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Abstract — It is an interesting research direction to develop new multi-objective optimization algorithms based on
meta-heuristics.  Both  the  convergence  accuracy  and  population  diversity  of  existing  methods  are  not  satisfactory.
This paper proposes an integrated external archive local disturbance mechanism for multi-objective snake optimizer
(IMOSO)  to  overcome  the  above  shortcomings.  There  are  two  improved  strategies.  The  adaptive  mating  between
subpopulations  strategy  introduces  the  special  mating  behavior  of  snakes  with  multiple  husbands  and  wives  into
the original snake optimizer. Some positions are updated according to the dominated relationships between the newly
created individuals and the original individuals. The external archive local disturbance mechanism is used to re-search
partial non-inferior solutions with poor diversities. The perturbed solutions are non-dominated sorting with the gener-
ated solutions by the next iteration to update the next external archive. The main purpose of this mechanism is to
make full  use of the non-inferior solution information to better guide the population evolution. The comparison re-
sults  of  the IMOSO and 7 state-of-the-art  algorithms on WFG benchmark functions show that IMOSO has better
convergence and population diversity.
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I. Introduction
A real-world problem often requires to tackle multiple

conflicting  objectives  at  once,  called  a  multi-objective
optimization problem (MOP) [1]. Different from a single-
objective  problem,  solving  MOPs  needs  to  coordinate
each objective to make it as optimal as possible. For an
MOP,  Pareto  optimal  set  is  very  important,  which  is  a
set  of  optimal  solutions  weighing  various  objectives  [2].
MOPs  are  widely  existed  in  various  fields,  e.g.,  feature
selection  [3]  and  power  system distribution  [4].  As  prac
tical problems tend to more and more large-scale and di-
versified,  MOPs  are  confronted  with  severe  challenges
from nonlinearity, high dimension, and multimodality. To
solve  these  problems,  evolutionary  multi-objective opti-
mization  algorithms  (EMOAs)  have  become  the  major
methods  for  MOPs  [5], since  they  have  the  strong  ran-

domness  [6] and  can  find  multiple  Pareto  optimal  solu-
tions in one run.

ε

Non-dominated sorting is a strategy commonly used
in  EMOAs.  Benefitting  from  its  simple  mechanism  and
few parameters, it has become an important research di-
rection  for  MOPs.  For  example,  Coello et  al.  [7] devel-
oped  the  multi-objective  particle  swarm  optimization
(MOPSO)  algorithm  by  using  the  Pareto  dominance  to
determine particles’ flight directions  and saving the dis-
covered non-dominated solutions into a global knowledge
base. Deb et al.  [8] improved the non-dominated sorting
genetic  algorithm  (NSGA)  and  presented  a  fast  non-
dominated sorting genetic algorithm (NSGA-II) based on
elites’ guidance, which employs the crowding distance to
maintain population uniformity. In multi-objective artifi-
cial bee colony optimization ( -MOABC) [9], an external 
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archive is  used  to  save  inferior  solutions  for  each  itera-
tion.  Besides,  many  new  EMOAs  are  constantly  being
developed,  e.g.,  multi-objective  cuckoo  search  (MOCS)
[10], multi-objective grey wolf optimizer (MOGWO) [11],
multi-objective  bonobo  optimizer  (MOBO)  [12],  and
multi-objective slime mould algorithm (MOSMA) [13].

However, although  many  EMOAs  have  been  pro-
posed, the convergence accuracy and population diversi-
ty still need to be enhanced. Most directly employ primi-
tive  optimization  strategies,  such  as  MOPSO,  MOCS,
and  MOGWO.  And  some  use  the  canonical  processing
tricks.  For  instance,  MOSMA  uses  the  non-dominated
sorting  and  crowding  distance  mechanism  in  NSGA-II
to  update  non-dominated  solutions  in  each  iteration.
MOBO3, based on decomposition, divides objective func-
tions into sub-problems with the same population number,
where  these  subpopulations  optimize  each  sub-problem
independently.  As  a  result,  the  performance  of  EMOAs
can not be effectively enhanced.

Snake  optimizer  (SO)  [14]  is  a  novel  swarm-based
algorithm with the good iterative optimization capacity.
To  realize  SO  for  solving  MOPs  effectively,  a  multi-
objective version snake optimizer is developed. The main
contributions  of  this  paper  are  as  follows.  An  adaptive
mating  between  subpopulations  strategy  is  presented  to
adequately cross  information  between  two  subpopula-
tions. Then, to better guide population evolution, an ex-
ternal archive local disturbance mechanism is developed.
Based on the above, an integrated external archive local
disturbance  mechanism  for  multi-objective snake  opti-
mizer is proposed. Finally, experimental results verify the
effectiveness of the proposed algorithm. 

II. Multi-Objective Snake Optimizer
(MOSO)
SO  mimics  the  mating  behaviors  of  snakes  and  its

specific  mathematical  descriptions  are  referred  to  [14].
However,  SO  cannot  be  directly  used  to  solve  MOPs.
Hence,  a  multi-objective  snake  optimizer  (MOSO)  is
constructed based on the non-dominated sorting and the
crowding distance.

N

N/2

For  each  iteration,  the  updated  population  is
equipped with an external archive of maximum capacity

 to  save  the  non-inferior  solutions  obtained  so  far.  If
the  number  of  non-inferior solutions  exceeds  the  maxi-
mum  capacity,  truncation  is  adopted.  Meanwhile,  each
subpopulation also needs to set an external archive with
a maximum capacity of .

Xfood

SO divides  the entire  population into the male  and
female subpopulations, and the male (female) subpopula-
tion moves towards the best female (male). Furthermore,
the current population also evolves with reference to the
position  of  the  elite  ( ).  By  analysis,  an  external
archive maintenance should be carried out for each sub-
population in the updating process. After each subpopu-
lation  update,  the  male  (female)  subpopulation  and  the

N/2

Xfood

previous  generation  are  combined  for  non-dominated
sorting [8]. Based on crowding distance [8], the first 
individuals formed the initial population of the next iter-
ation  and  saved  in  their  corresponding  sub-archives.  It
needs to be mentioned that since there are many Pareto
optimal solutions,  the  best  female  (male)  for  their  sub-
population is randomly selected from the non-dominated
solutions in the current sub-archive. Similarly, the global
optimal  solution  ( )  based  on  the  entire  external
archive is determined. For other individuals,  parameters
containing  fitness  values  are  used  to  guide  evolution.
However, corresponding to the MOP, the fitness value of
the  objective  with  a  tendency  replaces  the  fitness  value
of the single objective problem. 

III. Integrated External Archive Local
Disturbance Mechanism for MOSO

The proposed  integrated  external  archive  local  dis-
turbance  mechanism for  multi-objective  snake  optimizer
(IMOSO) is introduced in detail. Firstly, the mathemati-
cal models of the two improved strategies are described.
Then,  the  implementation  framework  of  the  proposed
IMOSO algorithm is given. 

1. Adaptive mating between subpopulations
strategy

In the mating stage of SO, each male (female) only
has  a  mating relationship  with a  current  female  (male).
For the fighting stage, each male (female) is also updated
only by the best female (male). Except for the above two
stages, for the other stages, males or females only search
for renewal within their independent subpopulation. This
may lead to the underutilization of the solution informa-
tion and  the  poorer  evolutionary  directions  of  individu-
als. To  solve  these  problems,  an  adaptive  mating  be-
tween subpopulations  strategy  is  developed  to  strength-
en the exploration and exploitation.

In nature, the mating system of snakes is polygamy,
which can  effectively  inherit  good  information  and  im-
prove the survival rate of offspring. The new behavior of
finding for  a  spouse  is  introduced.  This  model  is  con-
structed to achieve the re-searching evolution of  snakes.
Different from the mating behavior in SO, snakes do not
produce new offspring during the process of finding mates,
but  rather  update  new  locations  where  they  may  meet.
However, not  all  males  (females)  will  update  their  cur-
rent positions. They also have to make a choice based on
the degree of compatibility between their partners.

To guarantee that male (female) snakes select more
beneficial  spouses,  the dominated relationship is used to
determine  whether  the  found  mates  are  suitable  for
them. If a new male (female) dominates the original male
(female),  the  current  position  is  updated.  Otherwise,
keep the original position unchanged. It can be calculated
as follows: 
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Xnew
i,m (t+ 1) =

{
Xcurrent

i,m , f
(
Xcurrent

i,m

)
≺ f (Xi,m)

Xi,m, otherwise

Xnew
i,f (t+ 1) =

{
Xcurrent

i,f , f(Xcurrent
i,f ) ≺ f (Xi,f )

Xi,f , otherwise
(1)

Xcurrent
i,m Xcurrent

i,fwhere  and  are male and female to be re-
newed based on adaptive mating between subpopulations
strategy, respectively. Their specific expressions are

 

Xcurrent
i,f = r ×Xi,f (t) + (1− r)×Xrand,m (t)

Xcurrent
i,m = r ×Xi,m (t) + (1− r)×Xrand,f (t)

(2)

r [0, 1]

Xrand,m Xrand,f

t

where  is defined as the random number between .
 and  are  the  male  and  female  randomly

selected from their subpopulation in the  iteration.
Figure 1 shows an illustration of  the adaptive mat-

ing between subpopulations strategy. The population size
is set as 10. Males and females are distinguished by dif-
ferent colors (only female positions updated are shown).
It  can  be  seen  that  newly  generated  female  snakes  are
conducive  to  explore  more  new  locations  in  the  search
space.  These  positions  are  mapped  from  the  decision
space to the objective space and updated to better posi-
tions by the domination relation. With the iterative evolu-
tion, the new dominated solution is closer to the Pareto
front of MOP.
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Figure 1  Adaptive mating between subpopulations strategy.
  

2. External archive local disturbance mechanism
Traditional  non-dominated  sorting  is  performed  on

the hybrid of the current population and original popula-
tion. The traditional external archive maintenance mech-
anism  directly  deletes  individuals  with  small  crowding
distances to  avoid  an  infinite  expansion  of  the  popula-
tion. Factly, although these solutions show poor diversi-
ty for  the  current  population,  they  still  have  some  cer-
tain potential abilities to guide population evolution than
other solutions. If these solutions are deleted, some posi-
tive solution information is  easily  lost.  Moreover,  in the
late  iterations,  the  elite  set  traps  into  local  optimal.  In
view  of  the  fact  that  SO  divides  the  snake  population

into  two  sub-populations, female  and  male.  It  is  neces-
sary  to  carry  out  archives’ maintenance  for  two  sub-
populations. Therefore,  an  external  archive  local  distur-
bance  mechanism  is  proposed,  which  is  expected  to
enhance the ability of  the algorithm to jump out of  the
local extremum and advance towards the Pareto front. It
should be emphasized that the external archive local dis-
turbance mechanism is used to maintain external archive
for subpopulations.

%

The  external  archive  local  disturbance  mechanism
does not need to perturb all individuals. When each sub-
population is updated, only the 50  individuals with the
lowest level of dominance and the smaller crowding dis-
tances  are  selected  for  local  re-search. For  early  itera-
tions, there are a few non-dominated solutions in the ex-
ternal  archive.  These  individuals  with  low  domination
levels should perform less disturbance in their local search
areas  because  they  have  a  lower  guiding  ability  for  the
next generation. In the late iterations, the number of non-
dominated solutions in the external archive is large, and
non-inferior solutions are disturbed more. The new solu-
tions and the next generation solutions are non-dominated
to ensure  the  dominated  relationship  between  the  solu-
tions. The updated external archive is used as the initial
population  for  the  next  iteration.  The  mathematical
expression for the local disturbance of a solution is

 

Xnew = X∗ +X∗ × α (3)

X∗

α

where  represents  a  non-inferior  solution  with  the
small crowding distance in the external archive.  is the
factor of  random disturbance,  and  its  mathematical  ex-
pression is

 

α = r × t

T
(4)

t

T

With the  increase  of  iteration  number,  the  distur-
bance range gradually expands, and the disturbance rate
is regulated by .

Figure  2 depicts  the  external-archive local  distur-
bance  mechanism  in  the  late  iterations.  The  maximum
capacity of the external archive is 10. In the current iter-
ation process, there are 16 non-dominated solutions used
to  update  the  external  archive.  First,  the  top  10  non-
dominated solutions with large crowding distances are di-
rectly stored  in  the  current  external  archive.  In  the  re-
maining 6 individuals with low crowding distances, 3 in-
dividuals  are  randomly  selected  for  local  disturbance.
These solutions are then performed non-dominated sort-
ing to update the external archive for the next iteration. 

3. Execution process of the IMOSO algorithm
An  IMOSO  is  proposed  based  on  the  above  two

strategies. Algorithm 1 gives the pseudocode of the pro-
posed IMOSO algorithm.
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Algorithm 1  Integrated external  archive local  disturbance
mechanism for multi-objective snake optimizer

N D

Kf Km

Require: Population  size ,  dimension ,  variable  upper
bound Ub and lower bound Lb, maximum iterations T,
set  females  ( )  and  males  ( )  to  be  disturbed  to
empty.

 1: Initialize the population;
 2: Calculate the fitness value for each individual;

Pm Pf

 3: Randomly divide the population into the male subpopu-
lation ( ) and the female subpopulation ( );

Pm Pf 4: Perform non-dominated sorting for  and ;
Archm

Archf Arch
 5: Update  the  male  sub-archive  ( ),  the  female  sub-

archive ( ), and the whole archive ( );
(t < T ) 6: while  do

P new
m P new

f 7: 　　Update  and  by the SO algorithm;
 8: 　　Cross the male and female subpopulations using (2);
 9: 　　Update the positions of males and females using (1);

Kf = [ ]10: 　　if  then
P 1
f = Pf ∪ P new

f11: 　　　　Merge the female population ;
N/2 Pf12: 　　　　Select the top  individuals and store in ;

13: 　　else
P 1
f = Pf ∪ P new

f ∪
Kf

14: 　　　　Merge  the  female  population 
;

N/2 Pf15: 　　　　Select the top  individuals and store in ;
16: 　　　　Update  the  females  that  need  to  be  disturbed

using (3);
17: 　　end if

Archf18: 　　Update the ;
Archm19: 　　Update the , as in steps 12–18 of Algorithm 1;

P = P0 ∪ Pm ∪ Pf20: 　　Merge the whole population ;
N P21: 　　Select the top  individuals and store in ;

Arch22: 　　Update the whole archive ( );
23: end while

Arch24: return .
 

IV. Experimental Results and Analysis
To verify  the convergence and diversity of  the pro-

posed  IMOSO  algorithm,  the  ZDT,  DTLZ,  and  WFG
test  suites  are  used  in  this  section.  It  should  be  noted

that  the  performance  of  IMOSO  on  ZDT  and  DTLZ
functions is similar to WFG functions. Limited by space,
this paper only shows the test results of all algorithms on
WFG  functions.  All  experiments  were  run  on  the  11th
Gen  Intel(R)  Core(TM)  i7-11700@2.50  GHz  operating
system, MATLAB R(2019a) version. 

1. Benchmark functions and comparison
algorithms

For  the  dual-objective  functions,  WFG1  function’s
Pareto  front  is  nonlinear  and  WFG2  function’s  Pareto
front turns on discontinuous concave surface. The Pare-
to front of WFG3 function is linear. The Pareto fronts of
WFG4,  WFG5,  WFG6,  WFG7,  and  WFG8  functions
show convex. On the three-objective functions, the Pareto
fronts of WFG1 and WFG2 functions are presented as a
waterfall  in  3D space.  The  Pareto  fronts  of  WFG8 and
WFG4 functions are a hypersurface in 3D space, and the
Pareto  front  of  WFG3 function  is  showed  as  a  straight
line  in  3D  space.  These  functions  are  the  international
common test standards and are challenging.

T N
Arch

IMOSO  is  compared  with  MOPSO,  NSGA-II,
MOBO3,  MOGWO,  MOSMA,  and  MOCS.  To  better
evaluate  two  proposed  strategies,  MOSO  based  on  the
elite non-dominated sorting is also compared. The maxi-
mum iterations ( ), the population size ( ), and the ex-
ternal archive capacity ( ) of all algorithms are set to
200,  100,  and  100,  respectively.  Meanwhile,  in  the
IMOSO algorithm, the capacity of each sub-archive is set
to 50.  The  remaining  parameters  of  comparison  algo-
rithms are set according to the original literature. To en-
sure  fair  competition  among  algorithms,  each  algorithm
is run independently for 30 times on each function. The
mean (mean) and standard deviation (std) of the experi-
mental results run for 30 times are taken as the statisti-
cal indicators.

Two crucial  aspects  of  an  EMOA  are  the  conver-
gence and diversity of Pareto optimal solutions. Inverted
generational  distance (IGD) [15]  and hypervolume (HV)
[16] are used as comprehensive metrics. 

2. Performance analysis on the dual-objective test
functions

p

Tables 1 and 2 show the IGD and HV values of the
IMOSO algorithm and 7 comparison algorithms on dual-
objective  WFG  suite.  To  avoid  accidental  results,
IMOSO is treated as a control algorithm and paired with
each  competitor  for  the  Wilcoxon  rank  sum  test.  This
paper sets the significance level at 5%. If the generated 
value is lower than 5%, it indicates that there is a signifi-
cant difference between the two algorithms in statistical
significance, represented by “+”. Otherwise, it is consid-
ered  that  the  difference  between  the  two  algorithms  is
not obvious, represented by “–”.

It is observed that for IGD and HV metrics, IMOSO
has 14  best  and  13  best  results  out  of  16  instances,  re-
spectively.  The  IGD  results  of  IMOSO  on  WFG1  and
WFG4 functions  are  more  significant.  For  WFG8  func-
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Figure 2  External-archive local disturbance mechanism.
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tion,  MOCS’s IGD  result  has  the  best  mean  optimiza-
tion  performance,  while  IMOSO gets  a  sub-optimal val-
ue.  In  terms of  HV metric,  the  mean results  of  IMOSO
on WFG functions are superior to other algorithms. The
Wilcoxon  rank  sum  test  results  show  that  IMOSO  has
the  highest  score,  which  prove  the  effectiveness  of
IMOSO more convincingly in the statistical significance.

Y

Figure 3 provides the boxplots of the HV metric ob-
tained  by  8  algorithms  running  30  experiments.  Larger
HV results mean better performance. Clearly, the results
obtained by IMOSO can be located in the higher -axis
positions among  these  functions.  The  differences  be-
tween the  upper  and  lower  limits  are  small,  which  fur-
ther  verify  the  strong  robustness  of  IMOSO.  Even

 

Table 1  Mean and standard deviation values of IGD metric obtained by different algorithms on dual-objective functions (WFG)

Fun. Metric Val. IMOSO MOSO MOPSO NSGA-II MOBO3 MOGWO MOSMA MOCS

WFG1
mean 6.29E−2 4.58E−1 (+) 6.02E−1 (+) 4.58E−1 (+) 4.10E−1 (+) 6.24E−1 (+) 6.19E−1 (+) 4.41E−1 (+)

std 4.05E−2 1.36E−2 4.61E−2 6.95E−2 6.56E−2 1.81E−2 1.33E−2 2.17E−2

WFG2
mean 5.20E−3 6.59E−3 (+) 1.59E−1 (+) 3.13E−1 (+) 5.61E−2 (+) 2.08E−2 (+) 1.23E−1 (+) 5.61E−3 (+)

std 5.26E−4 9.63E−4 8.31E−2 1.27E−1 3.20E−2 4.42E−3 3.01E−2 5.41E−4

WFG3
mean 5.35E−3 7.91E−3 (+) 8.97E−2 (+) 1.97E−1 (+) 5.16E−2 (+) 2.40E−2 (+) 1.14E−1 (+) 7.28E−3 (+)

std 3.49E−4 8.43E−4 4.70E−2 3.79E−2 3.11E−2 3.24E−3 2.38E−2 4.49E−4

WFG4
mean 5.57E−3 2.07E−2 (+) 7.67E−2 (+) 1.07E−1 (+) 3.25E−2 (+) 2.79E−2 (+) 1.01E−1 (+) 2.19E−2 (+)

std 2.96E−4 1.90E−3 5.03E−2 8.44E−2 9.21E−3 2.13E−3 2.03E−2 1.54E−3

WFG5
mean 2.43E−2 2.60E−2 (+) 6.53E−2 (+) 1.59E−1 (+) 3.24E−2 (+) 3.48E−2 (+) 2.86E−2 (+) 2.67E−2 (+)

std 1.09E−4 1.51E−3 5.28E−2 6.29E−2 1.81E−3 5.05E−3 1.11E−3 1.64E−3

WFG6
mean 1.87E−2 3.80E−2 (+) 5.21E−2 (+) 2.48E−1 (+) 7.06E−2 (+) 2.50E−2 (+) 4.93E−2 (+) 4.51E−2 (–)

std 3.99E−4 5.01E−3 3.74E−2 3.89E−2 2.32E−2 6.31E−3 3.20E−3 3.62E−2

WFG7
mean 5.40E−3 6.22E−3 (+) 4.96E−2 (+) 2.14E−1 (+) 1.20E−2 (+) 2.44E−2 (+) 1.38E−1 (+) 6.65E−3 (+)

std 3.16E−4 3.64E−4 3.38E−2 4.74E−2 2.52E−3 5.10E−3 1.16E−2 3.46E−4

WFG8
mean 4.64E−2 4.84E−2 (+) 1.49E−1 (+) 1.59E−1 (+) 6.19E−2 (+) 6.74E−2 (+) 1.36E−1 (+) 4.63E−2 (–)

std 5.62E−4 1.54E−3 6.36E−2 5.09E−2 1.13E−2 8.20E−3 1.53E−2 7.95E−4

Num. of +/– 8/0 8/0 8/0 8/0 8/0 8/0 6/2

P PNote: Bold indicates that the results obtained by the algorithm rank the first; “+” and “–” denote the Wilcoxon rank sum test  < 0.05 and > 0.05
between the comparison and IMOSO algorithms.

 

Table 2  Mean and standard deviation values of HV metric obtained by different algorithms on dual-objective functions (WFG)

Fun. Metric Val. IMOSO MOSO MOPSO NSGA-II MOBO3 MOGWO MOSMA MOCS

WFG1
mean 6.16E−1 1.72E−1(+) 5.95E−3(+) 1.10E−1 (+) 2.04E−1 (+) 2.20E−3 (+) 4.66E−3 (+) 9.47E−2 (+)

std 4.97E−2 1.88E−2 1.45E−2 5.42E−2 5.81E−2 9.30E−3 9.98E−3 2.42E−2

WFG2
mean 6.31E−1 6.28E−1 (+) 5.18E−1 (+) 4.62E−1 (+) 5.65E−1 (+) 6.10E−1 (+) 5.11E−1 (+) 6.29E−1 (+)

std 5.49eE−4 1.34E−3 5.98E−2 7.44E−2 4.25E−2 4.17E−3 2.88E−2 7.42E−4

WFG3
mean 5.79E−1 5.74E−1 (+) 4.82E−1 (+) 3.98E−1 (+) 5.14E−1 (+) 5.46E−1 (+) 4.27E−1 (+) 5.75E−1 (+)

std 4.60E−4 1.34E−3 3.51E−2 2.83E−2 4.06E−2 4.93E−3 2.71E−2 6.69E−4

WFG4
mean 3.44E−1 3.21E−1 (+) 2.66E−1 (+) 2.79E−1 (+) 3.06E−1 (+) 3.10E−1 (+) 2.26E−1 (+) 3.21E−1 (+)

std 4.41E−4 2.57E−3 2.20E−2 2.39E−1 1.32E−2 2.20E−3 2.35E−2 1.64E−3

WFG5
mean 3.13E−1 3.10E−1 (+) 2.68E−1 (+) 2.39E−1 (+) 3.01E−1 (+) 3.00E−1 (+) 3.07E−1 (+) 3.09E−1 (+)

std 2.37E−4 2.07E−3 4.47E−2 2.64E−2 1.82E−3 4.24E−3 2.52E−3 2.10E−3

WFG6
mean 3.21E−1 2.93E−1 (+) 3.00E−1 (+) 2.05E−1 (+) 2.46E−1 (+) 3.15E−1 (+) 2.84E−1 (+) 2.85E−1 (–)

std 5.59E−4 7.44E−3 2.04E−2 1.68E−2 3.37E−2 8.93E−3 4.64E−3 5.27E−2

WFG7
mean 3.45E−1 3.44E−1 (+) 3.05E−1 (+) 2.28E−1 (+) 3.38E−1 (+) 3.18E−1 (+) 1.78E−1 (+) 3.43E−1 (+)

std 4.98E−4 4.83E−4 2.03E−2 2.23E−2 3.72E−3 7.20E−3 8.49E−3 4.80E−4

WFG8
mean 2.83E−1 2.80E−1 (+) 2.08E−1 (+) 2.23E−1 (+) 2.61E−1 (+) 2.59E−1 (+) 2.18E−1 (+) 2.83E−1 (+)

std 9.17E−4 1.86E−3 2.87E−2 2.14E−2 1.64E−2 8.09E−3 1.14E−2 8.70E−4

Num. of +/– 8/0 8/0 8/0 8/0 8/0 8/0 7/1

P PNote: Bold indicates that the results obtained by the algorithm rank the first; “+” and “–” denote the Wilcoxon rank sum test  < 0.05 and  >
0.05 between the comparison and IMOSO algorithms.
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though IMOSO does not appear the same “+” on the top
as the other algorithms, its mean results are superior to
the  other  algorithms “+” on the  top.  On  WFG1  func-
tion,  the  extreme  value  of  IMOSO is  better  than  other
comparison  algorithms.  The  results  of  boxplot  further
show the strong convergence and diversity of the IMOSO
algorithm.

Overall, the IGD and HV metrics of IMOSO achieve

better results on almost all dual-objective functions. It is
stated that  the  proposed  adaptive  mating  between  sub-
populations  strategy  can  generate  better  non-dominated
solutions,  and  the  external  archive  local  disturbance
mechanism  can  guide  the  population  to  update  to  the
real Pareto front better. 

3. Performance analysis on three-objective
functions

With the increase of the number of objectives, it be-
comes  more  and  more  difficult  to  optimize  for  EMOAs.
In this subsection, the different algorithms are tested on
the  three-objective  WFG  functions  and  their  IGD  and
HV results are shown in Tables 3 and 4.

In terms of IGD and HV metrics, IMOSO achieves 12
and 14 better results. Specifically, the IGD mean and std
results of  IMOSO  are  more  obvious  and  strong  robust-
ness on  WFG5 function.  For  HV metric,  the  mean val-
ues by IMOSO rank the first in all functions. On WFG2
function, the HV metric of  IMOSO can reach 9.02.  The
results can be inferred that the adaptive mating between
subpopulations strategy can create better dominated so-
lutions. Meanwhile,  the  external  archive  local  distur-
bance mechanism can make full use of the information of
the non-inferior solutions and guide the evolution of the
population towards  the  real  Pareto  front  in  each  evolu-
tion  process.  On  WFG6  function,  IMOSO  is  obviously
superior  to  the  MOSO,  MOPSO,  NSGAII,  MOBO3,
MOGWO, and MOSMA algorithms. Compared with the
second-ranked MOCS, it also has a certain improvement.
Based  on  the  Wilcoxon  rank  sum  test  results,  the  IGD
and HV metrics of IMOSO have obvious advantages over
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Figure 3  HV  boxplot  comparisons  between  IMOSO  and  compared
algorithms on dual-objective functions.

 

Table 3  Mean and standard deviation values of IGD metric obtained by different algorithms on three-objective functions (WFG)

Fun. Metric Val. IMOSO MOSO MOPSO NSGA-II MOBO3 MOGWO MOSMA MOCS

WFG1
mean 5.48E−1 5.47E−1 (–) 7.93E−1 (+) 7.85E−1 (+) 5.54E−1 (–) 6.44E−1 (+) 6.85E−1 (+) 5.61E−1 (+)

std 9.69E−3 8.15E−3 5.95E−2 6.69E−2 6.05E−2 4.23E−2 2.48E−2 2.33E−2

WFG2
mean 6.28E−2 6.91E−2 (+) 1.72E−1 (+) 2.71E−1 (+) 1.33E−1 (+) 1.08E−1 (+) 2.04E−1 (+) 6.37E−2 (+)

std 3.65E−3 4.71E−3 2.19E−2 4.90E−2 3.35E−2 1.93E−2 3.65E−2 3.77E−3

WFG3
mean 6.71E−2 7.61E−2 (+) 5.51E−1 (+) 7.48E−1 (+) 3.16E−1 (+) 3.26E−1 (+) 1.95E−1 (+) 9.22E−2 (+)

std 8.15E−3 1.04E−2 9.34E−2 1.19E−1 8.21E−2 1.35E−1 1.57E−2 9.73E−3

WFG4
mean 9.43E−2 9.76E−2 (+) 1.92E−1 (+) 3.62E−1 (+) 1.14E−1 (+) 3.15E−1 (+) 1.36E−1 (+) 9.78E−2 (+)

std 4.04E−3 5.20E−3 2.54E−2 4.68E−2 1.30E−2 2.67E−2 9.97E−3 4.32E−3

WFG5
mean 7.85E−2 1.04E−1 (+) 4.06E−1 (+) 4.18E−1 (+) 1.03E−1 (+) 3.61E−1 (+) 9.42E−2 (+) 8.19E−2 (+)

std 3.16E−3 8.69E−3 2.93E−2 4.91E−2 1.46E−2 2.77E−2 7.18E−3 3.03E−3

WFG6
mean 1.08E−1 1.29E−1 (+) 4.53E−1 (+) 4.47E−1 (+) 1.60E−1 (+) 4.29E−1 (+) 1.45E−1 (+) 1.16E−1 (+)

std 8.95E−3 8.09E−3 3.83E−2 3.54E−2 3.11E−2 3.24E−2 9.97E−3 1.30E−2

WFG7
mean 8.72E−2 8.89E−2 (+) 4.34E−1 (+) 4.33E−1 (+) 1.13E−1 (+) 3.53E−1 (+) 2.21E−1 (+) 9.92E−2 (+)

std 4.66E−3 4.75E−3 2.95E−2 2.79E−2 2.66E−2 2.59E−2 7.08E−3 4.74E−3

WFG8
mean 1.34E−1 1.45E−1 (+) 4.65E−1 (+) 4.65E−1 (+) 1.54E−1 (+) 5.13E−1 (+) 2.36E−1 (+) 1.42E−1 (+)

std 3.99E−3 5.33E−3 3.39E−2 3.39E−2 2.06E−2 4.36E−2 1.21E−2 4.42E−3

Num. of +/– 7/1 8/0 8/0 7/1 8/0 8/0 8/0

P PNote: Bold indicates that the results obtained by the algorithm rank the first; “+” and “–” denote the Wilcoxon rank sum test  < 0.05 and  >
0.05 between the comparison and IMOSO algorithms.
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other algorithms.
Figure  4 describes  the  comparisons  between  the

Pareto  fronts  obtained  by  different  algorithms  and  the
real Pareto front on three-objective WFG2 function. Ac-
cording to the figure analysis, the Pareto fronts obtained
by IMOSO, the MOSO and MOCS are more evenly dis-
tributed  on  the  real  Pareto  front.  However,  MOSMA,
NSGA-II, and  MOBO3  obtain  poor  distribution  unifor-
mity of Pareto fronts.

In summary, the above results prove the better con-
vergence  and  population  diversity  of  the  proposed

IMOSO algorithm for the three-objective problems. 

V. Conclusion and Future Works
In  this  paper,  we  propose  an  integrated  external

archive  local  disturbance  mechanism  for  multi-objective
snake optimizer. First, the adaptive mating between sub-
populations strategy,  inspired  by  the  polyamorous  mat-
ing  system  of  the  snake  swarm,  is  constructed  to  make
the information  exchange  between  the  two  subpopula-
tions effective and decide to mate according to the domi-
nated relationship  between the  newly created individual

 

Table 4  Mean and standard deviation values of HV metric obtained by different algorithms on three-objective functions (WFG)

Fun. Metric Val. IMOSO MOSO MOPSO NSGA-II MOBO3 MOGWO MOSMA MOCS

WFG1
mean 2.98E−1 2.91E−1 (+) 2.68E−2 (+) 2.93E−2 (+) 2.61E−1 (+) 1.57E−1 (+) 1.12E−1 (+) 2.56E−1 (+)

std 7.65E−3 7.25E−3 3.88E−2 3.93E−2 6.41E−2 4.74E−2 2.79E−2 2.08E−2

WFG2
mean 9.02E−1 8.87E−1 (+) 7.29E−1 (+) 6.04E−1 (+) 7.73E−1 (+) 8.40E−1 (+) 6.95E−1 (+) 8.90E−1 (+)

std 4.23E−3 9.09E−3 3.08E−2 5.17E−2 5.71E−2 2.38E−2 3.98E−2 5.22E−3

WFG3
mean 3.72E−1 3.52E−1 (+) 5.52E−2 (+) 1.27E−2 (+) 1.41E−1 (+) 1.65E−1 (+) 2.49E−1 (+) 3.42E−1 (+)

std 5.41E−3 1.01E−2 2.94E−2 1.69E−2 4.91E−2 7.71E−2 9.27E−3 8.85E−3

WFG4
mean 4.64E−1 4.55E−1 (+) 3.75E−1 (+) 2.67E−1 (+) 4.52E−1 (+) 2.82E−1 (+) 3.91E−1 (+) 4.52E−1 (+)

std 5.98E−3 8.30E−3 2.23E−2 2.23E−2 1.25E−2 1.80E−2 1.64E−2 7.85E−3

WFG5
mean 4.88E−1 4.39E−1 (+) 1.83E−1 (+) 1.77E−1 (+) 4.52E−1 (+) 2.26E−1 (+) 4.53E−1 (+) 4.75E−1 (+)

std 4.75E−3 1.58E−2 1.63E−2 2.42E−2 1.65E−2 1.68E−2 1.23E−2 8.13E−3

WFG6
mean 4.46E−1 3.89E−1 (+) 1.81E−1 (+) 1.86E−1 (+) 3.66E−1 (+) 2.11E−1 (+) 3.75E−1 (+) 4.08E−1 (+)

std 2.02E−2 1.58E−2 2.12E−2 2.18E−2 3.06E−2 1.94E−2 1.54E−2 3.33E−2

WFG7
mean 4.92E−1 4.86E−1 (+) 1.93E−1 (+) 1.96E−1 (–) 4.92E−1 (+) 2.12E−1 (+) 2.48E−1 (+) 4.56E−1 (+)

std 7.30E−3 1.09E−2 1.90E−2 1.77E−2 1.74E−2 1.12E−2 9.48E−3 9.00E−3

WFG8
mean 3.98E−1 3.76E−1 (+) 1.64E−1 (+) 1.64E−1 (+) 3.55E−1 (+) 1.39E−1 (+) 2.59E−1 (+) 3.76E−1 (+)

std 5.96E−3 8.19E−3 1.64E−2 1.64E−2 3.58E−2 2.17E−2 1.63E−2 1.01E−2

Num. of +/– 8/0 8/0 7/1 8/0 8/0 8/0 8/0

P PNote: Bold indicates that the results obtained by the algorithm rank the first; “+” and “–” denote the Wilcoxon rank sum test  < 0.05 and >
0.05 between the comparison and IMOSO algorithms.
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Figure 4  Contrast diagram of Pareto fronts obtained by different algorithms on WFG2 function.
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%
and  the  original  individual.  The  external  archive  local
disturbance  mechanism  randomly  selects  50  individu-
als  with  small  crowding  distances  in  each  iteration  to
conduct  local  disturbance  and  non-dominated  sorting
with the solutions generated for the next iteration. Com-
pared  with  state-of-the-art EMOAs,  IMOSO shows  bet-
ter convergence performance and population diversity. 
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