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Abstract — Existing  deep  learning-based  steganography  detection  methods  utilize  convolution  to  automatically
capture and learn steganographic features, yielding higher detection efficiency compared to manually designed stegano-
graphy detection methods. Detection methods based on convolutional neural network frameworks can extract global
features by increasing the network’s depth and width. These frameworks are not highly sensitive to global features
and can lead to  significant  resource  consumption.  This  manuscript  proposes  a  lightweight  steganography detection
method based on multiple residual structures and Transformer (ResFormer). A multi-residuals block based on channel
rearrangement is designed in the preprocessing layer. Multiple residuals are used to enrich the residual features and
channel shuffle is used to enhance the feature representation capability. A lightweight convolutional and Transformer
feature extraction backbone is constructed, which reduces the computational and parameter complexity of the net-
work  by  employing  depth-wise  separable  convolutions.  This  backbone  integrates  local  and  global  image  features
through the fusion of convolutional layers and Transformer, enhancing the network’s ability to learn global features
and effectively  enriching  feature  diversity.  An effective  weighted loss  function  is  introduced for  learning  both local
and global features, BiasLoss loss function is used to give full play to the role of feature diversity in classification, and
cross-entropy loss function and contrast loss function are organically combined to enhance the expression ability of
features. Based on BossBase-1.01, BOWS2 and ALASKA#2, extensive experiments are conducted on the stego images
generated by spatial and JPEG domain adaptive steganographic algorithms, employing both classical and state-of-the-
art  steganalysis  techniques.  The experimental  results  demonstrate  that  compared to  the  SRM, SRNet,  SiaStegNet,
CSANet,  LWENet,  and SiaIRNet  methods,  the  proposed ResFormer  method achieves  the  highest  reduction in  the
parameter, up to 91.82%. It achieves the highest improvement in detection accuracy, up to 5.10%. Compared to the
SRNet and EWNet methods, the proposed ResFormer method achieves an improvement in detection accuracy for the
J-UNIWARD algorithm by 5.78% and 6.24%, respectively.
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I. Introduction
With the development of Internet technology, there

has been an explosive growth of multimedia data such as
images and audio. People can express and transmit infor-
mation  through  digital  multimedia.  Steganography,
which utilizes the redundancy in multimedia data to hide

secret information, has become an important means and
method for secure covert communication [1], [2]. The de-
velopment of steganographic algorithms, especially adap-
tive steganographic algorithms, has further enhanced the
security of covert communication. However, the applica-
tion of steganography also provides the potential for se- 
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cret  information  transmission  by  malicious  actors.  As  a
countermeasure to  steganography,  steganalysis  can  de-
tect  whether  a  carrier  contains  hidden  information.
Therefore,  conducting  research  on  steganalysis  methods
for detecting  and  uncovering  illicit  steganographic  com-
munication behaviors  is  of  great  significance  for  safe-
guarding social and national security.

Steganalysis methods distinguish between cover and
stego images by statistically analyzing the differences be-
tween their  features.  Steganalysis  methods have evolved
from  specialized  detection  techniques  targeting  known
steganographic  algorithms  [3],  [4] to  more  general  ap-
proaches for  detecting  unknown  steganographic  algo-
rithms [5], [6], resulting in improved applicability and de-
tection  performance.  However,  with  the  development  of
adaptive  steganographic  algorithms,  the  aforementioned
detection  algorithms  may  struggle  to  effectively  analyze
feature  differences  in  complex  textured  regions,  making
detection more  challenging.  To  address  this,  some  re-
searchers  have  focused  on  enhancing  feature  diversity
and  leveraging  machine  learning  techniques  to  analyze
the differences between features, leading to the proposal
of high-dimensional and rich-model steganalysis methods.
One of the most representative methods in this category
is  the  high-dimensional spatial  rich  model  (SRM)  pro-
posed  by  Fridrich et  al.  in  2011  [7].  Subsequently,  the
same  team  proposed  a  series  of  high-dimensional  steg-
analysis techniques [8], [9]. In 2016, Tang et al.  [10] im-
proved upon the rich model approach and introduced the
adaptive  spatial  rich  model  (adaptive  SRM)  detection
method. The high-dimensional rich model methods effec-
tively enhance  the  detection  rate  of  adaptive  stegano-
graphic algorithms, but they come with high feature di-
mensions and significant resource consumption.  In 2019,
Ma et al. [11] addressed this issue by using rough sets to
eliminate  redundant  features  among  high-dimensional
features. This  approach  significantly  reduces  computa-
tional resources while maintaining detection effectiveness.
Through optimization and dimension reduction, the effi-
ciency and performance of  high-dimensional  steganalysis
methods  have  been  improved.  However,  existing  high-
dimensional  steganalysis  methods  are  based  on  feature
extraction and  machine  learning  (classification)  ap-
proaches.  The  limited  effective  steganographic  features
learned  through  these  methods  hinder  the  improvement
of detection accuracy.

Steganalysis is generally regarded as a binary classi-
fication  problem.  The  powerful  automatic  learning  and
classification capabilities of deep learning networks have
yielded many  notable  research  achievements  in  address-
ing  both  binary  and  multi-class  classification  problems
[12]–[14]. Several researchers have integrated deep learn-
ing  techniques  into  steganalysis  methods  to  address  the
limitations of  existing  approaches.  Here,  we  will  intro-
duce  existing  deep  learning-based  steganalysis  methods
in chronological order. In 2015, Qian et al. [15] enhanced
the  non-linearity  of  features  by  using  high-pass  filtering

and  increased  the  depth  of  the  convolutional  layers  to
improve network  expressiveness.  Their  detection  perfor-
mance  was  comparable  to  the  high-dimensional  SRM
method. In 2016, Xu et al. [16] used high-pass filtering in
the preprocessing  layer  to  obtain  steganographic  fea-
tures and  utilized  the  ABS  (absolute)  activation  func-
tion  to  capture  the  symmetry  of  residual  features.  This
combined  approach  effectively  captured  steganographic
features  and  achieved  detection  performance  similar  to
the high-dimensional SRM method. In the next year, Xu
[17]  designed  a  20-layer  fully  convolutional  network  by
incorporating residual  structures  based  on  the  founda-
tion of [16]. This network improved the detection perfor-
mance  for  the  J-UNIWARD  steganographic  algorithm.
Also  in  2017,  Chen et  al.  [18]  proposed  a  steganalysis
network based  on  JPEG  phase  information.  Their  pre-
processing  utilized  four  different  high-pass  filters  and  a
JPEG  phase-aware  module,  enhancing  the  network’s
ability to  extract  frequency  domain  steganographic  fea-
tures  and  effectively  improving  detection  accuracy  for
frequency domain images. In the same year, Ye et al. [19]
enhanced steganographic signals using SRM (spatial rich
model) high-pass filtering and designed a new activation
function to remove the impact of outliers on feature cal-
culations, achieving good detection performance. In 2018,
YedroudjNet [20] combined convolution and multiple ac-
tivation functions  to  further  enhance  the  detection  per-
formance. Also in the same year,  Tsang et al.  [21] com-
bined  high-pass filtering,  truncation  functions,  and  fea-
ture  statistical  moments  to  propose  a  steganalysis
method  suitable  for  multi-scale  images,  achieving  good
detection performance on a small multi-scale dataset. In
2019, Boroumand et al. [22] applied residual structures to
steganalysis  methods,  designing  multiple  residual  blocks
and proposing  a  SRNet  method  suitable  for  spatial  and
JPEG domains.  This  method significantly  improved the
detection performance  in  both  spatial  and  JPEG  do-
mains and became a milestone research achievement.  In
the  next  year,  Zhang et  al.  [23]  utilized  different-sized
convolutional operations to preprocess images, combined
with  residual  structures  to  enhance  the  capture  of  re-
sidual features, achieving good detection performance. In
2021,  You et  al.  [24]  combined  the  siamese  framework
with  residual  structures  and  proposed  the  SiaStegNet
method, which enhanced the capture of residual features
and  improved  the  detection  performance  for  large-scale
multi-scale images. In the same year, Su et al. [25] com-
bined residual structures with deconvolution to develop a
fully  convolutional  method  suitable  for  multi-scale fre-
quency domain  images,  effectively  improving  the  detec-
tion performance. In 2022, Liu et al. [26] introduced the
CSANet method, which utilized channel attention mech-
anisms, pyramid  pooling,  and  residual  blocks  to  con-
struct  an  efficient  steganalysis  method,  achieving  good
detection accuracy. Also in the same year, Weng et al. [27]
proposed the  LWENet  method,  which  reduced  the  pa-
rameter count  and  computational  complexity  while  en-
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suring detection accuracy by using bottleneck structures
and depth-wise separable networks. In 2023, Li et al. [28]
further  enhanced  the  detection  performance  for  large-
scale multi-scale datasets by combining inverted residual
structures  with  depth-wise separable  convolution  to  en-
rich residual features.

The  above-mentioned  method  utilizes  convolutions
to extract residual  features and increases the depth and
width  of  the  network  to  capture  global  features.  How-
ever, the captured global  features are limited,  which re-
stricts the improvement of detection performance. More-
over, increasing the depth and width of the network also
leads to significant computational resource consumption.
Inspired by the design of deep learning-based steganalysis
networks, some  current  classification  schemes  have  pro-
posed effective methods for domain classification [29]–[32].
Therefore,  this  paper  designs  a  multi-residual  structure
and proposes a Transformer structure capable of extract-
ing both local and global features. It constructs a spatial
and  JPEG  domain  image  steganalysis  framework  based
on the  combination  of  residual  and  Transformer  struc-
tures. The aim is to effectively reduce the computational
resource consumption and parameter quantity of the net-
work while ensuring the detection accuracy.

The main contributions of this paper are as follows:
1)  The  paper  proposes  a  novel  preprocessing  layer

called  the  multi-residual layer,  which  is  based  on  chan-
nel shuffle.  This  layer  enhances  hidden  signals  by  em-
ploying high-pass filtering and channel attention mecha-
nisms. The multi-residual blocks are then used to capture
rich residual features, and the expressive power of these
features is further enhanced through channel shuffle.

2)  The  paper  presents  a  lightweight  hybrid  feature
extraction layer. By using depth-wise separable convolu-
tion, the resource consumption of the network is reduced.
Simultaneously, several  convolutional  blocks  are  em-
ployed  to  extract  local  features,  while  the  attention
mechanism in  the  Transformer  captures  global  features.
The combination of  these two modules  increases  the di-
versity of features.

3)  The  paper  constructs  an  effective  weighted  loss
function for learning feature diversity. The cross-entropy
loss is utilized to learn steganographic features, while the
contrastive  loss  function  enhances  the  expressive  power
of  the features.  The BiasLoss is  employed to learn both
local and global features of the network. The integration
of these three components results in a weighted loss func-
tion that is well-suited for hybrid networks.

The remainder of this paper is organized as follows.
Section II presents the related work of typical steganaly-
sis  methods.  Section  III  introduces  the  ResFormer
method in  detail.  Section  IV  gives  the  experimental  re-
sults  and  analysis.  Section  V  summarizes  the  whole
manuscript and gives the next research. 

II. Related Work
Current  deep  learning-based  steganalysis  methods

have effectively improved the detection accuracy by im-
proving  the  network  structure  and  incorporating  prior
knowledge of  steganography.  The  improvement  of  net-
work  structure  has  been  inspired  by  some  structures
from the computer vision field, which have effectively en-
hanced  the  detection  performance.  In  2019,  Boroumand
et al. [22] introduced residual structures into steganalysis
methods. In 2021, You et al. [24] borrowed this idea and
proposed  SiaStegNet,  an  effective  method  for  multi-size
image steganalysis using multiple residual blocks. In the
same  year,  Su et  al.  [25]  combined  multiple  residual
structures with  fully  convolutional  structures  and  pro-
posed the EWNet method. In 2022, Liu et al. and Weng
et al. [26], [27] respectively designed CSANet and LWENet
methods using residual structures. In 2023, Li et al. [28]
proposed  the  SiaIRNet  method  based  on  SiaStegNet.
CSANet  and  LWENet  were  designed  with  reference  to
the  structure  of  SRNet,  while  SiaStegNet  and  EWNet
were  effective  for  multi-size spatial  and  frequency  do-
main  steganalysis,  respectively.  Therefore,  in  order  to
better  understand  the  network  structures,  the  SRNet,
SiaStegNet, and  EWNetare  taken  as  examples  to  intro-
duce the types of residual structures used in these three
methods, as well as their advantages and limitations.

The  steganography  detection  method  based  on  a
convolutional  neural  network  can  further  extract  rich
residual features by increasing the depth of the network,
which  is  helpful  to  improve  the  detection  efficiency.  To
this end, Boroumand et al. [22] proposed a 26-layer SRNet
method by designing a variety of  residual  blocks,  which
included four  different  convolution blocks,  two of  which
were  residual  blocks,  T2 and T3,  as  shown in Figure  1.
On the one hand, the residual block increases the depth
of the network and enhances the ability of the model to
extract residual features. On the other hand, the residu-
al  block  can  prevent  overfitting  caused  by  the  depth  of
the  network.  Compared  with  the  previous  methods,  the
detection  effect  of  SRNet  method  has  been  significantly
improved.  However,  the  increase  in  network  depth  also
brings great  resource  consumption,  and  the  global  fea-
tures  captured  by  stacking  convolution  are  limited,
which also  limits  the  further  improvement  of  the  detec-
tion effect of SRNet method.
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Figure 1  Architecture of SRNet method.
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You et  al.  [24]  proposed  an  18-layer  SiaSteNet
method by taking images of different sizes in real scenes
as training objects.  The residual structures,  BlockA and
BlockB,  used  by  the  SiaSteNet  method  are  shown  in
Figure  2.  The  method  extracts  richer  subgraph  features
by using a twin framework and increases the depth of the

network  using  two  residual  structures.  The  SiaSteNet
method has good detection results on both fixed-size im-
ages  and  large  multi-size  images.  Although  the  twin
structure used  by  the  SiaSteNet  method  uses  less  num-
ber of parameters, it is computationally intensive due to
the increase of the network.
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Figure 2  Architecture of SiaStegNet method.
 

The SiaSteNet  method is  aimed at  the  detection of
fixed-size and multi-size spatial domain images. Current-
ly, there is a lack of the corresponding detection of JPEG
fixed-size and multi-size images. Therefore, Su et al. [25]
proposed the EWNet method using the full convolution-
al network.  In this  method, two kinds of  residual  struc-
tures  are  designed  and  combined  with  deconvolution  to
increase the depth and width of the network, which en-
hances the ability of the network to extract residual fea-
tures  and  effectively  improve  the  detection  performance
of  fixed-size  and  multi-size  JPEG  images.  The  residual
structure is shown in Figure 3. The EWNet method uses
two  residual  structures  to  extract  more  abundant  local
features,  but  the  global  features  extracted  are  limited,
and this method also brings great resource consumption.
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Figure 3  Architecture of EWNet method.
 

The steganography detection method discussed above
is based on a convolutional neural network, which extracts
both  local  and  global  features  from  images  using  the
residual structures.  However,  the  global  features  cap-
tured through stacked convolution are limited. This limi-
tation not  only  hampers  the  improvement  of  the  detec-
tion accuracy of the model but also increases its compu-
tational  effort.  To  address  these  issues,  this  manuscript
proposes  a  lightweight  steganography  detection  method
that combines  convolutional  and  Transformer  architec-

tures. This method aims to extract rich local and global
features while  reducing  resource  consumption  and  en-
hancing the detection effectiveness. 

III. Proposed Method
The existing steganography detection methods based

on  deep  learning  primarily  enhance  the  effectiveness  of
steganography  detection  by  increasing  the  network
depth, which, in turn, leads to higher resource consump-
tion.  This  manuscript  proposes  a  multi-residual struc-
ture  that  utilizes  depth-separable  convolution  to  reduce
the computational overhead and the number of parame-
ters in the model. Additionally, we introduce a convolu-
tional Transformer  feature  extraction  layer  that  en-
hances  the  diversity  of  features,  thereby  allowing  for  a
reduction  in  network  depth.  The  goal  of  this  method  is
to reduce the computational cost of the model while en-
suring accuracy. 

1. Basic principles and main steps
The  proposed  ResFormer  method  first  trains  the

lightweight model and then uses the model to detect. In the
training phase, first, rich and effective steganography fea-
tures are extracted by using high-pass filtering and mul-
tiple residual  structures.  Then,  convolution  and  Trans-
former are used to extract local features and global fea-
tures  to  increase  the  diversity  of  features.  Finally,  the
full  connection  layer  is  used  to  generate  the  training
model. For image detection, the training model is initial-
ized  and  classification  is  performed  using  the  Softmax
function. The ResFormer method is depicted in Figure 4.

1) The preprocessing layer includes high pass filter-
ing and multiple residual structures (C-Block1).

a) High pass filtering: SRM (spatial rich model) high
pass  filters  are  used  for  high  pass  filtering,  which  can
make  the  model  pay  more  attention  to  steganography
features.

b) C-Block1: Multiple residual structures. SRM helps
to identify steganography information. C-Block1 helps to
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obtain rich and effective steganography features by using
multiple residual blocks. Detailed content will be provided
in multiple  residual  structures  and performance analysis
of ResFormer method.

2)  The  feature  extraction  layer  includes  four  layers
of convolution blocks (C-Block2) and one layer of Trans-
former blocks (T-Block).

C-Block2  and  T-Block:  Four  C-Block2  blocks  are
used to extract local features. T-Block contains the module
of  the  Transformer  structure  to  extract  global  features.
Detailed content will be given in performance analysis of
ResFormer  method  and  convolution  and  Transformer
structure backbone.

3) The generation model includes a global-level pooling
layer, a feature fusion layer, and a full connection layer.

a)  Global  average  pooling  layer  and  feature  fusion
layer: In order to reduce dimension, global average pool-
ing is used. We integrate features to increase feature di-
versity using the method of [24].

b)  Full  connection  layer:  To  distinguish  the  cover
and stego  images  and build  the  training  model,  the  full
connection layer with classification function is used.

4) Classification stage: By loading the training mod-
el,  multiple  residual  blocks  and  Transformer  structure
are used  to  extract  the  features  of  the  image  to  be  de-
tected, and Softmax is used to detect the image.

To  provide  a  better  description  and  understanding
of the  proposed network  architecture,  we  present  an al-
gorithmic  description  of  the  training  process  shown  in
Algorithm 1.

Algorithm 1  Training process of the proposed method
Mi (m1,m2,m3, · · · ,mn)

W ×H × C
Input:  = ,  where m represents  a

grayscale image of size  (W and H denote the

C
K

width and height of the image, respectively,  represents
the number of channels), and  represents the filter.

Model(mcover,mstego)Output: .
1: Data processing:

mi mj

mi

　The image m is evenly divided into two parts,  and ,
along the vertical direction. Here, we use  as an exam-
ple to illustrate the training process of the image.

2: Initialization of the preprocessing layer:
Ri C-Block1(mi ∗K)　　　　　　　　  = 

Ri

W/2×H × 30
　where * denotes convolution and  denotes the residual

feature having a size of .
3: Feature extraction layer:
　First, pass through four C-Block2 convolutions:

Ri C-Block2(Ri)　　　　　　　　　  = 
Ri W/2×H × 64　where  has a size of .

　Then, pass through T-Block and global average pooling:
Ri T-Block(Ri)　　　　　　 　　　  = 

Ri W/8×H/16× 128　where  has a size of .
Ri Avg(Ri)　　　　　　　　　　  = 

Rj

R Stack(Ri,Rj)

　Repeat the same operations for the other half of the im-
age  to  obtain  the  residual  feature  map ,  Concatenate
the obtained features to get  = .

4: Train the model:
　First, compute the maximum, minimum, mean, and vari-

ance of the residual feature map:
R [Rmax,Rmin,Rmean,Rvar]　　　　　　　  = 

　Next, use fully connected layers and a loss function to ob-
tain the trained model:

R FC(R)　　　　　　　　　　　  = 
Model(mcover,mstego) Loss(R)　　　　　　　  = 

Model(mcover,mstego)5: Return .
 

2. Multiple residual structures

3× 3

1× 1

To enhance the ability of preprocessing layer to ex-
tract rich residual features, this manuscript designs mul-
tiple residual structures, which can enhance the ability of
the network to capture residual characteristics, and boost
its  capability  to  identify  steganography  characteristics.
The  designed  residual  structure  is  shown  in Figure  5.
The steps  of  the  multiple  residual  structures  are  as  fol-
lows.  For  the  input  features  in  the  left  branch  of  the
multiple residual  structures,  initially,  the  residual  fea-
tures are extracted through the application of  con-
volution  and  convolution, followed  by  the  utiliza-
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Figure 4  Overview of the proposed ResFormer method architecture.

 

Channel shuffle

Figure 5  Multiple residual structure (C-Block1).
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1× 1

3× 3 1× 1

tion of the channel attention mechanism to grasp the in-
ter-channel correlation of residuals. Then, the extraction
features of  channel  attention,  the  residual  features  ob-
tained  from  convolution  extraction  are  combined
with the  input  features  to  enhance  the  residual  charac-
teristics.  In  the  right  branch  of  the  multiple  residual
structures,  the  residual  features  are  first  extracted  by

 convolution  and  convolution,  and  then  the
residual features are fused with the input features. After
the residual features are extracted from the left and right
branches of the multiple residual structures, the residual
feature needs to be concatenated, and the channel shuf-

3× 3
1× 1

fle is  used  to  enhance  the  expression  ability  of  the  fea-
tures.  To reduce  parameters  and Flops,  the  convolution
used by multiple residual structures is depthwise separa-
ble convolution [14], that is,  is depthwise convolu-
tion and  is pointwise convolution.

To verify  the  effect  of  the  multiple  residual  struc-
tures (the  method  without  the  multiple  residual  struc-
tures is denoted by ResFormer-R in the following experi-
ments). Three adaptive steganography algorithms [33]–[35]
are  detected  at  two  embedding  rates  on  the  BossBows
dataset,  and the specific  experimental  results  are  shown
in Table 1.

 
 

Table 1  The detection results of ResFormer-R and ResFormer

Steganography algorithm Detector
0.2 bpp 0.4 bpp

Accuracy (%) AUC (%) Accuracy (%) AUC (%)

WOW
ResFormer-R 87.01 95.89 90.98 97.92

ResFormer 88.36 96.51 92.13 98.35

S-UNIWARD
ResFormer-R 77.97 88.87 88.10 96.49

ResFormer 79.44 89.67 89.64 97.28

HILL
ResFormer-R 74.48 85.26 83.86 93.73

ResFormer 75.17 85.89 84.55 94.14
 

Table  1 gives  the  performance  of  the  ResFormer-R
method and the ResFormer method for  the three stega-
nography  algorithms  at  two  embedding  rates.  It  seems
that  in Table  1,  the  performance  of  the  ResFormer
method  is  substantially  improved.  For  example,  when
the embedding rate is 0.2 bpp, compared to ResFormer-
R.  The  detection  effect  of  the  ResFormer  method  has
been  improved  by  1.35% and  1.47%,  respectively;  when
the embedding rate is set at 0.4, the detection efficiency
of  the  ResFormer  method  is  1.18%  and  1.54%  higher
than  that  of  ResFormer-R  method.  In  summary,  it  can
be seen that the multiple residual structures improve the
detection accuracy. 

3. Based on convolution and transformer
structure backbone

Steganography detection based on deep learning re-
duces the depth of the model, which is helpful to reduce
parameters  and  Flops,  but  the  detection  effect  of  the
model will  also  decrease.  Enriching  the  diversity  of  fea-
tures helps to improve the detection effect of the model.
Transformer structure can extract global features.  Com-
bining convolution with a Transformer structure can ex-
tract  local  features  and  global  features,  which  helps  to
increase  the  diversity  of  features.  Therefore,  this  paper
designs a Transformer structure (T-Block) and a convo-
lution  block  C-Block2,  as  shown in Figure  6.  The  main
steps of the C-Block2 structure are as follows: C-Block2
first bisects the channels,  then it  uses multiple convolu-
tion blocks to extract features from the feature map af-
ter bisecting.  The  SElayers  are  to  enhance  the  correla-
tion  between  residual  errors  in  the  model  extraction
channels. Finally, the two features are concatenated and

1× 1
3× 3

the channel  is  shuffled.  To reduce  computation  and pa-
rameter  complexity,  C-Block2 utilizes  depthwise  separa-
ble  convolution.  The  main  steps  of  the  T-Block struc-
ture are as follows:  convolution is used for channel
fusion, and two  convolutions are used to extract lo-
cal residual features. The ReAttention module and FFN
(feedforward  neural)  module  extract  the  global  features
and fuse the local features.
 
 

(a) C-Block2 (b) T-Block
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Figure 6  Convolutional block and Transformer block.
 

To further verify the detection effect of Transformer
structure (ResFormer-T below denotes the method with-
out Transformer structure), The BossBows dataset is used
to test steganography algorithms with two different pay-
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loads. The experimental findings can be found in Table 2.
Table  2 gives  the  detection  results  of  the  methods

ResFormer-T  and  ResFormer  methods  at  payloads  0.2
bpp and 0.4 bpp for the three adaptive steganography al-
gorithms, WOW, S-UNIWARD, and HILL. From Table 2,
it can be seen that the detection accuracy of ResFormer
for the  three  steganography  algorithms  has  been  im-
proved.  When  the  embedding  rate  is  set  to  0.2  bpp,  in
comparison to ResFormer-T. The detection effect of  the
ResFormer method for two steganography algorithms ex-
hibits  enhancements  of  1.01%  and  1.95%,  respectively;
when  the  embedding  rate  is  0.4  bpp,  in  comparison  to
ResFormer-T,  the  detection  efficiency  of  the  ResFormer
method  for  three  algorithms  exhibits  enhancements  of
1.99% and 2.07%, respectively. In summary, it can be seen
that the Transformer structure can improve the detection
accuracy for the adaptive steganography algorithms. 

4. Loss function design
The  loss  function  is  to  allow  the  network  to  learn

the difference between the cover image and the stego im-
ages.  In  this  manuscript,  convolution  and  Transformer
blocks are used to extract local and global features to in-
crease  feature  diversity.  The  loss  function  commonly
used  in  steganalysis  is  cross  entropy  loss  function,  but
this loss  function  uses  the  features  after  pooling.  In  or-
der  to better  utilize  the fusion features,  BiasLoss  [36]  is
used. BiasLoss  uses  variance  as  a  simple  measure  of  di-
versity. The larger the variance, the higher the opportu-
nity to obtain diversity features.

X X ∈ RB×C×H×W

B C
H W

n

In  order  to  calculate  the  variance,  we  assume  that
the feature before pooling is , , where

 represents Batchsize and 30 is taken in this paper, 
represents the number of channels, and  and  repre-
sent the  height  and  width  of  the  feature  graph,  respec-
tively. The feature map of the th data in batch process-
ing can be expressed as

 

σn =
1

N − 1

N∑
i=1

fi −

N∑
i=1

fi

N


2

(1)

X f
f ∈ RB×N N = C ×H ×W
where  is  expanded  into  a  two-dimensional  array ,

, . In order to make the vari-

ance  easier  to  use  for  the  loss  function,  the  variance  is
scaled at [0, 1].

 

σn =
σn −Gmin

Gmax −Gmin
(2)

Gmin Gmax and  represent the  minimum  and  maxi-
mum  values  activated  in  a  batch  of  feature  graphs  in
each  training  iteration,  avoiding  the  instability  of  the
model caused by the too large loss function. BiasLoss can
be expressed as

 

L1 =− [p · log(q) + (1− p) · log(1− q)]

∗ [e(σn ∗ α1)− α2] (3)

p
q α1 α2

where  is  the cover image (label 0) or the stego image
(label  1),  is  the probability of  label  1,  and  are
constants and 0.3 is taken in this manuscript, and * de-
notes convolution. The cross-entropy loss function can be
expressed as

 

L2 = − [p · log(q) + (1− p) · log(1− q)] (4)

To better describe the features of the double-branch,
the  contrast  loss  function  [19]  is  used  here  to  learn  the
features of cover and stego images in the double-branch:

 

L3 =
p[max(0, s− ||F1 − F2||2)]2 + (1− p)(||F1 − F2||22)

2
(5)

F1 F2where  and  represent  double  branching  features.
The  loss  function  used  by  the  proposed  ResFormer
method can be expressed as

 

LProposed = L1 +
1

10
L2 + λL3 (6)

λ
λ

λ

where  is  a  constant,  which  is  taken  as  1  in  this
manuscript.  In  order  to  verify  the  effect  of  value  on
the detection effect,  the detection effect of the proposed
ResFormer  is  given  here  when  takes  different  values,
as shown in Table 3. 

5. Performance analysis of ResFormer method
1) Resource consumption of ResFormer method
In  deep  learning  method,  the  resource  consumption

of the model is usually measured from the two aspects of

 

Table 2  The detection results of ResFormer-T and ResFormer

Steganography algorithm Detector
0.2 bpp 0.4 bpp

Accuracy (%) AUC (%) Accuracy (%) AUC (%)

WOW
ResFormer-T 87.35 96.06 91.09 97.93

ResFormer 88.36 96.51 92.13 98.35

S-UNIWARD
ResFormer-T 78.58 89.16 88.73 96.83

ResFormer 79.44 89.67 89.64 97.28

HILL
ResFormer-T 73.22 83.91 82.48 92.88

ResFormer 75.17 85.89 84.55 94.14
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the  parameters  and  Flops.  The  number  of  parameters
can be expressed as the multiplication of input channels,
output channels,  and  the  convolution  size,  that  is,  pa-
rameters = input channels  output channels  the con-
volution size. Flops can usually be expressed as the mul-
tiplication of parameter and output feature size, that is,
calculation  amount  =  parameter  output  feature  size.
It can be seen from the parameter and Flops that input
channels,  output  channels  and  the  convolution  size  will
all affect  the  size  of  parameter  number.  In  order  to  re-
duce  parameter  and  Flops  as  much  as  possible,  depth
separable  convolution  is  adopted  in  this  manuscript.
Depth  separable  convolution  includes  depthwise
convolution  and  pointwise convolution,  whose  pa-
rameter can be expressed as .
The parameters of  standard convolution can be ex-
pressed  as ,  where  and  are  input
channels and output channels, respectively, so compared
with  standard  convolution,  the  Flops  and  parameter  of
depth-separable  convolution  are  reduced  by 
times.

Table 4 gives the parameters and Flops of the pro-
posed ResFormer method, ResFormer-R, and ResFormer-
T structures, respectively. From Table 4, when the pro-
posed  method  does  not  use  the  Transformer  structure,
the  number  of  parameters  is  reduced  substantially  and
the computation is also reduced, but the detection effec-
tiveness decreases as shown in Table 2; when the Trans-
former  structure  is  used  without  the  multiple  residual
structure, the  number  of  parameters  and  the  computa-
tion  remain  unchanged.  The  multiple  residual  structure
enriches the  residual  features  through  residual  connec-
tions,  which  does  not  significantly  impact  computation
or  the  number  of  parameters.  However,  the  multiple
residual structure has a significant impact on the detec-
tion performance, as presented in Table 1. To provide a
comprehensive understanding  of  the  ResFormer  frame-
work,  the  detailed  structure  of  the  proposed  method  is
presented in Table 5.
  
Table 4  The  parameters  and  Flops  of  multiple  residual  structure
and Transformer structure (M stands for 106 and G for 109)

Detector Image size Parameters Flops

ResFormer

256× 256

0.39M 1.80G

ResFormer-T 0.03M 1.38G

ResFormer-R 0.39M 1.80G

  

Table 5  The detailed framework of the proposed ResFormer method

Layer Output size Repeat Channel

Image 256× 128 1 1

SRM 252× 126 1 30

C-Block1 252× 126 1 30

C-Block2 252× 126 4 64

T-Block 32× 16 3 128

FC – – 2

Flops – – 1.80G

Parameters – – 0.39M
 

256× 128

252× 126

32× 16

The detailed framework of the proposed ResFormer
method  is  given  in Table  5. Since  the  proposed  Res-
Former method uses  twin models,  the framework of  the
model is presented here with one of them as an example.
As can be seen from Table 5, the table has five columns,
the initial  column is the number of layers of the model,
followed by the feature map output, the convolution ker-
nel  size is  indicated in the third column, the number of
times the  layer  is  repeated  is  shown  in  the  fourth  col-
umn,  and  the  output  channels  are  specified  in  the  last
column.  For  a  image,  firstly,  it  goes  through
SRM filtering and C-Block1 preprocessing,  and the out-
put feature map is  with 30 channels.  Then it
goes  through  C-Block2  and  T-Block  feature  extraction
layers and the output feature is  with 128 chan-
nels. Finally, it goes through a fully connected (FC) lay-
er.  The  number  of  parameters  and  computation  of  the
whole network are 0.39M and 1.80G, respectively.

2) Analysis of the role of the backbone structure
The  proposed  ResFormer  method  utilizes  a  multi-

residual structure  to  capture  abundant  residual  charac-
teristics, which enhance the diversity of local and global
features in the backbone. The effectiveness of the multi-
residual structure and the Transformer structure are ver-
ified in Sections III.2 and III.3,  respectively.  In order to
further  demonstrate  the  impact  of  these  two  structures
on the classification performance of steganalysis, we visu-
alize the  distribution  of  steganographic  noise  in  the  im-
age and use the Grad-CAM method [37] to visualize the
influence of the two structures, as shown in Figure 7.

From Figure 7(a), we give the cover images and the
distribution of steganography signals of the stego images.
The adaptive steganography algorithm pays more atten-
tion to  complex  texture  regions  when  embedding  infor-
mation,  which  can be  clearly  seen  from the  distribution

 

λTable 3  The detection results of 

λ =0.1 λ =0.2 λ =0.3 λ =0.4 λ =0.5

Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

91.73 98.24 91.42 98.13 91.45 98.07 91.33 98.09 91.58 98.19

λ =0.6 λ =0.7 λ =0.8 λ =0.9 λ =1.0

Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

91.61 98.21 91.57 98.16 91.48 98.14 91.67 98.21 92.13 98.35
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of  steganography  signals  in  stego  images. Figure  7(b)
shows  the  heat  maps  before  and  after  using  the  two
structures  in  this  manuscript.  The  Grad-CAM  method
can reflect the importance of a certain location in an im-
age to that category. In the blue box of Figure 7(b), the
proposed  ResFormer  pays  less  attention  to  the  area  of
complex textured areas, and some focus on non-complex
textured areas. In the red box, after using two structure,
it can  be  clearly  seen  that  the  ResFormer  method  pro-
posed focuses on more complex textured areas and fewer
non-complex  textured  areas,  which  can  help  the  model
learn more effective  and rich steganography features.  In
summary, combined with Figures 7(a) and (b), it can be
seen that the two structures proposed in this manuscript
can effectively  learn steganography features  and help to
enhance the model performance. 

IV. Experimental Results and Analysis

512× 512

256× 256

Three public databases, BossBase-1.01 [38], BOWS2
(http://bows2.ec-lille.fr), and ALASKA #2 [39], are used
in our  experiments.  ALASKA  #2  is  a  large  heteroge-
neous  dataset  containing  a  variety  of  datasets.  Here  we
use  the  ALASKA512  dataset  and  randomly  select  10k
images (1k = 103) from it to construct the ALASKA512
dataset.  BossBase-1.01,  BOWS2,  and  ALASKA512  are
composed of 10k grayscale images of size . The
Boss256, Bows256,  and  ALASKA256  datasets  are  com-
posed  of  10k  grayscale  images  of  size ,  which
are  generated  by  scaling  the  above  three  datasets.  The
BossBow dataset  contains  20k  images,  which  is  com-
posed  of  Boss256  and  Bows256.  The  Boss256_75  and
Boss256_85  datasets  are  compressed  with  Boss256
dataset  at  quality  factors  75  and  85,  respectively.  The
spatial image  databases  used  for  steganography  detec-
tion  is  BossBows,  the  steganography  algorithms  are
WOW,  S-UNIWARD  and  HILL,  and  the  payloads  are
0.1–0.4 bpp. The JPEG datasets used for steganography
detection are Boss256_75 and Boss256_85 datasets. The
steganography  algorithm  is  J-UNIWARD, and  the  pay-
loads  are  0.1–0.4  bpnzac.  The  training  set,  verification
set, and test set in the spatial domain and JPEG domain
are randomly selected at a ratio of 6:1:3. All the experi-
mental results are obtained on a single NVIDIA TelsaV

100 GPU. 

1. Experimental parameter setting

β1 β2 eps

≤

≥ 300

≥ 400

The  proposed  ResFormer  method  uses  the  Admax
optimizer  [40], in  which  the  parameters  are  set  by  de-
fault, =0.9, =0.99, and =1E−7. The Batchsize is
set  to  30.  The  initial  learning  rate  is  set  to  0.001,  and
when Epoch = 400, the learning rate is adjusted to 0.0001.
Accuracy and ROC (receiver operating characteristic) [22],
[24] are  used  to  evaluate  the  performance  of  the  pro-
posed  ResFormer  method. Figure  8 shows  the  accuracy
and  loss  of  the  proposed  ResFormer  method  for  the
WOW  steganography  algorithm  at  payload  0.4  bpp  on
BossBows  dataset.  It  can  be  seen  from Figure  8(a)  and
(b)  that  when  Epoch  300, the  accuracy  of  the  train-
ing set  and  the  validation  set  will  increase  with  the  in-
crease of the Epoch, and the loss function will decrease.
When  Epoch ,  the  accuracy  will  further  increase
with  the  adjustment  of  the  learning  rate,  and  the  loss
function  will  further  decrease.  When  Epoch ,  the
model loss  tends  to  be  constant,  and the  proposed Res-
Forme  method  tends  to  converge. Figure  9 shows  the
AUC  value  for  the  three  steganography  algorithms
WOW, S-UNIWARD, and HILL at  payload 0.4  bpp on
BossBows dataset.
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Figure 8  Accuracy and loss of proposed ResFormer for WOW algo-
rithm. 

2. Parameters and Flops
In deep learning,  the metrics  to measure whether a

network is lightweight or not usually use parameters and
Flops. In Section III.5, the calculation of parameters and
Flops  are  given  in  this  manuscript,  and  the  parameters
and  Flops  of  the  proposed  ResFormer  method  is  given
here and  compared  with  the  existing  steganography  de-
tection  methods  based  on  deep  learning,  as  shown  in

 

(a) (b)

Figure 7  Visualization  of  the  ResFormer.  (a)  Cover  and  the  noise
distribution of stego. (b) The heat map before (the blue box) and
after (the  red  box)  using  multiple  residual  structure  and  Trans-
former block.
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Table 6.
Table 6 shows the number of parameters and Flops

of  the  proposed ResFormer  method and the  comparison
method. As can be seen from Table 6, both the number
of  parameters  and  Flops  of  the  proposed  ResFormer
method has been greatly reduced. Specifically, compared
with the SRNet method, the number of  parameters and
Flops of  the  proposed  ResFormer  method  has  been  re-
duced  by  91.82%  and  69.75%,  respectively.  Compared
with  the  SiaStegNet  method,  the  number  of  parameters
and Flops of the ResFormer method is reduced by 45.07%
and  75.27%,  respectively.  Compared  to  the  CSANet
method, the proposed ResFormer method reduces the pa-
rameters by 17.02% and the Flops by 78%. Compared to
the  LWENet  method,  the  proposed  ResFormer  method
has  a  similar  parameter  quantity  but  reduces  the  Flops
by 62.66%. Compared to the SiaIRNet method, the pro-
posed  ResFormer  method  reduces  the  parameters  by
45.83%  and  the  Flops  by  77.19%.  Compared  with  the
EWNet method, the number of parameters and Flops of
the  ResFormer  method  is  reduced  by  89.79%  and
11.33%, respectively. EWNet method is the PyTorch ver-
sion that we use when replicating.
 
 

Table 6  The parameters  and Flops of  SRNet [22],  SiaStegNet [24],
EWNet [25],  CSANet [26],  LWENet [27],  SiaIRNet  [28], and Res-
Former

Detector Image size Parameters Flops

SRNet [22]

256× 256

4.77M 5.95G

SiaStegNet [24] 0.71M 7.28G

EWNet [25] 3.82M 2.03G

CSANet [26] 0.47M 8.18G

LWENet [27] 0.38M 4.82G

SiaIRNet [28] 0.72M 7.89G

ResFormer 0.39M 1.80G
  

3. Spatial domain images detection
To  verify  the  detection  efficiency  of  the  proposed

method against a variety of adaptive steganography algo-
rithms,  SRM  (Spatial  Rich  Model)  [7],  SRNet  [22],
SiaStegNet [24], CSANet [26],LWENet [27], SiaIRNet [28],
and  the  ResFormer  method  are  used  to  detect  three
adaptive  algorithms,  and  steganography  methods  based
on  deep  learning  all  adopt  the  same  training  method.
Table 7 gives the specific detection results.

Table 7 shows the detection effect of the six compar-
ative  methods  and  ResFormer  method  for  three  spatial
adaptive  algorithms.  As  can  be  seen  from Table  7,  in
comparison to  SRM  detector,  the  performance  of  Res-
Former  for  adaptive  steganography algorithms has  been
greatly  improved.  Compared  with  the  classical  SRNet
method and the latest SiaSteNet method, with the pay-
loads increasing, the detection efficiency for adaptive al-
gorithms increases. Specifically, when the embedding rate
is  set  to  0.1  bpp,  compared  to  SRNet,  SiaSteg-Net,
CSANet, LWENet,  and  SiaIRNet  methods,  the  detec-
tion efficiency  of  the  ResFormer  method  is  exhibits  en-
hancements  of  4.39%,  5.10%,  2.60%,  0.44%,  and  2.57%,
respectively.  the  detection  efficiency  of  the  ResFormer
method  exhibits  enhancements  of  0.68%,  1.84%,  1.99%,
0.78%, and 1.81%, respectively. At an embedding rate of
0.3 bpp,  the  ResFormer  method  shows  improved  detec-
tion efficiency compared to SRNet, SiaStegNet, CSANet,
LWENet,  and SiaIRNet methods,  with enhancements of
1.39%, 2.78%, 1.40%, 0.44%, and 1.60%, respectively. In
comparison to SRNet, SiaStegNet, CSANet, LWENet and
SiaIRNet method,  the  detection  efficiency  of  the  Res-
Former method exhibits  enhancements of  0.39%, 2.91%,
2.02%, 0.63%, and 2.40%, respectively. Overall,  the per-
formance  of  ResFormer  method  for  the  adaptive  stega-
nography algorithms has advantages. 

4. JPEG domain images detection
In  addition  to  spatial  domain  images,  there  are

many  JPEG  images  in  the  actual  scene.  To  assess  the
performance of the ResFormer method on JPEG images,
SRNet [22] and EWNet [25] are employed as benchmark-
ing techniques. The J-UNIWARD [34] algorithm at four
embedding rates is detected.

Table  8 shows  the  detection  effects  of  SRNet  [22],
EWNet  [25],  and  ResFormer  for  J-UNIWARD stegano-
graphy algorithm at 0.2 bpnzac and 0.4 pnzac. With the
payloads and quality factor decreasing, the detection ac-
curacy decreases as shown in Table 8. That is, the high-
er  the quality factor  and the lower the embedding rate,
the worse the detection effect; on the contrary, the small-
er the quality factor and the higher the embedding rate,
the  better  the  detection  effect.  Specifically,  when  the
quality  factor  is  75,  in  comparison  to  both  SRNet  and
EWNet methods,  the  detection  efficiency  of  the  Res-
Former method at an embedding rate of  0.3 bpnzac ex-
hibits  enhancements  of  5.78%  and  6.24%,  respectively.
When the quality factor is 85, in comparison to the SR-
Net method and EWNet method,  the  detection  efficien-
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Figure 9  ROC of the proposed ResFormer for three algorithms.
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cy  of  the  ResFormer  method  at  an  embedding  rate  of
0.3  bpnzac  exhibits  enhancements  of  2.88%  and  5.85%,
respectively. On  the  whole,  although  the  proposed  Res-
Former method has a slightly lower image detection effect

than  EWNet  on  QF85  at  payloads  0.4  and  0.2  bpnzac,
compared to the SRNet and EWNet methods. The Res-
Former  method  has  obvious  advantages  at  embedding
rates of 0.1 bpnzac and 0.3 bpnzac.

 
 

Table 8  The detection results of SRNet [22], EWNet [25], and ResFormer on Boss256 75 and Boss256 85 datasets

Quality factor Detector
0.1 bpnzac 0.2 bpnzac 0.3 bpnzac 0.4 bpnzac

Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

75

SRNet [22] 56.50 61.01 75.10 83.10 79.04 90.37 89.95 96.26

EWNet [25] 64.35 68.47 77.37 83.44 78.58 90.23 89.67 95.87

ResFormer 64.98 70.37 75.88 84.34 84.82 92.72 90.43 96.84

85

SRNet [22] 55.55 58.83 71.65 80.96 78.05 89.63 87.60 95.71

EWNet [25] 61.52 65.74 73.37 78.86 75.05 87.10 88.85 94.33

ResFormer 61.86 66.40 72.97 82.02 80.88 89.89 87.48 95.13
 
 

5. Cover mismatch
In  steganography  detection  methods,  the  training

and testing sets often do not belong to the same dataset,
that is, carrier mismatch, and verifying the detection ef-
fect  of  carrier  mismatch  is  of  high  reference  value  for
practical applications. In this section, Boss256, Bows256,
and  ALASK256  are  used.  The  payload  of  the  training
set, validation set, and test set is 0.4 bpp. The steganog-
raphy algorithm used is WOW. Table 9 gives the specif-
ic detection results.

Table 9 shows the steganography detection effects of

SRNet  [22],  SiaStegNet  [24],  and  ResFormer  on  three
datasets. As can be seen from Table 9, comparing the de-
tection  accuracy  of  the  three  datasets,  the  Boss256
dataset  is  the  easiest  to  detect,  while  the  ALASKA256
dataset is the most difficult to detect because it is gener-
ated  by  large  heterogeneous  datasets.  Specifically,  when
utilizing  the  Bows256  training  dataset  and  the  Boss256
testing  dataset,  the  detection  accuracy  of  the  proposed
ResFormer method is 5.19% and 6.22% higher than that
of SiaStegNet  and  SRNet,  respectively.  When  the  test-
ing  dataset  is  ALASKA256,  ResFormer  outperforms
SiaStegNet and SRNet by 4.16% and 1.92%, respectively,

 

Table 7  The detection results of SRM [7], SRNet [22], SiaStegNet [24], CSANet [26], LWENet [27], SiaIRNet [28], and ResFormer

Steganography algorithm Detector
0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp

Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

WOW

SRM [7] 55.20 61.30 67.26 78.70 70.12 83.19 72.26 85.55

SRNet[22] 70.58 78.06 86.98 95.46 88.88 96.65 90.85 97.87

SiaStegNet [24] 69.87 79.93 86.17 94.14 87.49 96.12 91.04 97.85

CSANet [26] 72.37 82.93 87.73 96.25 88.87 96.97 91.16 97.98

LWENet [27] 74.53 85.25 88.25 96.59 89.83 97.32 91.39 98.15

SiaIRNet [28] 72.40 83.25 87.2 95.4 88.67 96.70 92.19 98.41

ResFormer 74.97 85.70 88.36 96.51 90.27 97.55 92.13 98.35

S-UNIWARD

SRM [7] 54.47 59.17 60.79 70.86 67.22 78.66 73.03 85.88

SRNet [22] 67.80 77.20 79.23 89.76 85.18 94.86 89.10 97.45

SiaStegNet [24] 66.64 75.44 78.63 88.60 85.13 94.11 88.89 96.68

CSANet [26] 66.49 76.11 79.06 90.07 84.64 94.36 89.81 97.28

LWENet [27] 67.70 77.51 78.64 89.58 84.27 94.09 89.28 96.99

SiaIRNet [28] 66.67 76.29 80.17 90.63 84.05 93.66 89.51 97.10

ResFormer 68.48 78.15 79.44 89.67 85.96 95.01 89.64 97.28

HILL

SRM [7] 53.13 56.27 57.38 64.22 62.32 71.61 67.44 78.10

SRNet [22] 65.77 74.68 74.30 85.76 81.25 91.86 83.75 94.88

SiaStegNet [24] 64.22 72.45 74.20 83.95 78.73 88.89 83.35 93.23

CSANet [26] 66.93 75.75 75.68 86.59 79.62 90.13 84.95 94.55

LWENet [27] 67.19 76.71 75.48 86.46 81.03 91.40 84.58 94.25

SiaIRNet [28] 64.12 72.75 74.45 84.48 79.24 89.55 84.94 93.81

ResFormer 66.91 76.05 75.17 85.89 81.64 91.81 84.55 94.14
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in terms  of  accuracy.  The  ResFormer  method  demon-
strates  detection  accuracy  improvements  of  8.42%  and
9.52%  over  the  SiaStegNet  method  and  the  SRNet
method,  respectively,  when  ALASK256  serves  as  the
training  dataset  and  Boss256  as  the  testing  dataset.
Switching to  Bows256  as  the  testing  dataset,  the  Res-
Former  method  showcases  detection  enhancements  of
12.40% and 12.07%, compared to the SiaStegNet method
and the SRNet method,  respectively.  On the whole,  the
ResFormer method  exhibits  strong  detection  perfor-
mance on the cover mismatch dataset. 

V. Conclusions
In response  to  the  issue  of  high  computational  re-

source  consumption  in  deep  steganalysis  models,  caused
by the extraction of  both local  and global  features,  this
manuscript introduces  a  steganalysis  method  that  uti-
lizes  a  multi-residual  structure  and  Transformer.  The
proposed method utilizes a designed multi-residual struc-
ture to  extract  rich  residual  features,  constructs  a  di-
verse  set  of  features  using  convolutional  neural  network
(CNN) and Transformer as the backbone,  and enhances
the learning capability of the network by incorporating a
weighted  loss  function.  The  paper  extensively  analyzes
the  performance  of  the  proposed  approach  in  terms  of
CNN and Transformer structures, as well as the number
of  parameters  and  computational  resources.  A  series  of
experiments are conducted, comparing the proposed Res-
Former  method with SRNet,  SiaStegNet,  SiaIRNet,  and
CSANet.  The  findings  indicate  that  the  ResFormer
method decreases the parameter count by 91.82%, 45.07%,
17.02%, and 45.83%, respectively, compared to the afore-
mentioned methods.  Additionally,  the computational  re-
sources  are  reduced  by  69.75%,  75.27%,  78.00%,  and
77.19%.  In  terms  of  detection  performance,  when  the
spatial image sets embedding rate to 0.1 bpp, the perfor-
mance of  the  ResFormer  method exhibits  enhancements
of 4.39%, 5.10%, 2.60%, 0.44%, and 2.57%, respectively,
compared to SRNet, SiaStegNet, CSANet, LWENet, and
SiaIRNet. The ResFormer method also improves the de-
tection accuracy of the S-UNIWARD method by 0.68%,

1.84%, 1.99%, 0.78%, and 1.81%. Furthermore, when the
quality  factor  is  75,  compared  to  SRNet  and  EWNet
methods,  the proposed ResFormer method improves the
detection accuracy of images with 0.3 bpnzac payload by
5.78%  and  6.24%,  respectively.  Overall,  the  proposed
method effectively improves the detection performance of
spatial and JPEG images while significantly reducing the
computational resource consumption of the model.

From the experimental results in Section III.3 of this
work,  it  can be observed that  the detection accuracy of
the proposed ResFormer method, which incorporates the
Transformer  structure,  is  significantly  improved.  How-
ever,  it  is  accompanied  by  increased  computational  and
parameter requirements. The experimental comparison of
parameter quantities is presented in Table 4 of this work.
Currently, in the field of computer vision, there are light-
weight transformer-based network architectures that can
improve  efficiency  while  effectively  reducing  resource
consumption.  Based  on  this,  our  next  step  will  be  to
investigate  steganalysis  methods  based  on  lightweight
transformers. We  aim  to  further  reduce  resource  con-
sumption while improving detection performance. 
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