

RESEARCH ARTICLE

A Distributed Self-Tallying Electronic Voting
System Using the Smart Contract

Jingyu YAO1,2, Bo YANG1, Tao WANG1,2,3, and Wenzheng ZHANG3

1. School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
2. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710119, China
3. Science and Technology on Communication Security Laboratory, Chengdu 610041, China

Corresponding author: Jingyu YAO, Email: jingyuyao@snnu.edu.cn
Manuscript Received July 2, 2023; Accepted December 8, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — For electronic voting (e-voting) with a trusted authority, the ballots may be discarded or tampered, so
it is attractive to eliminate the dependence on the trusted party. An e-voting protocol, where the final voting result
can be calculated by any entity, is known as self-tallying e-voting protocol. To the best of our knowledge, addressing
both abortive issue and adaptive issue simultaneously is still an open problem in self-tallying e-voting protocols.
Combining Ethereum blockchain with cryptographic technologies, we present a decentralized self-tallying e-voting
protocol. We solve the above problem efficiently by utilizing optimized Group Encryption Scheme and standard Ex-
ponential ElGamal Cryptosystem. We use zero-knowledge proof and homomorphic encryption to protect votes’ secre-
cy and achieve self-tallying. All ballots can be verified by anyone and the final voting result can be calculated by any
entity. In addition, using the paradigm of score voting and “1-out-of-k” proof, our e-voting system is suitable for a
wide range of application scenarios. Experiments show that our protocol is more competitive and more suitable for
large-scale voting.
Keywords — Self-tallying, Electronic voting system, Distributed voting, Smart contract.
Citation — Jingyu YAO, Bo YANG, Tao WANG, et al., “A Distributed Self-Tallying Electronic Voting
System Using the Smart Contract,” Chinese Journal of Electronics, vol. 33, no. 4, pp. 1063–1076, 2024. doi: 10.23919/
cje.2023.00.233.

I. Introduction
Compared to traditional election methods, electronic

voting (e-voting) has great advantages due to its freedom
from space constraints. There are many application scen-
arios for e-voting, such as board elections, crowdsourcing
[1], crowdsensing [2], feature selection [3]–[5], extreme
learning machine [6] and result filtering [7], [8]. It can be
seen that e-voting is very important. Many scholars have
made great contributions to the development of e-voting
[9]–[12].

A blockchain is a public, append-only, immutable
ledger, which plays an important role in e-voting proto-
cols [13], [14]. Compared to election protocols [15]–[17]
with a trusted authority, e-voting protocols [10]–[13], [18]
without trusted parties have more advantages in protect-
ing privacy and ensuring security, where blockchain and
Group Encryption Scheme play important roles.

In decentralized e-voting protocols, self-tallying is an

important property, which was introduced by Kiayias et
al. in 2002 [9]. It means that the voting result can be cal-
culated by any entity. Every step in self-tallying e-voting
protocols can be verified to ensure correctness and dis-
pute freeness. To the best of our knowledge, the abortive
issue or adaptive issue are the problems faced by most
self-tallying e-voting protocols [9], [12], [13], [16], [18]–[22].
In addition, due to high computational overhead, some
e-voting protocols [12], [19] are not suitable for large-
scale voting. Using Intel Software Guard Extensions
(SGX), Yang et al. [10] designed an e-voting protocol
without the abortive issue and the adaptive issue. But
the security of their solution depends entirely on SGX
and the reliance on SGX limits the application scenarios
of their scheme.

In this paper, we propose a self-tallying e-voting
protocol using a smart contract deployed on Ethereum,
which can be replaced by any blockchain that supports

Associate Editor: Prof. Debiao HE, Wuhan University.

Chinese Journal of Electronics
vol. 33, no. 4, pp. 1063–1076, July 2024
https://doi.org/10.23919/cje.2023.00.233

smart contracts. We use the paradigm of score voting in-
troduced in [12] to make our scheme suitable for more
scenarios. In addition, we have optimized the Group En-
cryption Scheme [11], [18] through sorting to make it
more suitable for our system. By combining optimized
Group Encryption Scheme with standard Exponential El-
Gamal Cryptosystem, the abortive issue and the adap-
tive issue are effectively solved simultaneously. Our
scheme can tolerate interruptions by any number of vot-
ers and the last voter cannot get the voting result in ad-
vance. Moreover, our solution does not require any trust-
ed party.

1. Contributions
The contributions of this paper are summarized as

follows:
1) We present a secure, verifiable, and self-tallying

e-voting protocol where any entity can verify the ballots
and calculate the voting result. In addition, our system
does not require a trusted administrator.

2) The abortive issue and the adaptive issue are
solved efficiently by utilizing optimized Group Encryp-
tion Scheme and standard Exponential ElGamal Cryp-
tosystem. If there are some voters who do not vote, they
will be removed and the rest active voters can restore the
voting process efficiently and complete voting. More de-
tails about this case can be found in Section V. For the
adaptive issue, the last voter cannot get the final voting
result in advance without collusion with the administra-
tor. The voting result can only be calculated after the
administrator’s secret key is published.

3) Experiment shows that in our voting system,
computation overhead of each voter is lower and the
proof size is smaller compared to the works closely relat-
ed to ours. And of course, we have a faster verification
process. So we believe our scheme is suitable for large-
scale voting.

2. Structure of this paper
The rest of this paper is structured as follows. Sec-

tion II presents the research closed to ours. Section II de-
scribes the cryptographic techniques used in our paper.
Section IV shows the system and threat model of our
scheme. Section V presents the concrete construction of
our system. Section VI shows the security analysis of our
protocol. Section VII presents the efficiency analysis of
our scheme and the comparison with two closed proto-
cols. Section VIII shows a summary of our protocol and
the prospects of our future research.

II. Related Work
In this section, we have compared our work with the

research closely related to ours. The origin of the self-
tallying voting system can date back to the work of
Kiayias et al. [9], who proposed an election paradigm and
realized the first self-tallying voting protocol where both
strong ballot privacy and fault tolerance were captured.

n
ri,j ∈ Zq n∑n

j=1ri,j = 0

∏i−1
j=1yj/

∏nv

j=i+1yj nv

yj vj

(g(yi)xi/g(xj)yj)gvm xi yj)

gyi gxj

vm

For a candidate in [9], each voter needs to select ran-
dom values (is the number of voters and

). Because the computational overhead of
per voter for each candidate has size proportional to the
number of voters, this election protocol is not suitable for
large-scale election. References [11]–[13], [19], and [21] re-
alize self-tallying voting protocols using similar crypto-
graphic techniques In these schemes, the computation
overhead of voters is too large to support large-scale elec-
tions and the overhead of obtaining public keys from the
blockchain is expensive, each voter needs to compute

 where is the number of voters and
 is the public key of voter . Compared to above

works, Zeng et al. [18] reduced user’s computational
overhead while maintaining self-tallying, each voter
needs to calculate where (, are
voter’s secret keys, (,) are public keys published
by other voters, and is the number of the candidates.
It is obvious that the computational overhead of voters is
very low. By optimizing the idea in [18] and combining it
with other cryptographic techniques, our system is more
suitable for large-scale voting compared to the above
works and the following problems are solved by us.

Some of the problems are caused by the trusted set-
ting. For genetic model of e-voting protocol in [23], the
clear-text ballots are encrypted by the polling office us-
ing a blinding share and the sum of all shares is equal to
zero. Then the polling office and the voters sign the
blinded ballot and anyone can decrypt it and get the
blinded ballot. By adding all the blinded ballots, anyone
can get the final result of voting, which meets the char-
acteristics of self-tallying. But the polling office can get all
the clear-text ballots in advance, which may undermine
the fairness of the scheme. The protocol in [17] regards
money as a voting tool and the transactions between vot-
ers and candidates as ballots without modifying the con-
struction of Zcash protocol. Inheriting the characteris-
tics of Zcash, this election protocol realizes transparency
and anonymity. But the trusted organizer may give vot-
ers different amounts of currency to undermine the fair-
ness of voting. Yu et al. [14] presented an e-voting proto-
col where the anonymity is realized by using short link-
able ring signatures (SLRS). It realizes the independence
of the platform and can be used for large-scale elections.
However, the administrator in voting protocol can ob-
tain the candidates’ information as it is encrypted by the
administrator’s Paillier public key, which may break the
fairness of their e-voting protocol. Chaieb et al. [15] de-
signed a voting protocol where a trusted registration
server and an election administrator are needed. In [15],
each voter needs to be authorized by the trusted party
and the authorization is the information encrypted by
the trusted party using the private key, so the privacy of
votes may be compromised. With Shamir’s secret shar-
ing proposed in [24], Huang et al. [16] proposed a self-
tallying scheme where the privacy of voters is protected
under certain conditions. If the election authority con-

 1064 Chinese Journal of Electronics, vol. 33, no. 4

spires with any candidate, the voting content of that
candidate can be restored in advance. In [25], a trusted
counting node is responsible for decrypting the voter’s
encrypted data and counting the votes. Each voter’s vot-
ing information is encrypted using the counting node’s
public key, so the security of the protocol depends on the
security of the counting node. As the counting node can
get the voting information in advance, it is difficult to
guarantee fairness and verifiability of the scheme. Com-
pared above protocols [14]–[17], [25], the administrator in
our scheme is trustless, which means the administrator
cannot affect the security of our protocol.

The abortive issue and the adaptive issue are also
important problems faced by many voting systems. The
protocols in [11], [12], [19], [21], [22], and [26] cannot re-
sist abortive issue for more than one voter and clearly
the adaptive issue remains to be solved. Although the
adaptive issue in [13] is solved, the abortive issue is not
fundamentally resolved by requiring absentee voters to
cast a zero-point ballot to a candidate set in advance.
With similar technology in [18], reference [20] further
solves the collusion of neighboring voters and the ab-
sence of some voters, but it cannot solve the absence of
adjacent voters. Javani et al. [26] proposed an e-voting
system called boardroom voting with oblivious transfer
(BVOT) where the main novel feature is its use of oblivi-
ous transfer (OT) to provide perfect ballot secrecy and
ensure correct vote casting. Doing so avoids the need for
voters to carry out or verify complex zero-knowledge
proofs. It reduces the number of checks and verifications
by hiding the information necessary for cheating from
the adversary. Compared to our work, this scheme has a
significant abortive issue, as it cannot calculate the final
voting result when any voter does not vote. In addition,
the voting process of this system is more complex. After
the voting phase, all voters must publish a decryption
share which will be used to calculate the final result. In
our system, anyone can directly calculate the voting re-
sult through voting information with the administrator’s
secret key. Moreover, as described in the BVOT article,
its design is suitable for small-scale voting scenarios, such
as board elections, while our design can be suitable for
large-scale voting scenarios. Compared to above works,
Both the abortive issue and the adaptive issue are solved
efficiently in our protocol. We can solve the abortive issue
of any voter with low computational overhead.

Xue et al. designed an e-voting system called ACB-
Vote (ACB, anonymously convertible ballots) [27]. Al-
though the ACB-Vote does not use self-tallying technolo-
gy, it achieves anonymity, fairness, and universal verifia-
bility using the cryptographic tools such as BBS+ signa-
ture, collision-resistant hash algorithm, and convertibly
linkable signatures. ACB-Vote has no abortive issue and
adaptive issue. However, ACB-Vote uses two non-collude
converters who are responsible for ballot conversion to
prevent duplicate voting while maintaining user ano-
nymity. This is inevitably required due to the anonym-

ity of voters and the exposure of the ballots’ contents in
tallying phase. This undoubtedly increases system securi-
ty risk. In our system, voting content is not exposed even
during the tallying stage, so, we do not need the convert-
ers, which makes our system more elegant and more se-
cure. Chentouf et al. [28] proposed a secure e-voting sys-
tem based on blockchain. By utilizing the transparency
and tamper resistance of blockchain, this voting system
ensures the security of voting to a certain extent. How-
ever, the voting content is stored in clear text on the
blockchain, which is not conducive to protecting the pri-
vacy of voters. In addition, This can cause the adaptive
issue. In our system, the ballots’ contents of voters will
not be exposed at any stage of voting, the privacy of vot-
ers is well protected, and our solution does not have the
adaptive issue. The constructions of e-voting systems in
the works [29]–[31] are very similar. They have detailed
and strict regulations for the management of users’ iden-
tity. The voting information is recorded on the block-
chain. This can prevent tampering with voting informa-
tion, but cannot guarantee the privacy of voters. Due to
the independence of each voter, interrupted voters will
not affect the final vote counting stage. With the fact
that each voter can see the voting information of other
voters during voting, this scheme has the adaptive issue.

With Intel SGX, Yang et al. [10] presented a dis-
tributed SGX networked system (DSGXNS) to realize e-
voting. The abortive issue is naturally resolved with
SGX. The voters in [10] do not need to calculate their
own ballots, but to send the scores of candidates and cor-
responding random numbers to SGX in an encrypted
manner, then SGX will calculate the ballots of each vot-
er and publish them on the bulletin board. The security
of the protocol depends on the security of SGX and the
inevitable requirement for SGX will limit the application
scenarios of the voting protocol. In Table 1, we compare
our work with closed e-voting protocols [9]–[19], [21],
[22], [25] from thirteen aspects, including efficiency, prop-
erties, and security requirements. For computational
overhead in voting phase, although the cost of each vot-
er in our protocol scales linearly in the number of candi-
dates, the cost is low due to the limited number of candi-
dates in reality. In addition, there are no trusted authori-
ties in our scheme. Moreover, the abortive issue and the
adaptive issue are effectively solved simultaneously. Al-
though Yang et al. [10] also solved these two problems,
their scheme relies heavily on SGX.

III. Preliminary

1. Exponential ElGamal Cryptosystem

λ
(G, p, g)

SP = (G, p, g)

SysGen The system parameter generation algo-
rithm takes as input a security parameter . It chooses a
cyclic group and returns the system parameters

.

SP
KenGen The key generation algorithm takes as in-

put the system parameters . It ramdomly chooses

A Distributed Self-Tallying Electronic Voting System Using the Smart Contract 1065

α ∈ Zp g1 = gα

(pk, sk)
, computes , and returns a public/secret

key pair as follows:

pk = g1, sk = α

m ∈ G pk
SP r ∈ Zp

CT

Encrypt The encryption algorithm takes as input a
message , the public key , and the system pa-
rameters . It chooses a random number and re-
turns the ciphertext as

CT = E(m) = (C1, C2) = (gr, gr1 · gm)

CT sk
SP CT = (C1, C2)

Decrypt The decryption algorithm takes as input a
ciphertext , the secret key , and the system param-
eters . Let . It decrypts the message by
computing

C2 · C−α
1 = gr1g

m · (gr)−α = gm

Homomorphism ElGamal encryption has an inher-
ited homomorphic property, which allows multiplication
and exponentiation to be performed on a set of cipher-
texts without decrypting them, such as

E(m1) · E(m2) = (gr1 , gr11 · gm1)× (gr2 , gr21 · gm2)

= (gr1+r2 , gr1+r2
1 · gm1+m2) = E(m1 +m2).

2. Zero knowledge proof
Based on the non-interactive proof of knowledge of a

secret in [32] and the 1-out-of-k zero knowledge proof in
[12], We construct a zero knowledge proof protocol for
our scheme. Each voter must prove that he/she knows

PoK{x : gx}

x
SC = {p1, p2, . . . , pn}

n OoKPoK{∃pi ∈ SC :
c = gpipkr}

c
pi S

the secret values of the ballots, we use to
denote a non-interactive zero knowledge proof of the se-
cret . In addition, The score in each ballot should be
within a specific range, we use to
denote a public set of values and

denote the 1-out-of-k zero knowledge proof
where the ciphertext is the result of encrypting an ele-
ment in the set .

3. Group Encryption Scheme

i i ∈ [1, nv]
xi, yi

gxi , gyi

i Yi=gyixi+1−xiyi−1

Y1 =gy1x2−x1yn

Yn=g
ynx1−xnyn−1∏n

i=1Yi = 1

Figure 1 presents one of key ideas of our e-voting
protocol. Each voter () has to select two se-
cret keys () and submits the corresponding public
keys (). Then the smart contract randomly sorts
the public keys and the generates a list of voters. Each
voter needs to calculate secretly. Note
that the first voter in the row calculates
and the last voter in the row calculates .
We have . We combine this technology with
Exponential ElGamal Cryptosystem mentioned in Sec-
tion III.1 to construct our e-voting system.

g1

g1
g2

g2
g3

g3
gi
gi

gn
gn

Figure 1 Public keys graph.

IV. System and Threat Model
In this section, We first present our system model,

and then introduce the threat model and security goals
of our scheme.

Table 1 Comparison of electronic voting protocols

Scheme
Properties

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

[12] C1 Yes Yes Yes No No Yes Yes Yes Yes Multiple Score voting No

[18] C2 Yes Yes No C7 No Yes Yes Yes Yes Multiple nc1 from Yes

[13] C3 Yes Yes Yes No Yes Yes Yes Yes Yes Multiple nc1 from No

[15] C4 No No Yes Yes Yes Yes Yes Yes Yes Multiple C7 Yes

[19] C3 Yes Yes Yes No No Yes Yes Yes Yes Single Yes or No No

[11] C1 Yes Yes Yes No No Yes Yes Yes Yes Multiple Score voting No

[9] C2 Yes Yes Yes Yes C8 Yes Yes Yes Yes Single Yes or No No

[17] C5 No No No C7 Yes Yes Yes No Yes Multiple ncm from Yes

[14] C5 Yes No Yes C7 No No Yes Yes Yes Multiple nc1 from Yes

[25] C5 No No Yes C7 Yes No No No C7 Multiple ncm from Yes

[21] C3 Yes Yes Yes C7 No Yes Yes Yes Yes Single Yes or No No

[10] C5 Yes Yes No Yes Yes Yes Yes Yes Yes Multiple Score voting Yes

[16] C5 No Yes Yes Yes Yes No Yes Yes Yes Multiple Score voting Yes

[22] C3 Yes Yes Yes Yes No Yes Yes Yes Yes Multiple nc1 from Yes

This work C6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Multiple Score voting Yes
Note: A1: Voting phase computation; A2: No trusted party; A3: Self-tallying; A4: Platform independent; A5: No abortive issue;

A6: No adaptive issue; A7: Fairness; A8: Individual verifiability; A9: Universal verifiability; A10: Multiple-voting detection;
A11: Candidates; A12: Voting type; A13: Large-scale election; C1: O

(
n2
vnc

)
Ex; C2: O (nvnc)Ex;

C3: O
(
n2
v

)
Ex; C4: 2 En+ 1 Sign; C5: Constant; C6: O (nc) ; C7: Not specified.

 1066 Chinese Journal of Electronics, vol. 33, no. 4

1. System model

In Figure 2, we present the system model of our e-
voting protocol. The main roles in the system model are
as follows.

Ethereum Ethereum is an open source public

blockchain platform with smart contract functionality,
providing decentralized Ethereum virtual machines to
handle peer-to-peer contracts. In our protocol, it is used
as the executor of the rules and as a public bulletin
board. Note that Ethereum can be replaced by any
blockchain that supports smart contracts.

Blockchain

Block Block Block

Smart

contract
13) Tally ballots (Anyone can tally the ballots

and get the result) and publish the result

6) Get required public keys

10) Resume the election

8) Vote

4) Submit public keys

Voters
2) Registration

1) Publish a smart contract

Administrator

11) Submit a secret key

3) Submit his/her own public key

and the addresses of eligible voters

1) Deploy and manage

the database

9) Verify all the votes and notify the

active voters to resume the vote
Database

7) Store the generated proofs

5) Sort all voters’ public keys randomly

12) Verify the administrator’s secret key

Figure 2 System model.

Smart contract Smart contract is an open, trans-
parent, and unchangeable protocol deployed on the
blockchain. One of its functions is to serve as a public
bulletin board. In our protocol, the smart contract pub-
lished by the administrator maintains five lists, namely,
a list of active voters who did not vote (NVAVL), a list
of active voters who have voted (HVAVL), a negative
voters list (NVL), a voters’ list for sorting (SVL), and a
list of voters who can help restore voting process
(RVPVL). In addition, the smart contract in our e-vot-
ing protocol also includes a function that can only be ap-
plied by the administrator to submit his/her own public
key or secret key, a function that can only be applied by
the administrator to submit the addresses of eligible vot-
ers, a function used by the voters to submit their public
keys, a function used by the smart contract itself for
sorting voters in the SVL, a voting function that can
only be used by voters in the NVAVL, a function to veri-
fy the administrator’s secret key, and a function to tally
ballots. Only voters in the NVAVL can vote and can
only vote once. Once a voter in NVAVL votes, his/her
address will be added to the HVAVL and deleted from
the NVAVL. During the phase of voting, the voters who

do not vote or submit incorrect ballots will be added to
the NVL and removed from the NVAVL, then the adja-
cent voters will be added to the RVPVL and they have
to resume the voting process. After all active voters have
voted and all the ballots have been verified, the smart
contract can help calculate the voting result.

(G, p, g)

Administrator The administrator is responsible for
deploying the smart contract with initial parameters,
adding addresses of eligible voters to the smart contract,
submitting his/her own public key and secret key at the
specified time, verifying all the ballots submitted by the
voters, opening voting and closing voting. The initial pa-
rameters include the administrator’s address, the set of
scores, the number of voters, each voter’s identification
information, the number of candidates, and the cyclic
group .

Voters Each voter needs to generate two private
keys and two corresponding public keys. The public keys
need to be submitted to the smart contract before vot-
ing. The voters can call the voting function in the smart
contract to vote and the hash of the proof about the bal-
lots should also be stored on the blockchain at the same
time. The proof portion of the ballots needs to be stored

A Distributed Self-Tallying Electronic Voting System Using the Smart Contract 1067

in the database because storing it on the blockchain is
too expensive. In addition, when there are voters in the
NVAVL, voters in the RVPVL must help resume the
voting process.

Database Considering the problem that storing the
proof in the blockchain is too expensive, the proof can be
stored in the database to reduce the cost of the voters.
Each voter only needs to store the hash value of the
proof on the blockchain. Since anyone can verify that the

data in the database is correct through the hash value on
the blockchain, the immutable nature of the blockchain
and the security of the one-way hash function guarantee
the security of the proof in the database. As the security
of the database does not depend on the one who man-
ages it, we put administrators in charge of deploying and
managing the database.

The notations in Table 2 are used in the rest of the
paper.

Table 2 Notations

Notations Explanation
n Number of voters
m Number of candidates

i i ∈ [1, n]

j j ∈ [1,m]

rji i jA random number selected by the -th voter for the -th candidate
xi iSecret key of the -th voter
yi iSecret key of the -th voter
gxi iPublic key of the -th voter
gyi iPublic key of the -th voter

pk A public key of the administrator

sk A secret key of the administrator

S The max value of scores

pji i j pji ∈ SA score that is assigned by the -th voter to the -th candidate;

pj jTotal received scores of the -th candidate

cj1i i jThe first part of the ciphertext generated by the -th voter to the -th candidate

cj2i i jThe second part of the ciphertext generated by the -th voter to the -th candidate

2. Threat model
The administrator is an untrustworthy party who

may want to get the contents of ballots. Besides, the ad-
ministrator may manipulate the voting result, including
accepting illegal voters or requiring corrupt voters to
vote illegally. Moreover, the administrator may modify
the data in the database to make legitimate voting im-
possible to pass verification.

The voters may attempt to get the voting contents
of others during voting or try to forge ballots. Besides,
the voters may attempt to cast more than one ballot in
an election or make his scores exceed the regulated
range. Moreover, the voters may do not vote after regis-
tration.

We require that the administrator cannot collude
with two voters separated by one voter in the sorted vot-
ers’ list. In addition, the administrator cannot collude
with the last voter in the voters’ list sorted by the smart
contract.

3. Security goals
The security goals of our protocol are described below.
1) Ballots secrecy: Except for the owners of the bal-

lots, no entity can obtain the voting contents of the voters.

2) Fairness: Fairness means that no one can obtain
intermediate information before tallying ballots.

3) No abortive issue: The voting can still be done if
some voters do not submit their votes.

4) No adaptive issue: The last voter cannot obtain
any information about the voting result in advance.

5) Eligibility: Only eligible voters can vote.
6) Integrity: No one can change any submitted bal-

lots or use them to create duplicate submissions.
7) Multiple-voting detection: Each voter can only

vote once. Extra ballots will be rejected.
8) Dispute freeness: Invalid ballots can be detected

by any entity.
9) Verifiability: It requires that each voter is able to

verify whether the ballots are correctly published and
tallied. Any entity can verify the final voting result.

V. Concrete Construction

1. Initialization and voter registration

S n

The first step is to deploy the smart contract by the
administrator. The administrator must assign values to
the initialization variables, which include the administra-
tor’s address, the set of scores , the number of voters ,

 1068 Chinese Journal of Electronics, vol. 33, no. 4

m (G, p, g)
each voter’s identification information, the number of
candidates , and the cyclic group . All initial
parameters and functions in the smart contract are
transparent, and anyone can check the correctness of
them.

(xi, g
xi) (yi, g

yi) xi ∈ Zp yi ∈ Zp

Each voter must generate two ElGamal key pairs
 and where and . After

proving the identity is eligible, a voter’s address will be
submitted to the NVAVL and SVL in smart contract.
Then, each voter submits his/her public keys to the
smart contract. After receiving all the public keys, the
smart contract sorts them randomly and the result is
shown in Figure 1. For convenience, we denote the sort-
ing result as “circle”. Finally, the administrator can open
the voting phase.

2. Voting

i
For voting, there are three basic phases: pre-voting,

vote cast, and proof generation. Let’s take the -th voter
as an example.

i
m gxi+1 gyi−1

pk
i m rji

j ∈ [1,m]

1) Pre-voting: Voter needs to get the number of
candidates , the public keys (,), and the ad-
ministrator’s public key from the smart contract.
Then, voter has to select random numbers
().

j(j ∈ [1, nc]) i

pji pji ∈ [0, S]

j i

2) Vote: For each candidate , voter
can assign an integer score where . For each
candidate , voter calculates

E(pji , r
j
i , pk) = (gr

j
i , gp

j
i · pkr

j
i)

gr
j
i

i (xi, yi) gxi+1 gyi−1

using Exponential ElGamal Encryption mentioned in
Section III.1. Then the is encrypted again with voter
’s secret keys and the public keys (,).

The result is

E(gr
j
i , xi, yi, g

xi+1 , gyi−1) = gyixi+1−xiyi−1 · gr
j
i

We can summarize the encryption algorithm as

E(pji , r
j
i , pk, xi, yi, g

xi+1 , gyi−1)

= (gyixi+1−xiyi−1 · gr
j
i , gp

j
i · pkr

j
i) = (cj1i, c

j
2i)

pji j

i rji i

j pk
(xi, yi) i

(gxi+1 , gyi−1)

i

where is the score given to the candidate by the
voter , is the random number used by the voter for
the candidate , is the public key of the administra-
tor, are the secret keys of the voter , and

 are the public keys of adjacent voters in
the circle. The final ballots of the voter can be present-
ed as

E(p1i , r
1
i , pk, xi, yi, g

xi+1 , gyi−1) = (c11i, c
1
2i)

...
E(pmi , rmi , pk, xi, yi, g

xi+1 , gyi−1) = (cm1i, c
m
2i)

The summarised processing procedure of the voting
stage is shown in Algorithm 1.

Algorithm 1 Vote
Require:

gxi+1 gyi−1

{rji }
m
j=1 xi, yi
pk

{pji}
m
j=1

　　Input: public keys (,), all random numbers
, secret keys (), the administrator’s public

key and scores corresponding to all candidates
;
{cj1i, c

j
2i}

m
j=1　　Output: ;

gyixi+1−xiyi−11: Compute ;
j ← 1 m2: for to do
E(pji , r

j
i , pk, xi, yi, g

xi+1 , gyi−1) = (gyixi+1−xiyi−1 · gr
j
i ,

gp
j
i · pkr

j
i)

3: 　　

;
4: end for

{cj1i, c
j
2i}

m
j=1.5: return

3) Proof generation: In order to allow anyone to ver-
ify the eligibility of ballots without decrypting the ci-
phertext and revealing the content, each voter is re-
quired to generate proof for ballots.

PoK{−xi : g
−xi} ∧ PoK{yi : gyi} i

(xi, yi)

a) : The voter is
required to prove that the ballots are computed correct-
ly using the private keys . The process is as fol-
lows:

k1, k2, k3 ∈ Zq

T1 = gk1 T2 = gk2 T3 = (gxi+1)k1 · (gyi−1)k2 · gk3

c = Hash(T1 ∥ T2 ∥ T3) Z1 = yic+ k1 Z2 = −xic+ k2
Z3 = rji c+ k3 PoK{−xi : g

−xi} ∧ PoK{yi :
gyi} {T1, T2, T3, Z1, Z2, Z3}

• Select three random numbers , com-
pute , , ,

, , ,
and . The proof is

 = .
i m

m
i

i

Zj
3 = rji c+ k3 j ∈ [1,m] {T1, T2, T3, Z1, Z2}

π1 {T1, T2, T3, Z1, Z2,
{Zj

3}mj=1}

• As the voter needs to generate proofs as
above corresponding to candidates and there are
many similarities between proofs, voter can combine all
the proofs as follows: For each vote, voter calculates

 where . is
universal. The final proof is =

.
OoKPoK{∃pji ∈ [0, S] : cj2i = gp

j
i · pkr

j
i }

i cj2i
pji pji ∈ [0, S]

b) : The vot-
er must prove that the each ciphertext is encrypt-
ed for where . The process is as follows:

cj2i i ρ, hk, ek∈
Zq, k ∈ {0, . . . , p− 1, p+ 1, . . . , S} {q1, . . . , qp−1,
qp+1, . . . , qS}={0, . . . , pji − 1, pji + 1, . . . , S}

i fk = pkhk(
cj2i
gqk

)ek fp = pkρ

ch = H(f1 ∥ . . . ∥ fS) ep = ch−
∑

k=[0,S],k ̸=pek
hp = ρ− rji ep cj2i
{ch, {hς , eς , fς}ς∈[0,S]} i m

{cj2i}mj=1

π2 = {chj , {hj
ς , e

j
ς , f

j
ς }ς∈[0,S]}mj=1

• For each ciphertext , voter selects
 where .

. Then, voter
 calculates and . Calculate

, , and
. The proof corresponding to is

. Voter needs to generate
proofs for all ciphertexts . The final result is

.
i H(π1 ∥ π2)

{π1, π2}

Voter now needs to calculate and sub-
mit it to the blockchain with the ballots. The two proofs

 are stored in the database. We summarize the
proof generation phase as in Algorithm 2.

Algorithm 2 Proof generation
Require:

(xi, yi)　　Input: private keys , all random numbers

A Distributed Self-Tallying Electronic Voting System Using the Smart Contract 1069

({rji }
m
j=1, k1, k2, k3, ρ

j , {{hj
k, e

j
k}k∈[0,S],k ̸=p}mj=1)

{cj2i}
m
j=1 {q1, . . . , qp−1, qp+1, . . . , qS} = {0, . . . ,

pji − 1, pji + 1, . . . , S} (gxi+1 gyi−1)

, the ci-
phertext ,

 and , ;
(π1, π2)　　Output: ;

T1 = gk1 T2 = gk2 T3 = (gxi+1)k1 · (gyi−1)k2 ·
gk3

 1: Compute , ,
;

c = Hash(T1 ∥ T2 ∥ T3) 2: Calculate challenge value ;
Z1 = yic+ k1 Z2 = −xic+ k2 3: Compute , ;

j ← 1 m 4: for to do
Zj

3 = rji c+ k3 5: 　　 ;
 6: end for

π1 {T1, T2, T3, Z1, Z2, {Zj
3}mj=1} 7: Let = ;

j ← 1 m 8: for to do
(k ← 0 S) ∧ (k ̸= p) 9: 　　for to do

f j
k = pkh

j
k (

c
j
2i

gqk
)e

j
k10: 　　　　 ;

11: 　　end for
f j
p = pkρ

j

12: 　　 ;
chj = H(f j

1 ∥ . . . ∥ f
j
S)13: 　　Calculate challenge value ;

ejp = chj −
∑

k=[0,S],k ̸=pe
j
k hj

p = ρj−
rji e

j
p

14: 　　Compute and
;

15: end for
π2 = {chj , {hj

ς , e
j
ς , f

j
ς }ς∈[0,S]}mj=116: Let ;

π1, π217: return ().

4) Abortive case: If there are negative voters who do
not vote or submit invalid votes, the smart contract will
add these voters to the NVL and add the adjacent vot-
ers to the RVPVL. In this case, the abortive voters are
removed from the list of voters. Then the administrator
notifies their adjacent voters to help restore the voting
process. Figure 3 presents the abortive model. The adja-
cent voters recalculate as follows:

o-th voter t negative voters i-th voter o-th voter i-th voter

Figure 3 Abortive model.

t o
r o

{{cj1o, c
j
2o}mj=1, π1, π2}
{cj2o}mj=1 o

{cj1o}mj=1 (gyo−1 , gxr)

{cj2o}mj=1

• Suppose there are negative voters after the -th
active voter and before the -th active voter, voter has
voted in the voting phase. With-
out changing , voter has to recalculate

 using the public keys and the same
random numbers in , and we have

{cj1o}mj=1 = gyoxr−xoyo−1 · gr
j
o

o π1

{{c
′j
1o, c

j
2o}mj=1, π

′

1, π2}
{cj2o}mj=1

o

Then, the -th voter must recalculate the proof .
The calculation process is the same as the voting phase
and proof generation phase. The new ballots and the cor-
responding proof are . As there is
no need to recalculate , the values of ballots
have not been changed. The -th voter recalculates the

r
o

hash value of the two proofs, submits the ballots and the
hash value on the blockchain, and stores the proofs in
the database. The -th voter also performs calculation
similar to the -th voter.

vi

5) Vote verification: Before tallying ballots, all the
ballots must be verified to ensure their correctness. One
thing to verify is that all ballots are constructed using
the correct parameters. The other thing to verify is that
the value in every ballot is within a specific range. Let us
take the example of verifying the ballots of . It is
worth noting that anyone can verify the ballots. In our
scheme, the administrator is responsible for verifying all
the ballots.

π1 = {T1, T2, T3, Z1, Z2, {Zj
3}mj=1}

c = Hash(T1 ∥ T2 ∥ T3) gZ1 = T1 · (gyi)c

gZ2 = T2 · (g−xi)c j ∈ [1,m]
(gxi+1)Z1 · (gyi−1)Z2 · gZ

j
3 = T3 · (gyixi+1−xiyi−1 · gr

j
i)c

• Verify the construction: With the proof of
, anyone can verify if

, verify if , verify
if and for , and verify if

.
j ∈ [1,m]

chj ?
= H(f j

1 ∥f
j
2 ∥ . . .∥f

j
S) chj ?

=
∑S

ς=0e
j
ς

f j
ς

?
= pkh

j
ς (

cj2i
gqς)

ejς qς ∈
{0, 1, . . . , S} ς ∈ [0, S] π2

• Verify value range: For , the verifier
first checks and .
Then, the verifier checks where

. Note that . The proof is ac-
cepted if these equations hold.

We summarize the vote verification phase as in
Algorithm 3. Next we further analyze the correctness of
the vote verification. If the voters honestly generate their
votes, then the verification will definitely pass.

Algorithm 3 Vote verification
Require:

{π1, π2} i
{gyi , gxi} i {cj1i, c

j
2i}

m
j=1

{gyi−1 , gxi+1}

　　Input: proofs , the -th voter’s public keys
, the -th voter’s votes , and the

adjacent voters’ public keys ;
　　Output: Yes or No;

c = Hash(T1 ∥ T2 ∥ T3) 1: Verify if ;
gZ1 = T1 · (gyi)c 2: Verify if ;

gxi 3: Calculate the inverse element of ;
gZ2 = T2 · (g−xi)c 4: Verify if ;

j ← 1 m 5: for to do

(gxi+1)Z1 · (gyi−1)Z2 · gZ
j
3 = T3 · (gyixi+1−xiyi−1 ·

gr
j
i)c

 6: 　Verify if
;

 7: end for
j ← 1 m 8: for to do

chj ?
= H(f j

1 ∥ ... ∥ f
j
S) 9: 　　Verify if ;

chj ?
=

∑S
ς=0e

j
ς10: 　　Verify if ;

ς ← 0 S11: 　　for to do

f j
ς

?
= pkh

j
ς (

c
j
2i

gqς
)e

j
ς12: 　　　　Verify if ;

13: 　　end for
14: end for
15: If all the verification pass,
16: return Yes;
17: Otherwise
18: return No.

 1070 Chinese Journal of Electronics, vol. 33, no. 4

For the step 2 in Algorithm 3, we have

gZ1 = g(yic+k1) = gyic · gk1 = (gyi)c · T1

For the step 4 in Algorithm 3, we have

gZ2 = g(−xic+k2) = g−xic · gk2 = (g−xi)c · T2

For the step 6 in Algorithm 3, we have

(gxi+1)Z1 · (gyi−1)Z2 · gZ
j
3

= (gxi+1)(yic+k1) · (gyi−1)(−xic+k2) · gr
j
i c+k3

= (gxi+1yic) · gxi+1k1 · (g−xicyi−1) · (gyi−1k2) · gr
j
i c · gk3

= (gxi+1yi · g−xiyi−1 · gr
j
i)c · (gxi+1)k1 · (gyi−1)k2 · gk3

= (gyixi+1−xiyi−1 · gr
j
i)c · T3

ς ̸= p
ς == p

For the step 12 in Algorithm 3, when , the
equation is obvious. When , we have

pkh
j
p

(
cj2i
gqp

)ejp

= pkρ
j−rji e

j
p

(
gp

j
i · pkr

j
i

gqp

)ejp

= pkρ
j−rji e

j
p(pkr

j
i)e

j
p

= pkρ
j

= f j
p

sk pk
gsk = pk

j

6) Self-tallying phase: After all active voters submit-
ted their ballots, the administrator publishes the private
keys corresponding to the public key in the smart
contract, and anyone can verify if . We present
the self-tallying phase here in two situations: One is the
case without the abortive issue, and the other is the case
with the abortive issue. Let us take the tally for the -th
candidate as an example.

{{cj1i, c
j
2i}ni=1}mj=1

sk
∏n

i=1g
yixi+1−xiyi−1 = 1∏n

i=1c
j
1i = g

∑n
i=1r

j
i (g

∑n
i=1r

j
i)sk =

pk
∑n

i=1r
j
i

∏n
i=1c

j
2i = g

∑n
i=1p

j
i · pk

∑n
i=1r

j
i

j

g
∑n

i=1p
j
i · pk

∑n
i=1r

j
i

pk
∑n

i=1r
j
i

= g
∑n

i=1p
j
i = gp

j

{gpj}mj=1

{pj}mj=1

• With all the ciphertexts and the
secret key , as , one can calcu-
late , then calculate

, and calculate .
The final poll received by the -th candidate is

. After calculating

the ballots for each candidate, we have . The
 can be derived by brute-force search from a rela-

tively small value set.
avn

{{cj1k, c
j
2k}avnk=1}mj=1∏avn

k=1g
ykxk+1−xkyk−1 = 1

∏avn
k=1c

j
1k =

g
∑avn

k=1r
j
k (g

∑avn
k=1r

j
k)sk = pk

∑avn
k=1r

j
k∏avn

k=1c
j
2k = g

∑avn
k=1p

j
k · pk

∑avn
k=1r

j
k

j
g
∑avn

k=1p
j
k · pk

∑avn
k=1r

j
k

pk
∑avn

k=1r
j
k

=

• We use to denote the number of the rest ac-
tive voters. When there are negative voters in the vot-
ing process, we have ciphertexts as .
For the new active voters list, we have

. One can calculate
, then calculate , and cal-

culate . The final poll re-

ceived by the -th candidate is

g
∑avn

k=1p
j
k = gp

j

.

{gpj}mj=1 {pj}mj=1

After calculating the ballots for each candidate, we
have . The can be derived by brute-
force search from a relatively small value set. We sum-
marize the self-tallying phase as in Algorithm 4 and
Algorithm 5.

Algorithm 4 Self-tallying (without abortive issue)
Require:

sk
{{cj1i, c

j
2i}

n
i=1}mj=1

　　Input: the secret keys of the candidates, all the ci-
phertexts ;

{gp
j

}mj=1　　Output: ;
j ← 1 m1: for to do∏n

i=1c
j
1i = g

∑n
i=1r

j
i2: Calculate ;

(g
∑n

i=1r
j
i)sk = pk

∑n
i=1r

j
i3: 　　Calculate ;∏n

i=1c
j
2i = g

∑n
i=1p

j
i · pk

∑n
i=1r

j
i4: 　　Calculate ;

g
∑n

i=1p
j
i ·pk

∑n
i=1r

j
i

pk
∑n

i=1
r
j
i

= g
∑n

i=1p
j
i = gp

j

5: 　　Calculate ;
6: end for

{gp
j

}mj=17: return .

Algorithm 5 Self-tallying (with abortive issue)
Require:

sk
{{cj1k, c

j
2k}

avn
k=1}mj=1

　　Input: the secret keys of the candidates, all the ci-
phertexts ;

{gp
j

}mj=1　　Output: ;
j ← 1 m1: for to do∏avn

k=1c
j
1k = g

∑avn
k=1r

j
k2: 　　Calculate ;

(g
∑avn

k=1r
j
k)sk = pk

∑avn
k=1r

j
k3: 　　Calculate ;∏avn

k=1c
j
2k = g

∑avn
k=1p

j
k · pk

∑avn
k=1r

j
k4: 　　Calculate ;

g
∑avn

k=1p
j
k ·pk

∑avn
k=1r

j
k

pk
∑avn

k=1
r
j
k

= g
∑avn

k=1p
j
k = gp

j

5: 　　Calculate ;
6: end for

{gp
j

}mj=1.7: return

VI. Security Analysis
This section is devoted to a theoretical security

analysis of our protocol. The following assumptions are
used in our security analysis.

• All voters will protect their privacy and not dis-
close their confidential information.

• The Exponential ElGamal Cryptosystem and the
Group Encryption Scheme are secure.

• All content submitted to the blockchain is trust-
ed and secure.

• The administrator cannot simultaneously collude
with two voters separated by one voter in the sorted vot-
er’s list.

• The administrator cannot collude with the last
voter in the voters’ list sorted by the smart contract.

A Distributed Self-Tallying Electronic Voting System Using the Smart Contract 1071

Theorem 1 If the decisional Diffie-Hellman (DDH)
assumption is hard, then our scheme can protect the vot-
ers’ secrecy.

A

C
Game0,Game1, and Game2

A
Gamei AdvA ,Gamei

Proof Suppose there exists a PPT adversary
who can break the security of our scheme, then we can
build a PPT algorithm to break the DDH assumption.
We define three games in the
proof. The advantage for the adversary to win in

 is denoted as .
Game0 A

(p0, p1) C C
b ∈ {0, 1}

(c1, c2) A b′

AdvA ,Game0 = Pr[b = b′]− 1
2

: sends two different evaluation points
 to as challenge. Then randomly selects

 and generates one ballot as a challenge, which
is denoted as . outputs a guess . We have

.
Game1 (ga, gb, Γ)

Γ ∈ {gab, gµ} µ ∈R Z∗
p

ga c∗1 = gb c∗2 = gpbgΓ

(c1, c2) = (gyixi+1−xiyi−1 · gr, gpb · pkr) (c1, c2)

(c∗1, c
∗
2) A
r b

Z∗
p (c1, c2) (c∗1, c

∗
2)

|AdvA ,Game1 −AdvA ,Game0 | = 0

: Let the DDH instance be , where
 and . Set the public key of the ad-

ministrator as . Let and . With
, and

 are indistinguishable from ’s view. This is be-
cause and are uniformly and randomly selected from

, and have exactly the same distribu-
tion. We have .

Game2 Game1 c∗1 = gb

c∗2 = gpbgΓ A b′′ b b′′

A
|AdvA ,Game2 −AdvA ,Game1 | =϶DDH

|AdvA ,Game2 −AdvA ,Game0 | =϶DDH
A 1

2+ ϶DDH

: Based on , we have and
. The outputs a guess . If = , we

can make use of to solve the DDH assumption. We
have . Therefore,

. Thus the probability
for to win in the game is .

Theorem 2 The final voting result can be calculat-
ed by any entity in the end of election using the adminis-
trator’s private key.

j
sk

pk

sk
∏n

i=1g
ynx1−xnyn−1 = 1

j

gp
j

j

Proof Take the candidate as an example. After vot-
ing, the administrator must store his/her private key in
the smart contract. As the public key is already pub-
lished before voting, anyone can use it to check the cor-
rectness of . In our protocol, as ,
by multiplying all the votes corresponding to candidate ,
one can obtain encryption result of the final score of
candidate , namely

 (
n∏

i=1

cj1i = g
∑n

i=1 rji ,

n∏
i=1

cj2i = g
∑n

i=1 pj
i · pk

∑n
i=1 rji

)

sk
gp

j

pj
Using the private key , one can decrypt the above

ciphertext to obtain . Finally, can be easily calcu-
lated using brute-force computation. All the content re-
quired for the process is public, so anyone can calculate
the final voting result.

Theorem 3 The election cannot be aborted by any
voter refusing to submit their votes or submit invalid
votes.

Proof All the voters who do not vote or submit in-
valid ballots will be added in the NVL and they cannot
vote anymore. For resuming the election, the administra-
tor adds adjacent voters to the RVPVL and notifies
them to follow Algorithm 3. The final voting result can

be calculated as presented in Algorithm 4 or Algorithm 5.
Theorem 4 The final voting result cannot be calcu-

lated before the end of the voting phase.
Proof During the voting phase, the last voter who

did not vote can only get the following results before
voting:

 (∏n

i=1
cj1i = g

∑n
i=1r

j
i ,
∏n

i=1
cj2i = g

∑n
i=1p

j
i · pk

∑n
i=1r

j
i

)m

j=1

sk

Each result is encrypted by the ElGamal encryption.
As long as the ElGamal cryptosystem is secure, it is im-
possible for voters to obtain intermediate results with-
out the administrator’s private key .

Theorem 5 Only eligible voters can vote.
Proof Before voting, each voter must prove their

identity to the administrator and the identity informa-
tion of each voter is published on the blockchain. All the
voters’ addresses are submitted to the smart contract by
the administrator. The voters’ addresses will be added to
the AVL and the smart contract can control that only
voters in the AVL can vote.

Theorem 6 Once content is submitted and stored
on the public bulletin board, it cannot be modified or
deleted.

Proof Due to the immutable and transparent na-
ture of Ethereum itself, all content submitted on the
blockchain cannot be modified and can be accessed by
anyone.

Theorem 7 Each voter can only vote once, and ex-
cess ballots will be rejected.

Proof After a voter votes and the ballots are veri-
fied to be valid, the corresponding voter’s address will be
added to the HVAVL and deleted from the NVAVL. On-
ly voters whose addresses are in the NVAVL are allowed
to vote, which is automatically controlled by the smart
contract.

Theorem 8 Invalid ballots can be detected by any
entity.

Proof Besides the ballots, each voter has to pro-
vide the zero-knowledge proof in proof generation phase.
Only the well-formed ballots can pass the verification,
which guarantees that the voter has to calculate honest-
ly.

Theorem 9 Each voter is able to verify whether the
ballots are published and tallied correctly and any enti-
ty can verify the final voting result.

Proof As all the ballots and corresponding proof
are stored in the blockchain or the database, each voter
can check if the ballots are published correctly. Since our
protocol satisfies self-tallying property, anyone can veri-
fy the voting result by recalculating it using Algorithm 4
or Algorithm 5. Active voters can check whether their
ballots are used to calculate the final result.

VII. Performance Analysis
In this section, we have conducted theoretical and

 1072 Chinese Journal of Electronics, vol. 33, no. 4

experimental analysis of the efficiency of our protocol
from six aspects: voting calculation time, vote size, proof
generation time, proof size, and voting verification time,
voting result calculation time. In addition, we compared
our protocol with the works [10], [12] closed to ours in
the six aspects described above.

When calculating the costs of voters in PriScore [12],
we add together the costs of voters in the commitment
stage and the voting stage, as the commitment stage is
required to address the abortive issue. In the protocol [10]
proposed by Yang et al., most of the calculation is done
by a trusted SGX. With SGX, there is no proof of bal-
lots and the verification is not required either. We re-
gard the part that SGX helps voters calculate as costs
for voters. All the experiments were completed on a
desktop computer with the following specifications:
Intel(R) Core(TM)i5-10400F CPU @ 2.90 GHz with 12
MB shared L3 cache, 16 GB of 2400 MHz memory.

te
te ≈ t×

t× ≈ se
se = 8 sr

Zp sr = 8

We use to denote the computation time of one
exponentiation, where 2.325 ms, to denote the
computation time of multiplication operation, where

 0.012 ms, to denote the size of a group element,
where bytes, and to denote the size of a ran-
dom number in , where bytes.

1. Voting calculation time
pjiAccording to the Algorithm 1, each score is en-

crypted as

E(pji , r
j
i , pk, xi, yi, g

xi+1 , gyi−1)

= (gyixi+1−xiyi−1 · gr
j
i , gp

j
i · pkr

j
i)

Tvotes
m

We use to denote the total time each voter
spends calculating their votes and to denote the num-
ber of candidates here. For our work, we have

Tvotes = [(3te + 2t×) + (2te + t×)]m = 5tem+ 3t×m

m = 1, 5, 10, 15, 20 TvotesWith , the result of testing
is shown in Figure 4(a). Compared to the protocols in [10]
and [12], the vote generation time of each voter in our
system is much shorter.

2. Vote size
Svotes
m

We use to denote the total size of each voter’s
ballots and to denote the number of candidates here.
In our work, we have

Svotes = 2sem

SvotesThe test of is shown in Figure 4(b). The vote
size of each voter in our protocol is nearly equal to the
vote size in [12] and almost twice the vote size in [10].

3. Proof generation time
TproofWe use to denote the total time spent by one

voter on proof generation. According to the Algorithm 2,
we have

Tproof = (5 + 2mS +m)te + 2Smt×

Tproof
S

m m = 1, 5, 10, 15, 20
Tproof

S = 5, 10, 15, 20, 25 Tproof

The proof generation time in our system is re-
lated to two variables, namely the maximum score and
the number of candidates . With ,
we test and the result is shown in Figure 5(a).
With , we test and the result is
shown in Figure 5(b). What’s exciting is that the time of
generating proof in our protocol is much shorter than the
corresponding time spent in PriScore.

4. Proof size
SproofWe use to denote the size of the proof generat-

ed by each voter. According to Algorithm 2, we have

Sproof = (S + 2)sem+ 2srm(S + 1)

Sproof
S

m m = 1, 5, 10, 15, 20
Sproof
S = 1, 5, 10, 15, 20 Tproof

The proof size in our protocol is related to two
variables, namely the maximum score and the num-
ber of candidates . With , we test

 and the result is shown in Figure 6(a). With
, we test and the result is shown

in Figure 6(b). The size of proof in our scheme is very
small compared to the proof size in PriScore. However,
compared to the size of the ballots, it is still larger, so we
store the proof in the database to reduce the cost of stor-
ing data in the blockchain.

5. Voting verification time
TverifyWe use to denote the time required to verify

each voter’s ballots. According to Algorithm 3 in Sec-
tion V, we have

Tverify = (2mS + 4m+ 6)te + (2mS + 5m+ 2)t×

0

100

200

300

400

500

600

5 15
Number of candidates

(a) Vote generation time of each voter

1 10 20

Our work
Ref. [12]
Ref. [10]

0

100

200

300

400

500

600

5 15
Number of candidates

(b) Vote size of each voter

1 10 20

Our work
Ref. [12]
Ref. [10]

V
o
te

 s
iz

e
(b

y
te

s)
V

o
te

 g
en

er
at

io
n
 t

im
e

(m
s)

Figure 4 Voting test.

A Distributed Self-Tallying Electronic Voting System Using the Smart Contract 1073

Tverify
S

m Tverify m = 1, 5,
10, 15, 20

S = 5, 10, 15, 20, 25 Tverify

The proof size in our scheme is related to two
variables, namely the maximum score and the num-
ber of candidates . We first test with

 and the result is shown in Figure 7(a). Then,
with , we test and the result is
shown in Figure 7(b). The time of verification in our pro-
tocol is nearly one quarter of that in PriScore.

6. Time of calculating voting result
T crWe use to denote the time one takes to calcu-

nlate the voting result and to denote the number of vot-
ers. According to Algorithm 4, we have

Tcr = 2mte + 2mnt×

n = 50, 500, 1000, 10000, 100000 T cr

100000

With , we test
and the result is shown in Figure 8. When the number of
voters reaches , the calculation time is 10.815 s,
compared to 10.476 s in [12], and 5.021 s in [10].

0

2

4

6

8

10

12

14

500 10000

Number of voters

50 1000 100000

Our work

Ref. [12]

Ref. [10]

T
o
ta

l
ti

m
e
 (

s
)

Figure 8 Time of calculating voting result test.

VIII. Conclusion and Future Work
This paper presents a secure self-tallying e-voting

protocol where every step of voting and the phase of tal-
lying ballots can be verified by any party. Each voter
can score candidates within a certain range. Each ballot
can be verified using the proof generated by the corre-
sponding voter. By combining Exponential ElGamal
Cryptosystem and distributed encryption, the adaptive
issue and the abortive issue are efficiently solved. Perfor-
mance analysis indicates that our protocol is suitable for
large-scale election as the low computational overhead.

0

2

4

6

8

10

5 15
Number of candidates

1 10 20

Our work
Ref. [12]

0

1

2

3

4

4

6

7

10 20
Max score

5 15 25

Our work
Ref. [12]

(a) Comparison of proof generation time based on

the number of candidates

(b) Comparison of proof generation time basd on the max score

P
ro

o
f

g
en

er
at

io
n
 t

im
e

(s
)

P
ro

o
f

g
en

er
at

io
n
 t

im
e

(s
)

Figure 5 Proof generation time test.

0
20
40
60
80

100
120
140
160
180
200

5 15
Max score

P
ro

o
f

si
ze

 (
K

B
)

1 10 20

Our work
Ref. [12]

0
20
40
60
80

100
120
140
160
180
200

5 15
Number of candidates

P
ro

o
f

si
ze

 (
K

B
)

1 10 20

Our work
Ref. [12]

(a) Comparison of proof size based on the number of candidates

(b) Comparison of proof size based on the max score

Figure 6 Proof size test.

0

1

2

3

10 20

Max score

5 15 25

Our work

Ref. [12]

0

1

2

3

4

5

5 15

Number of candidates

1 10 20

Our work

Ref. [12]

(a) Comparison of verification time based on the number of candidates

(b) Comparison of verification time based on the max score

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

s
)

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

s
)

Figure 7 Verification test.

 1074 Chinese Journal of Electronics, vol. 33, no. 4

i i

But there are some limitations and weaknesses in our
scheme. When the administrator colludes with adjacent
voters of the -th voter, the voting content of the -th
voter can be restored, and when the administrator col-
ludes with the last voter, they can obtain the voting
results in advance. In addition, we do not consider the
situation where some voters are forced to disclose their
secret information to the adversary, in which the adver-
sary can obtain all the voting contents of the coerced
voters. The coercion issue has been studied by some
excellent works [33]–[35]. Achenbac et al. [35] adopted
deniable revoting to realize coercion-resistant and Lueks
et al. [33] and Locher et al. [34] utilized the technology of
cryptographic shuffle to solve the coercion issue. None of
them can simultaneously achieve self-tallying property
and coercion-resistant. We will explore the possibility of
achieving it in the future.

Acknowledgements
This work was supported by the National Natural

Science Foundation of China (Grant No. U20012052),
the Foundation of Science and Technology on Communi-
cation Security Laboratory of China (Grant No.
61421030108022110), the Open Fund of the State Key
Laboratory of Integrated Services Networks, Xidian Uni-
versity (Grant No. ISN23-23), and the Key Research and
Development Program of Shaanxi (Grant No. 2023-YB-
GY-214).

References

 Z. Q. Chen, L. X. Jiang, and C. Q. Li, “Label augmented and
weighted majority voting for crowdsourcing,” Information
Sciences, vol. 606, pp. 397–409, 2022.

[1]

 N. Jiang, D. Xu, J. Zhou, et al., “Toward optimal partici-
pant decisions with voting-based incentive model for crowd
sensing,” Information Sciences, vol. 512, pp. 1–17, 2020.

[2]

 P. Drotár, M. Gazda, and L. Vokorokos, “Ensemble feature
selection using election methods and ranker clustering,” In-
formation Sciences, vol. 480, pp. 365–380, 2019.

[3]

 L. Chamakura and G. Saha, “An instance voting approach to
feature selection,” Information Sciences, vol. 504, pp.
449–469, 2019.

[4]

 J. H. Zhai, X. Z. Wang, and X. H. Pang, “Voting-based in-
stance selection from large data sets with MapReduce and
random weight networks,” Information Sciences, vol. 367-
368, pp. 1066–1077, 2016.

[5]

 J. W. Cao, Z. P. Lin, G. B. Huang, et al., “Voting based ex-
treme learning machine,” Information Sciences, vol. 185, no.
1, pp. 66–77, 2012.

[6]

 X. S. Wang, Y. Y. Gu, Y. H. Cheng, et al., “An ensemble
classifier based on selective independent component analysis
of DNA microarray data,” Chinese Journal of Electronics,
vol. 18, no. 4, pp. 643–649, 2009.

[7]

 T. C. Song, J. Feng, S. Li, et al., “Color context binary pat-
tern using progressive bit correction for image classification,”
Chinese Journal of Electronics, vol. 30, no. 3, pp. 471–481,
2021.

[8]

 A. Kiayias and M. Yung, “Self-tallying elections and perfect
ballot secrecy,” in Public Key Cryptography, Springer, Berlin,
pp. 141–158, 2002.

[9]

 X. C. Yang, X. Yi, A. Kelarev, et al., “A distributed net-
worked system for secure publicly verifiable self-tallying on-
line voting,” Information Sciences, vol. 543, pp. 125–142,

[10]

2021.
 X. C. Yang, X. Yi, S. Nepal, et al., “Decentralized voting: A
self-tallying voting system using a smart contract on the
ethereum blockchain,” in Web Information Systems Engi-
neering–WISE 2018, Springer, Cham, pp. 18–35, 2018.

[11]

 Y. Yang, Z. S. Guan, Z. G. Wan, et al., “Priscore:
Blockchain-based self-tallying election system supporting
score voting,” IEEE Transactions on Information Forensics
and Security, vol. 16, pp. 4705–4720, 2021.

[12]

 Y. K. Lin and P. Zhang, “Blockchain-based complete self-tal-
lying e-voting protocol,” in 2019 Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Con-
ference (APSIPA ASC), Lanzhou, China, pp. 47–52, 2019.

[13]

 B. Yu, J. K. Liu, A. Sakzad, et al., “Platform-independent se-
cure blockchain-based voting system,” in Information Securi-
ty, Springer, Cham, pp. 369–386, 2018.

[14]

 M. Chaieb, S. Yousfi, P. Lafourcade, et al., “Verify-your-
vote: A verifiable blockchain-based online voting protocol,” in
Information Systems, Springer, Cham, pp. 16–30, 2019.

[15]

 J. Huang, D. B. He, Y. T. Chen, et al., “A blockchain based
self-tallying voting protocol with maximum voter privacy,”
IEEE Transactions on Network Science and Engineering,
vol. 9, no. 5, pp. 3808–3820, 2022.

[16]

 P. Tarasov and H. Tewari, “Internet voting using Zcash,”
IACR Cryptol. ePrint Arch., vol. 2017, article no. 585, 2017.

[17]

 G. X. Zeng, M. Q. He, and S. M. Yiu, “A secure and self-tal-
lying E-voting system based on blockchain,” in Information
Security Applications, You, I., Ed. Springer, Cham, pp.
67–76, 2020.

[18]

 Y. N. Li, W. Susilo, G. M. Yang, et al., “A blockchain-based
self-tallying voting protocol in decentralized IoT,” IEEE
Transactions on Dependable and Secure Computing, vol. 19,
no. 1, pp. 119–130, 2022.

[19]

 G. X. Zeng, M. Q. He, S. M. Yiu, et al., “Corrigendum to: A
self-tallying electronic voting based on blockchain,” The
Computer Journal, vol. 66, no. 2, pp. 523–523, 2023.

[20]

 P. McCorry, S. F. Shahandashti, and F. Hao, “A smart con-
tract for boardroom voting with maximum voter privacy,” in
Financial Cryptography and Data Security, Springer, Cham,
pp. 357–375, 2017.

[21]

 I. Stančíková and I. Homoliak, “SBvote: Scalable self-tally-
ing blockchain-based voting,” in Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, Tallinn,
Estonia, pp. 203–211, 2023.

[22]

 J. Dossogne and F. Lafitte, “Blinded additively homomor-
phic encryption schemes for self-tallying voting,” in Proceed-
ings of the 6th International Conference on Security of In-
formation and Networks, Aksaray, Turkey, pp. 173–180,
2013.

[23]

 A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[24]

 D. L. Xu, W. Shi, W. S. Zhai, et al., “Multi-candidate voting
model based on blockchain,” IEEE/CAA Journal of Auto-
matica Sinica, vol. 8, no. 12, pp. 1891–1900, 2021.

[25]

 F. Javani and A. T. Sherman, “BVOT: Self-tallying board-
room voting with oblivious transfer,” Information Security
Journal: A Global Perspective, vol. 33, no. 1, pp. 42–53,
2024.

[26]

 W. Y. Xue, Y. Yang, Y. L. Li, et al., “ACB-vote: Efficient,
flexible, and privacy-preserving blockchain-based score vot-
ing with anonymously convertible ballots,” IEEE Transac-
tions on Information Forensics and Security, vol. 18, pp. ,
pp. 3720–3734, 2023.

[27]

 F. Z. Chentouf and S. Bouchkaren, “Security and privacy in
smart city: A secure e-voting system based on blockchain,”
International Journal of Electrical and Computer Engineer-
ing (IJECE), vol. 13, no. 2, pp. 1848–1857, 2023.

[28]

 A. Singh, A. Ganesh, R. R. Patil, et al., “Secure voting web
site using ethereum and smart contracts,” Applied System In-

[29]

A Distributed Self-Tallying Electronic Voting System Using the Smart Contract 1075

novation, vol. 6, no. 4, article no. 70, 2023.
 N. Jaiswar, S. Deodhar, H. Gupta, et al., “E -voting system
using blockchain,” International Journal for Research in Ap-
plied Science & Engineering Technology, vol. 11, no. 4, pp.
2090–2095, 2023.

[30]

 A. C. Naik, A. M. Prajapati, S. N. Pandey, et al.,
“Blockchain based E-voting system,” in 2023 7th Internation-
al Conference on Trends in Electronics and Informatics
(ICOEI), Tirunelveli, Inida, pp. 316–320, 2023.

[31]

 C. P. Schnorr, “Efficient signature generation by smart
cards,” Journal of Cryptology, vol. 4, pp. 161–174, 1991.

[32]

 W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso,
“VoteAgain: A scalable coercion-resistant voting system,” in
Proceedings of the 29th USENIX Security Symposium,
Boston, USA, pp. 1553-1570, 2020.

[33]

 P. Locher, R. Haenni, and R. E. Koenig, “Coercion-resistant
internet voting with everlasting privacy,” in Financial Cryp-
tography and Data Security, Springer, Berlin, pp. 161–175,
2016.

[34]

 D. Achenbach, C. Kempka, C. Kempka, et al., “Improved
Coercion-Resistant electronic elections through deniable Re-
Voting,” The USENIX Journal of Election Technology and
Systems, vol. 3, no. 2, pp. 26–45, 2015.

[35]

Jingyu YAO is currently an M.S. candiate in
software engineering with the School of Compu-
ter Science, Shaanxi Normal University, Xi’an,
China. His research interests include crypto-
graphy and information security.
(Email: jingyuyao@snnu.edu.cn)

Bo YANG received the Ph.D. degree in cryp-
tography from Xidian University, Xi’an,
China, in 1999. He is currently a Professor
with the School of Computer Science, Shaanxi
Normal University, Xi’an, China. His re-
search interests include information security
and cryptography.
(Email: byang@snnu.edu.cn)

Tao WANG received the Ph.D. degree in
computer science and technology from North-
western Polytechnical University, Xi’an,
China, in 2012. He is currently an Associate
Professor with the School of Computer Sci-
ence, Shaanxi Normal University, Xi’an,
China. He is also a Research Fellow with the
State Key Laboratory of Integrated Services
Networks, Xidian University, Xi’an, China,

and the Science and Technology on Communication Security
Laboratory, Chengdu, China. His research interests include
cryptography, blockchain, and information security.
(Email: water@snnu.edu.cn)

Wenzheng ZHANG is currently a Research
Fellow with the Science and Technology on
Communication Security Laboratory, Cheng-
du, China. His research interests include in-
formation security and cryptography.
(Email: zwz85169038@sina.com)

 1076 Chinese Journal of Electronics, vol. 33, no. 4

