if  is re-
placed with , the contextual association cannot be ef-
fectively utilized; if  is replaced with , although 2D
self-attention can improve the contextual association, the
lack of high-level semantics also affects feature represen-
tation. Comparatively speaking, combining semantic fea-
ture  with  low-level  feature ,  and  introducing  2D
self-attention mechanisms to obtain semantic association
feature can achieve the best results. The experimental re-
sults in Table 4 also prove this point. 

4. Comparison with other methods
The comparison methods include PsmNet [17], Gwc-

Net  [19],  NLCA-Net  [21],  SGNet  [22],  SegStereo  [31],

 

Table 2  Ablation study about pre-training dataset

Method
All (%)↓ Noc (%)↓

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

PsmNet1 1.86 4.62 2.32 1.71 4.31 2.14

Ours*2 1.74 4.31 2.17 1.59 3.80 1.96

Ours3 1.55 3.55 1.88 1.42 3.28 1.73

Note: 1 PsmNet [17] (CVPR 2018).
　　  2 Ours*: Scene Flow pre-train+KITTI2015 fine-tune.
　　  3 Ours: KITTI3D pre-train+KITTI2015 fine-tune.
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SSPCV-Net [33], and PGNet [34]. They are classic binoc-
ular  stereo  matching  algorithms.  PsmNet  [17]  is  a  basic
network architecture similar to ours, and many methods
adopt this architecture. GwcNet [19] is also a version of

PsmNet  with  a  similar  architecture.  NLCA-Net  [21]
adopts  the  self-attention  mechanism.  SegStereo  [31],
SSPCV-Net [33], SGNet [22], and PGNet [34] embed se-
mantic  constraints  in  the  stereo  matching  process.  In
some  respects,  these  self-attention mechanisms  and  se-
mantic  constraints  are  similar  to  those  of  our  method.
Therefore,  the  comparison  with  these  methods  is  very
convincing.

Table  5 shows  the  performance  of  the  proposed
method on the official  KITTI2015 evaluation set,  which
is compared with other  SOTA methods,  including accu-
racy and inference time.

 
 

Table 5  Comparison results on the official KITTI2015 evaluation set

Method
All (%)↓ Noc (%)↓

Runtime1 Environment
D1-bg D1-fg D1-all D1-bg D1-fg D1-all

PsmNet [17] (CVPR 2018) 1.86 4.62 2.32 1.71 4.31 2.14 0.41 s Nvidia GTX Titan Xp

GwcNet [19] (CVPR 2019) 1.74 3.93 2.11 1.61 3.49 1.92 0.32 s GPU @ 2.0 GHz (Python + C/C++)

SegStereo [31] (ECCV 2018) 1.88 4.07 2.25 1.76 3.70 2.08 0.6 s Nvidia GTX Titan Xp

SSPCV-Net [33] (ICCV 2019) 1.75 3.89 2.11 1.61 3.40 1.91 0.9 s 1 core @ 2.5 GHz (Python)

NLCA-Net [21] (APSIPA 2020) 1.53 4.09 1.96 1.39 3.80 1.79 0.6 s 1 core @ 2.5 GHz (C/C++)

SGNet [22] (ACCV 2020) 1.63 3.76 1.99 1.46 3.40 1.78 0.6 s 1 core @ 2.5 GHz (Python + C/C++)

PGNet [34] (Neurocomputing 2021) 1.64 3.60 1.96 1.43 3.21 1.72 0.7 s 1 core @ 2.5 GHz (Python)

Ours 1.55 3.55 1.88 1.42 3.28 1.73 0.23 s NVIDIA RTX 3090 (PyTorch)

Note: 1Runtime: the inference time for a test image on a single card with batch size = 1.
 

It can be seen that the proposed method has signifi-
cant  improvement  in  foreground  and  overall  indicators,
effectively  improving  the  accuracy  of  binocular  stereo
matching and disparity estimation. The semantic associa-
tion  module  and  the  multi-scale cost  volume  computa-
tion module fully combine the semantics  and the multi-
scale features to obtain a more powerful feature represen-
tation,  which  is  conducive  to  disparity  estimation.  Es-
pecially  for  the  foreground  objects,  such  as  far-distance
vehicles, the  assistance  of  the  ground  semantic  associa-
tion and the cost volume computation at different scales
make  these  ill-posed  regions  easier  to  estimate  their
disparities.

However,  we  also  note  that  our  method  is  slightly
inferior to NLCA-Net on the D1-bg index. The reason is
that our stereo matching mainly focuses on the semantic
association  and  visual  attention  regions,  which  may  be
inclined to foreground; NLCA-Net mainly focuses on the
global disparity estimation, so it performs slightly better
on  the  D1-bg  index.  In  addition,  our  method  is  also
slightly  inferior  to  PGNet  on  D1-fg  and  D1-all Noc  in-
dex.  PGNet is  a  panoptic  parsing guided deep network,
and  three  novel  modules  are  designed  to  embed  the
panoptic guidance. On the one hand, it uses the semantic
categories,  instance layout,  extra boundary,  and smooth
constraints  from  semantic  and  instance  ground  truth,
thus, more information is conducive to the improvement
of accuracy; on the other hand, PGNet uses Scene Flow
to pre-train for 15 epochs and uses KITTI2015+KITTI2012

to finetune for 500 epochs. After that, PGNet fine-tunes
on  KITTI2015  dataset  again  for  another  200  epochs
when submitting to the benchmarks. PGNet needs more
training epochs.  Actually,  in  these  comparison methods,
SGNet  adopted  700  epochs  for  fine-tuning,  and  NLCA-
Net  even  adopted  900  epochs  for  fine-tuning. Compara-
tively, our method and PsmNet are the methods that use
the least epochs in the training phase.

When  we  adopt “Scene  Flow  pre-train+KITTI2015
fine-tune”,  and  the  parameters  are  consistent  with  the
parameters  of  PsmNet,  the  training process  takes  about
13.77  hours  on  Scene  Flow  dataset  (using  3  RTX-
3090GPUs with batch size equal to 12 for 10 epochs) and
2.52 hours on KITTI2015 (using 3 RTX-3090 GPUs with
batch size equal to 12 for 300 epochs). It takes 0.23 s to
infer  one  KITTI2015  testing  image.  When  we  adopt
“KITTI3D  pre-train+KITTI2015  fine-tune”, the  train-
ing process takes about 11.4 hours on KITTI3D (using 4
RTX-3090 GPUs  with  batch  size  equal  to  12  for  50
epochs) and 3.7 hours on KITTI2015 (using 4 RTX-3090
GPUs with batchsize equal to 12 for 300 epochs). It also
takes 0.23 s to infer one KITTI2015 testing image. Com-
pared  with  other  methods,  the  inference  time  of  our
method is also the least.

Figure 8 shows some disparity estimation results ob-
tained by using PsmNet and our method.  It  can be ob-
served that for the foreground vehicles, PsmNet can esti-
mate the disparities of the near-distance vehicle objects,
but  the  disparity  estimation  results  of  the  far-distance

 

Table 4  Ablation study for semantic association

Method
All (%)↓ Noc (%)↓

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

fc fpOurs* (replace  with ) 1.78 4.48 2.23 1.64 4.04 2.04

fw fpOurs* (replace  with ) 1.75 4.23 2.17 1.63 3.66 1.97

Ours 1.55 3.55 1.88 1.42 3.28 1.73
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vehicle  objects  are  not  good;  our  method  can  estimate
the disparities of far-distant vehicle objects better, simul-
taneously,  the  edge  estimation  results  of  the  near-dis-
tance vehicles are more accurate. For background pixels,

such as the trees, our results are also more accurate than
PsmNet’s  results.  Actually,  PsmNet  cannot  distinguish
the  trees  from  the  sky,  but  our  method  can  produce  a
more obvious boundary between the trees and the sky.

 
 

(f) Image2: Our result

(a) Image1: Original image (b) Image2: Original image

(e) Image1: Our result

(c) Image1: PsmNet’s [17] result (d) Image2: PsmNet’s [17] result

Figure 8  Visual comparison of disparity estimation results.
 

Similar to the results  of  PsmNet,  the results  of  our
method are also not good in some weak texture regions,
such as the junction area of sky and ground. So, improv-
ing the  performance  on  weak  texture  regions  is  our  fu-
ture work. 

V. Conclusion
In this paper, the original binocular stereo matching

network PsmNet  is  improved,  and  a  semantic  associa-
tion  module  and a  multi-scale  cost  volume computation
module  are  proposed.  The  semantic  association  module
introduces  semantic  category  and  attention  mechanism
to construct the contextual semantic association relation-
ship among the pixels; the multi-scale cost volume com-
putation module calculates  the multiple  cost  volumes of
features at different scales to fuse high-level semantic in-
formation and low-level local detailed information, which
enhances the expressiveness of features and improves the
accuracy of disparity estimation. Experimental results on
KITTI2015 demonstrate  our  method  achieves  compara-
ble or higher matching performance. 
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