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Abstract — Adversarial examples (AEs) are an additive amalgamation of clean examples and artificially malicious
perturbations. Attackers often leverage random noise and multiple random restarts to initialize perturbation starting
points, thereby increasing the diversity of AEs. Given the non-convex nature of the loss function, employing random-
ness to augment the attack’s success rate may lead to considerable computational overhead. To overcome this challenge,
we introduce the one-hot mean square error loss to guide the initialization. This loss is combined with the strongest
first-order attack, the projected gradient descent, alongside a dynamic attack step size adjustment strategy to form a
comprehensive attack process. Through experimental validation, we demonstrate that our method outperforms base-
line attacks in constrained attack budget scenarios and regular experimental settings. This establishes it as a reliable
measure for assessing the robustness of deep learning models. We explore the broader application of this initialization
strategy in enhancing the defense impact of few-shot classification models. We aspire to provide valuable insights for
the community in designing attack and defense mechanisms.
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I. Introduction
Deep  neural  networks  (DNNs)  have  caused  para-

digm  shifts  and  revolutionized  the  way  we  approach
computer tasks.  However,  due  to  the  insufficient  under-
standing of deep learning mechanisms, DNNs are subject
to  several  hidden  security  risks  in  practice,  the  most
well-known of which is the adversarial attack during the
inference  phase.  Attackers  can  mislead  a  classifier  by
adding specific numerical vectors to the input. To enhan-
ce  model  robustness,  several  defense  methods,  including
image preprocessing [1] and adversarial training (AT) [2],
have  been  proposed.  Adversarial  attacks  and  defenses
complement  each  other,  and  powerful  attack  methods
can help identify shortcomings in existing model designs
and defense  algorithms.  AT,  which  uses  adversarial  ex-
amples (AEs) for data augmentation to train models, re-
mains the most effective defense method.

To break through increasingly diverse, sophisticated,

and effective defense strategies, several white-box adver-
sarial  attacks  strive  to  diversify  perturbation  directions.
An essential  design for  improving attack performance  is
the use of multiple random restarts. By doing this, AEs
are generated from different initial points each time, re-
peating the entire attack process several times. However,
this exploration of the input space comes with a compu-
tational overhead. Moreover, Tashiro et al. [3] claim that
random  initial  perturbations  may  not  actively  influence
the output space  after  forward propagation through the
neural  network,  thus  not  altering  model  predictions  for
attack purposes. In contrast, output diversified initializa-
tion  (ODI)  in  [3]  applies  random restarts  to  the  output
space  and  uses  the  information  in  the  output  space  to
guide the generation of  initial  points  at  each restart  for
better  attack  results.  However,  according  to  subsequent
comparison  experiments,  random  noise  causes  relatively
few changes  in  the  predicted  values.  Therefore,  we  be-
lieve  that  random noise  in  the  output  space  is  also  not 
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the best tactic as a starting point for exploration.
We believe there is still room for optimization in the

design  of  the  initialization  process,  given  that  random
sampling  in  the  initialization  stage  is  sub-optimal.  On
the one hand, there is a lack of loss functions that direct-
ly guide the initialization optimization process, and stand-
ard loss functions (e.g., cross-entropy (CE) loss) perform
poorly in the initialization process. Sriramanan et al.  [4]
claim  that  the  initial  gradient  direction  that  maximizes
CE loss  may not  provide  a  valid  reference  for  the  opti-
mal solution. Ma et al. [5] assert that imbalanced gradi-
ents  accompany  the  use  of  the  margin  loss  early  in  the
attack and push the attack towards a suboptimal direc-
tion.  Moreover,  reference [6] states  poor surrogate selec-
tion leads to potentially weak projected gradient descent
(PGD) performance, and switching between different ob-
jectives helps the algorithm expand its search space. On
the  other  hand,  there  is  still  a  research  gap  in  finding
suitable attack  classes  in  the  initialization  phase,  mak-
ing it challenging to avoid attack failures and consuming
a large number of computational resources.

Based  on  these  two  points,  this  paper  proposes  a
one-hot mean square error (MSE) loss  for  the initializa-
tion  phase,  allowing  for  better  consideration  of  each
class’s attack potential.  To validate the improvement of
the novel  objective  on the attack effectiveness,  we com-
bine  it  with  PGD  sequentially,  resulting  in  a  double-
stage attack (DSA).  We have also adopted a cosine an-
nealing  strategy  to  adjust  the  step  size  throughout  the
attack process, including the initialization phase, to miti-
gate  the  oscillation  of  perturbations  near  the  solution
due  to  excessive  step  size.  Extensive  experiments  and
analysis regarding the proposed attack scheme have been
conducted, and we hope our study can draw researchers’
attention  to  initialization  and  serve  as  a  reference  for
evaluating  model  robustness  and  enhancing  AT’s defen-
sive effectiveness.

The rest  of  the  paper  is  organized  as  follows.  Sec-
tion  II  discusses  the  adversarial  attack  mechanism  and
reviews  recent  developments  in  attacks  and  defenses.
Section III describes the motivation behind our proposed
attack  and  its  specific  implementation.  Section  IV
presents experimental results and analysis. Section V dis-
cusses this study’s implications. 

II. Preliminaries and Related Work
 

1. Attack principle
f(·)

x y x y
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We consider a multi-classifier  and an input im-
age  with its ground-truth label . Here,  and label 
belong to the sets  and , respectively, where 
denotes  the  number  of  channel  dimensions  and  indi-
cates the total number of classes. The classifier’s predic-
tion can be expressed as , where 

signifies  the  non-normalized prediction vectors  produced
by the classifier,  and the subscript  corresponds to the
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predicted  value  for  each  class.  Adversarial  regions  are
typically  defined  as  a  high-dimensional  space 

 centered on the image , where
the  perturbation  threshold  is  under  the  constraints  of

 norm (for instance, , , and ). Untargeted attacks
aim to generate a perturbed example  that confuses
the classifier, thereby producing a probability vector not
aligned  with  the  original  label .  Conversely,
targeted attacks strive to alter the prediction to a specif-
ic class , where .

L L(z(xadv), y)
f
(
xadv

)
̸= y

L(z(xadv), y)

Adversarial  perturbations  are  artificially  imposed
noise by the attacker to achieve the goal of reducing the
test accuracy of classifiers. To successfully launch an un-
targeted attack, the attacker should construct a suitable
loss  function  such that the loss  value  is
large enough when  to generate the perturba-
tion.  The  better  feasible  solution  of  the  perturbation  is
found by maximizing the loss value  through
gradient  ascent  while  satisfying  the  constraint  on  the
perturbation  size.  The  PGD-based attack,  the  most  fre-
quently  used  method  for  evaluating  robustness,  can  be
described as follows:

 

xadvk+1 = ΠBϵ(x)(x
adv
k + αk · sign(∇xL(z(xadvk ), y))) (1)

αk xadvk

k
Bϵ(x)(·)

Here,  and  represent  the  optimization  step
size and the corresponding generated AEs in the th it-
eration,  respectively.  is the operation that con-
fines  the perturbation to the adversarial  region.  Typical
loss functions in adversarial attacks often include CE loss
and maximum marginal (MM) loss. 

2. White-box attacks
Following  the  discovery  of  DNNs’ vulnerability  to

AEs,  researchers  have  devised  various  white-box  attack
methods.  Fast  gradient  sign  method  (FGSM)  [7]  uses
one-step gradient ascent with CE loss, and iterative fast
gradient sign method (I-FGSM) [8] is its multi-step vari-
ant. PGD [2] adds random noise in initial starting points.
Carlini et  al. [9]  propose  an  optimization-based  attack
approach,  C&W, while  introducing  MM loss  to  produce
better attacks. Fast adaptive boundary (FAB) attack [10]
utilizes geometric  motivation  to  find  minimal  perturba-
tions.  Guided  adversarial  margin  attack  (GAMA)  [4]
guides stronger attacks by function mapping of clean im-
ages.  This  paper  posits  that  the  discrepancy  between
model classification outputs and labels can be harnessed
as prior knowledge to guide subsequent attacks. AutoPGD
[11]  adaptively  schedules  the  step  size  according  to  the
optimization progress and proposes scaling invariant dif-
ference of logits ratio (DLR) loss. Furthermore, Croce et
al. [11]  fuse  AutoPGD,  FAB,  and  black-box square  at-
tacks  [12]  to  form  a  parameter-free  integrated  attack,
AutoAttack. While Tashiro et al. [3] are the first to focus
on the role of output information and propose ODI. Ma
et  al.  [5]  propose  margin  decomposition  (MD)  attack,
which dynamically adjusts the loss function with the at-
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A3
tack process. Recently, Liu et al. [13] introduce adaptive
auto  attack  ( ),  a  new  state-of-the-art  attack  semble
that uses an adaptive initialization strategy (ADI). ADI
uses ODI to obtain initialization points, generates pertur-
bation components of the label and random target classes
with symbolic priors, and samples the remaining compo-
nents from a uniform distribution. Many prior works have
introduced  the  concept  of  multiple  random  restarts  in
their attack mechanisms. In this study, we select seven of
these  attack  methods  for  subsequent  experiments.  The
integrated  attack  AutoAttack  falls  outside  the  scope  of
comparison due to its inclusion of black-box methods. 

3. Adversarial defense
AT  currently  stands  as  the  most  effective  defense

strategy for enhancing model robustness, achieved by in-
corporating AEs in the training process. Zhang et al. [14]
propose  a  feature  scattering-based  AT  method  called
FeaScatter. AdvInterp [15] employs an adversarial inter-
polation scheme to produce AEs along with their respec-
tive  adversarial  labels.  Robust  self-training  (RST)  [16]
utilizes  unlabeled  data  to  expand  the  self-training pro-
cess. A notable work in this field, TRADES, devised by
Zhang et al. [17], partitions the robustness error into two
components,  natural  error  and  boundary  error,  thereby
balancing  the  prediction  accuracy  of  clean  images  and
the model’s robustness. This paper refers to the method
of  using  pre-training  to  enhance  robustness  in  [18]  as
PreAT,  which  will  be  used  for  subsequent  comparisons.
To  encourage  robust  generalization,  adversarial  weight
perturbation  (AWP)  [19]  introduces  a  double-perturba-
tion mechanism in AT. Rice et al. [20] demonstrate that
early  stopping  is  the  most  effective  strategy  to  address
robust overfitting, and we refer to AT process as ESAT
in  this  paper.  A  method  combining  data  augmentation
and model weight averaging is proposed by Rebuff et al.
[21],  which  we  call  FAT.  Gowal et  al.  [22] focus  on  en-
hancing the original training set using generative models
to reduce robustness accuracy gaps,  referred to as GAT
for ease of reference. Addepalli et al.  [23] explore means
of  defense  beyond  perceptual  limitations  and  propose
oracle-aligned  adversarial  training  (OAAT).  Salman et
al.  [24]  focus  on  the  adversarial  robustness  of  ImageNet

and examine  its  integration  with  transfer  learning,  re-
ferred  to  as  TAT.  Wong et  al.  [25]  find  that  AT  with
FGSM  results  in  good  defensive  results,  which  we  call
FGAT.  Several  works,  including  [26]–[28], have  investi-
gated the significant impact of AEs on DNN-based few-
shot  classification  models  and  have  combined  AT  with
meta-learning in few-shot scenarios. We will discuss and
evaluate  the  above  AT-based models  under  various  at-
tacks including our approach in Section IV. 

III. Proposed Method
 

1. Motivation

x
U(−ϵ, ϵ)

zmax

zother
zother

zmax
zmax

In the standard untargeted PGD attack process, the
naive  PGD  combines  the  original  example  and ran-
dom noise from the uniform distribution  as the
perturbation’s  starting  point.  We  observe  an  intriguing
phenomenon while implementing this process on various
datasets  and  models.  As  depicted  in Figure  1, we  com-
pute the proportion of  target classes  for  successful  AEs.
The  class  with  maximal  logits  is  not  dominant  in
the successful adversarial images. A significant number of
images have the target classes as the original  class-
es. Even the weight from  classes exceeds that from
the  class on PreAT. That is, although optimizing in
the  direction  of  the  class  increases  the  chances  of
obtaining an AE, the other classes can still guide the at-
tack process to a certain degree. Thus, we think it is nec-
essary  to  consider  the  contribution  of  the  remaining
classes.  Moreover, the perturbation’s effectiveness in the
input space might lessen with the forward propagation of
DNN. Tashiro et al.  [3] propose introducing randomness
in the  output  space  to  evade  the  negative  effect  of  for-
ward  propagation  on  the  perturbation.  ODI  uses  a
method  where  the  random  vector  is  multiplied  by  the
model output to determine the initial loss. However, this
approach has two drawbacks.  Firstly,  it  does not differ-
entiate between the attack potential  of  different classes.
The  model  output  reflects  the  attack  difficulty  of  each
class to some extent, and the use of randomized vectors
confuses this information. Secondly, it is unclear whether
the random noise introduced is beneficial for adversarial
attacks.  Random noise may be imposed on the logits  of
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Figure 1  Statistical results of classes on the adversarial examples.
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the  right  classes,  which  could  encourage  the  model  to
classify images  correctly.  In  contrast,  we  want  to  back-
propagate  the  relative  relationships  between  logits  of
other classes besides the label class through the loss func-
tion. We hope this  guide will  enable  the subsequent at-
tack  to  find  feasible  directions  as  soon  as  possible  and
thus converge faster.

Developing an  initialization  method  with  perturba-
tion diversity  is  crucial  for  both  evaluating  existing  de-
fenses and constructing AEs during AT. Faster converg-
ing  untargeted  attacks  can  refine  AT’s  AE  generation
strategy,  which  is  particularly  beneficial  for  single-step
defenses as  they  rely  more  heavily  on  the  initial  direc-
tion than multi-step methods. 

2. Loss function
The surrogate losses optimized in existing white-box

attacks  are  not  ideally  suited  for  direct  use  during  the
initialization phase. For instance, the MM loss is defined
as follows:

 

L =

∣∣∣∣maxi ̸=y
(zi(x

adv))− zy(x
adv)

∣∣∣∣ (2)

y

zi

where  denotes the ground-truth label. As evident from
(2),  the MM loss  optimizes  solely  for  the class  with the
largest prediction vector , neglecting other classes.

According to  the  analysis  in  the  preceding  subsec-
tion, incorporating the contributions of other classes dur-
ing the initialization phase is crucial for designing attack
algorithms  that  converge  faster.  By  acknowledging  the
potential  of  each  class,  we  can  pinpoint  more  effective
initial  points  and  directions.  To  address  this  need,  we
propose the one-hot MSE loss, which resembles the MSE:

 

L =
1

C

C∑
i=1

(softmax(zi(xadv))− one_hot(y))2 (3)

softmax(·)
one_hot(·)
C

softmax(zi(xadv)) one_hot(y)

Here,  normalizes  the  model  output,
 represents the one-hot form of the label, and

 stands  for  the  total  number  of  classes.  The  equation
computes  the  mean  distance  between  each  class  output
of  the  DNN and  the  ground-truth label  vector.  We  be-
lieve  the  one-hot  MSE  loss  solves  two  shortcomings  of
ODI.  Firstly,  the  discrepancy  between  the  normalized
prediction  vector  and  re-
tains the relative relationship between the initial logits of
each  class.  Secondly,  it  compels  the  initial  optimization
to veer  away  from  the  label  class.  This  idea  of  distin-
guishing label classes from other classes aligns with ADI.
While  our  initialization  method  emphasizes  maintaining
the size relationship between logits, ADI generates multi-
plicative vectors based on prior knowledge.

The effectiveness of the MM loss has been proven in
the  C&W  attack,  which  reveals  the  false  robustness  of
the  defensive  distillation.  We  designate  it  as  the  loss
function for the subsequent iterative process. 

3. Double-stage attack
In this paper, we introduce a double-stage variant of

PGD to check the enhancement of the designed one-hot
MSE loss on the attack effect. This involves merging the
one-hot MSE loss-guided initialization process with PGD.
The iterative process of the subsequent PGD is based on
the perturbations accrued in the initial phase. Simultane-
ously, we employ cosine annealing as a step size adjust-
ment strategy to avoid oscillations between locally opti-
mal  solutions.  The  complete  attack  process  is  described
in Algorithm 1.

Algorithm 1  Double-stage attack
x y f(·)
α T
Tinit R

Input: clean image  with label , classifier , initial val-
ue of step size , total number of iterative steps , ini-
tialization steps , and restarts ;

xadvOutput: adversarial example ;
R ∈ {1, 2, ..., n} 1: for  do
xadv0 ← x+ δrandom 2:　　 ;

t← 0 to T − 1 3:　　for  do
αt ← consine_annealing(α) 4:　　　　 ;
t ≤ Tinit 5:　　　　if  then

L =
1

C

C∑
i=1

(softmax(zi(x
adv
t ))− one_hot(y))2 6:　　　　　　 ;

 7:　　　　else

L = |max
i ̸=y

(zi(x
adv
t ))− zy(x

adv
t )| 8:　　　　　　 ;

 9:　　　　end if
xadvt+1 = ΠBϵ(x)(x

adv
t + αt · sign(∇xL(z(xadvt ), y)))10:　　　　 ;

f(xadvt+1) ̸= y11:　　　　if  then
xadvt+112:　　　　return ;

13:　　　　end if
14:　　　end for
15:　end for

xadvT16: return .
 

IV. Evaluation Results and Analysis
 

1. Setup

1− RA

α

α
ϵ

T

Our collection of robust models is derived from vari-
ous recent studies [16]–[25]. The weights of these models
can  be  found  in  the  open-source  RobustBench  [29].  We
assess the performance of  various baseline white-box at-
tacks on CIFAR-10, CIFAR-100, and ImageNet datasets.
In the subsequent discussion, we interchangeably use ro-
bust  accuracy  (RA)  and  attack  success  rate  (equivalent
to )  to  measure  the  potency  of  each  attack.
APGD, GAMA, MD, and FAB are executed using their
official codes  with  relevant  parameter  settings  main-
tained. Unless specified, the initial value of step size  is
set at  the  standard  value  of  2/255  for  attacks  that  re-
quire manual adjustment of the step size, such as PGD,
ODI-PGD, and our proposed attack. For our attack, we
use the cosine annealing strategy to modify  during the
attack. We set the perturbation threshold  at 8/255 for
CIFAR-10 and CIFAR-100, 4/255 for Imagenet, and the
total number of iterative steps  to 100. 
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2. Validation of one-hot MSE loss effectiveness

zmax

zmax
zy

Tinit
α

We  undertake  two  experiments:  1)  We  count  the
number of test images that present changes in their 
values on five adversarially trained models. 2) We select
alternative loss functions for the initialization phase and
compare  their  attack  performance  and  computational
overhead. For  this  purpose,  the  loss  functions  are  re-
placed  by  CE  and  the  two  components  of  MM  loss,
which are the maximal softmax value of  the model  pre-
diction  and the softmax value corresponding to the
label . For both experiments, the number of initializa-
tion steps  is fixed at 8, the initial value of step size

 is set to 8/255, and we use the CIFAR-10 dataset.

zmax

Figure 2 shows the classification prediction changes
after  initialization  using  one-hot  MSE  loss  and  random
noise,  with  more  significant  changes  signifying  a  higher
likelihood of successful attacks. The one-hot MSE initial-
ization  triggers  more  alterations  for  both  the  non-
robust  models  (FeaScatter  [14]  and AdvInterp [15])  and
the robust models (AWP [19], FAT [21], and GAT [22]).
This visual validation experiment demonstrates the qual-
itative improvement of the perturbation starting point of
one-hot MSE loss compared to random noise.

In the  comparison experiments  where  the  initializa-
tion loss  function is  altered,  one back propagation (BP)
corresponds to a single forward propagation. Consequent-

ly, the computational overhead, represented as Cost, can
be  measured  by  the  number  of  BPs.  RA  signifies  the
model’s  classification  accuracy  when  confronted  with
AEs. A lower RA indicates a more potent attack, where-
as a lower Cost suggests that the algorithm is more effi-
cient  in  finding AEs and consumes fewer  computational
resources. As seen from Table 1, the differences in the at-
tack success rates of these four loss functions are minor,
implying comparable  initialization  effects.  However,  re-
garding  computational  overhead,  one-hot MSE  can  sig-
nificantly reduce the number of BPs. In general, the ini-
tial  points  generated  by  the  one-hot  MSE  loss  exhibit
greater  attack  potential.  Hence,  it  is  logical  to  consider
the contribution of other classes.

 
 

Table 1  Results of different initial loss functions

Models
CE zmax −zy One-hot MSE

RA (%) Cost RA (%) Cost RA (%) Cost RA (%) Cost

FAT 56.83 773450 56.78 1038985 56.79 849810 56.77 605203

GAT 58.97 789090 58.76 1083835 58.75 912715 58.80 622272

RST 59.81 806800 59.72 1109020 59.70 873500 59.70 633302

AWP 56.26 765745 56.19 1059685 56.18 825775 56.25 600091

TRADES 52.77 720205 52.63 1053360 52.65 802660 52.77 567478
 
 

3. Attack performance comparison under limited
computational budget constraints

A restart  is  one  of  the  most  demanding  settings  in
terms of computational budget. To validate the feasibility
of our proposed attack method (DSA), we focus on veri-
fying  its  superior  performance  under  a  random  restart.
We  select  multiple  defense  models  for  three  datasets  to
demonstrate that the results are not accidental. For clar-
ity, we have abbreviated PGD and APGD to P and AP,
respectively.

Table 2 presents the results of untargeted attacks on
CIFAR-10  and  CIFAR-100, where  we  restrict  the  num-
ber  of  restarts  to  demonstrate  the  effectiveness  of  the
DSA method.  In  most  cases,  our  approach  achieves  the
highest  attack  success  rate  compared  to  other  baseline
attacks.  Notably,  DSA surpasses  ODI-PGD by an addi-
tional  0.93%–2.16%  on  CIFAR-10  and  0.94%–2.22%  on
CIFAR-100.  This  demonstrates  that using one-hot MSE
to guide the generation of initial points is superior to the

A3 A3

random noise initialization strategy in the output space.
Moreover, DSA achieves better attack performance with
only one restart compared to the existing state-of-the-art
method .  uses ODI  early  in  the  attack  and  in-
evitably  suffers  from  its  drawbacks.  Consistent  results
are also seen on the ImageNet dataset in Table 3.

l∞

In  the  meantime,  we  evaluate  the  time  required  to
conduct the attack and the perturbation size. Figures 3–5
show that our method generates medium-amplitude per-
turbations  with  less  time  overhead.  Regarding  the 
norm,  the  attack  methods  perform  similarly,  except  for
FAB, which is particularly dominant. However, the small
perturbation of FAB comes at the cost of enormous time
consumption. Specifically, for larger datasets such as Im-
ageNet, the time overhead of FAB is an order of magni-
tude greater than that of other attacks. Therefore, FAB
is not included in the ImageNet experiments.

In Figures 6–8, the original samples are shown in the
first  row,  while  the  second  row  depicts  the  adversarial
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T = 100 R = 1Table 2  Adversarial robustness in  and  setting on CIFAR-10 and CIFAR-100

Dataset Models
RA (%)

PCE PMM PDLR APCE APDLR FAB GAMA MD ODI-PGD A3 DSA

CIFAR-10

FAT [21] 59.64 57.27 57.26 59.57 57.29 57.37 56.88 56.86 57.70 57.48 56.77

GAT [22] 61.06 60.46 60.86 60.84 60.84 59.57 58.98 59.10 60.96 60.71 58.80

RST [16] 62.06 60.63 60.90 61.83 60.91 62.04 59.80 59.79 61.00 61.42 59.70

AWP [19] 58.84 56.75 56.82 58.80 56.90 56.83 56.32 56.29 57.49 57.24 56.25

TRADES [17] 54.88 53.58 53.72 54.67 53.67 53.50 52.78 52.86 54.12 53.94 52.77

CIFAR-100

FAT [21] 31.89 29.25 29.29 31.78 29.17 28.99 28.72 28.62 29.63 29.27 28.69

AWP [19] 33.54 30.98 31.44 33.27 31.31 29.32 29.36 29.32 31.53 31.16 29.31

PreAT [18] 33.76 30.77 32.08 32.95 32.07 29.02 29.15 28.98 30.95 31.06 28.96

ESAT [20] 20.73 20.28 20.51 20.60 20.43 20.21 19.26 19.42 20.96 20.58 19.25

OAAT [23] 32.94 27.93 28.06 32.84 28.01 27.93 27.53 27.54 28.57 28.36 27.52

 

T = 100 R = 1Table 3  Model robustness in  and  setting on ImageNet

Models
RA (%)

PCE PMM PDLR APCE APDLR GAMA MD ODI-PGD A3 DSA
RLAT [30] 31.90 31.41 32.00 31.11 31.11 27.62 28.22 31.31 37.68 27.62
FGAT [25] 25.72 24.03 25.22 25.12 24.33 22.13 23.33 25.02 37.66 21.93

TAT_R18 [24] 28.51 24.93 25.02 27.82 24.83 23.63 23.63 25.62 27.40 23.73
TAT_R50 [24] 37.79 34.60 35.00 36.69 34.90 32.50 32.50 35.00 37.68 32.50
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Figure 3  Time cost and perturbation on CIFAR-100.
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samples. It is difficult for humans to distinguish the ad-
versarial  samples  from  the  original  samples,  indicating
that the perturbations generated by our method are well
hidden. 

4. Ablation  study:  understanding  the  impact  of
individual components on overall performance

In  this  section,  we  dissect  two  key  components  of
our  proposed  method:  1)  the  cosine  annealing  strategy
and 2) one-hot MSE.

Cosine  annealing  strategy  Tables  4 and 5 reveal
that applying  the  cosine  annealing  strategy,  which  ad-
justs the  attack  step  size,  decreases  the  adversarial  ro-
bustness. This emphasizes the cosine annealing strategy’s

vital role in implementing highly effective attacks.
One-hot  MSE  loss  To  ascertain  the  value  of  the

one-hot  MSE  loss-guided  initialization  phase  in  white-
box attacks, we evaluate two variants: one with and the
other  without  one-hot MSE  loss.  The  outcomes,  as  de-
picted in Tables 4 and 5, demonstrate that applying one-
hot  MSE  loss  in  isolation  can  significantly  reduce  RA.
Hence, this component is paramount for the success of an
attack.

In conclusion, integrating both components leads to
the lowest  RA  for  the  model.  This  highlights  the  sub-
stantial contribution each component provides to the ef-
ficacy of the attack. 

5. Parameter  analysis:  exploring  the  impact  of
restarts on the attack

We delve  further  into  the  sensitivity  of  various  at-
tacks concerning the number of restarts. The results are
illustrated in Figures 9–11. Overall, our proposed method
delivers the most potent attacks. The detailed analysis is
as follows:

R = 11) When , our method tends to yield the low-
est  initial  RA.  Compared  to  ODI-PGD,  which  relies
heavily  on  multiple  random  restarts,  DSA  shows  rapid
convergence  as  the  number  of  restarts  escalates.  This
suggests  that  DSA  can  effectively  search  for  AE  under
given  attack  conditions  (evaluation  model,  perturbation
upper limit, and iteration count).

2)  Intriguingly,  the  performance  of  several  attacks
with  relatively  high success  rates,  such as  GAMA, MD,
and DSA, does not markedly improve with the addition
of  restarts.  This  indicates  that  these  attacks  will  likely
find feasible  AEs  under  specific  parameter  configura-
tions during the initial or first few restarts. Among these
attacks, DSA consistently  maintains  the  highest  or  sec-

 

Figure 6  Perturbation scale’s visualization results on CIFAR-100.
 

Figure 7  Perturbation scale’s visualization results on ImageNet.
 

Figure 8  Perturbation scale’s visualization results on CIFAR-10.

 

Table 4  Ablation experiments on CIFAR-10 and CIFAR-100

CIFAR-10

One-hot MSE Cosine annealing FAT [21] GAT [22] RST [16] AWP [19] TRADES [23]

57.38 60.54 60.90 57.02 53.72

√ 57.31 60.51 60.67 56.84 53.58

√ 56.89 58.84 59.96 56.39 52.90

√ √ 56.77 58.80 59.70 56.25 52.77

CIFAR-100

One-hot MSE Cosine annealing FAT [21] AWP [19] PreAT [18] ESAT [20] OAAT [23]

29.23 31.04 30.90 20.44 28.12

√ 29.22 30.93 30.82 20.29 27.94

√ 28.80 29.38 29.27 19.37 27.65

√ √ 28.69 29.31 28.96 19.25 27.52

 

Table 5  Ablation experiments on ImageNet

One-hot MSE Cosine annealing FGAT [25] RLAT [30] TAT_R18 [24] TAT_R50 [24]

24.83 31.41 25.22 34.70

√ 24.03 30.81 24.83 34.60

√ 22.83 28.02 23.83 32.70

√ √ 21.93 27.62 23.73 32.50
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ond-highest  success  rate,  highlighting the feasibility  and
superiority of the DSA algorithm.

A3

A3

3) In contrast to the adaptive , our method em-
ploys  a  straightforward  iteration  strategy  with  lesser
complexity,  treating  all  images  equally  in  each  restart.
Hence, if  the  number  of  restarts  is  considered  a  con-
straint,  DSA  outperforms  at  a  minimal  number  of
restarts. This occurs because  adaptively modifies the
iteration  assignment  and  direction  using  loss  function
values, which is an attack strategy that requires time for
accumulation. Instead, we utilize loss information to cali-
brate the initial  direction of perturbation, yielding more
prompt results.  However,  when the  attack progresses  to

R = 6 A3,  occasionally  outperforms,  attributable  to  the
initial  random  noise  in  multiple  restarts  and  the  online
statistics-based discarding strategy (OSD). 

6. Extended application of one-hot MSE loss

Tinit = 1

H = 2×SA×RA
SA+RA

Here,  we  aim  to  integrate  one-hot MSE  initializa-
tion into the AT process.  Meta-learning models for few-
shot scenarios belong to models that necessitate superior
generalization. For the current defense strategy, we only
tweak the  loss  function  of  the  adversarial  meta-learning
inner process. We set the initialization step  and
maintain  the  rest  of  the  settings.  The  three  adversarial
meta-learning algorithms’ default number of attack itera-
tions  is  1.  The  model’s robustness  is  evaluated  compre-
hensively  using  the  harmonic  mean  accuracy  (i.e.,

). Table 6 respectively presents the adver-
sarial  robustness  of  the  MiniImagenet  and  CIFAR-FS
datasets. The model combined with one-hot MSE initial-
ization  consistently  achieves  higher  robustness  accuracy
than  merely  increasing  the  number  of  iterations  or
adding ODI. This suggests that this initialization, which
amplifies  the adversarial  strength of  examples,  enhances
the model’s defensive performance. 

V. Discussion
In this  paper,  we  dissect  the  shortcomings  of  exist-
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Figure 9  Results  corresponding  to  different  numbers  of  restarts  on
CIFAR-100.
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Table 6  Standard accuracy (SA), robust accuracy (RA), and harmonic mean accuracy (H) on MiniImagenet and CIFAR-FS

Methods

MiniImagenet CIFAR-FS

1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way

SA (%) RA (%) H (%) SA (%) RA (%) H (%) SA (%) RA (%) H (%) SA (%) RA (%) H (%)

ADML [26] 31.96 24.38 27.66 55.13 36.33 43.80 39.45 26.44 31.66 57.20 31.57 40.69

2 step 31.54 25.00 27.89 54.80 37.00 44.17 39.04 26.86 31.82 55.86 32.52 41.11

+ ODI 31.00 24.41 27.31 57.20 35.30 43.66 41.16 24.74 30.90 58.00 29.76 39.34

+ one-hot MSE 33.47 25.80 29.14 55.37 37.38 44.63 39.38 26.95 32.00 56.25 33.03 41.62

AQ [27] 28.15 23.85 25.82 49.17 38.20 43.00 31.03 26.27 28.45 49.95 35.55 41.54

2 step 27.86 24.02 25.80 49.54 38.35 43.23 31.50 26.05 28.52 50.10 35.94 41.85

+ ODI 28.54 24.33 26.27 50.70 38.55 43.80 34.03 25.59 29.21 51.56 34.28 41.18

+ one-hot MSE 28.52 24.85 26.56 49.66 39.18 43.80 32.50 27.03 29.51 50.90 36.43 42.47

R-MAML [28] 37.87 23.41 28.93 56.20 34.57 42.81 42.38 22.33 29.25 57.57 31.05 40.34

2 step 36.62 23.68 28.76 56.20 36.90 44.55 40.50 23.58 29.81 55.60 32.08 40.69

+ ODI 40.65 20.69 27.42 57.70 33.03 42.01 41.36 20.15 27.10 57.67 28.66 38.29

+ one-hot MSE 38.77 24.05 39.18 56.70 37.23 44.95 41.14 23.96 30.28 55.90 32.90 41.42
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ing  white-box attacks  and  propose  a  unique  loss  func-
tion for the initialization stage.  Building on this,  we in-
troduce the double-stage attack (DSA), an efficient gen-
erator of adversarial examples in a single-restart setting.
Our experimental  outcomes  on  various  datasets  demon-
strate  that  the  DSA  approach  surpasses  various  other
white-box attack methods in terms of success rate. Fur-
thermore, the DSA method is straightforward, offering a
pragmatic  solution  to  evaluate  adversarial  robustness.
We have  made  preliminary  attempts  to  incorporate  our
attack  into  the  adversarial  training  process,  aiming,  in
the future,  to  expose  potential  vulnerabilities  in  the  de-
fense  algorithm  and  to  guide  the  development  of  more
robust  defense strategies  by generating a wider  array of
stealthier adversarial examples using DSA. 
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