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Abstract — Low  earth  orbit  (LEO)  satellite  edge  computing  can  overcome  communication  difficulties  in  harsh
environments,  which  lack  the  support  of  terrestrial  communication  infrastructure.  It  is  an  indispensable  option  for
achieving  worldwide  wireless  communication  coverage  in  the  future.  To  improve  the  quality-of-service  (QoS)  for
Internet-of-things  (IoT)  devices,  we  combine  LEO satellite  edge  computing  and  ground communication  systems  to
provide  network  services  for  IoT  devices  in  harsh  environments.  We  study  the  QoS-aware  computation  offloading
(QCO) problem for  IoT devices  in  LEO satellite  edge  computing.  Then we investigate  the  computation  offloading
strategy for IoT devices that can minimize the total QoS cost of all devices while satisfying multiple constraints, such
as the computing resource constraint, delay constraint, and energy consumption constraint. We formulate the QoS-
aware computation offloading problem as a game model named QCO game based on the non-cooperative competi-
tion game among IoT devices. We analyze the finite improvement property of the QCO game and prove that there is
a Nash equilibrium for the QCO game. We propose a distributed QoS-aware computation offloading (DQCO) algo-
rithm for the QCO game. Experimental results show that the DQCO algorithm can effectively reduce the total QoS
cost of IoT devices.
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 I. Introduction
The  worldwide  mobile  subscriptions  are  increasing

rapidly  with  the  unprecedented  growth  of  the  Internet-
of-things (IoT) and emerging network services [1]. Com-
mon terrestrial networks have been difficult to meet the
various complex needs in global communications. Terres-
trial infrastructure in harsh environments such as oceans,
deserts,  and  remote  areas  is  vulnerable  to  damage  from
natural disasters such as earthquakes and flooding, which
can  interrupt  the  communication  between  devices  and
servers  [2].  It  is  tricky  to  provide  network  services  for
IoT devices in harsh environments.

Recently, low earth orbit (LEO) satellite technology
has made great strides in civil, commercial, and military
services,  enabling  the  economic  miniaturization  of  LEO
satellites.  LEO  satellites  play  an  important  role  in  the
supply chain of communication technology-related equip-
ment  with  the  rapid  development  of  LEO  satellites  [3].
Several global application providers have noted the rapid
growth of the international satellite supply chain market,
hoping to increase the market share of  their  LEO satel-
lite  networks  in  recent  years.  Many  influential  satellite
projects,  such as  SpaceX StarLink and Amazon Kuiper,
provide high-quality communication services for  IoT de-
vices around the world by launching and deploying hun- 
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dreds of LEO satellites [4]. It can be concluded that com-
pared to terrestrial mobile communication systems, LEO
satellite  communication networks enable  seamless  global
coverage and can better  guarantee the quality-of-service
(QoS) for IoT devices [5], [6].

The  growing  popularity  of  mobile  devices  for  IoT
has given rise to several emerging computationally inten-
sive applications such as TikTok, 4K video, and unmanned
vehicles. In many studies for terrestrial networks, compu-
tation tasks can be offloaded to nearby base stations or
cloud servers  for  processing  due  to  the  limited  comput-
ing and storage resources of IoT devices [7], [8]. However,
computation tasks generated by devices in harsh environ-
ments not supported by terrestrial communication infras-
tructure  can  only  be  handled  by  servers  deployed  on
LEO satellites.  It is not negligible that the transmission
delay of  devices  in  LEO satellite  networks  increases  ac-
cordingly  due  to  the  orbital  altitude  of  LEO  satellites,
creating an obstacle to real-time QoS from IoT devices [9],
[10].  In  this  paper,  we  combine  LEO  satellite  networks
and  ground  communication  systems  and  then  introduce
mobile  edge  computing  to  provide  computing  resources
to the edge of the LEO satellite network. We study the
QoS-aware  computation  offloading  (QCO)  problem  for
IoT devices to efficiently reduce the total QoS cost of de-
vices  under  LEO satellite  coverage  time  and  computing
capability constraints.

Our main contributions are as follows:
•  We  study  the  QCO  problem  for  IoT  devices  in

LEO satellite edge computing, where the devices can of-
fload  their  computation  tasks  to  the  LEO  satellites  via
the  channels.  The  computation  offloading  decision  for
each IoT device is local computing or LEO satellite edge
computing.  In  the  QoS-aware  computation  offloading
problem, we aim to minimize the total  QoS cost  of  IoT
devices while  satisfying the decision constraint,  comput-
ing  capability  constraint,  delay  constraint,  and  energy
consumption constraint.

• Based  on  the  non-cooperative  competition  be-
tween IoT devices, we formulate this QCO problem as a
game  model  named  QCO  game.  We  define  a  potential
function  for  the  QCO  game  and  prove  that  the  QCO
game  is  an  ordinal  potential  game.  We  then  propose  a
distributed  QoS-aware  computation  offloading  (DQCO)
algorithm for the QCO game, which can obtain at least
one Nash equilibrium strategy for IoT devices after a fi-
nite number of iterations.

• To evaluate the performance of the DQCO algo-
rithm, we conduct a series of parameter analysis experi-
ments for the DQCO algorithm. We also perform exten-
sive  comparison  experiments  between  DQCO and  other
benchmark  algorithms  such  as  the  Random  algorithm
and the computing locally (CL) algorithm.

The rest  of  this  paper  is  organized below.  The sys-
tem  model  and  problem  formulation  are  introduced  in
Section II.  In Section III,  we formulate  the game model
for  game-theoretical  computation  offloading  in  LEO

satellite edge computing and propose a DQCO algorithm.
Then extensive  parameter  analysis  and  comparison  ex-
periments  are  conducted  in  Section  IV  to  evaluate  the
performance. Section V discusses the related work. Final-
ly, we conclude this study in Section VI.

 II. System Model and Problem
Formulation
In  this  section,  we  describe  the  system  model  in

LEO  satellite  edge  computing,  communication  time  for
LEO  satellite,  QoS  model  for  computation  offloading,
and problem formulation in detail.
 1. System model in LEO satellite edge computing

n
D = {d1, d2, . . . , dn}

m
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As shown in Figure 1, we study the scenario for an
LEO satellite  edge  computing  system,  where  the  satel-
lites  operating  in  LEO  are  deployed  with  edge  servers.
IoT  devices  are  in  harsh  environments,  such  as  oceans,
deserts, and remote areas, without the support of terres-
trial  communication  infrastructure.  The  set  of  all  de-
vices  in  the  system  is  denoted  as .
We  consider  LEO  satellites  with  edge  servers  when
the  devices  request  IoT  services,  represented  by  the  set

. There are  channels for each LEO
satellite , the set of all the channels for satellite 
is  indicated  by . The  total  band-
width  for satellite  is divided evenly to each chan-
nel , i.e., the channel bandwidth for  is 
[11]. In addition, the computing capability for LEO satel-
lite  is .
  

LEO satellite

MEC server

IoT device

Figure 1  The system scenario  in  LEO satellite  edge  computing  for
IoT.
 

di
Ki = {Zi, Xi} Zi

Ki

Xi

The computation task for  each IoT device  when
computation offloading is expressed as , 
is the data size of task  during task transmission, and

 is the number of CPU cycles required for computing
the task. To request computation offloading services, the
devices  can either  compute their  tasks locally  or  offload
their  computation  tasks  to  the  edge  server  of  the  LEO
satellites for computation. Then the definition of compu-
tation offloading decision and strategy regarding the de-
vice is denoted below.
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ai
di ai = (j, k)

di Ki

sj hk
j ai = (0, 0)

di

Definition 1  (Computation offloading decision) Let
 denote the binary variable for computation offloading

decision  of  each  IoT  device ,  where  indi-
cates that device  offloads its computation task  to
LEO  satellite  through  the  channel , 
when device  computes its task locally.

a = {a1, a2, . . . , an}

Definition 2  (Computation offloading strategy) The
computation  offloading  strategy  for  all  IoT  devices  is
represented as .

di a−i = {a1, . . . , ai−1,
ai+1, . . . , an}

hk
j sj

Then  the  offloading  decisions  for  all  devices  other
than  device  are  represented  as 

. According to Definition 1, the set of users
whose task is offloaded to the channel  of satellite 
is

 

Dk
j = {di ∈ D | ai = (j, k)}, sj ∈ S, hk

j ∈ Hj (1)

 2. Coverage time model for LEO satellite

α

To comprehend the movement trend and communi-
cation time of the LEO satellite, we plot a spatial geome-
try  relation  between  IoT  devices  and  LEO  satellites.
Figure  2 shows the  communication  state  of  LEO  satel-
lites for computation offloading. The elevation angle be-
tween the IoT device on the ground and the LEO satel-
lite can be regarded as angle  by geometric transforma-
tion.  Based on the law of  sines,  it  can be further  found
that

 

r

sinβ
=

r + h

sin
(π
2
+ α

) =
r + h

cosα
(2)
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l l h
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where  is the average radius of the earth, and  repre-
sents the distance between the substantial point and the
LEO satellite.  The  space  length  from  the  LEO satellite
to the IoT device is , and the angle among  with  is
denoted as .
  

Destination

L


h

α
β

rω

IoT device

Geocenter

Substantial

point

LEO satellite

Figure 2  The  spatial  geometry  relation  between  IoT  devices  and
LEO satellites.
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We assume that the line between the geocenter and
the  LEO  satellite  is ,  the  line  between  the  geocenter
and the destination of the LEO satellite is ,  and  is
the angle among  with . It is straightforward to get

,  and  the  relationship  between  the  three

α β ωangles , , and  can be expressed as
 

cos(ω + α) = cos
(π
2
− β

)
= sinβ (3)

ω α
Combining (2) and (3), we can derive that the asso-

ciation between  and  should be indicated as
 

cos(ω + α) =
r

r + h
· cosα (4)

ω
According to (4), we can further obtain the value of

, which is denoted as
 

ω = arccos
(

r

r + h
· cosα

)
− α (5)

di

di sj

For  each  IoT  device  in  the  LEO  satellite  edge
computing,  according  to  the  Pythagorean  theorem,  the
linear distance between device  and LEO satellite  is
indicated by

 

lji =
√
r2 + (r + h)2 − 2 · r · (r + h) · cosω (6)

The distance  from the  LEO satellite  to  its  destina-
tion is regarded as an arc length, which is expressed as

 

L = 2 · ω · (r + h) (7)

From the above, the maximum coverage time for the
LEO satellite  when  an  IoT device  offloads  its  computa-
tion task to the satellite can be represented by

 

Tmax
sat =

L

vsat
(8)

vsat

where the velocity of the LEO satellite operating in the
orbit is .
 3. QoS model for computation offloading

Based on Section II.1, there are two ways to offload
its  computation  task  for  the  IoT  device,  namely  LEO
satellite  computing  and  local  computing.  Then  the  QoS
cost  of  the  IoT  device  will  be  obtained.  All  details  are
listed below.

Ki

di hk
j sj

di ai = (j, k)

di sj
hk
j

1)  LEO  satellite  computing:  For  the  LEO  satellite
computing, the computation task  of each IoT device

 is offloaded to channel  of LEO satellite , i.e., the
computation offloading decision of device  is .
Then  the  data  rate  for  computation  task  transmission
from IoT device  to LEO satellite  through channel

 is
 

Rk
i,j = Bk

j log2

1 +
gki,jp

k
i,j∑

dt∈Dk
j \{di}

gkt,jp
k
t,j +N0

 (9)

gki,j
di sj pki,j

di N0∑
dt∈Dk

j \{di} g
k
t,jp

k
t,j

where  represents the channel gain between IoT device
 and LEO satellite ,  is the transmission power of

device  for  computation  offloading,  and  indicates
the  background  noise  power.  de-
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di

di
sj hk

j

notes  the  intra-cell  interference  received  by  device ,
that is,  the  sum  of  power  interference  from  devices  ex-
cept for device  that offload their computation tasks to
LEO satellite  through channel  [12].

di
sj

The total delay for IoT device  offloading its com-
putation task to LEO satellite  is

 

T sat
i =

lji
c
+

Zi

Rk
i,j

+
Xi

f j
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(10)
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k
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Ki sj
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di sj
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where  represents the propagation delay of computa-
tion  task  in  vacuum medium,  and  is  the  speed  of
light.  indicates  the  task  transmission  delay  for
computation  offloading.  Then  denotes the  com-
puting delay of computation task  in LEO satellite ,
where  is  the  computing  capability  allocated  to  IoT
device  by LEO satellite . In the satellite edge com-
puting system, when a terminal has a data transmission
demand, it needs to send a scheduling request before the
edge server can allocate resources for the terminal to of-
fload  the  computation  task.  This  process  causes  the
transmission delay for  computation offloading to  be sig-
nificantly  larger  than  the  downlink  transmission  delay.
Therefore, the downlink data transmission delay is basi-
cally negligible. Additionally, the energy consumption of
device  for its computation task transmission is

 

Esat
i = pi

Zi

Rk
i,j

(11)

Ki di
di

ai = (0, 0) f loc
i

di
di Ki

2)  Local  computing:  For  the  local  computing,  the
computation task  of each IoT device  is computed
locally,  i.e.,  the  computation offloading decision of  is

.  There  is  the  computing  capability  of
each IoT device , which is related to its chip architec-
ture. The delay of device  for computing its task  is

 

T loc
i =

Xi

f loc
i

(12)

θi
di

di

Let  represent  the  energy  consumption  factor  of
IoT device  for task  computing,  the  energy  consump-
tion of device  for local computing is

 

Eloc
i = θi(f

loc
i )2Xi (13)

di

3) QoS cost: In order to emphasize the QoS of com-
putation service, the QoS delay for IoT device  is

 

Qi(ai, a−i) = T sat
i I{ai} + T loc

i (1− I{ai}) (14)

I{ai}where  is denoted by
 

I{ai} =

{
1, ai ̸= (0, 0)

0, ai = (0, 0)
(15)

diConsidering  the  impact  of  device  on other  de-
vices, the sum of QoS delay for all devices except device

di
ai di Mpre

i

 that does not ignore the computation offloading deci-
sion  of device  is , which is denoted as

 

Mpre
i =

∑
dt∈D\{di}

Qt(at, a−t) (16)

di ai Mpos
i

While  the  sum  of  QoS  delay  for  the  devices  except  for
device  overlooking  decision  is  [13],  which  is
expressed as

 

Mpos
i =

∑
dt∈D\{di}

Qt(at, a−t\i) (17)

a−t\i

ai di ai /∈ a−t

di

ai di
di

di
Mpre

i Mpos
i

where  indicates  that  the  computation  offloading
decisions for other devices do not contain the offloading
decision  for device , i.e., . Equation (17) is
actually the sum of QoS delay for all  devices except for
device , which are supposed to consider the decisions of
other devices when making its decision but ignore the de-
cision  of  device .  Therefore,  the difference between
(16) and (17) represents the impact of  device  on the
QoS delay of other devices. Therefore, the impact of de-
vice  on other devices is reflected as the difference be-
tween  and , which is indicated by

 

∆Mi = Mpre
i −Mpos

i (18)

a−i

Qi(ai, a−i)
∆Mi di

Given  the  computation  offloading  decisions  for
other devices, we take the sum of QoS delay 
and the impact  as the QoS cost of device , which
is expressed as

 

Ci(ai, a−i) = Qi(ai, a−i) + ∆Mi (19)

 4. Problem formulation

di ∈ D

In  the  LEO  satellite  edge  computing  system,  we
study the QCO problem for providing services to IoT de-
vices in harsh environments.  To improve the computing
offloading efficiency and minimize  the  total  QoS cost  of
all devices,  the  QCO  problem  is  modeled  as  a  con-
strained  optimization  problem  for  each  device ,
which is expressed as

 

min
∑
di∈D

Ci(ai, a−i) (20)

 

s.t. I{ai=(j,k)} + I{ai=(0,0)} = 1,∀di ∈ D (20a)
 

q∑
k=1

∑
di∈Dk

j

f j
i ≤ Fj ,∀di ∈ D,∀sj ∈ S,∀hk

j ∈ Hj (20b)

 

T sat
i I{ai=(j,k)} ≤ Tmax

sat ,∀di ∈ D (20c)
 

Esat
i I{ai=(j,k)}+Eloc

i I{ai=(0,0)} ≤ Eloc
i ,∀di ∈ D (20d)

where  (20a)  indicates  the  decision  constraint  that  only
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sj
sj

di
sj

di
sj
di sj

di

one computation offloading decision is made for device ,
and  (20b) denotes  the  resource  constraint  that  the  sum
of computing capability allocated to IoT devices by LEO
satellite  is not greater than the computing capability
of satellite , which is related to the physical character-
istics of the edge server. Equation (20c) denotes that the
total  delay  for  device  that  offloads  its  computation
task  to  LEO  satellite  is  not  supposed  to  exceed  the
coverage time of the LEO satellite. The reason is that if
the total delay of device  exceeds the coverage commu-
nication  time  of  LEO  satellite , the  computation  of-
floading service between device  and satellite  will be
interrupted.  Equation  (20d)  guarantees  that  the  energy
consumption for  local  computing  is  the  maximum ener-
gy  consumption  of  device .  The  CPU  architecture  of
the device  for  local  computing  causes  more  energy  con-
sumption  than  the  energy  consumption  generated  by
satellite edge computing.

The  optimization  problem  in  (20)  is  an  NP-hard
problem due  to  the  discrete  nature  of  computation  of-
floading  and  the  limited  computing  resources  of  LEO
satellites  [12].  Since  the  computation  offloading  decision
of the device while satisfying the constraints is a binary
variable, there is a huge challenge to find the centralized
optimal solution of the QCO problem within polynomial
time complexity.

 III. Game-Theoretical Computation
Offloading in LEO Satellite
Edge Computing

To solve  the  QCO problem,  the  QCO game is  pre-
sented  through  our  game-theoretical  approach  in  this
section. Specifically, we formulate the QoS-aware offload-
ing problem as the model of a non-cooperative game and
propose a distributed algorithm that can obtain the Nash
equilibrium solution [14], [15].
 1. Computation offloading game model

a−i

di di
ai

sj ∈ S hk
j ∈ Hj

At first, we consider the computation offloading de-
cision  problem  among  the  IoT  devices  in  this  system.
Given the offloading decision set  for IoT devices oth-
er than device , device  would like to make an appro-
priate  decision  to  minimize  its  own  QoS  cost,  which
can not only offload its computation task to LEO satel-
lite  through  channel ,  but  compute  the
task locally, i.e.,

 

min
ai∈{(j,k)∪(0,0)|sj∈S,hk

j∈Hj}
Ci(ai, a−i) (21)

According  to  (21),  we  formulate  the  QCO problem
as a non-cooperative game：

 

G = {D, {Ai}di∈D, {Ci(ai, a−i)}di∈D}

D Ai

di Ci(ai, a−i) di

where  denotes the set of IoT devices,  indicates the
set  of  finite  computation  offloading  decisions  for  device

,  and  represents the QoS cost of  device 

ai ∈ Aiproduced by its  decision .  In  this  game,  there  is
non-cooperative competition among IoT devices. For ex-
ample, several IoT devices select to offload their compu-
tation tasks through a specific channel to a specific LEO
satellite, which may affect the offloading decisions of oth-
er IoT devices for the same satellite channel or any satel-
lite  channel  [16].  For  investigating  this  non-cooperative
competition,  we  need  to  introduce  the  concept  of  Nash
equilibrium in Definition 3.

a∗ = {a∗1, a∗2, . . . , a∗n}
Definition 3  (Nash equilibrium) A computation of-

floading strategy  of the QCO game
is a Nash equilibrium if no device can further reduce its
QoS cost by unilaterally changing its decision, i.e.,

 

Ci(a
∗
i , a

∗
−i) ≤ Ci(ai, a

∗
−i),∀di ∈ D,∀ai ∈ Ai (22)

Based on Definition 3, the Nash equilibrium for the
QCO game is a stable offloading strategy. Given the of-
floading decisions of other IoT devices, the Nash equilib-
rium decision for  each device is  the best  decision for  it-
self, which is defined in Lemma 1.

a∗i
a∗

di Ai a−i

Lemma  1  Any  computation  offloading  decision 
in  the  Nash  equilibrium  is the  best  offloading  deci-
sion of device  for  in response to .

a∗i ∈ a∗

di
ai ∈ Ai

Proof  According  to  the  disproof  method,  if  the
computation  offloading  decision  is  not  the  best
selection  for  device , there  must  be  a  preferable  deci-
sion  that will decrease its QoS cost, i.e.,

 

Ci(ai, a
∗
−i) < Ci(a

∗
i , a

∗
−i)

It  is  contradictory  to  (22)  that  no  device  in  the  Nash
equilibrium  can  unilaterally  reduce  its  QoS  cost  by
changing its decision.

Lemma  1  shows  that  if  the  QCO  game  admits  a
Nash  equilibrium,  the  QCO  game  will  eventually  reach
the Nash  equilibrium  after  a  limited  number  of  itera-
tions. There must exist at least one Nash equilibrium in
the potential  game owing to its FIP, which is  the finite
improvement  property  of  a  potential  game,  indicating
that  the  potential  game  can  reach  a  Nash  equilibrium
within a finite improvement step. The reason is that the
computation  offloading  decisions  of  the  game  model  in
this paper are a limited set. Each decision change based
on the best response principle will reduce the QoS cost of
IoT devices, so the improvement steps are finite. To veri-
fy  the  Nash  equilibrium  in  the  QCO  game,  we  should
demonstrate  that  the  QCO  game  is  a  potential  game,
where the definition of a potential game is shown below.

Φ(ai, a−i)

Definition 4  (Ordinal potential game) A game is an
ordinal potential  game  if  there  exists  a  potential  func-
tion  satisfying

 

Ci(ai, a−i) < Ci(a
′
i, a−i) ⇒ Φ(ai, a−i) < Φ(a′i, a−i) (23)

G
According to Definition 4, we are supposed to prove

that  our  QCO  game  is  an  ordinal  potential  game,
which is denoted in Theorem 1.
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Φ(ai, a−i)
Theorem 1  The QCO game is an ordinal potential

game, its potential function  is expressed as
 

Φ(ai, a−i) =
∑
di∈D

Qi(ai, a−i) (24)

a−i di

Proof  Given  the  computation  offloading  decisions
 of  IoT devices  except device , the potential  func-

tion may also be indicated as
 

Φ(ai, a−i) = Qi(ai, a−i) +
∑

dt∈D\{di}

Qt(at, a−t) (25)

ai, a
′
i ∈ Ai Ci(ai, a−i)

ai Ci(a
′
i, a−i) a′i

For  two  different  computation  offloading  decisions
,  the  difference  between  produced

by decision  and  produced by decision  is
denoted by

 

Ci(ai, a−i)− Ci(a
′
i, a−i)

= Qi(ai, a−i) + ∆Mi − (Qi(a
′
i, a−i) + ∆M ′

i)

= Qi(ai, a−i) +
∑

dt∈D\{di}

(
Qt(at, a−t)−Qt(at, a−t\i)

)
−Qi(a

′
i, a−i)−

∑
dt∈D\{di}

(Qt(at, a
′
−t)−Qt(at, a

′
−t\i))

= Qi(ai, a−i)−Qi(a
′
i, a−i) +

∑
dt∈D\{di}

Qt(at, a−t)

−
∑

dt∈D\{di}

Qt(at, a
′
−t) +Mpos

i′ −Mpos
i (26)

Mpos
i

di ai
di Mpos

i

ai Mpos
i′

Mpos
i a′i

Mpos
i = Mpos

i′ =
∑

dt∈D\{di} Qt(at, a
′
−t\i)

Ci(ai, a−i) Ci(a
′
i, a−i)

According to (17),  denotes the sum of the QoS
delay for all devices except device  and the decision 
of device  will be ignored, i.e.,  has nothing to do
with .  In  other  words,  does  not  produce  any
change compared to  when the decision is , so we
can  get  that .
Then  the  difference  between  and 
can further be denoted as

 

Ci(ai, a−i)− Ci(a
′
i, a−i)

= Qi(ai, a−i)−Qi(a
′
i, a−i) +

∑
dt∈D\{di}

Qt(at, a−t)

−
∑

dt∈D\{di}

Qt(at, a
′
−t)

= Φ(ai, a−i)− Φ(a′i, a−i) (27)

G
According  to  (24)–(27),  we  can  deduce  that  the

QCO game  is an ordinal potential game.
 2. Distributed QoS-aware computation offloading

algorithm design
We  propose  a  distributed  QoS-aware  computation

offloading (DQCO) algorithm to minimize the total QoS
cost for IoT devices. In the DQCO algorithm, the prima-
ry  experiment  parameters  are  defined  first.  Then  the
computation  offloading  strategy  for  IoT  devices  reaches
the Nash  equilibrium  after  a  limited  number  of  itera-

∑
di∈D Ci(ai, a−i) V (ai, a−i)

tions  based  on  the  FIP  [17].  Specially,  we  denote
 as  to simplify English writ-

ing. The DQCO algorithm is defined in Algorithm 1, the
main procedures are as follows:

1) D S Hj

sj
di ai = (0, 0)

 Initialization:  Given , ,  for  each  LEO
satellite ,  and other  required parameters,  we initialize
the  offloading  decision  of  each  device  to 
(lines 1–3).

2)

V (ai, a−i)
di ∈ D

sj ∈ S hk
j ∈ Hj

V (a′i, a−i)
di a′i = (j, k)

aoi ∈ Ai

V (aoi , a−i)
aoi di aoi ̸= ai

V (aoi , a−i) < V (ai, a−i) di
di

ai aoi

 Iteration  process:  In  each  iteration  (line  4),  the
DQCO  algorithm  first  calculates  the  current  total  QoS
cost of all IoT devices denoted by  (line 5). For
each IoT device  in parallel, we traverse each LEO
satellite  and  each  of  its  channel .  Then,
we calculate the total QoS cost  assuming that
the  decision  of  is  (lines  6–11).  We  then
need to find the decision  that obtains the mini-
mum total QoS cost  (line 12). When the deci-
sion  for  each  device  meets  that  and  the
state  that  is  satisfied,  com-
petes  for  the opportunity to update its  decision,  and 
can update its decision from  to  if it wins the com-
petition (lines 13–19).

3) Ending of iteration: No device would like to up-
date its decision (line 20).

Algorithm  1  Distributed QoS-aware  computation  offload-
ing (DQCO) algorithm

D,S,Hj ,Input:  and other primary parameters.
aOutput: device computation offloading strategy .

 1: Initialization:
di ai = (0, 0) 2: The offloading decision of each device  is ;

 3: End of initialization.
 4: repeat

V (ai, a−i) 5:　Compute the current total QoS cost ;
di ∈ D 6:　for each device  in parallel do

sj ∈ S 7:　　for each LEO satellite  do

hk
j ∈ Hj 8:　　　for each channel  do

V (a′i, a−i)
di a′i = (j, k)

 9:　　　　Compute  the  total  QoS cost  assum-
ing that the decision of  is ;

10:　　　 end for
11:　　 end for

aoi ∈ A′
i

V (aoi , a−i)
12:　　 Find  the  offloading  decision  that  obtains

the minimum total QoS cost ;
aoi ̸= ai V (aoi , a−i) < V (ai, a−i)13:　　 if  and  then

14:　　　 Contend for  the  opportunity  to  update  its  deci-
sion;

di15:　　　 if device  wins the competition then
ai aoi16:　　　　 Update its decision from  to ;

17:　　　 end if
18:　　 end if
19:　 end for
20:  until no device would like to update its decision.

 IV. Performance Evaluation
In  this  section,  we  perform  extensive  parameter
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analysis  and  comparison  experiments  to  evaluate  the
simulation performance of the DQCO algorithm. The de-
tails include experiment settings, parameter analysis, and
comparison experiments.
 1. Experiment settings

To precisely evaluate the performance of the DQCO
algorithm, the parameters involved in the experiment are
given in Table 1 [17]–[19].
 
 

Table 1  Experiment parameters

Parameter Value

Number of LEO satellites 3

Number of IoT devices 40

Channel bandwidth 10 MHz

Transmission power of each IoT device [200, 300] mW

Data size of each computation task [0.10, 0.45] Mb

Background noise power −100 dBm

Computing capability of each IoT device 1 GHz

Computing capability of each LEO satellite 30 GHz

Number of CPU cycles required for
each bit of data 1000

Altitude of LEO satellite 784 km

Elevation angle between IoT devices
and LEO satellites 20°

 

 2. Parameter analysis

di di

dt ∈ D\{di}
di

di

di
di

In the satellite  edge computing system, IoT devices
request  computation  offloading  services  from  satellite
edge servers, and there is competition among devices for
server resources,  channel  resources,  and  computing  re-
sources. The computation offloading decision of each de-
vice  will not only affect the QoS delay of  itself but
also  may  affect  the  QoS  delay  of  other  devices

.  Therefore,  it  is  necessary  to  consider  not
only the QoS delay of each device  but the impact of
device  on other devices when performing optimization.
In other words, the smaller the QoS delay of the device
and the impact of device  on other devices, the small-
er the QoS cost of device  until it reaches an equilibri-
um state of the system.

Figure  3 shows  the  total  QoS  cost  of  IoT  devices
with  a  different  number  of  IoT  devices.  As  IoT  devices
grow from 5 to 40, the total QoS cost gradually increas-
es  from  0.18  to  6.05.  When  other  parameters  are  not
changed in the experiment, it can be seen from (9) that
the increase in the IoT devices enhances the interference
between devices, which not only increases the QoS delay
of this device but makes the impact among devices more
obvious. In other words, greater interference reduces the
data rate at which the device offloads its computing task
through  one  channel  to  the  LEO satellite,  and  for  each
device, the QoS delay impact of that device on other de-
vices  is  more  pronounced.  The  local  computing  way  for
IoT devices is not affected by the above. Therefore, even

if many devices compute their tasks locally, the increase
in the number of IoT devices leads to an increase in the
total QoS cost of IoT devices.

Figure 4 shows the number of iterations in the DQ-
CO algorithm with different numbers of IoT devices. It is
obvious  that  the  number  of  iterations  keeps  increasing
from 11 to 38 as the number of IoT devices grows from 5
to  40.  Because  the  increase  in  the  number  of  devices
makes the original solution space of the algorithm larger
and the decision update process more complex. The com-
petition among devices regarding the server and channel
resources becomes more intense with the increase in the
number of devices. In addition, when the number of IoT
devices increases from 30 to 40, the number of iterations
remains unchanged. The reason is that the available de-
cision  space  for  devices  reaches  a  threshold  value  with
limited server and channel resources.
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Figure 4  The  number  of  iterations  with  different  numbers  of  IoT
devices.
 

Figure  5 shows  the  total  QoS  cost  of  IoT  devices
with different computing capabilities of each IoT device.
It  describes that the total  QoS cost decreases from 2.05
to 0.92 when the computing capability of each device in-
creases from 0.5 GHz to 4.0 GHz. There is almost no re-
duction in total QoS cost as the computing capability of
each device increases from 0.5 GHz to 1.0 GHz, while the
maximum  decrease  in  total  QoS  cost  as  the  computing
capability increases from 1.5 GHz to 4.0 GHz is 16.6%. It
is because the increase in device computing capability re-
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Figure 3  The total QoS cost of IoT devices with different numbers
of IoT devices.
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sults in  a  significant  reduction  in  the  QoS  delay  of  de-
vices for local computing and a reduction in the number
of devices competing for server and channel resources in
this  system.  Thus  the  increase  in  computing  capability
reduces the QoS cost of each device for local computing,
and the total QoS cost of all devices is lowered.

α

As shown in Figure 6, which shows the effect of dif-
ferent  elevation  angles  between  IoT  devices  and  LEO
satellites on the total QoS cost. It should be emphasized
that elevation angle  in this experiment is the value in
radians.  The total  QoS cost  decreases  from 2.85 to 1.73
when  the  elevation  angle  increases  from  0.0  to  1.4  in
Figure 6. We can infer that the total QoS cost decreases
from 2.85 to 1.73 when the elevation angle increases from
0.0  to  1.4.  The  distance  between  IoT  devices  and  LEO
satellites is reduced when the elevation angle raises from
0.0 to 0.8,  which will  decrease the channel  loss  between
devices  and LEO satellites.  It  reduces  the  QoS delay  of
the device that offloads its computation task to the LEO
satellites, and the total QoS cost will gradually decrease
to  1.73.  And  after  the  elevation  angle  increases  to  1.0,
the channel  loss and QoS delay are less than enough to
make the number of devices that selects satellite comput-
ing essentially constant.
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Figure 6  The total QoS cost of IoT devices with different elevation
angle  (unit: radian) between IoT devices and LEO satellites.
 

 3. Comparison experiments
The  proposed  DQCO  algorithm  is  supposed  to  be

compared with other computation offloading algorithms,
which are as follows:

• Computing  locally  (CL):   The  computation  task
of each IoT device is computed by itself [20].

•  Random:   A  computation  offloading  decision  is
randomly selected for each IoT device, i.e., local comput-
ing  or  offloading  computation  task  to  LEO  satellite.  If
the device  chooses  to  offload its  task  to  the  LEO satel-
lite through the channel, which channel and which satel-
lite for computation offloading is random. The total QoS
cost of all devices is then calculated, and the final experi-
ment  result  is  the  average  value  that  repeats  the  above
process two hundred times.

Figure 7 shows the total QoS cost of IoT devices in
various algorithms with different numbers of IoT devices.
Although the total QoS cost of the CL algorithm is low-
er than the total QoS cost of the Random algorithm on-
ly when the quantity of IoT devices is 40, the total QoS
cost of the DQCO algorithm with a different number of
devices is  always smaller than that of the CL and Ran-
dom algorithms. When the quantity of IoT devices rais-
es from 5 to 40, the total QoS cost rises from 1.03 to 7.98
for the CL algorithm, from 0.63 to 8.67 for the Random
algorithm, and  from 0.18  to  6.05  for  our  proposed  DQ-
CO algorithm.  Each  device  in  the  CL  algorithm  com-
putes the task by itself, and the total QoS cost of all de-
vices keeps  increasing  at  a  steady  rate  as  the  IoT  de-
vices increase.  In  the  Random  algorithm,  the  computa-
tion  offloading  way  of  each  device  is  stochastic,  which
leads to a stochastic number of devices in different chan-
nels of different satellites, i.e., the channel interference to
the  devices  is  random.  When  the  number  of  devices
keeps  increasing  to  40,  the  total  interference  calculated
by the satellites will keep increasing, and the impact on
the  total  QoS  cost  will  be  more  and  more,  so  the  total
QoS  cost  of  the  Random  algorithm  is  higher  than  the
total QoS cost of CL algorithm when the number of de-
vices is 40.
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Figure 7  The total  QoS cost  of  IoT devices  for  various  algorithms
with different numbers of IoT devices.
 

Figure 8 shows the total QoS cost of IoT devices for
various algorithms with different data sizes of each com-
putation  task.  When  the  data  size  of  the  computation
task  increases  from  0.1  Mb  to  0.45  Mb,  the  total  QoS
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cost  rises  from 1.98  to  9.03  for  the  CL  algorithm,  from
1.64 to 7.17 for the Random algorithm, and from 1.07 to
4.48 for  the  proposed DQCO algorithm.  As the  amount
of  data  for  each  computation  task  becomes  larger,  the
device QoS delay for  local  computing and LEO satellite
computing continues to increase, and the total QoS cost
increases with it.  But the DQCO algorithm finds a rea-
sonable  computation  offloading  decision  for  each  device
in  parallel,  updating  the  decision  for  the  winner  of  the
competition between devices in each iteration until Nash
equilibrium is reached [21]. So the total QoS cost in the
DQCO  algorithm  is  definitely  lower  than  that  of  the
CL and Random algorithms, with a maximum difference
of 4.52.
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Figure 8  The total  QoS cost  of  IoT devices  for  various  algorithms
with different data sizes of computation task.
 

Figure 9 shows the total QoS cost of the three algo-
rithms with different computing capabilities of each IoT
device. The total QoS cost of the DQCO algorithm is the
smallest  compared  to  the  Random  and  CL  algorithms.
Specifically,  the  total  QoS  cost  is  reduced  from  2.05  to
1.37 for the DQCO algorithm, from 3.23 to 2.06 for the
Random algorithm, and from 4.01 to 1.66 for the CL al-
gorithm. Because the devices in the CL algorithm choose
local  computing,  the  total  QoS  cost  decreases  with  the
increase  in  computing  capability.  The  total  QoS cost  of
the  Random  algorithm  decreases  with  the  increase  in
computing capability,  the  devices  in  the  Random  algo-
rithm may choose  satellite  edge  computing,  and  the  to-

tal  QoS  cost  of  the  Random  algorithm  will  be  higher
than  CL  when  the  computing  capability  increases  to  a
certain  value  such  as  1.8  GHz.  The  DQCO  algorithm
reaches Nash equilibrium due to its best response princi-
ple  and  FIP [22]. The  DQCO algorithm enormously  re-
duces the cost of devices for computation offloading com-
pared to the Random and CL algorithms.

α

α

As  shown  in Figure  10,  the  elevation  angle  be-
tween IoT devices and LEO satellites is the independent
variable for the comparison experiment, which results in
the total QoS cost of IoT devices. The total QoS cost of
the  DQCO  algorithm  is  always  smaller  than  the  total
QoS cost of Random and CL algorithms as the elevation
angle increases from 0.0 to 1.4. The total QoS cost of the
DQCO algorithm is reduced from 2.85 to 1.73, the total
QoS cost of the Random algorithm is reduced from 3.71
to 3.08, and the total QoS cost of the CL algorithm re-
mains  unchanged.  Because  the  local  computing  method
of the CL algorithm is not affected by the elevation an-
gle , the  computation  offloading  decision  of  each  de-
vice in the Random algorithm is random, while the DQ-
CO  algorithm  gets  the  computation  offloading  strategy
that each device is not willing to change its decision. Our
proposed  DQCO  algorithm  has  a  significant  advantage
over other offloading algorithms in solving the computa-
tion offloading problem in satellite edge computing.
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Figure 10  The total QoS cost of IoT devices for various algorithms
with different elevation angle  (unit: radian) between IoT devices
and LEO satellites.
 

 V. Related Work
Satellite  edge  computing  is  playing  an  increasingly

significant  role  to  provide  emerging  application  services
for  ground  devices.  Zhang et  al. [23]  proposed  satellite
mobile  edge  computing,  in  which  IoT  devices  without
near-end edge  computing  servers  can  request  edge  com-
puting  services  via  satellite  links,  consolidating  network
resources through a dynamic network virtualization tech-
nique.  Li et  al. [24] investigated  how  to  efficiently  de-
ploy  services  on  edge  nodes  in  satellite  edge  computing
to achieve  robust  perceptual  service  coverage  with  re-
source constraints,  and  introduced  an  online  service  de-
ployment  algorithm  to  face  the  challenges  of  dynamic
systems and conflicting service coverage. Ding et al. [25]
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used satellite edge computing to combine multi-user mul-
ti-computing tasks, computation task allocation, and re-
source  allocation  to  minimize  the  weighted  total  energy
consumption.

Recently,  there has been large amounts of  work for
computation  offloading  in  IoT  systems.  Mao et  al. [26]
investigated effective computation offloading strategies in
green mobile  edge  computing  systems  with  multiple  de-
vices, and  execution  cost  is  formulated  as  the  perfor-
mance metric, including execution delay and task failure.
In order to solve the problem of computation offloading
in communication networks with edge computing, Wang
et  al. [27] formulated  the  computation  offloading  deci-
sion  and  resource  allocation  as  a  convex  optimization
problem.  Kong et  al. [28]  constructed  a  task  offloading
model to  ensure  the quality  of  user  experience and pro-
mote system efficiency, and also performed resource pre-
processing trust  evaluation,  and  resource  clustering  be-
fore task  processing.  However,  the  computation  offload-
ing  with  edge  computing  in  these  studies  unreasonably
considers  channel  interference  during  task  transmission
or the devices in harsh environments.

The computation  offloading  problem  of  ground  de-
vices with  LEO satellite  edge  computing  in  harsh  envi-
ronments and  unexpected  situations  acquired  consider-
able  importance.  Wang et  al. [19] considered  the  inter-
mittency  of  earth-satellite  communication  produced  by
the orbit operation of the satellite, and developed a com-
putation offloading model in satellite edge computing. It
calculated the response delay and energy consumption of
the  computation  task  based  on  queuing  theory.  Tang
et  al. [20]  considered  LEO  satellite  networks  integrated
with edge  computing  and  investigated  computation  of-
floading  decisions  aimed  at  minimizing  the  total  energy
overhead  of  users  while  satisfying  multiple  constraints
such as execution delay and computing capacity. At last,
a double  edge  computation  offloading  algorithm  is  pro-
posed  in  [29]  to  efficiently  provide  computing  resources
in satellites for edge users.

 VI. Conclusion
In this paper, we investigate the QoS-aware compu-

tation  offloading  (QCO)  problem  in  LEO  satellite  edge
computing for  Internet-of-things  (IoT).  Each IoT device
can  not  only  offload  the  computation  task  to  low earth
orbit (LEO) satellites by the channels but also compute
its  task locally.  We aim to minimize the total  QoS cost
for IoT devices to heighten the service quality for IoT de-
vices. The problem for QCO with multiple decision vari-
ables  is  NP-hard.  We  formulate  this  offloading  problem
as  a  game model  of  non-cooperative  competition  among
devices named  QCO  game.  Proposing  a  potential  func-
tion for  the  QCO game,  we demonstrate  that  the  QCO
game is an ordinal potential game. We then present the
distributed  QoS-aware  computation  offloading  (DQCO)
algorithm based on updated competition among devices,
which can obtain the Nash equilibrium offloading strate-

gy at the end of the iteration process. We conduct exten-
sive parameter analysis  experiments and comparison ex-
periments to  testify  the  practicality  of  the  DQCO algo-
rithm.  In  future  work,  we  would  like  to  consider  the
problem of  computation  offloading  in  networks  combin-
ing  LEO  satellites  and  unmanned  aerial  vehicles  with
edge computing.
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