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Abstract — With the evolvement of the Internet of things (IoT), mobile edge computing (MEC) has emerged as a
promising computing paradigm to support IoT data analysis and processing. In MEC for IoT, the differentiated re-
quirements on quality of service (QoS) have been growing rapidly, making QoS a multi-dimensional concept includ-
ing several attributes, such as performance, dependability, energy efficiency, and economic factors. To guarantee the
QoS of IoT applications, theories and techniques of multi-dimensional QoS evaluation and optimization have become
important  theoretical  foundations  and  supporting  technologies  for  the  research  and  application  of  MEC  for  IoT,
which have attracted significant attention from both academia and industry. This paper aims to survey the existing
studies on multi-dimensional QoS evaluation and optimization of MEC for IoT, and provide insights and guidance for
future  research in  this  field.  This  paper  summarizes  the  multi-dimensional  and multi-attribute  QoS metrics  in  IoT
scenarios, and then several QoS evaluation methods are presented. For QoS optimization, the main research problems
in  this  field  are  summarized,  and  optimization  models  as  well  as  their  corresponding  solutions  are  elaborated.  We
take notice of  the booming of  edge intelligence in artificial  intelligence-empowered IoT scenarios,  and illustrate the
new research topics and the state-of-the-art approaches related to QoS evaluation and optimization. We discuss the
challenges and future research directions.
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I. Introduction
With  the  Internet  of  things  (IoT)  techniques  being

applied in increasing aspects of industry and human life,
there have been growing requirements on quality of ser-
vice (QoS). The traditional centralized cloud-based com-
puting  infrastructure  faces  challenges  in  guaranteeing
real-time QoS in IoT scenarios. To this end, mobile edge
computing (MEC) has emerged as a novel computing ar-
chitecture, which makes full use of the computational re-
sources  of  the  communication  or  computing  devices  at
the edge of the network for processing part of the delay-
sensitive tasks. With MEC, the workload of the core net-

work can  be  reduced  and  the  response  time  can  be  de-
creased especially for data-intensive applications or data-
driven services.  Furthermore,  an  emerging  advanced  ar-
chitecture namely multi-access MEC can leverage multi-
ple  access  technologies  (cellular,  Wi-Fi,  Bluetooth,  etc.)
for handling  user  tasks  with  varying  network  and  com-
puting  resources.  Also, several  cutting-edge communica-
tion  techniques,  such  as  NOMA  (non-orthogonal multi-
ple  access),  SWIPT  (simultaneous  wireless  information
and power transfer),  and semantic communication, have
been integrated  into  MEC.  With  the  booming  of  artifi-
cial  intelligence  (AI)  technology,  MEC  has  received  a
tremendous amount of  interest  from both academia and 
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industry.
In MEC for IoT, differentiated requirements on QoS

makes QoS a multi-dimensional concept.  Firstly,  perfor-
mance is  one  of  the  most  critical  concerns,  which  in-
cludes response time (i.e., end-to-end delay), throughput,
utilization,  and  blocking  rate.  Secondly,  dependability
[1],  which  is  the  ability  of  a  system to  keep  on  reliable
service and avoid failures, becomes an important require-
ment,  especially  for  critical  applications  such  as  traffic
control,  healthcare  and  industrial  applications.  It  is  an
integrating  concept  that  encompasses  several  attributes,
which  are  availability,  reliability,  safety,  integrity,  and
maintainability.  Thirdly,  with the growing scales  of  IoT
systems deployed  in  reality,  energy  efficiency  is  an  im-
portant consideration.  Moreover,  pricing,  cost  of  owner-
ship, and other economic factors should also be account-
ed in QoS provision.

With all these QoS metrics, one of the most funda-
mental tasks in QoS provision is to precisely evaluate the
QoS with acceptable overhead. The most straightforward
way is to implant one or several modules with the abili-
ties of data collection and QoS measurement into the real-
life running MEC systems. However, such measurement-
based approaches require full implementation of the MEC
systems before QoS evaluation, which involves significant
overhead. To attack this challenge, computer simulation
techniques are introduced, which is to design and imple-
ment a set of computer programs to simulate or emulate
the dynamics of the MEC systems and then collect data
for  QoS  evaluation.  Furthermore,  analytical  models  are
applied for QoS evaluation, whose fundamental idea is to
construct  mathematical  models  and  conduct  theoretical
analysis under some certain circumstances or mathemati-
cal  assumptions.  With  simulation-based  and  analytical
approaches, different  solutions  and  policies  can  be  ana-
lyzed and compared without being implemented and de-
ployed, and thus those types of approaches are quite eco-

nomic  and  efficient  especially  in  the  design  phase  of  an
MEC system.

After QoS evaluation, the next step is its optimiza-
tion. It is the foundation of several practical problems in
MEC systems,  such  as  task  offloading,  resource  alloca-
tion, edge caching, service migration, user allocation, col-
laborative  computing,  and  resource  pricing.  The  basic
procedures  of  QoS  optimization  include  1)  constructing
an  optimization  model  and  then  2)  solving  the  model
with certain scheme or algorithm. The optimization mod-
el  can  be  classified  into  two  categories.  The  first  one  is
static optimization which can be solved by some mathe-
matical  approaches  or  numerical  solutions.  The  second
one  is  dynamic  optimization,  where  iterative  algorithms
or intelligent approaches are usually used for solving such
type of optimization problem.

Due to the complex hierarchy, high dynamics, data-
intensive  and  large-scale characteristics  of  MEC  infras-
tructure for  IoT,  traditional  approaches  of  QoS  provi-
sion  face  several  challenges,  such  as  state-space explo-
sion in system modeling, high complexity in QoS analy-
sis,  trade-off  among  multiple  QoS  attributes,  and  huge
search  space  in  QoS  optimization.  Researchers  in  this
field have made in-depth explorations and achieved cer-
tain  results  in  both  evaluation  theory  and  optimization
techniques.

This paper conducts a comprehensive survey on the
existing works in this field, shown as Figure 1. Specifical-
ly, multi-dimensional QoS metrics are systematically dis-
cussed, and QoS evaluation approaches are reviewed and
categorized;  then,  QoS  optimization  problems  in  MEC
for  IoT  are  summarized,  and  the  well-known QoS  opti-
mization  models  and  their  corresponding  solutions  are
presented.  Finally,  this  paper  provides  some insights  on
the  challenges  and  future  research  directions,  especially
for edge intelligence scenarios.

 
 

Multi-dimensional QoS metrics

Performance Dependability

Availability

Reliability

Maintainability

Integrity

Safety

Confidentiality

Response time

Throughput

Utilization

Blocking rate

Energy

Energy 
consumption

Power 
consumption Profit

Income

Rental cost

Cost of ownership

Price

Economic 
factors

Measurement-
based 

approaches

Analysis-
based 

approaches

Simulation-
based 

approaches

QoS evaluation QoS optimization problems QoS optimization models and solutions

Markov model

Queuing model
Stochastic Petri 

net

Stochastic
network
calculus

Task offloading

Edge caching

User allocation

Resource 
allocation

Service 
migration

Collaborative 
computing

Resource pricing and incentives Ordinal optimization

Game theory

Convex 
optimization

Static optimization Dynamic 
optimization

Markov decision 
process

Deep reinforcement 
learning

Lyapunov 
optimization

Figure 1  An overview of multi-dimensional QoS evaluation and optimization of mobile edge computing for IoT.
 

Although there have been several  surveys on MEC,
they usually focused on some specific issues (such as task
offloading  [2],  incentive  mechanisms  [3],  and  auction
schemes [4]),  or  studied some single  specific  QoS metric
(such as energy consumption [5] or safety [6]). This paper

aims  to  study  the  QoS  issue  from  a  multi-dimensional
viewpoint, and discuss the state-of-the-art approaches on
QoS  evaluation  and  optimization.  Also,  this  paper  tries
to discuss the challenges in QoS management brought by
emerging technologies in the era of edge intelligence, ex-
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pected to inspire further research in the future. 

II. Multi-Dimensional QoS Metrics
With the  wide  application  of  IoT,  diverse  require-

ments  for  QoS  of  MEC  systems  have  been  raised.  We
summarize  the  QoS  metrics  into  four  dimensions,  i.e.,
performance, dependability,  energy,  and  economic  fac-
tors. In each of the dimensions, there are also several at-
tributes. We illustrate their definitions as follows. 

1. Performance
Performance reflects the capability or efficiency of a

system providing services. It can be regarded as one of the
most important  aspects  of  QoS in  MEC.  It  includes  re-
sponse time, throughput, utilization, and blocking rate [7].

• Response time: Response time is the time between
a request for service and the fulfillment of  that request.
Sometimes, it can also be known as end-to-end delay. In
MEC  for  IoT,  the  response  time  can  include  several
parts, which are 1) communication delay for sending the
request and  the  results,  2)  waiting  time  when  the  re-
quest is queued in a buffer, and 3) execution time at the
server (or  processors).  Response  time  is  usually  mea-
sured in milliseconds (ms), but may be measured in mi-
croseconds  (μs)  in  some  high-performance  systems.  It
may range from 0 to infinity.

• Throughput:  Throughput  is  the  number  of  ser-
vices that an MEC system can perform in a unit time. It
is a reference metric to evaluate the maximum service ca-
pacity of the system, and is usually measured in bits per
second (bps), ranging from 0 to infinity.

• Utilization:  Utilization  reflects  the  usage  of  sys-
tem  resources,  which  can  be  expressed  by  the  ratio  of
hardware and  software  resources  being  used  in  the  ser-
vice process, ranging from 0 to 1.

• Blocking rate: The blocking rate is also called the
information  loss  rate  (usually  expressed  by  percentage),
which is  the  ratio  of  information  transmission  (user  re-
quests) loss  to  total  information  transmission  (user  re-
quests).  Within  an  MEC  system  with  bounded  buffer,
blocking rate should be paid attention to fulfill the satis-
faction of  users  by preventing  their  requests  from being
discarded. 

2. Dependability
Dependability  represents  the  ability  of  a  system  to

avoid  severe  service  failures  that  are  more  frequent  and
more severe  than is  acceptable  [1], which is  also  an im-
portant  consideration  in  MEC  [8]. Sometimes,  depend-
ability is a critical concern in IoT, especially for health-
care systems [9] and commercial IT service providers [10].
Dependability  is  a  comprehensive  metric  that  contains
the following six attributes.

0% 100%

• Availability: Availability represents the accessibil-
ity of  the  service  at  the  time  that  users  submit  the  re-
quests for service.  It is  usually measured by the steady-
state  probability  of  the  service  being  available,  ranging
from  (system  unavailable)  to  (system  always

available).
•  Reliability:  Reliability  reflects  the  ability  of  the

system to offer service continuously without interruption.
It  can  be  expressed  by  the  probability  of  the  system
keeping  providing  reliable  services  for  a  certain  amount
of time.

•  Maintainability:  Maintainability  describes  the
ability of  the  system  to  undergo  repairs  and  modifica-
tions. Sometimes, it can be measured by the mean time
to  repair  (MTTR),  ranging  from  0  to  infinity  with  the
unit of seconds, milliseconds, or microseconds.

0% 100%

• Integrity: Integrity reflects the ability to make the
service and  data  of  a  system  absent  of  improper  alter-
ations  or  destructions,  which  is  usually  expressed  by  a
probability (percentage) ranging from  to .

• Safety: Safety reflects the ability of the system to
remain without catastrophic consequences to users or the
environment once a failure occurs. It can be evaluated by
the  steady-state  probability  of  the  system  being  in  safe
state.

•  Confidentiality:  Some  literature  also  considered
confidentiality  as  a  dependability  metric,  representing
the ability of the system denying unauthorized access to
information.  Confidentiality,  integrity,  and  availability
are usually jointly considered as three attributes of secu-
rity.  However,  in  some  traditional  dependability  study,
confidentiality is excluded from dependability [11]. 

3. Energy
Recently,  energy  efficiency  has  attracted  significant

attention in  the  design  and  maintenance  of  MEC  sys-
tems  [12]. For  the  energy  dimension,  there  are  two  at-
tributes as follows.

E(t)

t

• Energy consumption:  The energy consumption is
the total  energy consumed by the system during a time
period. Energy consumption can have a very wide range
of values, from μJ (e.g., micro-electronic devices) to kWh
(e.g., household appliances) and even higher (e.g., indus-
trial manufacturing). We let  denote the energy con-
sumption from time 0 to .

P (τ)

τ

• Power consumption: The power consumption of a
system is the rate at which the system consumes the en-
ergy at a given time point, which is usually measured in
Watts (W). We let  express the power consumption
at an instant time .

It can be concluded from the above definitions that
the energy consumption is an integral of the power con-
sumption, which can be mathematically expressed as

 

E(t) =

ˆ t

0

P (τ)dτ (1)

 

4. Economic factors
Besides the  QoS metrics  mentioned above,  econom-

ic factors are also key metrics in related literature when
addressing QoS provision issues in MEC for IoT. It con-
sists of the five main attributes of price, cost of ownership,
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cost of  lease,  revenue,  and  profit.  All  the  economic  at-
tributes can be measured by the local or global currency.

• Price: Price is the amount of money that the user
has to pay for purchasing a service or using some resources.

•  Cost  of  ownership:  Cost  of  ownership  represents
the total cost of a service provider owning and maintain-
ing an edge computing infrastructure, which includes the
initial  hardware  and  software  purchase  costs  as  well  as
ongoing maintenance and upgrade costs.

• Rental  cost:  Rental  cost  represents  the cost  of  a
service  provider  for  leasing  edge  computing  resource  or
infrastructure, which usually depends on factors such as
lease term, resource type,  QoS level  (also called service-
level agreement, SLA), and competitive environment.

•  Income:  Income  of  a  service  provider  is  usually
defined by the total  revenue collected from its  users  for
providing all the services or resources during a time period.

• Profit:  Profit  of  a  service  provider  is  the  differ-
ence between its income and the total cost for providing
the services or resources including cost of ownership and
rental cost. 

5. Discussions
After deeply  studying  the  QoS  metrics,  some  re-

searchers  found  that  there  are  certain  interrelationships
among them, and the metrics may influence each other.

On the  one  hand,  there  are  interrelationships  be-
tween  metrics  within  the  same  dimension.  We  present
some examples as follows. Firstly, within the performance
dimension,  there  is  some  correlation  between  response
time and throughput,  which are roughly inversely relat-
ed. It has been well studied in computer network scenar-
ios, and a well-known comprehensive evaluation function
namely  power  formula  can  be  used  as  a  criterion  when
jointly optimizing these two attributes [13]. Secondly, for
dependability  dimension,  availability  can  be  sometimes
regarded as “transient reliability”,  and it  has been well-
accepted that a reliable system must have high availabil-
ity but an available system may or may not be very reli-
able. Also, it has been theoretically proved and formally
illustrated the interrelationships between maintainability
and safety, and that between availability and integrity in
[14]. Thirdly, it has been shown that there is an integral
relationship between power consumption and energy con-
sumption as in (1). Fourthly, in the economic factors, it
is quite straightforward that the income is related to the
price, and the profit is determined by the income minus
cost of ownership and rental cost.

On the other hand, although it has not been well ex-
plored,  existing  literature  demonstrated  that  metrics  of
different dimensions can also be interrelated.  For exam-
ple, there is a complex relationship between performance
and  reliability.  The  failure  of  system  components  and
their  recovery  or  repair  will  make the  system unable  to
respond and process services. Thus, user requests have to
be discarded or to be left waiting in the queue, resulting
in the increase of response time or blocking rate [15]. An-
other research work has shown that the workload can si-

multaneously affect the performance and reliability of the
system, which also  reveals  the interrelationship between
the metrics  of  both  performance  and  reliability  dimen-
sions  [16].  Another  well-known  example  is  the  trade-off
between performance and energy. High performance usu-
ally  means  high  power  consumption,  which  has  to  be
carefully  considered  in  most  computing  systems  [17].  In
addition, there is also a trade-off between reliability and
energy  consumption.  To  improve  reliability,  it  is  often
necessary  to  add system component  backups  to  prevent
component failures from affecting serviceability. However,
adding  backups  will  bring  additional  energy  costs  [18]. 

III. QoS Evaluation
QoS evaluation can provide a benchmark for system

design and optimization. The major task of QoS evalua-
tion is to analyze the influence of system configurations,
workload, strategies,  and other factors on the QoS met-
rics.  Well-known  approaches  of  QoS  evaluation  can  be
classified  into  three  categories,  which  are  measurement-
based approaches, simulation-based approaches, and ana-
lytical  approaches.  A comparison of  the advantages and
disadvantages of the different QoS evaluation methods is
shown in Table 1. 

1. Measurement-based approaches
The basic idea of measurement-based QoS evaluation

approaches is to measure the QoS metrics or their close-
ly related metrics directly from computer systems by de-
signing  and  implementing  certain  measurement  devices
or  computer  programs  and  deploying  them  in  real-life
systems  or  simulators.  Measurement-based  approaches
are the most straightforward and accurate among all the
three types of approaches. Meanwhile, however, they are
the  most  expensive,  because  the  system to  be  measured
has to be implemented and deployed before injecting the
measurement into the system.

At present, several research works exist dedicated to
the study of measurement-based QoS evaluation. Said [19]
presented  a  methodology  for  guaranteeing  QoS  in  IoT
environments  and  measured  the  performance  of  QoS/
QoE oriented scenarios in simulation environments built
with the NS-3 software package. Truong et al. [20] devel-
oped a mobile edge cloud cornering assistance (MECCA)
tool  which  is  used  to  check  performance  of  mobile  edge
cloud applications. 

2. Simulation-based approaches
The  simulation-based approach  is  to  design  a  pro-

gram to dynamically simulate all or part of the system’s
behaviors, and to statistically analyze the results by col-
lecting data during the program operation. Although it is
not  necessary  for  simulation-based approaches  to  imple-
ment  the  real-life  systems,  the  simulation  processes  are
still time-consuming and costly. It is quite challenging to
simplify the  simulation  models  or  speed  up  the  simula-
tion processes, without sacrificing acceptable accuracy of
QoS evaluation.
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There  are  many  simulation  toolkits  and  simulators
related to edge computing environments, including Edge-
cloudsim [21], iFogSim [22], DeFog [23], etc. Sharma et al.
[24]  used  iFogSim to  verify  the  effectiveness  of  resource
scheduling strategies. Benadji et al. [25] conducted simu-
lations  using  Cooja/Contiki  to  analyze  the  performance
of  Constrained  Application  Protocol  (CoAP)  congestion
control  at  runtime,  and the  simulation  results  show the
limitations  of  CoAP.  Ashouri et  al.  [26] identified  met-
rics  and  quality  characteristics  which  can  be  evaluated
by  simulation,  and  studied  existing  simulators  to  assess
which of the identified qualities they support. 

3. Analysis-based approaches
The main idea of analysis-based approaches is to es-

tablish a  mathematical  model  of  the  system  and  calcu-
late  the  QoS  metrics  through  mathematical  analysis.
They usually  need  to  introduce  some  mathematical  as-
sumptions  in  modeling  to  facilitate  the  mathematical
analysis, and thus the accuracy in QoS evaluation might
be  sacrificed.  However,  such  type  of  approaches  is  the
most  efficient  in  terms of  computation,  and also  reveals
the correlation  between  QoS  attributes  and  system  pa-
rameters.  Hence,  they  are  widely  adopted  especially  in
system design phase.

The  commonly  used  mathematical  models  include
Markov model,  queueing  model,  stochastic  network  cal-
culus (SNC), stochastic Petri net (SPN), etc.

a) Markov model
Markov model  has  been  widely  applied  in  perfor-

mance evaluation,  which  uses  Markov  process  to  de-
scribe  the  dynamic  behaviors  of  a  system.  In  Markov

model,  the  transitions  among  system  states  have  to  be
memoryless (also called Markov property), which can be
formally illustrated by the state transition probability.

Zhao et al. [27] presented an automated performance
tracking,  data  management,  and  analysis  framework  for
multi-tier  cloud  service  systems,  which  supports  fine-
grained analysis  of  hybrid  workloads  via  a  discrete-time
Markov modulated Poisson process.  In  [28],  the  authors
considered  reliability-aware  task  offloading  and  data
compression for data-intensive applications in MEC sys-
tems,  using  Markov  models  to  analyze  state  transitions
during edge server processing tasks and obtain the quan-
titative relationship  between  reliability  and  system  per-
formance.

b) Queueing model
Queueing model is a mathematical approach to for-

mulate the stochastic processes of task arrival and depar-
ture of  a buffered system. With known task arrival  and
service  process  distributions  and  task  scheduling  policy,
through  rigorous  mathematical  deduction,  some  metrics
can be derived, e.g., queue length, waiting time, sojourn
time,  and  server  utilization.  Then,  QoS  metrics  can  be
calculated from the analytical results.

The dynamic behavior of an atomic IoT service can
be  formulated  by  a  queuing  model,  and  thus  a  system
consisted by a large number of  IoT services  which have
complex interrelationships can be captured in a queuing
network  model.  By  solving  the  queuing  network  model,
the QoS metrics can be obtained. Based on Jackson theo-
rem and Burke theorem, some queueing network models
can  be  independently  solved  in  a  parallel  way,  which  is
quite  efficient  in  solving  complex  stochastic  models.  In

 

Table 1  Summary of QoS evaluation approaches

Approaches Advantages Disadvantages

Measurement-
based

• Authenticity: Able to provide actual system performance
data.

• Hardware cost: May require expensive measurement
equipment, thus increasing the difficulty of system deployment

and maintenance.
• Applicability: Measurement results can be used as the

input parameters of other approaches.
• Software cost: May occupy system computing, storage, and
network resources, involving additional performance overhead.

• Real-time: Able to monitor system performance in real
time.

• Difficult to scale up: Difficult to perform comprehensive
measurements in large-scale systems.

Simulation-
based

• Controllability: Able to simulate a variety of scenarios
and variables; researchers can precisely control and adjust

the parameters and conditions in the simulation
experiments.

• Discrepancy: Simulation results may differ from the
performance of the actual system.

• Dependability: No impact on the actual system. • Limitations: The accuracy of a simulation model is limited by
the complexity and precision of the simulation model.

• Low cost: Low cost compared to actual testing. • Complexity: Conducting precise simulations (or emulations) in
real-life scenarios may be extremely expensive.

Analysis-
based

• Flexibility: Able to analyse different scenarios by simply
tuning the parameters.

• Data requirement: A large amount of input data is needed to
support the analysis.

• Predictability: Able to predict system performance under
different conditions without system implementation and

deployment.

• Limited accuracy: The analysis results are affected by the
accuracy of the input data and the model.

• Low cost: Is the cheapest among the three approaches,
no need for deployment or coding.

• Dependence on assumptions: Analysis-based methods are
usually based on certain mathematical assumptions, which may

not be able to cover all the actual situations.
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[29],  Yousefpour et  al.  developed  a  queuing  model  for
edge computing nodes and gave a latency analysis model
for  each  link,  after  which  the  impact  of  the  offloading
policy on the system related hardware and software was
quantified based on the model. Huang et al. [30] investi-
gated age of information (AoI)-aware energy control and
computational offloading challenges, where the dynamics
of IoT  devices  and  edge  servers  are  captured  by  con-
structing a Markov queuing model.

c) Stochastic network calculus
SNC is another effective theoretical tool for evaluat-

ing  QoS.  It  is  a  successor  of  queueing  model  which  is
general enough to handle almost all task arrival and ser-
vice  process  distributions.  The  main  idea  of  SNC  is  to
use  stochastic  arrival  curve  and stochastic  service  curve
for  modeling  and mathematical  derivation through min-
plus convolution theory. The results of  SNC are usually
expressed  as  probability  bounds,  which  are  mainly  used
to analyze the QoS metrics.

Mei et  al.  [31] were  dedicated  to  analyze  and  opti-
mize the latency of MEC networks under two orthogonal
frequency division multiple access policies through SNC.
Narimani et al. [32] used SNC for QoS-aware resource al-
location and fault-tolerant operations in hybrid software
defined networking (SDN). Wang et al. [33] modeled the
data flow arrival and service process of narrow band In-
ternet of things (NB-IoT) under uniform distribution and
Beta  distribution,  respectively,  and  proposed  to  derive
access delay bounds for NB-IoT using SNC.

d) Stochastic Petri net
SPN is an evolution of original Petri net (PN) by in-

troducing  time  dimension  and  random  variables.  It  has
the similar powerful ability in describing complex dynamic
systems as  PN,  and meanwhile  is  able  to  quantitatively
analyze the QoS metrics. It is quite good at modeling the
systems with service dependencies,  task parallelism, and
synchronizations,  and  thus  has  been  widely  adopted  in
QoS evaluation of IoT systems.

Zuberek  [34] demonstrated  that  if  the  implementa-
tion delay time of a variation in an SPN model obeys an
exponential distribution, then the SPN model is isomor-
phic  to  a  Markov  chain,  and  most  system  performance
analysis  based  on  SPN  models  relies  on  the  property
whose state space is isomorphic to a Markov chain. After
converting the SPN model into a Markov chain, the per-
formance  metrics  of  the  system can  be  analyzed  by  the
theory  of  Markov  process.  Carvalho et  al.  [35]  used  the
SPN  model  to  describe  and  evaluate  the  MEC  system,
which  can  roughly  calculate  the  average  response  time
and resource utilization. 

IV. QoS Optimization Problems
With  QoS  evaluation,  the  next  step  is  to  optimize

the QoS metrics according to requirements from users or
service  providers.  There  are  several  research  problems
that could be addressed from QoS optimization perspec-
tive,  including  task  offloading,  resource  allocation,  edge

caching,  service  migration,  user  allocation,  collaborative
computing, pricing incentives, etc. 

1. Task offloading
Task  offloading  aims  to  transfer  resource-intensive

tasks to edge servers or cloud servers to address the short-
comings  of  end  devices  in  terms  of  computing  resource,
storage,  performance,  and battery  life,  so  as  to  improve
QoS. The challenges of task offloading come from the fol-
lowing three aspects. Firstly, multiple objectives (e.g., la-
tency,  bandwidth,  energy  consumption,  dependability,
and security) may make the problem extremely difficult
to formulate and solve, requiring multi-dimensional model
analysis  and  multi-objective  optimization  approaches.
Secondly,  in  fine-grained  offloading  schemes,  a  task  can
be decomposed into small subtasks and processed in par-
allel, which requires additional fine-grained QoS manage-
ment and partial offloading techniques. Thirdly, the dy-
namic  environment  of  IoT  services  requires  adaptive  or
real-time approaches for QoS management and optimiza-
tion. Huang et al. [36] presented a distributed offloading
scheme for the overlapping areas of MEC for IoT, which
effectively reduces  the  response  time  performance  met-
rics and improves QoS. Li et al. [37] proposed a task off-
loading scheme with statistical QoS guarantees based on
convex optimization theory and Gibbs sampling method. 

2. Resource allocation
The  resources  on  different  edge  servers  are  usually

highly heterogeneous, and different computing tasks have
different demands  on  resources  such  as  computation  re-
source and communication resource. Hence, how to allo-
cate the heterogeneous resources to different tasks is im-
portant  to  ensure  the  QoS  in  edge  computing  for  IoT.
Resource allocation faces challenges due to user mobility,
dynamic system states, multi-user multi-task competition,
security, etc. In multi-access MEC systems, the problem
may become more complex, and it is necessary to consid-
er  heterogeneous  resources  among  multiple  networks  in
QoS management and optimization. Due to the complex-
ity  and  dynamic  characteristics  of  resource  allocation
problem, dynamic optimization models and heuristic ap-
proaches are highly demanded. Also, some literature pro-
posed  joint  task  offloading  and  resource  allocation
scheme for QoS optimization. Shao et al. [38] proposed a
two-stage  business  collaboration  computing  mechanism
including resources allocation and task allocation to opti-
mize the  business  delay  and  energy  consumption  of  un-
manned aerial vehicle (UAV). An et al.  [39] studied the
joint optimization  challenge  of  task  offloading  and  re-
source  allocation  under  slow  and  fast  fading  channels,
which is solved using convex optimization theory. 

3. Edge caching
Edge caching  technology  can  well  reduce  the  work-

load  of  the  network  through  caching  the  content  that
end users need at the edge nodes. The challenges are to
answer  the  questions  including  what  to  cache,  where  to
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cache, and when to cache, which relies on the judgement
or prediction of user requirements and content populari-
ty.  Cache  prediction  and  content  optimization  (usually
their  combination)  schemes  should  be  designed  for  edge
caching. Liu et al. [40] investigated the challenge of data
caching in  MEC systems  from  the  perspective  of  a  ser-
vice provider, and proposed an approximate approach to
find a  near-optimal  solution,  with  the  aim of  improving
data  caching  revenue  under  access  latency  constraints.
Zhang et al.  [41] studied the joint service caching,  com-
putation offloading and resource allocation problems in a
multi-user  multi-tasking MEC  environment,  and  pro-
posed an efficient approximation algorithm based on se-
mi-infinite  relaxation  and  alternating  optimization  to
minimize  the  total  computational  and  latency  costs  for
all users. 

4. Service migration
Since the limited coverage of edge servers, the mobil-

ity of IoT users can increase access latency and even cause
disruptions to ongoing edge services. Service migration is
an effective way to ensure the continuity of services. The
primary  purpose  of  service  migration  is  to  determine
whether  a  service  should  be  migrated  from  the  original
edge server hosting the service to another edge server after
a dynamic  change  in  user  location  and  service  require-
ments [42]. Finding the optimal service migration decision
is challenging due to the mobility of users,  the dynamic
nature of service demand, and the limited and heteroge-
neous nature of edge server resources. The main solution
is to  develop  a  dynamic  and  seamless  switching  mecha-
nism  to  migrate  services  between  different  edge  nodes
without affecting the user experience, while at the same
time using  real-time  state  synchronisation  techniques  to
ensure data consistency during service migration. If scal-
ing  to  a  complex  multi-access MEC system,  it  is  neces-
sary to  consider  seamless  service  migration between dif-
ferent  network  access  technologies  to  ensure  QoS.  Liu
et al. [43] investigated the joint optimization problem of
service migration and resource allocation in MEC envir-
onments to minimize the access delay of IoT users. 

5. User allocation
User allocation focuses on solving the load balancing

problem of  edge  nodes.  Edge  servers  can  serve  multiple
users, but a user can usually connect to only one edge node.
Since the resources of edge servers are heterogeneous and
limited, an irrational user allocation strategy may result
in  some  edge  nodes  serving  too  many  users  while  other
nodes are  idle.  Overloading  leads  to  degradation  of  ser-
vice quality, while idling of nodes will reduce system re-
source utilization. Therefore, system resources can be uti-
lized more efficiently and service quality can be ensured
by reasonably allocating users to edge nodes that are idle
or have lower loads. However, solving the user allocation
problem becomes challenging due to factors such as mo-
bility of users, heterogeneity of edge server resources, and

dynamics of system state. To cope with the changing en-
vironment,  a  dynamic  load  balancing  mechanism  needs
to be designed. Peng et al. [44] designed a mobility-aware
and migration-enabled online decision scheme for solving
the real-time allocation challenge of edge users. Liu et al.
[45] focused on the user allocation problem in overlapping
areas, aiming at balancing the workload and minimizing
the communication time. 

6. Collaborative computing
Collaborative  computing  refers  to  the  co-operation

between  multiple  edge  devices  or  edge  servers  to  share
computational resources,  data,  and  tasks  for  more  effi-
cient and intelligent processing of computational tasks. It
can be categorized into: resource collaboration, data col-
laboration, intelligent collaboration, application manage-
ment  collaboration,  business  orchestration  collaboration,
and service collaboration. However,  edge devices usually
have different hardware and software configurations, and
this heterogeneity makes QoS optimization in collabora-
tive computing more complex. Also, the constant changes
in the edge environment require collaborative computing
systems  to  be  dynamically  adaptable  and  scalable.  To
address  these  challenges,  collaboration  among  cloud,
edge,  and  devices  as  well  as  the  task  dependencies  [46]
should  be  carefully  considered  in  the  mechanism  design
of collaborative computing. 

7. Resource pricing and incentives
In edge computing, edge servers may be deployed by

different infrastructure providers with certain computing
and  storage  capabilities.  In  addition,  users’ resource re-
quirements  are  usually  price-sensitive,  and  when  the
prices  of  edge  server  resources  are  set  at  a  low  price,
more users will be attracted to buy edge server resources;
and  when  edge  server  resource  providers  raise  the  price
of  edge  server  resources,  the  resource  requirements  of
users  will  be  tightened.  How  to  design  an  appropriate
pricing strategy  that  encourages  users  to  use  edge  ser-
vices  while  maintaining  the  profitability  of  the  provider
is a challenge [47]. In addition, the operating costs of edge
server  resource  providers  and  the  resource  demands  of
users fluctuate over time. Hence, it is important to design
an elastic pricing strategy that dynamically adjusts prices
based on  demand,  time,  and  resource  supply  and  de-
mand. For  the  more  complex  problem  of  resource  pric-
ing  in  multi-access MEC  system,  the  cost  and  perfor-
mance of multiple network access technologies need to be
considered  in  order  to  implement  a  reasonable  resource
pricing  strategy.  Li et  al.  [48]  defined  a  cloud  resource
pricing and requirement  allocation  model  with  the  opti-
mization objective  of  service  revenue maximization,  and
designed  a  price-incentivized  cloud  resource  auction
mechanism. 

8. Energy control
Energy  control  is  to  manage  and adjust  the  energy

usage  of  MEC  system  to  minimize  energy  consumption
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while  ensuring  user-level QoS.  Firstly,  the  energy  con-
trol  problem  can  be  solved  by  speed  scaling  technique
whose basic idea is to adjust the energy consumption of
the  devices  or  servers  according  to  dynamic  workload
and environment.  Secondly,  energy  harvesting  technolo-
gies  (solar,  thermal,  vibration,  etc.)  and  energy  storage
technologies  (super-capacitors or  lithium  batteries)  be-
come popular recently for the energy control in battery-
equipped devices. The challenges of energy control is how
to dynamically adjust the energy source and power con-
sumption  while  fulfilling  end-to-end  QoS  requirements.
Stochastic optimization techniques and intelligent dynam-
ic optimization approaches are commonly applied. Lu et
al. [49] designed a low-delay packet delivery scheme that
adapts to variation in the harvested energy.  Zhao et al.
[50]  investigated  the  dynamic  offloading  and  resource
scheduling problem between local  devices,  base stations,
and back-end clouds. The goal is to minimize energy and
computational  resource  consumption  in  MEC  systems
with energy harvesting devices. 

V. QoS Optimization Models and Solutions
In  order  to  solve  a  QoS  optimization  problem,  a

mathematical  optimization  model  that  formulates  the
problem has to be constructed. And then, corresponding

solutions  have  to  be  designed  and  implemented.  There
have  been  a  number  of  optimization  models  as  well  as
numerous approaches for solving them. Generally, in this
paper,  we  classify  them  into  two  categories,  which  are
static optimization and dynamic optimization. A compar-
ison  of  the  advantages  and  disadvantages  of  static  and
dynamic optimization approaches is shown in Table 2. 

1. Static optimization
A generic static optimization model consists of three

components:  optimization  objectives,  decision  variables,
and  constraints.  The  generic  form  of  an  optimization
model can be expressed as follows.

 

max/min
x

{f1(x), f2(x), . . . , fk(x)} (2a)
 

s.t. fi(x) ≤ 0, i = 1, 2, . . . ,m (2b)
 

hi(x) = 0, i = 1, 2, . . . , p (2c)

k = 1
k ≥ 2

The  optimization  model  can  be  roughly  classified
into  single-objective  optimization  model  (when )
and multi-objective optimization model (when ) ac-
cording to the number of optimization objectives. Also, a
multi-objective optimization problem can be transformed
into  some  single-objective  optimization  problems  using

 

Table 2  Summary of QoS optimization approaches

Approaches Advantages Disadvantages

Convex
optimization

(static)

• Global optimality: The solution obtained by convex
optimization is globally optimal.

• Convex limitation: Can only be used for convex
functions, but many practical problems are not convex.

• Mathematical foundation: Ensures the stability and
reliability of the algorithm. • Constraint restriction: The strict requirement of problem

constraints limits its applicability in solving real-world
problems.• Efficiency: In most cases, convex optimization problems can

be solved in polynomial time.

Game theory
(static)

• Modelling of multiple parties: Can describe the decision-
making process involving multiple parties and helps to analyze

the best strategy for each party.

• Complexity: Game models may be very complex and
difficult to solve.

• Diversity of Nash equilibrium: A game may have
multiple Nash equilibrium solutions.

Ordinal
optimization

(static)

• Efficiency: Can usually saves the computing budget by at
least one order of magnitude. • Optimality: Can only find good enough solutions.

• Mathematical foundation: Can be shown in a
mathematically rigorous way. • Rough: Uses rough models in performance estimation.

Markov
decision process

(dynamic)

• Considering uncertainty: MDP allows uncertainty to be
taken into account in decision making, making it more robust.

• Dimensionality catastrophe: When the state space is
large, the algorithmic solution becomes very difficult, i.e.,

the dimensionality explosion.

• Applicability: Can be used to model and solve a variety of
sequential decision-making problems.

• Need for models: Usually needs to model the
environment, but it is difficult to get an accurate model in

real-world problems.

Deep
reinforcement

learning
(dynamic)

• Adaptation to complex environments: Can handle problems
with high uncertainty and complex decision spaces.

• Resource consumption: A large amount of computational
resources are required to train complex deep networks.

• Efficiency: Able to solve MDP problems with large-scale
search space.

• Unstable training and poor interpretation: Difficult to
converge to a suitable policy and difficult to explain the

decision process inside the model.

Lyapunov
optimization
(dynamic)

• Stability: Can be proved that the queue stability is
guaranteed.

• Manual construction: The Lyapunov function needs to be
constructed manually, and the construction process may be

relatively complicated.
• Efficiency: Can solve dynamic optimization problem with

static optimization algorithms with low overhead.
• Limitations: Can only be used for specific types of

queueing systems.
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ε
some  techniques  such  as  simple  additive  weighting
(SAW), -constraint, and lexicographical order.

∑
k∈K Tk(x)

Taking  the  task  offloading  and  resource  allocation
(TORA)  problem  as  an  example,  in  an  end-edge-cloud
collaborative computing  scenario  for  IoT,  the  optimiza-
tion objective  can  be  set  to  minimize  the  offloading  la-
tency  for  all  tasks,  and the constraints  are
the  resource  limits  of  edge  servers  and  cloud  servers.  A
generic formulation  of  the  TORA  problem  can  be  ex-
pressed as follows.

 

max
x

∑
k∈K

Tk(x) (3a)

 

s.t.
∑
k∈K

fk ≤ F (3b)

x K
fk

k ∈ K F

x∑
k∈K xk = 1

where  is the offloading decision variable,  is the set
of  tasks,  is  the  amount  of  resources  allocated  to  the
task , and  is the available resources at the edge
or cloud server.  For the binary offloading problem, it  is
necessary  to  determine  whether  the  task  is  offloaded  to
edge server or cloud server, and the offloading decision 
is  usually set to 0 or 1.  The constraint usually contains

. For the partial offloading problem, the de-
cision variable can be set as the offloading ratio between
0 and 1. 

1) Convex optimization
For  a  static  optimization  model,  (e.g.,  (3)),  if  the

objective function is convex and the constraint set is con-
vex  set,  it  can  be  classified  as  a  convex  optimization
problem.  The  convexity  of  the  multivariate  objective
function needs to be determined by whether the Hessian
matrix is a semi-positive definite matrix, and if this con-
vex optimization problem also satisfies the Slater condi-
tion, the original problem has the same optimal solution
as the dual problem (i.e., strong duality), and solving the
original  problem  is  equivalent  to  solving  its  Lagrangian
dual  problem.  For  example,  the  Lagrangian  function  of
(3) is

 

L(x, λ) =
∑
k∈K

Tk(x) + α

(
F −

∑
k∈K

fk

)
(4)

λwhere  is  the  non-negative  Lagrangian  multipliers  for
the corresponding constraints.

g(α) = maxL(x, α)
minαg(α) α ≥ 0

The  dual  functions  is ,  and  the
dual  problem is  where . The dual  prob-
lem can be solved iteratively using the gradient method
with the following iterative formula

 

α
(z+1)
k =

[
α
(z)
k − ϕ(z)

(
F −

∑
k∈K

fk

)]+
(5)

ϕwhere  is the step length.
The local optimal solution of a convex optimization

problem  must  be  its  global  optimal  solution,  while  for

general  non-convex  optimization  problems,  it  is  difficult
to obtain the global optimal solution. The solution meth-
ods  for  nonconvex  optimization  problems  usually  use
block coordinate  descent,  successive  convex  approxima-
tion, projective gradient descent, etc. For nonconvex op-
timization problems  with  complex  constraints,  the  La-
grangian  relaxation  method  can  be  used  to  relax  the
complex constraints to the objective function, realize the
decoupling of multiple decision variables, and finally de-
compose the original problem into multiple subproblems
for solution. Although the Lagrangian relaxation method
can reduce the difficulty of solving, it will also reduce the
quality of the solution.

Currently,  convex  optimization  theory  has  been
widely used in QoS optimization. Sundar et al. [51] used
0-1  variables  in  the  relaxed  integer  programming  model
to  achieve  a  transformation  from  non-convex  to  convex
optimization and thus design heuristics. Liang et al. [52]
optimized  migration/switching  strategies  between  base
stations by jointly managing computational and radio re-
sources and devised an relaxation and rounding-based so-
lution method to maximize the total offload rate, quanti-
fy the MEC throughput and minimize the migration cost. 

2) Game theory
Game  theory  is  a  powerful  theoretical  framework

that can be used to analyze the interaction behavior be-
tween  multiple  participants,  and  can  help  for  designing
decentralized mechanisms. Each participant in a game is
selfish and  aims  to  maximize  the  value  of  their  respec-
tive utilities. We can model the optimization problem as
a classical game model and then find the optimal strate-
gy for each participant, i.e., each participant chooses the
strategy that is the most beneficial to themselves.

Game  theory  can  be  classified  into  many  types.
From the perspective of how well the participants know
the  other  participants,  game  theory  can  be  categorized
into complete  information  games  and  incomplete  infor-
mation  games.  From  the  perspective  of  whether  have
binding agreements, game theory can be categorized into
cooperative  and  non-cooperative games.  From  the  per-
spective of the time-series nature of behavior, game theo-
ry can be categorized into static and dynamic games.

G = {S1, S2, . . . , Sn : u1, u2, . . . , un}
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The  core  of  game  theory  is  the  Nash  equilibrium
[53].  In the game ,  if
a certain strategy combination  consists of
each strategy of each party to the game, the strategy 
of  any  game  party  is  the  best  response  to  the  rest  of
the game strategy of  the combination 

,  that is, 
 for any  is hold,

then  is  said  to  be  a “Nash  equilibrium”
of .

Huang et  al.  [54]  proposed  an  incentive  mechanism
based  on  a  two-stage  Stackelberg  game  to  inspire  users
to contribute computing resources for federated learning
(FL).  Chen et  al.  [55]  modelled  the  channel  selection
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problem for  multiple  UAVs  communicating  with  a  base
station  in  an  MEC  system  as  a  non-cooperative  game
and proved the existence of Nash equilibrium. After that,
the authors designed a multi-UAV communication chan-
nel selection approach to find the equilibrium policy sta-
tus for all UAVs. 

3) Ordinal optimization
Ordinal optimization  (OO)  is  another  efficient  ap-

proach  for  solving  large-scale  search-based  optimization
problems.  The main idea of  OO is “soft  optimization of
hard problems”, that is, the original optimization goal of
“finding  the  best  solution” is  softened  into “finding  a
good enough set with high probability”. Mathematically,
this objective can be expressed as

 

Pr [(G ∩ S) ≥ k] ≥ α (6)

G S
k

Pr(G ∩ S) ≥ k

where  represents the “good enough set”,  is  the set
of  solutions  obtained  by  OO,  is  called  the  alignment
level, and  is the alignment probability.

S

In OO-based optimization scheme, a crude model is
constructed for QoS evaluation. The crude model is used
for  ordinal  comparison  among  the  solutions  and  thus  it
can be computationally fast but rough in performance es-
timation, which  can  easily  screen  out  good  enough  de-
signs  and  thus  save  the  computing  budget.  With  OO
theory, the size of  can be precisely calculated accord-
ing to the noise level and problem type, and then precise
model for QoS evaluation is applied on the good enough
set  for  finding  the  near-optimal  solution.  It  has  been
shown that OO usually saves at least an order of magni-
tude  in  computational  budget  and  is  easily  combined
with other optimization methods.

Tan et  al.  [56]  investigated  the  joint  optimization
problem  of  task  offloading  and  resource  allocation  in
large-scale  MEC environment,  and  proposed  to  use  OO
theory  to  find  a  near-optimal  strategy  in  a  reduced
search space, solving the search space explosion problem
in  the  QoS  optimization  process.  Huang et  al.  [57] pre-
sented  a  novel  QoS-aware  dynamic  service  selection
scheme,  where  goal  softening  was  used  for  the  original
optimization problem and the service selection algorithm
was designed by OO techniques. 

2. Dynamic optimization
In  IoT environment,  the  internal  state  of  the  MEC

system  and  the  external  environment  are  time-varying.
In  order  to  capture  the  high  dynamics  of  MEC in  IoT,
dynamic  optimization  is  applied,  which  introduces  the
time  dimension  into  original  optimization  problem  and
aims at achieving the long-term QoS revenue. 

1) Markov decision process

(S,A, P,R, T )

Markov decision process (MDP) is a popular tool to
formulate  a  dynamic  optimization  problem.  In  general,
an MDP can be defined by a tuple  whose
the elements represent states, actions, transfer probabili-

t
st

at

s (s ∈ S) a (a ∈ A)
a (a ∈ A)

P (st+1 | st, at)
rt = R(st, at)

π∗

ty  functions,  finite  set  of  all  possible  rewards,  and time
series, respectively. During each decision time slot , the
current  state  of  the  environment  is  observed  and  an
action  is selected according to a certain policy, where
the policy can be considered as a mapping from an arbi-
trary  state  to  an  action . After  exe-
cuting the action , it is transferred to the next
state according to the transfer probability 
and  the  corresponding  reward  is  obtained
through  the  immediate  reward  function,  in  which  case
the  current  policy  and  the  transfer  probability  function
determine  the  long-term cumulative  reward.  The  objec-
tive  of  MDP  is  to  obtain  the  optimal  policy  that
maximizes the long-term cumulative reward. To this end,
the optimization objective of MDP can be expressed as

 

V (st)=min
at∈A

rt+γ
∑

st+1∈S

P [st+1 | st, at]V (st+1)

 (7)

γwhere  is  the  discount  factor.  The  optimal  solution  of
the MDP model can usually obtained by the value itera-
tion, the policy iteration, or Q-learning.

MDP  has  been  widely  used  in  QoS  optimization
problems  of  MEC  for  IoT.  Wang et  al. [58]  considered
two-dimensional  migration  in  the  MDP  setting  of  the
service migration  problem,  with  the  objective  of  reduc-
ing service delay. Zhang et al. [59] investigated the vehi-
cle edge computing task allocation problem, which main-
ly addresses the problem of when to assign tasks and to
whom, and describes it as a finite-time domain MDP to
minimize  the  latency  in  communication,  computation,
switching, and migration. 

2) Deep reinforcement learning
MDP  is  a  model-based  approach  that  requires  to

model  dynamic  features  of  the  environment  including
state transfer probabilities and reward functions.  There-
fore, it is challenging to solve MDP problems with large-
scale action spaces or continuous state spaces using tra-
ditional iterative MDP algorithms. For this reason, deep
reinforcement learning (DRL) has been introduced, which
involves  Q-learning  and  deep  neural  network  (DNN)
techniques. Compared to MDP, DRL adopts a more flex-
ible  and  adaptive  learning  approach,  where  the  DRL
agent collects empirical data through continuous interac-
tion with the environment and uses this data to update
and  optimize  the  DNN  to  find  the  optimal  policy.
Through  this  experience-driven  learning  approach,  DRL
is able to adapt to unknown, complex, and unstable envi-
ronments through continuous trial and feedback to grad-
ually improve its policy performance.

The  DRL  algorithms  can  be  classified  into  value-
based DRL and policy gradient-based DRL depending on
the optimization policy. The value-based DRL is the ap-
proximation  of  the  reward  value  function  using  DNN.
Similarly,  the  method  of  approximating  a  policy  with  a
DNN and finding the optimal policy using the policy gra-
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dient  method  is  called  policy  gradient-based  DRL.  The
value-based DRL algorithms mainly include deep Q-net-
work (DQN) and various improved algorithms based on
DQN. In DQN, DNN estimates the Q-value function by
receiving the state  as  input and outputting the Q-value
of each action, and then selects the optimal action by a
greedy strategy.  DQN  mainly  uses  two  techniques,  em-
pirical replay and target network, to solve the problem of
instability or even non-convergence when approximating
action-valued functions with DNN.

πθ(a|s) = P [a|s; θ]
a = µθ(s) a

θ
s

µθ(s)

In  the  policy  gradient,  policies  are  classified  into
stochastic  policy  and  deterministic
policy . For stochastic policies, actions  satisfy
a certain probability distribution with parameter  when
the current state is , so the same state will correspond
to different  actions,  while  deterministic  policies  corre-
spond  to  unique  actions  for  each  state  for  deterministic
policies . Corresponding  to  policies,  policy  gradi-
ents  are  classified  into  stochasticity  policy  gradient
(SPG)  and  deterministic  policy  gradient  (DPG).  The
common DRL  algorithms  based  on  policy  gradient  in-
clude  deep  deterministic  policy  gradient  (DDPG),  trust
region  policy  optimization  (TRPO),  and  asynchronous
advantage actor-critic (A3C).

At present, DRL has been widely applied to dynam-
ic  optimization  problems  in  high-dimensional  state  and
action  spaces.  Huang et  al.  [60] proposed  a  deep  rein-
forcement learning based dueling double deep Q-network
(dueling  DDQN)  algorithm  for  solving  the  problem  of
navigation for UAV pair-supported relaying in unknown
IoT systems.  Ke et  al.  [61] investigated  how to  guaran-
tee computational  offloading  efficiency  of  vehicular  net-
works and presented an adaptive computational offload-
ing  approach  based  on  the  DRL  to  obtain  the  optimal
policy. 

3) Lyapunov optimization
Lyapunov  optimization  has  shown  to  be  another

way  for  solving  dynamic  optimization  problem  in  MEC
for IoT.  It  is  good at  solving constrained dynamic  opti-
mization problems for queueing systems, especially in en-
suring the queue stability. By introducing the Lyapunov
drift-plus-penalty function,  the  original  dynamic  opti-
mization problem can be solved by transforming it into a
static optimization problem for each time slot. The main
steps of Lyapunov optimization are as follows.

Θ(t) = {Qi(t)}

Firstly,  we  need  to  create  a  virtual  queue  for  each
time-averaged  constraint  and  convert  the  constraints  to
the  stability  of  the  virtual  queue.  Secondly,  we  use  the
queue  vector  to  represent  all  the  queue
states in the system, then the Liapunov drift plus penal-
ty function can be defined as

 

L [Θ(t)] =
1

2

∑
Qi(t)

2 (8)

The  Lyapunov  function  represents  the  squeezed
state  of  the  queue  in  the  system.  To  jointly  consider
queue stability  and  optimization  objectives,  the  Lia-

punov drift plus penalty function is defined as
 

∆L [Θ(t)] + V E
[∑

fi(t) | Θ(t)
]

= E
[
LΘ(t+ 1)− (LΘ(t)) + V

∑
fi(t) | Θ(t)

]
(9)

V
V

t

where the parameter  is used to weigh the drift  func-
tion against the penalty function. If  takes a larger val-
ue,  it  means  more  focus  on  queue  stability,  otherwise
more  focus  on  optimization  goals.  Finally,  the  original
dynamic optimization  problem  is  transformed  to  mini-
mize the upper bound of (9), which is a static optimiza-
tion problem for each time slot  and can be solved us-
ing static  optimization  methods.  The  Lyapunov  opti-
mization method proves that the difference between the
solution  of  the  problem  and  the  optimal  solution  is
bounded if the original problem has a feasible solution.

 

lim
T→∞

1

T

T−1∑
t=1

E{f(t)} ≤ f∗ +
B

V
(10)

B f∗where  is a constant and  represents the optimal so-
lution  of  the  original  problem.  Moreover,  the  average
queue length needs to satisfy the following inequality

 

K∑
k=1

E {|Qk(t)|} ≤ B + V (f∗ − f)

ε
(11)

εwhere  is a constant.
The Lyapunov optimization algorithm can obtain an

effective  trade-off between  queue  stability  and  perfor-
mance, and is an online algorithm that requires only the
current state of the system when making decisions. How-
ever, the Lyapunov optimization algorithm is only appli-
cable  to  solve  Markovian  decision  problems  where  the
objective function and constraint function are time-aver-
aged functions.

Liapunov optimization has been widely used in con-
strained dynamic optimization problems. Zhou et al. [62]
applied Lyapunov optimization technique to address the
challenge  of  task  offloading  and  resource  allocation  in
UAV-assisted  multi-cloud  systems  with  the  objective  of
minimizing  UAV  energy  consumption  while  ensuring
queue  stability.  Huang et  al.  [63]  applied  the  Liapunov
optimization framework to solve the joint admission con-
trol  and  computational  resource  allocation  challenges  in
MEC-enabled small cell networks (SCNs). 

VI. Challenges in Edge Intelligence Era
With the rapid development of AI techniques, DNNs

have  been  applied  in  many  applications.  In  IoT,  DNNs
have  also  to  be  deployed  in  the  MEC  architecture  for
supporting  intelligent  applications.  Edge  intelligence,  as
a promising  technique,  has  attracted  increasingly  atten-
tion from both academic and industry. How to evaluate
and  optimize  the  QoS  in  edge  intelligence  is  one  of  the
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most challenging tasks to be addressed.  Follows,  we list
some  emerging  edge  intelligence  techniques,  and  discuss
the QoS evaluation and optimization issue in them. 

1. Federated learning
With the  explosive  growth  of  data  volume  of  vari-

ous  IoT  devices,  uploading  all  data  to  cloud  server  for
centralized processing will  be challenging because of  the
limitation  of  network  bandwidth,  storage  resources,  and
data privacy issues. For this reason, FL has emerged as a
novel distributed  learning  framework  for  edge  intelli-
gence. Instead of uploading original data to the cloud for
training,  edge  devices  just  use  their  local  data  to  train
the local deep learning (DL) models and upload the mod-
el  parameters  to  the  FL  server  at  the  cloud.  Then,  the
FL server will aggregate all the local models and obtain
the global  model  using  some  weighted  averaging  algo-
rithms,  such  as  federated  average  (FedAvg)  [64]. Com-
pared  to  the  traditional  cloud  computing  paradigm,  FL
enhances  data  privacy  and  reduces  the  workload  at  the
core network. However, it still faces several challenges in
QoS provisioning, as follows.

•  End-to-end  delay:  In  FL,  the  end-to-end  delay
consists of the following four parts. 1) The training time
of  the  local  models  on  the  IoT  devices  or  edge  devices
should be taken into account in QoS evaluation and opti-
mization.  2)  Model  parameters  (or  its  related  updating
information) need to be transmitted through communica-
tion channels (usually through wireless communications)
between the servers and devices, and thus the communi-
cation delay has to be fully considered. 3) At the service
site,  the data needs to  be processed and the aggregated
model is calculated, resulting in the aggregation time. 4)
The models should be trained iteratively until their con-
vergence, and hence the convergence time should be care-
fully  considered  in  the  calculation  and  optimization  of
the end-to-end delay.

• Resource management: The implementation of FL
relies mainly on parallel training on IoT devices and the
aggregation of parameters on global server. However, the
computational resources  are  usually  limited  in  IoT  de-
vices.  Improper  or  unbalanced  resource  allocation  may
lead to significant delays in synchronizing parameter ag-
gregation on the server resulting in a severe degradation
of  QoS.  Also,  the  resource  management  scheme  in  the
cloud site as well as the allocation mechanism of commu-
nication resources have impact on the QoS of FL. There-
fore,  how  to  design  an  optimal  resource  management
scheme is critical for QoS optimization in FL.

• Pricing  and  incentive  mechanism:  In  FL,  mobile
devices need  to  dedicate  their  computational  and  stor-
age  resources  to  data  training,  and thus  it  is  critical  to
recruit high-quality participants to improve model accu-
racy and reduce training time. However, participants are
usually individually rational and selfish, and may be re-
luctant to participate in FL because of  their  limited re-
sources and  supererogatory  cost.  In  addition,  an  adver-

sary can learn the participant’s data through the genera-
tive adversarial network, so the participants face the risk
of  privacy  disclosure,  adding  further  concerns  for  their
involvement. Pricing  strategies  can be  introduced to  in-
centivize participants  by  offering  monetary  compensa-
tion, discounts on computational resources, or other ben-
efits based on their level of contribution in FL. Addition-
ally,  leveraging  game  theory  and  economics-based ap-
proaches  in  designing  incentive  mechanisms  has  proven
effective in the context of FL. Therefore, designing effec-
tive incentive mechanisms in FL is a promising research
direction to solve the above problems. 

2. Edge inference
With  the  increasing  computational  capabilities  of

edge devices,  there  is  an inevitable  trend to embed ma-
chine  learning  related  computational  tasks  on  the  edge
for  execution.  How  to  efficiently  deploy  and  run  DL
models on edge nodes or IoT devices where both comput-
ing capabilities  and energy consumption are constrained
is challenging in edge intelligence scenarios [65]. The ex-
isting  neural  network  partitioning  schemes  including
both horizontal  and  vertical  partitioning  make  it  possi-
ble to deploy neural networks distributively on different
edge/IoT nodes. However, the study on its optimization
from  the  QoS  provisioning  aspect  still  remains  largely
unexplored. As  follows,  we  list  some  of  the  latest  tech-
niques of  edge inference and provide some insights from
the QoS viewpoint.

• Model segmentation: DL models usually consist of
multi-layer neuron  networks.  Model  segmentation  tech-
nique  can  partition  a  DL  model  into  several  parts  and
offload them to multiple edge servers or neighboring mo-
bile  devices.  Benefiting  from  the  collaboration  between
edge  nodes  and  IoT  devices,  the  QoS  of  edge  inference
can be enhanced. However, the selection of model parti-
tioning points has to be carefully studied considering the
available computational  and  network  bandwidth  re-
sources of different edge and IoT nodes [66]. In addition,
the connection between the layers after model segmenta-
tion may  cause  additional  communication  overhead  be-
tween nodes. The general process of determining the seg-
mentation points can be divided into three steps [67]: 1)
measuring  and  modeling  the  resource  cost  of  different
DNN  layers  and  the  size  of  intermediate  data  between
layers;  2) predicting the total  cost based on the specific
layer  configuration and network bandwidth;  3)  selecting
the  best  one  from  the  candidate  segmentation  points
based on latency, energy requirements, etc.

•  Early  exit:  To  accelerate  deep  model  inference,
the  model  early  exit  technique  saves  runtime  through
processing the output results of the more advanced net-
work layers  to  terminate  model  inference  early  and  ob-
tain  the  output  results.  Teerapittayanon et  al.  [68] pre-
sented  a  deep  network  architecture  BranchyNeta  which
adds  side-branching  classifiers.  This  architecture  allows
some  of  the  test  sample’s  prediction  results  to  exit  the
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network  early  when  the  samples  satisfy  high-confidence
inferences.  Although the  early  model  exit  technique  can
effectively reduce  the  resource  consumption,  it  also  re-
duces  the  model  accuracy.  Therefore,  the  trade-off be-
tween QoS and model  accuracy  has  to  be  carefully  bal-
anced when designing model exit scheme or choosing the
optimal exit points.

• Model compression: Model complexity can be re-
duced  by  compressing  DL  models  in  a  way  that  better
enables  low-latency  and  low-energy  model  inference  on
resource-constrained edge  devices.  However,  model  com-
pression will reduce the model accuracy, so how to trade-
off QoS and accuracy is still a challenge in this area. Liu
et  al.  [69]  presented  a  usage-driven  selection  framework
AdaDeep, which  can  adaptively  select  various  compres-
sion techniques  based  on  the  currently  available  re-
sources  to  form a  compression  model  for  optimal  model
inference.

• Model selection: There are usually multiple candi-
date  models  that  can implement  the  same DL function.
However, for  the  same input,  different  models  have  dif-
ferent resource consumption and model accuracy. There-
fore,  how  to  select  the  optimal  model  dynamically  and
adaptively for  the  input,  so  as  to  collaboratively  opti-
mize the resource consumption and model accuracy, is an
interesting  research  topic.  Taylor et  al.  [70]  proposed  a
machine  learning-based adaptive  model  selection  algo-
rithm that  automatically  selects  DNN models  according
to input and accuracy requirements.

•  Edge  caching:  In  edge  intelligence,  edge  caching
refers to caching data, models, or computation outputs of
DNN  at  the  edge  of  the  network  so  that  such  cached
contents  can  be  returned  directly  upon  user  requests.
The purpose of edge caching is to reduce the workload of
the centralized  services  in  the  cloud,  decrease  the  aver-
age response time of user requests, and enhance the ser-
vice  availability  and  reliability.  However,  comparing  to
the cloud,  the  computational  capability  and  storage  ca-
pacity of the edge nodes are limited, and hence it is im-
possible  to  cache  all  the  contents  that  users  request.
Therefore,  how  to  adaptively  adjust  the  cache  contents
according to the dynamic environments and varying user
preferences is one of the most important challenges to be
addressed.  Moreover,  the  DNN  model  consistency  and
computational security  at  the  edge  are  also  critical  fac-
tors affecting the QoS and user experience, which should
be taken into consideration in QoS evaluation and opti-
mization of MEC with edge caching techniques. 

3. Digital twin
A digital  twin  is  a  virtual  representation  of  an  in-

tended or actual real-world physical product, system, or
process. It leverages IoT devices for real-time data collec-
tion  and  edge  computing  for  simulation  and  decision
making.  As  an  emerging  technique,  several  aspects  in
digital twins still remain unexplored.

• Data synchronisation and accuracy: Digital twins

rely on real-time data synchronisation to ensure that the
digital twin is aligned with the state of the actual physi-
cal  system.  In  MEC  environment,  data  synchronisation
can become more complex due to issues such as network
latency, bandwidth limitations, and data loss. Therefore,
ensuring data accuracy and real-time availability of digi-
tal  twins  is  a  challenge.  Zhou et  al.  [71]  addressed  the
key  challenges  of  digital  twin  construction  and  digital
twin-assisted  resource  scheduling  such  as  low  accuracy,
significant iteration delays, and security threats.

•  Computing  capability  and  resource  constraints:
Edge devices typically have limited computing and stor-
age  resources,  while  creating  and  maintaining  complex
digital twin models may require significant computing re-
sources, conflicting with the resource constraints of edge
devices.  Therefore,  it  is  a  challenge  to  efficiently  build
and update digital twin models with limited resources. Li
et  al.  [72]  researched  the  digital  twin  driven  vehicular
edge computing  networks  for  adaptively  computing  re-
source management.

• Real-time requirements: Certain edge applications
require real-time response, such as industrial automation
and  autonomous  driving  systems.  In  these  applications,
the digital twin’s model needs to be updated in real time
to  reflect  changes  in  the  state  of  the  actual  system.
Achieving  real-time  requirements  can  be  challenged  by
network latency and computational limitations [71].

•  Security  and  privacy  protection:  Digital  twins
contain  detailed  information  about  the  physical  system,
so security  and  privacy  protection  is  an  important  con-
sideration. In edge intelligence environments, data trans-
mission may  pass  through  insecure  networks,  so  appro-
priate  encryption  and  security  measures  are  needed  to
protect  the  confidentiality  and  integrity  of  digital  twin
data.  Zhou et  al.  [73]  analyzed  potential  security  issues
during the migration of digital twin models in the Inter-
net of  vehicles  (IoV)  environment,  and  proposed  corre-
sponding defense methods against these network attacks.

•  Fault  tolerance:  Edge  environments  are  often
more  susceptible  to  external  interference  and  faults.
Therefore, digital twins need to have a certain degree of
fault tolerance  in  the  face  of  network  interruptions,  de-
vice failures and other abnormal situations in edge envi-
ronment to maintain system stability and reliability [71]. 

VII. Conclusion
With the  growing  popularity  of  IoT,  QoS  has  be-

come  one  of  the  most  important  concerns  in  many  IoT
applications.  QoS  evaluation  and  optimization  of  MEC
for  IoT  have  attracted  increasing  attention  from  both
academia and  industry.  This  paper  conducts  a  compre-
hensive survey on multi-dimensional QoS evaluation and
optimization  of  MEC  for  IoT.  Multi-dimensional  QoS
metrics  are  summarized  and their  formal  definitions  are
presented.  QoS  evaluation  approaches  are  introduced,
which are  classified  into  three  types  including  measure-
ment-based,  simulation-based,  and  analysis-based ap-
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proaches. Then, QoS optimization problems in real MEC
systems are summarized, and optimization models as well
as  their  corresponding  solutions  are  provided.  Finally,
the emerging edge intelligence is introduced, and the cor-
responding challenges of QoS provisioning are discussed.
This paper  is  expected  to  provide  a  comprehensive  re-
view and some insights of QoS research in MEC and IoT
areas.

Besides edge intelligence, there are still many future
research  directions  to  be  explored  in  this  field.  Firstly,
the IoT environment is highly dynamic, which poses seri-
ous challenges to the ability and efficiency of service of-
fering and its QoS provisioning. It is always valuable to
develop more  effective  and  adaptive  modeling  and  opti-
mization  approaches  for  IoT  scenarios.  Secondly,  as  the
scale  of  IoT systems  grows  exponentially  fast,  there  are
several  tough  challenges  to  be  addressed,  such  as  state-
space  explosion  in  model-based  QoS  evaluation  and
search-space explosion in QoS optimization. The efficien-
cy  of  the  QoS  evaluation  and  optimization  approaches
should  be  further  improved  to  attack  such  challenges.
Thirdly, emerging IoT scenarios and applications may re-
quire  new  models  and  approaches,  which  may  promote
the theoretical  and  technical  research  in  QoS provision-
ing and its related fields. 
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