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Abstract — For electronic voting (e-voting) with a trusted authority, the ballots may be discarded or tampered, so
it is attractive to eliminate the dependence on the trusted party. An e-voting protocol, where the final voting result
can be calculated by any entity, is known as self-tallying e-voting protocol. To the best of our knowledge, addressing
both  abortive  issue  and  adaptive  issue  simultaneously  is  still  an  open  problem  in  self-tallying  e-voting  protocols.
Combining  Ethereum  blockchain  with  cryptographic  technologies,  we  present  a  decentralized  self-tallying  e-voting
protocol. We solve the above problem efficiently by utilizing optimized Group Encryption Scheme and standard Ex-
ponential ElGamal Cryptosystem. We use zero-knowledge proof and homomorphic encryption to protect votes’ secre-
cy and achieve self-tallying. All ballots can be verified by anyone and the final voting result can be calculated by any
entity. In addition, using the paradigm of score voting and “1-out-of-k” proof, our e-voting system is suitable for a
wide range of application scenarios. Experiments show that our protocol is more competitive and more suitable for
large-scale voting.
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I. Introduction
Compared to traditional election methods, electronic

voting (e-voting) has great advantages due to its freedom
from space constraints. There are many application scen-
arios for e-voting, such as board elections, crowdsourcing
[1],  crowdsensing  [2],  feature  selection  [3]–[5],  extreme
learning machine [6] and result filtering [7], [8]. It can be
seen that e-voting is very important. Many scholars have
made great contributions to the development of e-voting
[9]–[12].

A  blockchain  is  a  public,  append-only,  immutable
ledger,  which plays an important role in e-voting proto-
cols  [13],  [14].  Compared  to  election  protocols  [15]–[17]
with a trusted authority, e-voting protocols [10]–[13], [18]
without trusted parties have more advantages in protect-
ing privacy and ensuring security, where blockchain and
Group Encryption Scheme play important roles.

In decentralized e-voting protocols, self-tallying is an

important property, which was introduced by Kiayias et
al. in 2002 [9]. It means that the voting result can be cal-
culated by any entity. Every step in self-tallying e-voting
protocols can  be  verified  to  ensure  correctness  and  dis-
pute freeness. To the best of our knowledge, the abortive
issue  or  adaptive  issue  are  the  problems  faced  by  most
self-tallying e-voting protocols [9], [12], [13], [16], [18]–[22].
In  addition,  due  to  high  computational  overhead,  some
e-voting  protocols  [12],  [19]  are  not  suitable  for  large-
scale  voting.  Using  Intel  Software  Guard  Extensions
(SGX),  Yang et  al.  [10]  designed  an  e-voting  protocol
without  the  abortive  issue  and  the  adaptive  issue.  But
the  security  of  their  solution  depends  entirely  on  SGX
and the reliance on SGX limits the application scenarios
of their scheme.

In  this  paper,  we  propose  a  self-tallying  e-voting
protocol  using  a  smart  contract  deployed  on  Ethereum,
which  can  be  replaced  by  any  blockchain  that  supports 
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smart contracts. We use the paradigm of score voting in-
troduced  in  [12]  to  make  our  scheme  suitable  for  more
scenarios. In addition, we have optimized the Group En-
cryption  Scheme  [11],  [18]  through  sorting  to  make  it
more  suitable  for  our  system.  By  combining  optimized
Group Encryption Scheme with standard Exponential El-
Gamal Cryptosystem,  the  abortive  issue  and  the  adap-
tive  issue  are  effectively  solved  simultaneously.  Our
scheme can tolerate interruptions by any number of vot-
ers and the last voter cannot get the voting result in ad-
vance. Moreover, our solution does not require any trust-
ed party. 

1. Contributions
The  contributions  of  this  paper  are  summarized  as

follows:
1)  We  present  a  secure,  verifiable,  and  self-tallying

e-voting protocol where any entity can verify the ballots
and  calculate  the  voting  result.  In  addition,  our  system
does not require a trusted administrator.

2)  The  abortive  issue  and  the  adaptive  issue  are
solved efficiently  by  utilizing  optimized  Group  Encryp-
tion Scheme  and  standard  Exponential  ElGamal  Cryp-
tosystem. If there are some voters who do not vote, they
will be removed and the rest active voters can restore the
voting process efficiently and complete voting. More de-
tails about this case can be found in Section V. For the
adaptive issue, the last voter cannot get the final voting
result in advance without collusion with the administra-
tor.  The  voting  result  can  only  be  calculated  after  the
administrator’s secret key is published.

3)  Experiment  shows  that  in  our  voting  system,
computation  overhead  of  each  voter  is  lower  and  the
proof size is smaller compared to the works closely relat-
ed  to  ours.  And of  course,  we  have  a  faster  verification
process.  So  we  believe  our  scheme  is  suitable  for  large-
scale voting. 

2. Structure of this paper
The rest of  this  paper is  structured as follows.  Sec-

tion II presents the research closed to ours. Section II de-
scribes  the  cryptographic  techniques  used  in  our  paper.
Section  IV  shows  the  system  and  threat  model  of  our
scheme.  Section  V presents  the  concrete  construction  of
our system. Section VI shows the security analysis of our
protocol.  Section  VII  presents  the  efficiency  analysis  of
our scheme  and  the  comparison  with  two  closed  proto-
cols. Section VIII shows a summary of our protocol and
the prospects of our future research. 

II. Related Work
In this section, we have compared our work with the

research  closely  related  to  ours.  The  origin  of  the  self-
tallying  voting  system  can  date  back  to  the  work  of
Kiayias et al. [9], who proposed an election paradigm and
realized the first self-tallying voting protocol where both
strong ballot  privacy and fault  tolerance were captured.

n
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For a candidate in [9], each voter needs to select  ran-
dom  values  (  is  the  number  of  voters  and

).  Because  the  computational  overhead  of
per voter for each candidate has size proportional to the
number of voters, this election protocol is not suitable for
large-scale election. References [11]–[13], [19], and [21] re-
alize  self-tallying voting  protocols  using  similar  crypto-
graphic  techniques  In  these  schemes,  the  computation
overhead of voters is too large to support large-scale elec-
tions and the overhead of obtaining public keys from the
blockchain  is  expensive,  each  voter  needs  to  compute

 where  is the number of voters and
 is  the  public  key  of  voter .  Compared  to  above

works,  Zeng et  al.  [18]  reduced  user’s  computational
overhead  while  maintaining  self-tallying,  each  voter
needs to calculate  where ( ,  are
voter’s  secret  keys,  ( , )  are  public  keys  published
by other voters, and  is the number of the candidates.
It is obvious that the computational overhead of voters is
very low. By optimizing the idea in [18] and combining it
with other cryptographic techniques, our system is more
suitable  for  large-scale  voting  compared  to  the  above
works and the following problems are solved by us.

Some of the problems are caused by the trusted set-
ting.  For  genetic  model  of  e-voting  protocol  in  [23],  the
clear-text ballots  are  encrypted by the  polling  office  us-
ing a blinding share and the sum of all shares is equal to
zero.  Then  the  polling  office  and  the  voters  sign  the
blinded  ballot  and  anyone  can  decrypt  it  and  get  the
blinded ballot. By adding all the blinded ballots, anyone
can get the final result of voting, which meets the char-
acteristics of self-tallying. But the polling office can get all
the  clear-text  ballots  in  advance,  which  may undermine
the  fairness  of  the  scheme.  The  protocol  in  [17]  regards
money as a voting tool and the transactions between vot-
ers and candidates as ballots without modifying the con-
struction of  Zcash  protocol.  Inheriting  the  characteris-
tics of Zcash, this election protocol realizes transparency
and anonymity. But the trusted organizer may give vot-
ers different amounts of currency to undermine the fair-
ness of voting. Yu et al. [14] presented an e-voting proto-
col where the anonymity is realized by using short link-
able ring signatures (SLRS). It realizes the independence
of the platform and can be used for large-scale elections.
However, the  administrator  in  voting  protocol  can  ob-
tain the candidates’ information as it is encrypted by the
administrator’s Paillier public key, which may break the
fairness of  their  e-voting protocol.  Chaieb et al.  [15] de-
signed  a  voting  protocol  where  a  trusted  registration
server and an election administrator are needed. In [15],
each  voter  needs  to  be  authorized  by  the  trusted  party
and  the  authorization  is  the  information  encrypted  by
the trusted party using the private key, so the privacy of
votes  may  be  compromised.  With  Shamir’s secret  shar-
ing  proposed  in  [24],  Huang et  al.  [16]  proposed  a  self-
tallying scheme where the privacy of voters is protected
under certain  conditions.  If  the  election  authority  con-
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spires  with  any  candidate,  the  voting  content  of  that
candidate  can be restored in advance.  In [25],  a  trusted
counting  node  is  responsible  for  decrypting  the  voter’s
encrypted data and counting the votes. Each voter’s vot-
ing  information  is  encrypted  using  the  counting  node’s
public key, so the security of the protocol depends on the
security of the counting node. As the counting node can
get  the  voting  information  in  advance,  it  is  difficult  to
guarantee fairness  and verifiability of  the scheme.  Com-
pared above protocols [14]–[17], [25], the administrator in
our  scheme  is  trustless,  which  means  the  administrator
cannot affect the security of our protocol.

The  abortive  issue  and  the  adaptive  issue  are  also
important problems faced by many voting systems. The
protocols in [11], [12], [19], [21], [22], and [26] cannot re-
sist  abortive  issue  for  more  than  one  voter  and  clearly
the  adaptive  issue  remains  to  be  solved.  Although  the
adaptive issue in [13] is solved, the abortive issue is not
fundamentally  resolved  by  requiring  absentee  voters  to
cast  a  zero-point  ballot  to  a  candidate  set  in  advance.
With  similar  technology  in  [18],  reference  [20]  further
solves the  collusion  of  neighboring  voters  and  the  ab-
sence of some voters, but it cannot solve the absence of
adjacent  voters.  Javani et  al.  [26]  proposed  an  e-voting
system  called  boardroom  voting  with  oblivious  transfer
(BVOT) where the main novel feature is its use of oblivi-
ous  transfer  (OT)  to  provide  perfect  ballot  secrecy  and
ensure correct vote casting. Doing so avoids the need for
voters  to  carry  out  or  verify  complex  zero-knowledge
proofs. It reduces the number of checks and verifications
by  hiding  the  information  necessary  for  cheating  from
the adversary. Compared to our work, this scheme has a
significant abortive issue, as it cannot calculate the final
voting result when any voter does not vote. In addition,
the voting process of this system is more complex. After
the  voting  phase,  all  voters  must  publish  a  decryption
share which will be used to calculate the final result. In
our system, anyone can directly calculate the voting re-
sult through voting information with the administrator’s
secret key. Moreover, as described in the BVOT article,
its design is suitable for small-scale voting scenarios, such
as  board  elections,  while  our  design  can  be  suitable  for
large-scale  voting  scenarios.  Compared  to  above  works,
Both the abortive issue and the adaptive issue are solved
efficiently in our protocol. We can solve the abortive issue
of any voter with low computational overhead.

Xue et al. designed an e-voting system called ACB-
Vote  (ACB,  anonymously  convertible  ballots)  [27]. Al-
though the ACB-Vote does not use self-tallying technolo-
gy, it achieves anonymity, fairness, and universal verifia-
bility using the cryptographic tools such as BBS+ signa-
ture,  collision-resistant  hash  algorithm,  and  convertibly
linkable signatures. ACB-Vote has no abortive issue and
adaptive issue. However, ACB-Vote uses two non-collude
converters  who  are  responsible  for  ballot  conversion  to
prevent  duplicate  voting  while  maintaining  user  ano-
nymity.  This  is  inevitably  required  due  to  the  anonym-

ity of voters and the exposure of the ballots’ contents in
tallying phase. This undoubtedly increases system securi-
ty risk. In our system, voting content is not exposed even
during the tallying stage, so, we do not need the convert-
ers, which makes our system more elegant and more se-
cure. Chentouf et al. [28] proposed a secure e-voting sys-
tem  based  on  blockchain.  By  utilizing  the  transparency
and  tamper  resistance  of  blockchain,  this  voting  system
ensures  the security of  voting to a certain extent.  How-
ever,  the  voting  content  is  stored  in  clear  text  on  the
blockchain, which is not conducive to protecting the pri-
vacy of voters. In addition, This can cause the adaptive
issue.  In  our  system,  the  ballots’ contents  of  voters  will
not be exposed at any stage of voting, the privacy of vot-
ers is well protected, and our solution does not have the
adaptive issue.  The constructions of  e-voting systems in
the works [29]–[31]  are  very similar.  They have detailed
and strict regulations for the management of users’ iden-
tity.  The  voting  information  is  recorded  on  the  block-
chain. This can prevent tampering with voting informa-
tion, but cannot guarantee the privacy of voters. Due to
the  independence  of  each  voter,  interrupted  voters  will
not  affect  the  final  vote  counting  stage.  With  the  fact
that  each  voter  can  see  the  voting  information  of  other
voters during voting, this scheme has the adaptive issue.

With  Intel  SGX,  Yang et  al.  [10] presented  a  dis-
tributed SGX networked system (DSGXNS) to realize e-
voting.  The  abortive  issue  is  naturally  resolved  with
SGX.  The  voters  in  [10]  do  not  need  to  calculate  their
own ballots, but to send the scores of candidates and cor-
responding  random  numbers  to  SGX  in  an  encrypted
manner, then SGX will calculate the ballots of each vot-
er and publish them on the bulletin board. The security
of the protocol depends on the security of SGX and the
inevitable requirement for SGX will limit the application
scenarios of the voting protocol. In Table 1, we compare
our  work  with  closed  e-voting  protocols  [9]–[19],  [21],
[22], [25] from thirteen aspects, including efficiency, prop-
erties,  and  security  requirements.  For  computational
overhead in voting phase, although the cost of each vot-
er in our protocol scales linearly in the number of candi-
dates, the cost is low due to the limited number of candi-
dates in reality. In addition, there are no trusted authori-
ties in our scheme. Moreover, the abortive issue and the
adaptive issue  are  effectively  solved  simultaneously.  Al-
though Yang et  al.  [10]  also  solved these  two problems,
their scheme relies heavily on SGX. 

III. Preliminary
 

1. Exponential ElGamal Cryptosystem

λ
(G, p, g)

SP = (G, p, g)

SysGen  The system  parameter  generation  algo-
rithm takes as input a security parameter . It chooses a
cyclic group  and returns the system parameters

.

SP
KenGen  The key generation algorithm takes as in-

put  the  system  parameters .  It  ramdomly  chooses
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α ∈ Zp g1 = gα

(pk, sk)
,  computes ,  and  returns  a  public/secret

key pair  as follows:
 

pk = g1, sk = α

m ∈ G pk
SP r ∈ Zp

CT

Encrypt  The encryption algorithm takes as input a
message ,  the  public  key , and  the  system pa-
rameters . It chooses a random number  and re-
turns the ciphertext  as

 

CT = E(m) = (C1, C2) = (gr, gr1 · gm)

CT sk
SP CT = (C1, C2)

Decrypt  The decryption algorithm takes as input a
ciphertext , the secret key , and the system param-
eters . Let . It decrypts the message by
computing

 

C2 · C−α
1 = gr1g

m · (gr)−α = gm

Homomorphism  ElGamal encryption has  an inher-
ited  homomorphic  property,  which  allows  multiplication
and exponentiation  to  be  performed  on  a  set  of  cipher-
texts without decrypting them, such as

 

E(m1) · E(m2) = (gr1 , gr11 · gm1)× (gr2 , gr21 · gm2)

= (gr1+r2 , gr1+r2
1 · gm1+m2) = E(m1 +m2).

 

2. Zero knowledge proof
Based on the non-interactive proof of knowledge of a

secret in [32] and the 1-out-of-k zero knowledge proof in
[12],  We  construct  a  zero  knowledge  proof  protocol  for
our  scheme.  Each  voter  must  prove  that  he/she  knows

PoK{x : gx}

x
SC = {p1, p2, . . . , pn}

n OoKPoK{∃pi ∈ SC :
c = gpipkr}

c
pi S

the  secret  values  of  the  ballots,  we  use  to
denote a non-interactive zero knowledge proof of the se-
cret .  In  addition,  The  score  in  each  ballot  should  be
within  a  specific  range,  we  use  to
denote a public set of  values and 

denote  the  1-out-of-k zero  knowledge  proof
where the ciphertext  is the result of encrypting an ele-
ment  in the set . 

3. Group Encryption Scheme

i i ∈ [1, nv]
xi, yi

gxi , gyi

i Yi=gyixi+1−xiyi−1

Y1 =gy1x2−x1yn

Yn=g
ynx1−xnyn−1∏n

i=1Yi = 1

Figure  1 presents  one  of  key  ideas  of  our  e-voting
protocol.  Each voter  ( ) has  to  select  two se-
cret  keys  ( )  and  submits  the  corresponding  public
keys  ( ).  Then the  smart  contract  randomly sorts
the  public  keys  and the  generates  a  list  of  voters.  Each
voter  needs to calculate  secretly. Note
that the first voter in the row calculates 
and the last voter in the row calculates .
We have .  We combine this technology with
Exponential ElGamal  Cryptosystem  mentioned  in  Sec-
tion III.1 to construct our e-voting system.
 
 

g1

g1
g2

g2
g3

g3
gi
gi

gn
gn

Figure 1  Public keys graph.
  

IV. System and Threat Model
In  this  section,  We  first  present  our  system model,

and  then  introduce  the  threat  model  and  security  goals
of our scheme. 

 

Table 1  Comparison of electronic voting protocols

Scheme
Properties

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

[12] C1 Yes Yes Yes No No Yes Yes Yes Yes Multiple Score voting No

[18] C2 Yes Yes No C7 No Yes Yes Yes Yes Multiple nc1 from Yes

[13] C3 Yes Yes Yes No Yes Yes Yes Yes Yes Multiple nc1 from No

[15] C4 No No Yes Yes Yes Yes Yes Yes Yes Multiple C7 Yes

[19] C3 Yes Yes Yes No No Yes Yes Yes Yes Single Yes or No No

[11] C1 Yes Yes Yes No No Yes Yes Yes Yes Multiple Score voting No

[9] C2 Yes Yes Yes Yes C8 Yes Yes Yes Yes Single Yes or No No

[17] C5 No No No C7 Yes Yes Yes No Yes Multiple ncm from Yes

[14] C5 Yes No Yes C7 No No Yes Yes Yes Multiple nc1 from Yes

[25] C5 No No Yes C7 Yes No No No C7 Multiple ncm from Yes

[21] C3 Yes Yes Yes C7 No Yes Yes Yes Yes Single Yes or No No

[10] C5 Yes Yes No Yes Yes Yes Yes Yes Yes Multiple Score voting Yes

[16] C5 No Yes Yes Yes Yes No Yes Yes Yes Multiple Score voting Yes

[22] C3 Yes Yes Yes Yes No Yes Yes Yes Yes Multiple nc1 from Yes

This work C6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Multiple Score voting Yes
Note: A1: Voting phase computation; A2: No trusted party; A3: Self-tallying; A4: Platform independent; A5: No abortive issue;

A6: No adaptive issue; A7: Fairness; A8: Individual verifiability; A9: Universal verifiability; A10: Multiple-voting detection;
A11: Candidates; A12: Voting type; A13: Large-scale election; C1: O

(
n2
vnc

)
Ex; C2: O (nvnc)Ex;

C3: O
(
n2
v

)
Ex; C4: 2 En+ 1 Sign; C5: Constant; C6: O (nc) ; C7: Not specified.
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1. System model

In Figure 2,  we present the system model  of  our e-
voting protocol. The main roles in the system model are
as follows.

Ethereum  Ethereum  is  an  open  source  public

blockchain  platform  with  smart  contract  functionality,
providing  decentralized  Ethereum  virtual  machines  to
handle peer-to-peer contracts. In our protocol, it is used
as  the  executor  of  the  rules  and  as  a  public  bulletin
board.  Note  that  Ethereum  can  be  replaced  by  any
blockchain that supports smart contracts.

 
 

Blockchain

Block Block Block

Smart

contract
13)  Tally ballots (Anyone can tally the ballots

and get the result) and publish the result

6) Get required public keys

10) Resume the election

8)  Vote

4) Submit public keys

Voters
2) Registration

1) Publish a smart contract

Administrator

11) Submit a secret key

3) Submit his/her own public key

and the addresses of eligible voters

1) Deploy and manage

the database

9)  Verify all the votes and notify the

active voters to resume the vote
Database

7) Store the generated proofs

5) Sort all voters’ public keys randomly

12) Verify the administrator’s secret key

Figure 2  System model.
 

Smart  contract  Smart contract  is  an  open,  trans-
parent,  and  unchangeable  protocol  deployed  on  the
blockchain.  One  of  its  functions  is  to  serve  as  a  public
bulletin board. In our protocol,  the smart contract pub-
lished by the administrator maintains five lists,  namely,
a list of active voters who did not vote (NVAVL), a list
of  active  voters  who  have  voted  (HVAVL),  a  negative
voters list (NVL), a voters’ list for sorting (SVL), and a
list  of  voters  who  can  help  restore  voting  process
(RVPVL).  In addition,  the smart contract  in our e-vot-
ing protocol also includes a function that can only be ap-
plied by the administrator to submit his/her own public
key or secret key, a function that can only be applied by
the administrator to submit the addresses of eligible vot-
ers, a function used by the voters to submit their public
keys,  a  function  used  by  the  smart  contract  itself  for
sorting  voters  in  the  SVL,  a  voting  function  that  can
only be used by voters in the NVAVL, a function to veri-
fy the administrator’s secret key, and a function to tally
ballots.  Only  voters  in  the  NVAVL  can  vote  and  can
only  vote  once.  Once  a  voter  in  NVAVL votes,  his/her
address  will  be  added  to  the  HVAVL and  deleted  from
the NVAVL. During the phase of voting, the voters who

do not vote or submit incorrect ballots will be added to
the NVL and removed from the NVAVL, then the adja-
cent voters will be added to the RVPVL and they have
to resume the voting process. After all active voters have
voted  and  all  the  ballots  have  been  verified,  the  smart
contract can help calculate the voting result.

(G, p, g)

Administrator The  administrator  is  responsible  for
deploying  the  smart  contract  with  initial  parameters,
adding addresses of eligible voters to the smart contract,
submitting his/her own public key and secret key at the
specified time, verifying all the ballots submitted by the
voters, opening voting and closing voting. The initial pa-
rameters  include  the  administrator’s  address,  the  set  of
scores,  the  number  of  voters,  each  voter’s  identification
information,  the  number  of  candidates,  and  the  cyclic
group .

Voters  Each  voter  needs  to  generate  two  private
keys and two corresponding public keys. The public keys
need to  be  submitted  to  the  smart  contract  before  vot-
ing. The voters can call the voting function in the smart
contract to vote and the hash of the proof about the bal-
lots should also be stored on the blockchain at the same
time. The proof portion of the ballots needs to be stored
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in  the  database  because  storing  it  on  the  blockchain  is
too expensive.  In addition, when there are voters in the
NVAVL,  voters  in  the  RVPVL  must  help  resume  the
voting process.

Database  Considering the problem that storing the
proof in the blockchain is too expensive, the proof can be
stored  in  the  database  to  reduce  the  cost  of  the  voters.
Each  voter  only  needs  to  store  the  hash  value  of  the
proof on the blockchain. Since anyone can verify that the

data in the database is correct through the hash value on
the  blockchain,  the  immutable  nature  of  the  blockchain
and the security of the one-way hash function guarantee
the security of the proof in the database. As the security
of the  database  does  not  depend  on  the  one  who  man-
ages it, we put administrators in charge of deploying and
managing the database.

The notations in Table 2 are used in the rest of the
paper.

 
 

Table 2  Notations

Notations Explanation
n Number of voters
m Number of candidates

i i ∈ [1, n]

j j ∈ [1,m]

rji i jA random number selected by the -th voter for the -th candidate
xi iSecret key of the -th voter
yi iSecret key of the -th voter
gxi iPublic key of the -th voter
gyi iPublic key of the -th voter

pk A public key of the administrator

sk A secret key of the administrator

S The max value of scores

pji i j pji ∈ SA score that is assigned by the -th voter to the -th candidate; 

pj jTotal received scores of the -th candidate

cj1i i jThe first part of the ciphertext generated by the -th voter to the -th candidate

cj2i i jThe second part of the ciphertext generated by the -th voter to the -th candidate
 
 

2. Threat model
The  administrator  is  an  untrustworthy  party  who

may want to get the contents of ballots. Besides, the ad-
ministrator  may manipulate  the  voting  result,  including
accepting  illegal  voters  or  requiring  corrupt  voters  to
vote  illegally.  Moreover,  the  administrator  may  modify
the data  in  the  database  to  make  legitimate  voting  im-
possible to pass verification.

The voters may attempt to get the voting contents
of  others  during  voting  or  try  to  forge  ballots.  Besides,
the voters may attempt to cast more than one ballot in
an  election  or  make  his  scores  exceed  the  regulated
range. Moreover, the voters may do not vote after regis-
tration.

We  require  that  the  administrator  cannot  collude
with two voters separated by one voter in the sorted vot-
ers’ list.  In  addition,  the  administrator  cannot  collude
with the last voter in the voters’ list sorted by the smart
contract. 

3. Security goals
The security goals of our protocol are described below.
1) Ballots secrecy: Except for the owners of the bal-

lots, no entity can obtain the voting contents of the voters.

2) Fairness:  Fairness means that no one can obtain
intermediate information before tallying ballots.

3) No abortive issue: The voting can still be done if
some voters do not submit their votes.

4)  No  adaptive  issue:  The  last  voter  cannot  obtain
any information about the voting result in advance.

5) Eligibility: Only eligible voters can vote.
6) Integrity: No one can change any submitted bal-

lots or use them to create duplicate submissions.
7)  Multiple-voting  detection:  Each  voter  can  only

vote once. Extra ballots will be rejected.
8)  Dispute  freeness:  Invalid  ballots  can  be  detected

by any entity.
9) Verifiability: It requires that each voter is able to

verify  whether  the  ballots  are  correctly  published  and
tallied. Any entity can verify the final voting result. 

V. Concrete Construction
 

1. Initialization and voter registration

S n

The first step is to deploy the smart contract by the
administrator.  The  administrator  must  assign  values  to
the initialization variables, which include the administra-
tor’s address, the set of scores , the number of voters ,
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m (G, p, g)
each  voter’s  identification  information,  the  number  of
candidates ,  and  the  cyclic  group .  All  initial
parameters  and  functions  in  the  smart  contract  are
transparent,  and  anyone  can  check  the  correctness  of
them.

(xi, g
xi) (yi, g

yi) xi ∈ Zp yi ∈ Zp

Each  voter  must  generate  two  ElGamal  key  pairs
 and  where  and .  After

proving the identity is  eligible,  a voter’s  address will  be
submitted  to  the  NVAVL  and  SVL  in  smart  contract.
Then,  each  voter  submits  his/her  public  keys  to  the
smart  contract.  After  receiving  all  the  public  keys,  the
smart  contract  sorts  them  randomly  and  the  result  is
shown in Figure 1. For convenience, we denote the sort-
ing result as “circle”. Finally, the administrator can open
the voting phase. 

2. Voting

i
For voting, there are three basic phases: pre-voting,

vote cast, and proof generation. Let’s take the -th voter
as an example.

i
m gxi+1 gyi−1

pk
i m rji

j ∈ [1,m]

1)  Pre-voting:  Voter  needs  to  get  the  number  of
candidates , the public keys ( , ), and the ad-
ministrator’s  public  key  from  the  smart  contract.
Then,  voter  has  to  select  random  numbers 
( ).

j(j ∈ [1, nc]) i

pji pji ∈ [0, S]

j i

2)  Vote:  For  each  candidate ,  voter 
can assign an integer score  where . For each
candidate , voter  calculates

 

E(pji , r
j
i , pk) = (gr

j
i , gp

j
i · pkr

j
i )

gr
j
i

i (xi, yi) gxi+1 gyi−1

using  Exponential  ElGamal  Encryption  mentioned  in
Section III.1. Then the  is encrypted again with voter
’s secret keys  and the public keys ( , ).

The result is
 

E(gr
j
i , xi, yi, g

xi+1 , gyi−1) = gyixi+1−xiyi−1 · gr
j
i

We can summarize the encryption algorithm as
 

E(pji , r
j
i , pk, xi, yi, g

xi+1 , gyi−1)

= (gyixi+1−xiyi−1 · gr
j
i , gp

j
i · pkr

j
i ) = (cj1i, c

j
2i)

pji j

i rji i

j pk
(xi, yi) i

(gxi+1 , gyi−1)

i

where  is  the  score  given  to  the  candidate  by  the
voter ,  is the random number used by the voter  for
the candidate ,  is the public key of the administra-
tor,  are  the  secret  keys  of  the  voter ,  and

 are  the  public  keys  of  adjacent  voters  in
the circle. The final ballots of the voter  can be present-
ed as

 

E(p1i , r
1
i , pk, xi, yi, g

xi+1 , gyi−1) = (c11i, c
1
2i)

...
E(pmi , rmi , pk, xi, yi, g

xi+1 , gyi−1) = (cm1i, c
m
2i)

The summarised processing procedure  of  the  voting
stage is shown in Algorithm 1.

Algorithm 1  Vote
Require:

gxi+1 gyi−1

{rji }
m
j=1 xi, yi
pk

{pji}
m
j=1

　　Input:  public  keys  ( , ),  all  random numbers
,  secret keys ( ),  the administrator’s  public

key  and  scores  corresponding  to  all  candidates
;
{cj1i, c

j
2i}

m
j=1　　Output: ;

gyixi+1−xiyi−11: Compute ;
j ← 1 m2: for  to  do
E(pji , r

j
i , pk, xi, yi, g

xi+1 , gyi−1) = (gyixi+1−xiyi−1 · gr
j
i ,

gp
j
i · pkr

j
i )

3: 　　

;
4: end for

{cj1i, c
j
2i}

m
j=1.5: return 

3) Proof generation: In order to allow anyone to ver-
ify the  eligibility  of  ballots  without  decrypting  the  ci-
phertext and  revealing  the  content,  each  voter  is  re-
quired to generate proof for ballots.

PoK{−xi : g
−xi} ∧ PoK{yi : gyi} i

(xi, yi)

a) :  The  voter  is
required to prove that the ballots are computed correct-
ly  using  the  private  keys . The  process  is  as  fol-
lows:

k1, k2, k3 ∈ Zq

T1 = gk1 T2 = gk2 T3 = (gxi+1)k1 · (gyi−1)k2 · gk3

c = Hash(T1 ∥ T2 ∥ T3) Z1 = yic+ k1 Z2 = −xic+ k2
Z3 = rji c+ k3 PoK{−xi : g

−xi} ∧ PoK{yi :
gyi} {T1, T2, T3, Z1, Z2, Z3}

• Select three random numbers , com-
pute , , ,

, , ,
and . The proof is 

 = .
i m

m
i

i

Zj
3 = rji c+ k3 j ∈ [1,m] {T1, T2, T3, Z1, Z2}

π1 {T1, T2, T3, Z1, Z2,
{Zj

3}mj=1}

•  As  the  voter  needs  to  generate  proofs  as
above  corresponding  to  candidates  and  there  are
many similarities between proofs, voter  can combine all
the  proofs  as  follows:  For  each  vote,  voter  calculates

 where .  is
universal.  The  final  proof  is  = 

.
OoKPoK{∃pji ∈ [0, S] : cj2i = gp

j
i · pkr

j
i }

i cj2i
pji pji ∈ [0, S]

b) : The  vot-
er  must prove that the each ciphertext  is encrypt-
ed for  where . The process is as follows:

cj2i i ρ, hk, ek∈
Zq, k ∈ {0, . . . , p− 1, p+ 1, . . . , S} {q1, . . . , qp−1,
qp+1, . . . , qS}={0, . . . , pji − 1, pji + 1, . . . , S}

i fk = pkhk(
cj2i
gqk

)ek fp = pkρ

ch = H(f1 ∥ . . . ∥ fS) ep = ch−
∑

k=[0,S],k ̸=pek
hp = ρ− rji ep cj2i
{ch, {hς , eς , fς}ς∈[0,S]} i m

{cj2i}mj=1

π2 = {chj , {hj
ς , e

j
ς , f

j
ς }ς∈[0,S]}mj=1

• For each ciphertext , voter  selects 
 where . 

.  Then,  voter
 calculates  and .  Calculate

, ,  and
.  The  proof  corresponding  to  is

.  Voter  needs  to  generate 
proofs  for  all  ciphertexts .  The  final  result  is

.
i H(π1 ∥ π2)

{π1, π2}

Voter  now needs to calculate  and sub-
mit it to the blockchain with the ballots. The two proofs

 are  stored  in  the  database.  We  summarize  the
proof generation phase as in Algorithm 2.

Algorithm 2  Proof generation
Require:

(xi, yi)　　Input:  private  keys ,  all  random  numbers
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({rji }
m
j=1, k1, k2, k3, ρ

j , {{hj
k, e

j
k}k∈[0,S],k ̸=p}mj=1)

{cj2i}
m
j=1 {q1, . . . , qp−1, qp+1, . . . , qS} = {0, . . . ,

pji − 1, pji + 1, . . . , S} (gxi+1 gyi−1)

, the  ci-
phertext , 

 and , ;
(π1, π2)　　Output: ;

T1 = gk1 T2 = gk2 T3 = (gxi+1)k1 · (gyi−1)k2 ·
gk3

 1: Compute , , 
;

c = Hash(T1 ∥ T2 ∥ T3) 2: Calculate challenge value ;
Z1 = yic+ k1 Z2 = −xic+ k2 3: Compute , ;

j ← 1 m 4: for  to  do
Zj

3 = rji c+ k3 5: 　　 ;
 6: end for

π1 {T1, T2, T3, Z1, Z2, {Zj
3}mj=1} 7: Let = ;

j ← 1 m 8: for  to  do
(k ← 0 S) ∧ (k ̸= p) 9: 　　for  to    do

f j
k = pkh

j
k (

c
j
2i

gqk
)e

j
k10: 　　　　 ;

11: 　　end for
f j
p = pkρ

j

12: 　　 ;
chj = H(f j

1 ∥ . . . ∥ f
j
S)13: 　　Calculate challenge value ;

ejp = chj −
∑

k=[0,S],k ̸=pe
j
k hj

p = ρj−
rji e

j
p

14: 　　Compute  and 
;

15: end for
π2 = {chj , {hj

ς , e
j
ς , f

j
ς }ς∈[0,S]}mj=116: Let ;

π1, π217: return ( ).

4) Abortive case: If there are negative voters who do
not vote or submit invalid votes, the smart contract will
add these voters to the NVL and add the adjacent vot-
ers to the RVPVL. In this  case,  the abortive voters are
removed from the list of voters.  Then the administrator
notifies  their  adjacent  voters  to  help  restore  the  voting
process. Figure 3 presents the abortive model. The adja-
cent voters recalculate as follows:
 
 

o-th voter t negative voters i-th voter o-th voter i-th voter

Figure 3  Abortive model.
 

t o
r o

{{cj1o, c
j
2o}mj=1, π1, π2}
{cj2o}mj=1 o

{cj1o}mj=1 (gyo−1 , gxr )

{cj2o}mj=1

• Suppose there are  negative voters after the -th
active voter and before the -th active voter, voter  has
voted  in the  voting  phase.  With-
out  changing ,  voter  has  to  recalculate

 using the public keys  and the same
random numbers in , and we have

 

{cj1o}mj=1 = gyoxr−xoyo−1 · gr
j
o

o π1

{{c
′j
1o, c

j
2o}mj=1, π

′

1, π2}
{cj2o}mj=1

o

Then, the -th voter must recalculate the proof .
The calculation process  is  the same as the voting phase
and proof generation phase. The new ballots and the cor-
responding  proof  are .  As  there  is
no  need  to  recalculate ,  the  values  of  ballots
have  not  been  changed.  The -th  voter  recalculates  the

r
o

hash value of the two proofs, submits the ballots and the
hash  value  on  the  blockchain,  and  stores  the  proofs  in
the  database.  The -th  voter  also  performs  calculation
similar to the -th voter.

vi

5)  Vote  verification:  Before  tallying  ballots,  all  the
ballots must be verified to ensure their correctness. One
thing  to  verify  is  that  all  ballots  are  constructed  using
the correct parameters. The other thing to verify is that
the value in every ballot is within a specific range. Let us
take  the  example  of  verifying  the  ballots  of .  It  is
worth  noting  that  anyone  can  verify  the  ballots.  In  our
scheme, the administrator is responsible for verifying all
the ballots.

π1 = {T1, T2, T3, Z1, Z2, {Zj
3}mj=1}

c = Hash(T1 ∥ T2 ∥ T3) gZ1 = T1 · (gyi)c

gZ2 = T2 · (g−xi)c j ∈ [1,m]
(gxi+1)Z1 · (gyi−1)Z2 · gZ

j
3 = T3 · (gyixi+1−xiyi−1 · gr

j
i )c

•  Verify  the  construction:  With  the  proof  of
,  anyone  can  verify  if

,  verify  if ,  verify
if  and  for ,  and  verify  if

.
j ∈ [1,m]

chj ?
= H(f j

1 ∥f
j
2 ∥ . . .∥f

j
S) chj ?

=
∑S

ς=0e
j
ς

f j
ς

?
= pkh

j
ς (

cj2i
gqς )

ejς qς ∈
{0, 1, . . . , S} ς ∈ [0, S] π2

•  Verify  value  range:  For ,  the  verifier
first  checks  and .
Then,  the  verifier  checks  where 

.  Note  that .  The  proof  is ac-
cepted if these equations hold.

We  summarize  the  vote  verification  phase  as  in
Algorithm 3. Next we further analyze the correctness of
the vote verification. If the voters honestly generate their
votes, then the verification will definitely pass.

Algorithm 3  Vote verification
Require:

{π1, π2} i
{gyi , gxi} i {cj1i, c

j
2i}

m
j=1

{gyi−1 , gxi+1}

　　Input:  proofs ,  the -th  voter’s  public  keys
,  the -th  voter’s  votes ,  and  the

adjacent voters’ public keys ;
　　Output: Yes or No;

c = Hash(T1 ∥ T2 ∥ T3) 1: Verify if ;
gZ1 = T1 · (gyi)c 2: Verify if ;

gxi 3: Calculate the inverse element of ;
gZ2 = T2 · (g−xi)c 4: Verify if ;

j ← 1 m 5: for  to  do

(gxi+1)Z1 · (gyi−1)Z2 · gZ
j
3 = T3 · (gyixi+1−xiyi−1 ·

gr
j
i )c

 6: 　Verify if 
;

 7: end for
j ← 1 m 8: for  to  do

chj ?
= H(f j

1 ∥ ... ∥ f
j
S) 9: 　　Verify if ;

chj ?
=

∑S
ς=0e

j
ς10: 　　Verify if ;

ς ← 0 S11: 　　for  to  do

f j
ς

?
= pkh

j
ς (

c
j
2i

gqς
)e

j
ς12: 　　　　Verify if ;

13: 　　end for
14: end for
15: If all the verification pass,
16: return Yes;
17: Otherwise
18: return No.
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For the step 2 in Algorithm 3, we have
 

gZ1 = g(yic+k1) = gyic · gk1 = (gyi)c · T1

For the step 4 in Algorithm 3, we have
 

gZ2 = g(−xic+k2) = g−xic · gk2 = (g−xi)c · T2

For the step 6 in Algorithm 3, we have
 

(gxi+1)Z1 · (gyi−1)Z2 · gZ
j
3

= (gxi+1)(yic+k1) · (gyi−1)(−xic+k2) · gr
j
i c+k3

= (gxi+1yic) · gxi+1k1 · (g−xicyi−1) · (gyi−1k2) · gr
j
i c · gk3

= (gxi+1yi · g−xiyi−1 · gr
j
i )c · (gxi+1)k1 · (gyi−1)k2 · gk3

= (gyixi+1−xiyi−1 · gr
j
i )c · T3

ς ̸= p
ς == p

For  the  step  12  in  Algorithm  3,  when ,  the
equation is obvious. When , we have

 

pkh
j
p

(
cj2i
gqp

)ejp

= pkρ
j−rji e

j
p

(
gp

j
i · pkr

j
i

gqp

)ejp

= pkρ
j−rji e

j
p(pkr

j
i )e

j
p

= pkρ
j

= f j
p

sk pk
gsk = pk

j

6) Self-tallying phase: After all active voters submit-
ted their ballots, the administrator publishes the private
keys  corresponding to the public key  in the smart
contract,  and anyone can verify if .  We present
the self-tallying phase here in two situations: One is the
case without the abortive issue, and the other is the case
with the abortive issue. Let us take the tally for the -th
candidate as an example.

{{cj1i, c
j
2i}ni=1}mj=1

sk
∏n

i=1g
yixi+1−xiyi−1 = 1∏n

i=1c
j
1i = g

∑n
i=1r

j
i (g

∑n
i=1r

j
i )sk =

pk
∑n

i=1r
j
i

∏n
i=1c

j
2i = g

∑n
i=1p

j
i · pk

∑n
i=1r

j
i

j

g
∑n

i=1p
j
i · pk

∑n
i=1r

j
i

pk
∑n

i=1r
j
i

= g
∑n

i=1p
j
i = gp

j

{gpj}mj=1

{pj}mj=1

• With all the ciphertexts  and the
secret  key ,  as , one  can calcu-
late ,  then  calculate 

,  and  calculate .
The  final  poll  received  by  the -th  candidate  is

.  After  calculating

the  ballots  for  each  candidate,  we  have .  The
 can be derived by brute-force search from a rela-

tively small value set.
avn

{{cj1k, c
j
2k}avnk=1}mj=1∏avn

k=1g
ykxk+1−xkyk−1 = 1

∏avn
k=1c

j
1k =

g
∑avn

k=1r
j
k (g

∑avn
k=1r

j
k)sk = pk

∑avn
k=1r

j
k∏avn

k=1c
j
2k = g

∑avn
k=1p

j
k · pk

∑avn
k=1r

j
k

j
g
∑avn

k=1p
j
k · pk

∑avn
k=1r

j
k

pk
∑avn

k=1r
j
k

=

• We use  to denote the number of the rest ac-
tive voters.  When  there  are  negative  voters  in  the  vot-
ing  process,  we  have  ciphertexts  as .
For  the  new  active  voters  list,  we  have

.  One  can  calculate 
, then calculate , and cal-

culate . The  final  poll  re-

ceived  by  the -th  candidate  is 

g
∑avn

k=1p
j
k = gp

j

.

{gpj}mj=1 {pj}mj=1

After  calculating  the  ballots  for  each candidate,  we
have .  The  can  be  derived  by  brute-
force search  from a  relatively  small  value  set.  We  sum-
marize  the  self-tallying  phase  as  in Algorithm  4 and
Algorithm 5.

Algorithm 4  Self-tallying (without abortive issue)
Require:

sk
{{cj1i, c

j
2i}

n
i=1}mj=1

　　Input:  the  secret  keys  of the  candidates,  all  the  ci-
phertexts ;

{gp
j

}mj=1　　Output: ;
j ← 1 m1: for  to  do∏n

i=1c
j
1i = g

∑n
i=1r

j
i2: Calculate ;

(g
∑n

i=1r
j
i )sk = pk

∑n
i=1r

j
i3: 　　Calculate ;∏n

i=1c
j
2i = g

∑n
i=1p

j
i · pk

∑n
i=1r

j
i4: 　　Calculate ;

g
∑n

i=1p
j
i ·pk

∑n
i=1r

j
i

pk
∑n

i=1
r
j
i

= g
∑n

i=1p
j
i = gp

j

5: 　　Calculate ;
6: end for

{gp
j

}mj=17: return .

Algorithm 5  Self-tallying (with abortive issue)
Require:

sk
{{cj1k, c

j
2k}

avn
k=1}mj=1

　　Input:  the  secret  keys  of the  candidates,  all  the  ci-
phertexts ;

{gp
j

}mj=1　　Output: ;
j ← 1 m1: for  to  do∏avn

k=1c
j
1k = g

∑avn
k=1r

j
k2: 　　Calculate ;

(g
∑avn

k=1r
j
k )sk = pk

∑avn
k=1r

j
k3: 　　Calculate ;∏avn

k=1c
j
2k = g

∑avn
k=1p

j
k · pk

∑avn
k=1r

j
k4: 　　Calculate ;

g
∑avn

k=1p
j
k ·pk

∑avn
k=1r

j
k

pk
∑avn

k=1
r
j
k

= g
∑avn

k=1p
j
k = gp

j

5: 　　Calculate ;
6: end for

{gp
j

}mj=1.7: return 
 

VI. Security Analysis
This  section  is  devoted  to  a  theoretical  security

analysis  of  our  protocol.  The  following  assumptions  are
used in our security analysis.

• All voters will  protect their privacy and not dis-
close their confidential information.

• The Exponential ElGamal Cryptosystem and the
Group Encryption Scheme are secure.

• All content submitted to the blockchain is trust-
ed and secure.

• The administrator  cannot simultaneously collude
with two voters separated by one voter in the sorted vot-
er’s list.

•  The  administrator  cannot  collude  with  the  last
voter in the voters’ list sorted by the smart contract.
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Theorem 1  If  the decisional  Diffie-Hellman (DDH)
assumption is hard, then our scheme can protect the vot-
ers’ secrecy.

A

C
Game0,Game1, and Game2

A
Gamei AdvA ,Gamei

Proof  Suppose  there  exists  a  PPT  adversary 
who can break the  security  of  our  scheme,  then we can
build a PPT algorithm  to break the DDH assumption.
We define three games  in the
proof.  The  advantage  for  the  adversary  to  win  in

 is denoted as .
Game0 A

(p0, p1) C C
b ∈ {0, 1}

(c1, c2) A b′

AdvA ,Game0 = Pr[b = b′]− 1
2

:  sends  two  different  evaluation  points
 to  as  challenge.  Then  randomly  selects

 and generates one ballot as a challenge, which
is  denoted  as .  outputs  a  guess .  We  have

.
Game1 (ga, gb, Γ )

Γ ∈ {gab, gµ} µ ∈R Z∗
p

ga c∗1 = gb c∗2 = gpbgΓ

(c1, c2) = (gyixi+1−xiyi−1 · gr, gpb · pkr) (c1, c2)

(c∗1, c
∗
2) A
r b

Z∗
p (c1, c2) (c∗1, c

∗
2)

|AdvA ,Game1 −AdvA ,Game0 | = 0

:  Let the DDH instance be , where
 and . Set the public key of the ad-

ministrator  as .  Let  and .  With
,  and

 are indistinguishable from ’s view. This is be-
cause  and  are uniformly and randomly selected from

,  and  have exactly the same distribu-
tion. We have .

Game2 Game1 c∗1 = gb

c∗2 = gpbgΓ A b′′ b b′′

A
|AdvA ,Game2 −AdvA ,Game1 | =϶DDH

|AdvA ,Game2 −AdvA ,Game0 | =϶DDH
A 1

2+ ϶DDH

:  Based  on ,  we  have  and
.  The  outputs  a  guess .  If  = ,  we

can  make  use  of  to  solve  the  DDH assumption.  We
have .  Therefore,

.  Thus  the  probability
for  to win in the game is .

Theorem 2  The final voting result can be calculat-
ed by any entity in the end of election using the adminis-
trator’s private key.

j
sk

pk

sk
∏n

i=1g
ynx1−xnyn−1 = 1

j

gp
j

j

Proof  Take the candidate  as an example. After vot-
ing, the administrator must store his/her private key  in
the smart contract. As the public key  is already pub-
lished before voting, anyone can use it to check the cor-
rectness  of .  In  our  protocol,  as ,
by multiplying all the votes corresponding to candidate ,
one can obtain encryption result of the final score  of
candidate , namely

 (
n∏

i=1

cj1i = g
∑n

i=1 rji ,

n∏
i=1

cj2i = g
∑n

i=1 pj
i · pk

∑n
i=1 rji

)

sk
gp

j

pj
Using the private key , one can decrypt the above

ciphertext to obtain . Finally,  can be easily calcu-
lated using brute-force computation.  All  the  content  re-
quired for the process is public,  so anyone can calculate
the final voting result.

Theorem 3  The election cannot be aborted by any
voter  refusing  to  submit  their  votes  or  submit  invalid
votes.

Proof  All the voters who do not vote or submit in-
valid ballots will be added in the NVL and they cannot
vote anymore. For resuming the election, the administra-
tor  adds  adjacent  voters  to  the  RVPVL  and  notifies
them to follow Algorithm 3.  The final  voting result  can

be calculated as presented in Algorithm 4 or Algorithm 5.
Theorem 4  The final voting result cannot be calcu-

lated before the end of the voting phase.
Proof  During the voting phase, the last voter who

did  not  vote  can  only  get  the  following  results  before
voting:

 (∏n

i=1
cj1i = g

∑n
i=1r

j
i ,
∏n

i=1
cj2i = g

∑n
i=1p

j
i · pk

∑n
i=1r

j
i

)m

j=1

sk

Each result is encrypted by the ElGamal encryption.
As long as the ElGamal cryptosystem is secure, it is im-
possible for  voters  to  obtain  intermediate  results  with-
out the administrator’s private key .

Theorem 5  Only eligible voters can vote.
Proof  Before  voting,  each  voter  must  prove  their

identity to  the  administrator  and  the  identity  informa-
tion of each voter is published on the blockchain. All the
voters’ addresses are submitted to the smart contract by
the administrator. The voters’ addresses will be added to
the  AVL  and  the  smart  contract  can  control  that  only
voters in the AVL can vote.

Theorem  6  Once  content  is  submitted  and  stored
on  the  public  bulletin  board,  it  cannot  be  modified  or
deleted.

Proof  Due to  the  immutable  and  transparent  na-
ture  of  Ethereum  itself,  all  content  submitted  on  the
blockchain  cannot  be  modified  and  can  be  accessed  by
anyone.

Theorem 7  Each voter can only vote once, and ex-
cess ballots will be rejected.

Proof  After a voter votes and the ballots are veri-
fied to be valid, the corresponding voter’s address will be
added to the HVAVL and deleted from the NVAVL. On-
ly voters whose addresses are in the NVAVL are allowed
to  vote,  which  is  automatically  controlled  by  the  smart
contract.

Theorem 8  Invalid ballots  can be detected by any
entity.

Proof  Besides the  ballots,  each  voter  has  to  pro-
vide the zero-knowledge proof in proof generation phase.
Only  the  well-formed  ballots  can  pass  the  verification,
which guarantees that the voter has to calculate honest-
ly.

Theorem 9  Each voter is able to verify whether the
ballots are published and tallied correctly and any enti-
ty can verify the final voting result.

Proof  As  all  the  ballots  and  corresponding  proof
are stored in the blockchain or the database, each voter
can check if the ballots are published correctly. Since our
protocol  satisfies  self-tallying property,  anyone can veri-
fy the voting result by recalculating it using Algorithm 4
or  Algorithm  5.  Active  voters  can  check  whether  their
ballots are used to calculate the final result. 

VII. Performance Analysis
In  this  section,  we  have  conducted  theoretical  and
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experimental  analysis  of  the  efficiency  of  our  protocol
from six aspects: voting calculation time, vote size, proof
generation time, proof size, and voting verification time,
voting result calculation time. In addition, we compared
our  protocol  with  the  works  [10],  [12]  closed  to  ours  in
the six aspects described above.

When calculating the costs of voters in PriScore [12],
we  add  together  the  costs  of  voters  in  the  commitment
stage  and the  voting  stage,  as  the  commitment  stage  is
required to address the abortive issue. In the protocol [10]
proposed by Yang et al., most of the calculation is done
by a trusted SGX. With SGX, there is  no proof  of  bal-
lots and  the  verification  is  not  required  either.  We  re-
gard  the  part  that  SGX  helps  voters  calculate  as  costs
for  voters.  All  the  experiments  were  completed  on  a
desktop  computer  with  the  following  specifications:
Intel(R)  Core(TM)i5-10400F  CPU @  2.90  GHz  with  12
MB shared L3 cache, 16 GB of 2400 MHz memory.

te
te ≈ t×

t× ≈ se
se = 8 sr

Zp sr = 8

We  use  to  denote  the  computation  time  of  one
exponentiation,  where  2.325  ms,  to  denote  the
computation  time  of  multiplication  operation,  where

 0.012 ms,  to denote the size of a group element,
where  bytes,  and  to denote the size of  a ran-
dom number in , where  bytes. 

1. Voting calculation time
pjiAccording  to  the Algorithm 1,  each  score  is en-

crypted as
 

E(pji , r
j
i , pk, xi, yi, g

xi+1 , gyi−1)

= (gyixi+1−xiyi−1 · gr
j
i , gp

j
i · pkr

j
i )

Tvotes
m

We  use  to  denote  the  total  time  each  voter
spends calculating their votes and  to denote the num-
ber of candidates here. For our work, we have

 

Tvotes = [(3te + 2t×) + (2te + t×)]m = 5tem+ 3t×m

m = 1, 5, 10, 15, 20 TvotesWith ,  the  result  of  testing 
is shown in Figure 4(a). Compared to the protocols in [10]
and  [12],  the  vote  generation  time  of  each  voter  in  our
system is much shorter. 

2. Vote size
Svotes
m

We use  to denote the total size of each voter’s
ballots and  to denote the number of candidates here.
In our work, we have

 

Svotes = 2sem

SvotesThe test of  is shown in Figure 4(b). The vote
size  of  each voter  in our protocol  is  nearly equal  to  the
vote size in [12] and almost twice the vote size in [10]. 

3. Proof generation time
TproofWe use  to denote the total time spent by one

voter on proof generation. According to the Algorithm 2,
we have 

Tproof = (5 + 2mS +m)te + 2Smt×

Tproof
S

m m = 1, 5, 10, 15, 20
Tproof

S = 5, 10, 15, 20, 25 Tproof

The proof generation time  in our system is re-
lated to two variables, namely the maximum score  and
the  number  of  candidates .  With ,
we  test  and  the  result  is  shown  in Figure  5(a).
With , we test  and the result is
shown in Figure 5(b). What’s exciting is that the time of
generating proof in our protocol is much shorter than the
corresponding time spent in PriScore. 

4. Proof size
SproofWe use  to denote the size of the proof generat-

ed by each voter. According to Algorithm 2, we have
 

Sproof = (S + 2)sem+ 2srm(S + 1)

Sproof
S

m m = 1, 5, 10, 15, 20
Sproof
S = 1, 5, 10, 15, 20 Tproof

The proof size  in our protocol is related to two
variables,  namely  the  maximum  score  and the  num-
ber  of  candidates .  With ,  we  test

 and  the  result  is  shown  in Figure  6(a).  With
, we test  and the result is shown

in Figure  6(b).  The  size  of  proof  in  our  scheme  is  very
small  compared  to  the  proof  size  in  PriScore.  However,
compared to the size of the ballots, it is still larger, so we
store the proof in the database to reduce the cost of stor-
ing data in the blockchain. 

5. Voting verification time
TverifyWe use  to denote the time required to verify

each  voter’s ballots.  According  to  Algorithm  3  in  Sec-
tion V, we have

 

Tverify = (2mS + 4m+ 6)te + (2mS + 5m+ 2)t×
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Figure 4  Voting test.
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Tverify
S

m Tverify m = 1, 5,
10, 15, 20

S = 5, 10, 15, 20, 25 Tverify

The proof size  in our scheme is related to two
variables,  namely  the  maximum  score  and the  num-
ber of  candidates .  We first test  with 

 and  the  result  is  shown in Figure  7(a).  Then,
with , we test  and the result is
shown in Figure 7(b). The time of verification in our pro-
tocol is nearly one quarter of that in PriScore. 

6. Time of calculating voting result
T crWe use  to denote  the  time  one  takes  to  calcu-

nlate the voting result and  to denote the number of vot-
ers. According to Algorithm 4, we have

 

Tcr = 2mte + 2mnt×

n = 50, 500, 1000, 10000, 100000 T cr

100000

With ,  we  test 
and the result is shown in Figure 8. When the number of
voters  reaches ,  the  calculation  time  is  10.815  s,
compared to 10.476 s in [12], and 5.021 s in [10].
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VIII. Conclusion and Future Work
This  paper  presents  a  secure  self-tallying  e-voting

protocol where every step of voting and the phase of tal-
lying  ballots  can  be  verified  by  any  party.  Each  voter
can score candidates within a certain range. Each ballot
can be  verified  using  the  proof  generated  by  the  corre-
sponding  voter.  By  combining  Exponential  ElGamal
Cryptosystem  and  distributed  encryption,  the  adaptive
issue and the abortive issue are efficiently solved. Perfor-
mance analysis indicates that our protocol is suitable for
large-scale  election  as  the  low  computational  overhead.

 

0

2

4

6

8

10

5 15
Number of candidates

1 10 20

Our work
Ref. [12]

0

1

2

3

4

4

6

7

10 20
Max score

5 15 25

Our work
Ref. [12]

(a) Comparison of proof generation time based on

the number of candidates

(b) Comparison of proof generation time basd on the max score

P
ro

o
f 

g
en

er
at

io
n
 t

im
e 

(s
)

P
ro

o
f 

g
en

er
at

io
n
 t

im
e 

(s
)

Figure 5  Proof generation time test.

 

0
20
40
60
80

100
120
140
160
180
200

5 15
Max score

P
ro

o
f 

si
ze

 (
K

B
)

1 10 20

Our work
Ref. [12]

0
20
40
60
80

100
120
140
160
180
200

5 15
Number of candidates

P
ro

o
f 

si
ze

 (
K

B
)

1 10 20

Our work
Ref. [12]

(a) Comparison of proof size based on the number of candidates

(b) Comparison of proof size based on the max score

Figure 6  Proof size test.

 

0

1

2

3

10 20

Max score

5 15 25

Our work

Ref. [12]

0

1

2

3

4

5

5 15

Number of candidates

1 10 20

Our work

Ref. [12]

(a) Comparison of verification time based on the number of candidates

(b) Comparison of verification time based on the max score

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

s
)

V
e
ri

fi
c
a
ti

o
n
 t

im
e
 (

s
)
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But  there  are  some  limitations  and  weaknesses  in  our
scheme.  When  the  administrator  colludes  with  adjacent
voters  of  the -th  voter,  the  voting  content  of  the -th
voter can  be  restored,  and  when  the  administrator  col-
ludes  with  the  last  voter,  they  can  obtain  the  voting
results  in  advance.  In  addition,  we  do  not  consider  the
situation  where  some  voters  are  forced  to  disclose  their
secret information to the adversary, in which the adver-
sary  can  obtain  all  the  voting  contents  of  the  coerced
voters.  The  coercion  issue  has  been  studied  by  some
excellent  works  [33]–[35].  Achenbac et  al.  [35]  adopted
deniable revoting to realize coercion-resistant and Lueks
et al. [33] and Locher et al. [34] utilized the technology of
cryptographic shuffle to solve the coercion issue. None of
them  can  simultaneously  achieve  self-tallying  property
and coercion-resistant. We will explore the possibility of
achieving it in the future. 
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