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Abstract — Graph  neural  networks  (GNNs)  have  emerged  as  powerful  approaches  to  learn  knowledge  about
graphs and vertices. The rapid employment of GNNs poses requirements for processing efficiency. Due to incompati-
bility of general platforms, dedicated hardware devices and platforms are developed to efficiently accelerate training
and inference of GNNs. We conduct a survey on hardware acceleration for GNNs. We first include and introduce re-
cent advances of the domain, and then provide a methodology of categorization to classify existing works into three
categories. Next, we discuss optimization techniques adopted at different levels. And finally we propose suggestions
on future directions to facilitate further works.
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 I. Introduction
Graph  neural  networks  (GNNs)  are  emerging  deep

learning-based methods operating on graph domain.  Re-
cently,  with  wide  adoption  of  graph-structured  data  in
various  industries  [1],  [2]  and  significant  breakthroughs
achieved by variants of GNNs [3], [4], GNN-based appli-
cations have been utilized to facilitate tasks and activities
in  both  industries  and  academia,  due  to  its  convincing
performance and high interpretability [5]. The rapid de-
velopment  and  application  of  GNNs  have  led  to  urgent
demands for acceleration, since many of their application
scenarios  are  quite  sensitive  to  latency  and  throughput
[6]–[11]. With limited resources for computation and mem-
ory storage, the time overhead of training and inference
of GNNs can be easily out of  range.  Existing researches
have  applied  abundant  approaches  to  improve  the  effi-
ciency  of  processing  GNNs  on  general  hardware  devices
[12]–[18]. However, evidence is mounting that the irregu-
larity  of  graph-structured  data  and  the  complexity  of
GNNs’ inherent characteristics in both computation and
memory  access  make  general-purpose  high-performance
platforms ill-suited for accelerating either training or infer-
ence of GNNs [19]–[21], since most of them are designed

for  common  applications  with  regular  computation  and
memory  accesses.  To  be  exact,  the  sparsity  of  graph-
structured data,  i.e.,  non-zero numbers only account for
a small portion of adjacency matrix, and power-law dis-
tribution, i.e., degrees of vertices in a graph differs signif-
icantly,  make  it  almost  impossible  for  GNNs  to  benefit
from memory hierarchy, since there exist few consecutive
memory  accesses  and  the  spatial  and  temporal  locality
are quite weak. Moreover, the power-law distribution can
also induce severe workload imbalance, leading to degrad-
ation of general-purpose hardware (e.g., CPUs and GPUs),
with  no  regard  to  their  further  optimizations  [22],  [23].
Based on comprehensive  analysis  of  overall  execution of
graph convolutional networks (GCNs) and stages inside,
Yan et  al. discover  potential  opportunities  to  design  a
dedicated hardware device to accelerate GCNs’ inference
[20],  and  propose  a  hybrid  architecture  for  accelerating
inference of GCNs [21], as a real state-of-the-art solution
to hardware acceleration for GNNs. From then on, there
exist a number of solutions to hardware acceleration for
GNNs  that  adopt  various  architecture  design  and  opti-
mization techniques [24]–[29].

Existing  surveys  on  the  topic  of  acceleration  for 
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GNNs mostly spare more efforts to cover algorithmic ap-
proaches and software acceleration on CPUs and GPUs,
but  pay  less  attention  to  hardware  acceleration.  Liu et
al. [30] give a review on existing algorithmic acceleration
methods for GNNs, including graph-level and model-level
optimizations. They have mentioned some hardware tech-
niques  and  early  progress  of  hardware  acceleration  for
GNNs as future prospects without further illustration and
explanation of  those  researches.  By contrast,  our  article
purely target at hardware acceleration for GNNs with an
overview  of  existing  hardware  approaches  and  a  discus-
sion of their adopted optimization techniques, approach-
ing the topic from a different perspective.

Abadal et  al. [31]  provide  a  review  of  the  field  of
GNNs  and  offer  an  analysis  of  software  and  hardware
acceleration  schemes,  categorizing  both  software  and
hardware approaches into three types: software-hardware
co-design,  graph  awareness,  and  communication-centric
design. They investigate several early but representative
hardware acceleration approaches,  but specific optimiza-
tion  techniques  of  them  are  not  well  explained.  To  the
contrary, our article provide a different methodology only
for  categorization  of  hardware  approaches  based  on  the
architecture of  hardware  design,  including  hybrid  archi-
tecture, holistic architecture, and large-scale architecture.
Besides, we track more recent advances of hardware ac-
celeration  to  illustrate  up-to-date  trends.  Moreover,  we
separately offer  detailed  analysis  of  hardware  optimiza-
tion techniques at different levels, including optimization
with relation to memory hierarchy, memory access, com-
putation and processing-in-memory architecture, which is
neglected by most existing surveys.

In this article, we provide a review on hardware ac-
celeration for graph neural networks with an overview of
existing hardware approaches and an analysis  of  related
hardware optimization techniques. The key contributions
of our article can be summarized as follows:

1) We  introduce  the  representative  and  up-to-date
researches on hardware acceleration for GNNs.

2) We propose a methodology for categorization that
classifies  existing  researches  into  three  categories  based
on their hardware architecture, including hybrid architec-
ture, holistic architecture and large-scale architecture.

3) We introduce the optimization techniques adopt-
ed by existing researches at different levels, and conduct
concise analyses on them.

4) We  discuss  characteristics  of  GNNs  and  limita-
tions of existing researches, and provide five suggestions
on future directions to facilitate further researches.

 II. Preliminaries
In this section, we introduce background knowledge

about GNNs and offer a brief history of acceleration for
GNNs.
 1. Graph neural networks

Following previous literature done by Wu et al. [32]

and  Liu et  al. [33]–[35],  we  introduce  the  concept  of
graph and GNNs. From the perspective of hardware ac-
celeration,  the  GNNs  introduced  in  this  sub-section  are
exactly representative, since they commonly act as work-
loads of acceleration for GNNs.

G = (V,E) V E
i, j ∈ N
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Graph  A  graph  can  be  typically  represented  as
,  in  which  is  the  set  of  vertices,  and  is

the set of edges. Given , a vertex can be denoted
as , and  denotes an edge from 
to .  denotes the  neighbor-
hood  of  a  certain  vertex ,  containing  several  vertices
connected  to  by  edges.  The  adjacency  matrix  is  a

 matrix  with  if  and  if
. Given  is the number of vertices in

a graph, the matrix of vertex features can be denoted as
,  in which  represents the feature vec-

tor of a certain vertex and  is the dimension of a
vertex  feature  vector.  Given  is the  num-
ber of edges in a graph, the matrix of edge features can
be denoted as , in which  is the fea-
ture vector of an edge  and  is the dimension of a
edge feature vector. GNNs are exactly approaches to ac-
quire  knowledge  about  the  structure  or  topology  of  a
graph  and  properties  of  vertices  in  it  by  extending  the
methods of conventional deep learning to the domain of
graph.

k
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The -th layer of general GNNs [3] can be depicted
as the following equation (1), which contains two major
execution phases. Although various alternatives exist for
both  and , their pat-
terns of computation and memory access are distinct [20].
The  phase  of  is  similar  with  graph
processing and exhibits  irregularities,  while the phase of

 is similar  with  conventional  neural  net-
works and exhibits regularities, since the feature vectors
are updated with multi-layer perceptrons (MLPs). Some
variants of GNNs may look quite different, but all of them
exactly adopt such a pattern where ,
i.e.,  aggregation,  and ,  i.e.,  combination,
take place in an alternative and iterative manner.
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Graph convolutional  networks  The layer-wise  con-
volution  operation  of  graph  convolutional  network
(GCN)  based  on  spectral  methods  proposed  by  Kipf et
al. [2] can be depicted as (2), where  are two free
parameters  w.r.t.  Chebyshev  coefficients,  and  are
adjacency matrix and degree matrix of the graph, respec-
tively.  is  a  filter  parameterized  by ,  i.e.,

.  is  the  normalized  graph  Laplacian
, and  is an input signal.
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The  definition  can  be  generalized  as  equation  (3),
with , , , ,
and .
 

Z = D̃− 1
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The forward model of a two-layer GCN in the litera-
ture can be simply depicted as (4). This model is widely
adopted as workload of acceleration.
 

Z=f(X,A)=softmax
(
ÂReLU(ÂXW (0))W (1)

)
(4)
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GraphSAGE [1] is a general inductive framework us-
ing  spatial-method-based  graph  convolutional  networks.
The propagation step of GraphSAGE can be depicted as
(5),  where  is  the  parameter  at  layer ,  denotes
the set of neighbors of vertex ,  is the embedding of
vertex  at layer .
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Nv

= AGGREGATE
t

({
ht−1
u ,∀u ∈ Nv

})
ht
v = σ

(
W t ·

[
ht−1
v ∥ht

Nv

])
(5)

AGGREGATEThe  function  of  GraphSAGE  can
have various forms. Three aggregator functions as follows
are suggested.

•  Mean  aggregator.  The  inductive  version  of  the
GCN variant can be derived by (6).
 

ht
v = σ

(
W ·MEAN

(
{ht−1
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u ,∀u ∈ Nv}

))
(6)

• LSTM aggregator.  To  operate  as  aggregators  of
GraphSAGE, LSTMs are modified to execute on an un-
ordered set by permutating vertex’s neighbors.

•  Pooling  aggregator.  A  max-pooling  operation  is
applied to the set  of  the vertex’s  neighbors,  as  depicted
in (7). Any symmetric function can be an alternative to
the max-pooling  operation.  A  number  of  hardware  ap-
proaches choose GraphSAGE with pool aggregators, i.e.,
GraphSAGE-Pool, as workload of acceleration.
 

ht
Nv
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(
{σ(Wpoolh

t−1
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)
(7)

Graph  recurrent  networks  Gate  mechanism  from
RNNs like GRU [36] and LSTM [37] are adopted in the
propagation  step  to  eliminate  the  limitation  of  vanilla
GNNs [38] and enhance the effectiveness of the long-term
information propagation across the graph.

Av

A
v a

Li et al. [39] propose the gated graph neural networks
(GGNNs)  with  the  gate  recurrent  units  (GRUs)  in  the
propagation step. The basic recurrence of the propagation
model  is  depicted as  equation (8).  is  the sub-matrix
of  the  graph  adjacency  matrix  and denotes  the  con-
nection  of  vertex  and  its  neighbors.  Vector  gathers

v z, rthe  neighborhood  information  of  vertex ,  and  are
the  update  and  reset  gates.  Few  hardware  approaches
exactly support acceleration for GGNNs introduced here,
but they support GNN workloads that adopts GRUs for
temporal-variable graph learning.
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Graph attention networks  Velickovic et al. [4] pro-
pose  the  graph  attention  networks  (GATs),  following
self-attention  strategy.  The  layer-wise  computation  of
the coefficients in the attention mechanism of the vertex
pair  is depicted as equation (9), in which  is the
attention coefficient of vertex  to , and  denotes the
neighborhoods  of  vertex  in  the  graph. 

 represents  the  input  vertex  features,
and  are the number of  vertices  and the dimension
of the features, respectively. Similarly, 

 represents  the  output  vertex  features.
 is  the  weight  matrix  of  a  shared  linear

transformation,  is  the  weight  vector.  The  final
output features of each vertex can be obtained after ap-
plying  a  nonlinearity  as  depicted  in  (10).  Generally,
GATs are  supported  by  hardware  approaches  as  vari-
ants of GCNs.
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Graph isomorphism networks  Xu et al. [3] propose
the  graph  isomorphism  networks  (GINs),  which  can  be
seen as variants of GCNs. GINs update vertex represen-
tations as (11), where  is the feature vector of vertex
 at  the -th  iteration/layer,  and  is a  set  of  ver-

tices adjacent to .  is a learnable parameter or a fixed
scalar.  Multi-layer  perceptrons  (MLPs)  is  utilized  to
model  and  learn  parameters.  Hardware  approaches  that
support GCNs usually support GINs as well.
 

h(k)
v =

(k)
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(1 + ϵ(k)) · hk−1
v +

∑
u∈N(v)
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u
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l

Others  Ying et al. [40] propose DiffPool, a differen-
tiable graph pooling module that can be adapted to vari-
ous graph  neural  network  architectures  in  an  hierarchi-
cal and end-to-end fashion. They stack L GNN modules
and learn to assign nodes to clusters at layer  using em-
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l − 1

l A(l)

l Z(l)

S(l) ∈ Rnl×nl+1

l

A(l+1)

X l+1

beddings  generated  at  layer .  Given  an  assignment
matrix,  the  DiffPool  module  pools  nodes  at  each  layer.
Given the input adjacency matrix at layer  as , and
the input node embedding matrix at layer  as , sup-
pose  the  learned  assignment  matrix  at
layer  has  already  been  computed,  the  DiffPool  layer
generate  a  new adjacency matrix  and a new em-
bedding matrix , as depicted in (12) and (13).
 

X(l+1) = S(l)TZ(l) ∈ Rnl+1×d (12)
 

A(l+1) = S(l)TA(l)S(l) ∈ Rnl+1×nl+1 (13)

S(l) Z(l)

l

l

DiffPool utilize  two  separate  GNNs  to  generate  as-
signment matrices  and embedding matrices . The
embedding  GNN  at  layer  is  a  standard  GNN  module
with given inputs, as depicted in (14). The pooling GNN
as layer  use the inputs to generate an assignment mat-
rix, as depicted in (15).
 

Z(l) = GNN
l,embed

(A(l),X(l)) (14)
 

S(l) = softmax(GNN
l,pool

(A(l),X(l))) (15)

DiffPool is supported by a number of hardware ap-
proaches,  though it  is  not  as  common as  GCNs,  GATs,
GraphSAGE, and GINs, it can be viewed as representa-
tive workloads since it can be easily integrated with ex-
isting GNN modules.

Beyond  the  GNNs  introduced  above,  there  exist
GNNs  that  are  not  commonly  supported  by  hardware
approaches  [41]–[55].  Those  GNNs  act  as  significant
workloads  for  specific  approaches,  and  some  of  them,
such as Cluster-GCN [54] and EdgeConv [46], are SOTA
solutions  for  graph  deep  learning.  Since  we  focus  on
hardware  approaches  of  GNN  acceleration,  for  clarity
concerns,  we  don’t  include  the  concepts  of  those  GNNs
here, but we offer several tables to specify corresponding
relationships  between  hardware  approaches  and  the
GNNs.
 2. Brief history of graph neural network

acceleration
GNNs have achieved state-of-the-art performance in

various graph-related tasks [1], [3] and applications, lead-
ing to increasing research interests in GNNs. However, as
GNNs are widely adopted for solving problems in differ-
ent domains, it is discovered that the execution efficiency
of GNNs is degraded due to real-world factors [30]. The
amount of the graph data generated by real-world appli-
cations  and  industries  are  extraordinarily  large,  posing
non-negligible  challenges  to  both  training  and  inference
of  GNNs,  which  is  not  taken  into  consideration  during
algorithmic  design  initially.  Moreover,  deeper  and  more
complicated GNNs are  utilized as  a  promising approach
to enhance the ability of networks’ expression, especially
increasing  the  time  overhead  of  training  typical  GNNs.
Furthermore,  a  large  number  of  real-world  applications

[6]–[11],  running  on  either  general-purpose  or  domain-
specific processing platforms, pose stringent constraints on
latency and throughput. However, with an inappropriate
algorithmic design and limited resources for computation
and  storage,  even  large-scale  and  distributed,  the  time
overhead, i.e., latency and throughput related, of GNNs’
training and inference can be easily beyond users’ expec-
tations. Therefore, with the rapid development of GNNs,
accelerating  both  GNNs’ training  and  inference  become
an urgent issue.

Existing  researches  have  paid  abundant  efforts  to
acquire acceleration methods for a variety of GNNs at al-
gorithm  level,  not  only  promoting  the  model  accuracy
but also accelerating the model training and inference at
the  same  time  [12]–[18].  However,  evidence  has  shown
that  GNNs’ execution  on  general-purpose  platforms  can
hardly  benefit  from  general  optimizations  for  common
applications,  due to their unique characteristics [20].  To
be exact, GNNs’ execution benefits little from the general-
purpose  memory  hierarchy  on  CPUs  and  GPUs  due  to
low spatial and temporal locality primarily caused by the
sparsity and power-law distribution of the non-zero num-
bers  in  adjacency  matrix,  and  different  sizes  of  feature
matrices, i.e., irregularity of the data, can lead to degrad-
ation  of  conventional  high-performance  co-processors,
i.e., GPUs and TPUs [56], since most of them are designed
for computation of regular-sized data.

Motivated by both the inherent incompatibilities be-
tween typical  GNN-based  applications  and  the  underly-
ing  computation  platforms,  and  the  urgent  demands
coming from various  industries  utilizing  GNN-based  ap-
plications,  researchers  focus  on  GNN-specific  hardware-
based  acceleration  and  achieve  distinguished  advances.
Existing  works  on  hardware-based  GNN  acceleration
mainly  use  application-specific  integrated  circuits
(ASICs) for implementation of their design, and some of
them may use field programmable gate arrays (FPGAs)
as  a  platform for  evaluation.  Only  a  few of  them really
couple  FPGAs tightly  with their  design.  With advances
of  hardware  devices,  resistive  random  access  memory
(ReRAM) is utilized for processing-in-memory (PIM) ac-
celeration. Auten et al. [19] propose the first accelerator
for GCN inference adopting a straightforward methodol-
ogy, in  which  two  kinds  of  processing  elements  are  de-
signed  for  acceleration  of  aggregation  and  combination
respectively. Following the similar methodology, HyGCN
[21] offers  a  real  hybrid  architecture  for  GCN  accelera-
tion,  which  contains  two  engines  for  processing  two
stages of GCN inference, and applies abundant and hier-
archical optimizations to improve the efficiency of single
engine  and  cooperation  of  the  two  engines.  HyGCN
achieves great breakthrough and offers the first state-of-
the-art (SOTA) solution for hardware-based GCN accel-
eration.  AWB-GCN  [24],  EnGN  [25],  and  I-GCN  [28]
study the  execution  order  of  layer-wise  matrix  multipli-
cation for propagation and offer  holistic  architecture for
GNN acceleration,  in  which the  aggregation and combi-
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nation share one group of processing units, typically with
preprocessing  for  data  reordering  at  a  considerably  low
cost. AWB-GCN, equipped with a novel workload rebal-
ancing technique, gives another SOTA solution for GNN
acceleration.  PIMGCN  [27]  offers  the  first  PIM-based
GCN acceleration  using  ReRAM  crossbars,  mainly  tar-
geting  at  solving  the  incompatibilities  between  ReRAM
crossbars and GCN acceleration, and reducing the cross-
bar  overhead  caused  by  data  mapping.  PIMGCN
achieves relatively high speedup and improvement of en-
ergy  efficiency  compared  with  existing  SOTA  solutions,
and  offers  the  first  SOTA  PIM-based  design  using
ReRAM crossbars for GCN acceleration. Beyond the rep-
resentative  works  mentioned  above,  there  exist  various
hardware-based solutions  for  GNN  accelerations  adopt-
ing distinct optimization techniques and architectural de-
signs. We  thoroughly  introduce  them  in  following  sec-
tions, together with their optimization techniques.

 III. Categorization
On the basis of the architectural design, existing ap-

proaches of  hardware acceleration for GNNs can be pri-
marily  classified  into  three  categories,  including  hybrid
architectures, holistic architectures and large-scale archi-
tectures.

Table  1 provides  an  overview of  the  categories  and
existing  hardware  approaches  of  acceleration  for  GNNs.
Generally, all  the three categories  refer  to hardware ap-
proaches  of  acceleration for  GNNs that  adopt dedicated
hardware components  in  their  design.  In  particular,  hy-
brid architecture  and  holistic  architecture  refer  to  ap-
proaches  using  single  chip  or  device  for  GNNs  working
on  graph-structured  data  limited  in  scale,  while  large-
scale architecture refer to approaches using multiple de-
vices or chips for GNNs working on large-scale and real-
world graph data.

 
 

Table 1  Categorization and representative hardware acceleration approaches for GNNs

Category Approaches

Hybrid architectures [19], [21], [29], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69]

Holistic architectures [24], [25], [26], [27], [28], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80]

Large-scale architectures [81], [82], [83], [84], [85]
 
 

In  the  following,  we  specifically  give  a  definition  of
each category to facilitate the understanding of  the rest
of this article, as shown in Definition 1, Definition 2 and
Definition 3.

Definition  1  (Hybrid architectures)  Hybrid  archi-
tectures represent hardware approaches which follow the
two-phase pattern of  modern GNNs depicted in (1) and
adopt  heterogeneous  components  on  one  chip  to  handle
the computation of the two phases mentioned in Section
II.1 respectively. The execution of the two components is
usually coordinated by a  workload-aware  pipeline  to  re-
duce latency and enhance throughput.

Definition  2  (Holistic architectures)  Holistic  archi-
tectures represent hardware approaches which exploit the
common operations of GNNs’ layer-wise computation and
utilize  homogeneous  components  on  one  chip  to  handle
the  whole  computation  of  specific  GNNs  mentioned  in
Section II. This type of approaches usually require extra
methods  for  pre-processing  and  post-processing  to  regu-
late the pattern of computation.

Definition 3  (Large-scale  architectures)  Large-scale
architectures  represent  hardware  approaches  which  aim
at GNNs working on large-scale and real-world graph data,
and adopt multiple dedicated chips and devices in a sys-
tem  connected  with  a  topological  network  to  efficiently
scatter  workloads  and  reduce  the  results.  This  type  of
approaches usually adopt separate memory management
subsystems, or couple special processing units with large-
capacity  DRAM  on  CPU  side,  to  accommodate  large-
scale  graph  data  and  improve  the  efficiency  of  memory
accesses.

 1. Hybrid architectures
In this subsection, we introduce representative hard-

ware approaches of GNN acceleration belonging to hybrid
architectures defined in Definition 1. Table 2 summarizes
existing hybrid architectures, showing GNN applications
supported by specific approaches and the implementation
technology they are based on.

Auten et  al. [19]  propose  an  architecture  which
mainly consists of four modules for different categories of
operations  during  GNN  inference,  including  the  graph
processing element  (GPE)  for  graph  traversals  and  se-
quencing computation steps, the DNN accelerator (DNA)
for the DNN computation, the aggregator (AGG) for ag-
gregation of the features, and the DNN queue (DNQ) for
buffering  memory  requests  and  intermediate  results.  All
the modules are connected to a configurable bus so as to
support dataflow of different GNN models, and they then
together form a tile connected with others by a network
on chip (NoC).  The GPE is  also equipped with a light-
weight runtime to coordinate elements within the whole
system for  workload  scheduling  and  global  synchroniza-
tion. Different sizes of scratchpads and buffers is utilized
to store control information and intermediate data.

HyGCN  [21]  adopts  an  architecture  which  includes
two engines  (see Figure  1),  i.e.,  Aggregation engine and
Combination engine, respectively for the computation of
aggregation and combination during GCN inference. The
Aggregation  engine  is  designed  for  efficient  execution  of
irregular accesses and computation and is equipped with
operation-specific processing units, and the Combination
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engine aims to maximize the efficiency of regular accesses
and computation, following the design of  TPU [56],  i.e.,
an optimized systolic array. A memory access handler is
utilized to manage all the requests to the DRAM, and a
Coordinator,  i.e.,  a  communication  interface,  is  utilized
to mitigate  the  interference  and  enable  pipelining  be-
tween the two engines. HyGCN adopts abundant buffers

to  hide  the  DRAM  access  latency,  exploit  the  spatial
locality and enhance the data reuse. Besides, both intra-
and  inter-engine  optimizations  are  conducted  to  further
enhance the data reuse, exploit edge-level and vertex-level
parallelism, reduce the latency and energy consumption,
and  coordinate  the  off-chip  memory  access  of  the  two
engines during execution.
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Figure 1  Architecture overview of HyGCN [21].
 

The hardware architecture proposed by Zhang et al.
[57] mainly consists of customized hardware modules for
aggregation and combination. The execution of the mod-
ules is pipelined, and a scheduling strategy is introduced
to improve the efficiency and versatility. A flexible data-
path is provided to support distinct computation order of
GCN inference. Moreover, a data partition scheme and a
scheduling strategy based on it is proposed to fully utilize
the  on-chip  storage  capacity  and  improve  the  efficiency
of GCN inference. Following a methodology of algorithm-
hardware  co-optimization,  for  reducing  off-chip  memory

accesses,  a  two-phase  graph  pre-processing  algorithm  is
utilized,  including  methods  of  graph  sparsification  and
vertex re-ordering.

GraphACT [58] offers a heterogeneous solution to ac-
celeration of  GCN training,  in  which  workload  is  parti-
tioned  between  CPU and  FPGA,  and  the  computation-
intensive parts are offloaded to FPGA while the commu-
nication-intensive  parts  are  left  for  CPU.  A  processing
pipeline  containing  two  main  computational  modules,
i.e., a feature aggregation module and a weight transfor-
mation  module,  is  implemented  on  FPGA.  Moreover,

  

Table 2  Summary of existing hardware acceleration approaches of hybrid architectures (GS = GraphSAGE)

Approach Applications Technology

Auten et al. [19] GCN, GAT, MPNN [41], PGNN [42] ASIC

HyGCN [21] GCN, GS, GIN, DiffPool ASIC

GCoD [29] GCN, GIN, GAT, GS, ResGCN [43] FPGA

Zhang et al. [57] GCN ASIC

GraphACT [58] GCN CPU-FPGA
DyGNN [59] GCN, GAT ASIC

GNNerator [60] GCN, GS ASIC

ReGNN [61] GCN, GS PIM

GCIM [62] GCN, GIN, GS PIM

Chen et al. [63] GCN, GS, G-GCN [44] ASIC

BoostGCN [64] GCN FPGA

DeepBurning-GL [65] GCN, GS, RGCN [45], EdgeConv [46] FPGA

Zhu et al. [66] GCN PIM

H-GCN [67] GCN ACAP

HP-GNN [68] GCN, GS CPU-FPGA

NTGAT [69] GAT ASIC
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GraphACT adopts scheduling strategies between CPU and
FPGA, and that of modules on FPGA to exploit the par-
allelism and improve the throughput of the system.

DyGNN [59] supports dynamic pruning for both ver-
tices and  edges,  and  exploit  that  mechanism for  perfor-
mance improvement. DyGNN is mainly composed of three
types  of  engines:  Aggregator,  Updater  and  Pruner.  The
Pruner  prunes  vertices  and  edges  based  on  a  proposed
pruning algorithm.  The  Aggregator  conducts  aggrega-
tion,  and  the  Updater  is  built  with  two  multi-granular
systolic  arrays  to  perform  matrix-vector  multiplication
either separately for edges and vertices or jointly for ver-
tices.  A  duplication-free  mechanism  is  introduced  into
the Pruner  to  fully  exploit  the  data  reuse  so  as  to  im-
prove  efficiency  of  the  execution.  A  configurable  pipe-
lined architecture is also developed to support variants of
GNNs,  with  different  execution  flow  controlled  by  pre-
defined configurations.

GNNerator [60] provides a programmable design with
heterogeneous compute engines, consisting of a Dense en-
gine for dense, regular computations and a Graph engine
for  sparse,  irregular  computations.  GNNerator  manages
to  exploit  the  inter-stage  parallelism  by  decoupling  the
combination and aggregation stages and enabling a flexi-
ble  execution  order  of  the  two  engines.  The  Dense  and
Graph  engines  are  provisioned  to  exploit  the  abundant
inter-  and  intra-vertex  parallelism  in  GNNs.  A  feature
dimension-blocking  dataflow  with  hardware  support  is
introduced to reduce the overhead during feature aggre-
gation  stages  by  exploiting  the  independence  of  feature
dimensions.

ReGNN [61] uses heterogeneous ReRAM-based PIM
units for accelerating GNN inference. The architecture is
equipped  with  aggregation  engine  for  accelerating  non-
MVM operations, and combination engine for accelerating
MVM operations. Aggregation engine, designed with both
analog PIM (APIM) and digital PIM (DPIM), consists of
sub-engines for aggregation using different operators, in-
cluding max, sum, and mean, based on the degree of ver-
tices and the dimension of features. A vertex scheduler is
also  introduced  to  assign  tasks  to  sub-engines  based  on
the  computation  parallelism.  Moreover,  the  sub-engines
for aggregation adopts novel  data mapping strategies  to
exploit  inter-  and  intra-vertex  parallelism.  Combination
engine, mainly designed with APIM, follows a convention-
al neural network accelerator with analog PIM crossbars
to support intensive and regular MVM operations.

GCIM  [62]  adopts  a  3D-stacked  computation-in-
memory (CIM) architecture  which  stacks  three  types  of
die,  including  base  die,  logic-in-memory  (LIM)  die,  and
DRAM die.  LIM die is  exactly the DRAM die integrat-
ed with logic for the aggregation using some lightweight
logic  units  (LLU).  The  base  die  is  integrated  with  the
combination logic mainly using a systolic array and aux-
iliary hardware  units.  Memory-bounded  aggregation  op-
erations  are  offloaded  to  LIM  dies  near  memory  banks
while  the  computation-bounded  combination  operations

are offloaded to base dies, which fully exploits bank-level
bandwidth and parallelism, and sufficient computational
ability. Moreover, a graph partitioning and mapping strat-
egy is introduced to eliminate overhead of data movement
and  balance  the  workload,  so  as  to  further  exploit  the
data locality and utilize the high bandwidth of the CIM
architecture.

GCoD  [29]  provides  a  GCN  algorithm  and  acceler-
ator  co-design  framework,  which  consists  of  a  split  and
conquer training strategy to polarize graphs to be either
denser  or  sparser,  and  a  dedicated  two-pronged  acceler-
ator  to  leverage  algorithm’s  resulting  graph  adjacency
matrices  for  improvement of  accelerating efficiency.  The
hardware  accelerator  is  composed  of  two  branches,  i.e.,
two  parts,  one  of  which  adopts  a  chunk-based  micro-
architecture to accelerate the polarized denser sub-graphs
with regular and denser patterns and balanced workloads,
the  other  accelerates  irregular  and  sparser  but  largely
reduced sparser workloads.

The  design  proposed  by  Chen et  al. [63]  includes  a
dynamic  redundancy-eliminated  neighborhood  message
passing  algorithm  for  GNNs  based  on  a  redundancy-
aware  graph  representation,  targeting  at  redundancy  of
EdgeUpdate and  Aggregation.  The  hardware  architec-
ture  is  designed  for  the  proposed  algorithm  and  it  can
transform  the  redundancy  elimination  into  performance
improvement. Furthermore,  the architecture is  also con-
figurable  and  pipelined  so  as  to  support  different  GNN
variants.

BoostGCN [64] proposes  a  system architecture  con-
sisting  of  external  memory  and  FPGA.  The  external
memory  is  utilized  to  accommodate  adjacency  matrix,
weight matrices, and feature matrices. The FPGA board
is programmed  into  heterogeneous  processing  units,  in-
cluding feature aggregation modules  (FAMs) to perform
feature aggregation and feature update modules (FUMs)
to perform feature update. A internal buffer is utilized to
cache  the  intermediate  results  produced  by  FAMs,  and
memory  controller  is  responsible  for  handling the  data
transmissions  between  external  memory  and  hardware
modules.

DeepBurning-GL  [65]  provides  an  automatic  GNN
acceleration framework targeting  at  specific  GNN appli-
cation  by  exploiting  the  reconfiguration  capability  of
FPGAs. The framework relies on a GNN accelerator tem-
plate and accelerator component templates to initiate the
design  and  generate  the  accelerator  based  on  optimized
design  parameters.  It  contains  two  categories  of  GNN
computation  templates  for  regular  computing,  such  as
the feature extraction and update, and irregular comput-
ing,  such  as  graph-based  aggregation,  respectively.  The
template for regular computing is exactly a systolic array
or a dot-production array while the template for irregu-
lar  computing  is  an  array  of  homogeneous  processing
units.  The two kinds of templates can be customized to
meet the requirements of GNNs’ different phases to max-
imize the computing efficiency. The memory template is
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utilized to generate the design of on-chip memory blocks
to buffer  data  for  computation,  and  a  graph  manipula-
tion template is adopted to sample from a large graph, or
construct graph from raw data, such as point cloud.

Zhu et  al. [66]  propose  a  parallelism  enhancement
framework  for  PIM-based  GCN architectures,  composed
of a algorithmic GCN quantization method to transform
the  32-bit  floating-poiont  graph  data  to  the  fixed-point
form to  reduce  hardware  overhead,  and  a  RRAM-based
multi-core  PIM  architecture  for  GCNs  called  RP-GCN,
with an aggregation core array and a combination array
to exploit cluster-level computation parallelism. The two
categories of  arrays form a coarse-grained pipeline data-
flow to improve the throughput.

H-GCN  [67] proposes  a  GCN  acceleration  architec-
ture based on Xilinx Versal ACAP architecture [86], which
is  an  emerging  heterogeneous  compute  platform  with
strong  heterogeneity.  To  fully  exploit  the  capability  of
ACAP,  H-GCN  mix  sparse/dense  systolic  tensor  arrays
to accelerate the hybrid pattern of GCNs. The architec-
ture  generally  consists  of  a  sparse-dense  matrix-matrix
multiplications (SpMM) unit and a PL controller in pro-
grammable logic (PL) and a sparse/dense systolic tensor
arrays in AI engines  (AIEs).  The PL controller  controls
SpMM unit  to  cooperate  with  the  sparse/dense  systolic
tensor array to perform all GCN computation. Specifical-
ly, with a strategy of input graph reordering, the feature
aggregation of the vertices in the dense rectangular areas
and  in  the  remaining  areas  are  mapped  onto  AIEs  and
the SpMM unit in the PL respectively.

HP-GNN [68] provides a framework for generation of

high  throughput  GNN  training  implementations  on  a
given CPU-FPGA platform.  The framework takes  GNN
training algorithms and GNN models as inputs, and per-
forms  hardware  mapping  onto  the  target  CPU-FPGA
platform.  Sampling  is  executed  on  CPU  since  CPU  is
flexible  to  support  various  sampling  algorithms.  Other
operations including feature aggregation and feature up-
date  are  performed  on  the  proposed  FPGA  accelerator
with the support of Aggregate kernels and Update kernels
implemented on the board.

NTGAT [69] offers an acceleration architecture dedi-
cated to the acceleration for GATs together with a run-
time node  tailoring  algorithm and a  pipelining  insertion
sorting  scheme.  The  algorithmic  strategies  reduce  the
workloads  for  computation  afterwards.  The  architecture
can  be  divided  into  a  GAT  convolution  kernel  and  a
dense  computing  kernel.  The  dense  computing  kernel
processes  the  full  connection  layer  and  another  linear
transformation in  which  vector  inner-production  is  per-
formed.  The  GAT  convolution  kernel  is  composed  of
graph encoder, attention coefficients chunks, node engines,
and  feature  cache,  and  it’s  responsible  for  graph-based
attention-like computation.
 2. Holistic architectures

In this  sub-section,  we  introduce  hardware  ap-
proaches belonging to holistic architectures as defined in
Definition  2. Table  3 summarizes  holistic  architectures
and provide corresponding relations between specific ap-
proaches, the  GNN  applications  supported  by  the  ap-
proaches,  and  the  implementation  technology  they  are
based on.

 
 

Table 3  Summary of existing hardware acceleration approaches of holistic architectures (GS = GraphSAGE)

Approach Applications Technology

AWB-GCN [24] GCN ASIC

EnGN [25] GCN, GS, Gated-GCN [47], GRN [48], R-GCN [45] ASIC

GCNAX [26] GCN FPGA

PIMGCN [27] GCN, GS, GIN PIM

I-GCN [28] GCN, GS, GIN ASIC

Cambricon-G [70] GCN, GS, DiffPool, DGMG [49], EdgeConv [46], GUN [50] ASIC

SGCNAX [71] GCN FPGA

GNNIE [72] GCN, GAT, GS, GIN, DiffPool ASIC

ReFlip [73] GCN, GAT, GS, GIN PIM

ReaDy [74] CD-GCN [87], TGCN [51], MPNN-LSTM [52] PIM

Rubik [75] GS, GIN ASIC

PASGCN [76] GCN, GS, GIN PIM

FusedGCN [77] GCN FPGA

G-CoS [78] GCN, GAT, LGCN [53], GS FPGA

LW-GCN [79] GCN, GS FPGA

DARe [80] Cluster-GCN [54] PIM
 
 

AWB-GCN [24] treats the layer-wise forward propa-
gation of a multi-layer spectral GCN as a two-step sparse
matrix multiplication  (SpMM)  and  adopts  an  alterna-

tive  computation  order  to  exploit  sparse-dense  matrix
multiplications  and  reduce  the  number  of  operations
during  computation.  Therefore,  AWB-GCN  adopts  a
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baseline  architecture  to  accelerate  SpMM  kernels  in  a
column-wise-product manner  with  optimizations  includ-
ing inter- and intra-layer pipelining and data forwarding,
matrix blocking  and  data  mapping.  Based  on  the  pro-
posed architecture,  AWB-GCN is  further  equipped with
strategies at three levels of granularity,  i.e.,  distribution
smoothing,  row  switching,  and  row  remapping,  to  cope
with the workload imbalance.

EnGN [25] is  developed based on a unified process-
ing  models  covering  general  GNNs.  Accompanied  with
ring-edge-reduce update dataflow, the hardware architec-
ture  (Figure  2) includes  an  array  of  homogeneous  pro-
cessing units, the same column of which is interconnect-
ed  with  neighbors  in  a  ring  network,  called  ring-edge-
reduce array, for operations of aggregations. The on-chip
memory  hierarchy  is  coupled  with  processing  element
(PE)  register  file  and multi-level  caches  to  alleviate  the
overhead  of  memory  access.  Moreover,  dimension-aware
stage re-ordering, and graph tiling and scheduling is uti-
lized  for  optimization  based  on  the  characteristics  of
GNN algorithms. The dimension-aware stage re-ordering
changes the  computing order  of  GNNs based on the  in-
put  and  output  property  dimension  comparison.  The
graph tiling splits vertices of the whole graph into sever-
al  disjointed  partitions  so  that  each  row  of  PE  handles
features  of  vertices  within  the  on-chip  buffers,  and  the
graph scheduling  is  used  to  handle  dependencies  be-
tween tiles so as to fully exploit data reuse to reduce ex-
ternal memory accesses.
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Figure 2  EnGN hardware architecture [25].
 

The overall architecture (Figure 3) of PIMGCN [27]
is extended from a design pattern with both CAM cross-
bars  and  MAC  crossbars,  including  a  central  controller
and  two  engines  (search  engine  and  compute  engine).
The  search  engine  consists  of  CAM crossbars,  following
the design of  GaaS-X [88].  The compute engine consists
of components respectively for aggregation and combina-
tion,  which  are  both  composed  of  MAC  crossbars.  The
central controller loads graph data and offloads the GCN
results  to  the  external  memory,  and  it  controls  CAM
crossbars,  MAC  crossbars  and  special  functions  units
(SFU) that handles the partial results from MAC cross-
bars. The two engines form a Ping-Pong architecture and
run alternatively to process GCN layers per iteration. To
maximize the exploitation of inter-vertex parallelism, the
execution of  destination  vertices  are  parallelized  by  set-

ting three constraints on the crossbars which ensure that
the  features  of  source  vertices  of  different  destination
vertices locate in different crossbars, the destination ver-
tices  to  be  aggregated  locate  in  different  crossbars  as
well. Moreover, a latency-matching pipeline which writes
all the  destination  vertices  after  two  cycles  of  aggrega-
tion and  combination  at  once  to  minimize  the  diver-
gence between  read/write  latency,  and  an  extra  con-
straint  is  utilized  to  ensure  two  groups  of  destination
vertices  locate  in  different  crossbars.  To  better  support
inter-vertex  parallelism,  a  GroupCOO format  is  utilized
to store edges and weights.
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Figure 3  PIMGCN architecture overview [27].
 

The  irregularity  and  the  sparsity  of  the  adjacency
matrix  can  lead  to  poor  data  reuse  during  subsequent
computation,  which  consequently  degrades  the  overall
performance. Thus, I-GCN [28] aims to handle the prob-
lems induced by the adjacency matrix as much as possi-
ble  to  gain  improvement  of  performance.  It  adopts  an
algorithm-hardware  co-design  methodology and provides
a hardware-assisted graph reconstructing algorithm, term-
ed  Islandization,  to  significantly  improve  data  locality
and reduce redundant computation. The hardware archi-
tecture  mainly  consists  of  a  Island  locator  and  a  Island
consumer.  The  Island  locator,  primarily  supported  by  a
breadth-first search algorithm, works round by round to
detect and fetch Islands,  i.e.,  vertices  with strong inter-
nal connections and week external connections, and usu-
ally share neighbors, and Hubs, i.e., vertices with consid-
erably high  degree,  to  feed  the  Island  consumer  down-
stream so as to complete the computation of aggregation
and combination.  The  Island  consumer  treats  the  Is-
lands and related Hubs as a small, dense sub-graph and
adopts an alternative computation order to complete the
aggregation and combination using the same MAC array.
Moreover, with  such  two  structures,  the  Island  con-
sumer  is  able  to  conduct  redundancy  elimination  with
ease and further accelerate the overall computation.

Cambricon-G [70] abstracts  the  computation of  dif-
ferent  GNN variants  to  the  process  of  adjacent  cuboid.
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The adjacent cuboid combines the vertex feature dimen-
sion with the adjacent matrix and multidimensional mul-
tilevel tiling is introduced to improve the data reuse and
parallelism. Each  cuboid  can  be  tiled  in  three  dimen-
sions,  including  vertex  destination,  source  vertex,  and
vertex feature, and the size of the partition called cubelet
is adapted for that of the on-chip memory. Multidimen-
sional spatial  tiling is performed within a cubelet to ex-
ploit  the  data  reuse  and  parallelism,  supported  by  the
cuboid engine  and  hybrid  on-chip  memory  of  the  pro-
posed architecture.  To support multidimensional  tempo-
ral tiling across cubelets for large GNNs, a programming
model  is  introduced  to  compute  multiple  cubelets  by
specifying  the  tiling  parameters  and  implementing  the
computation logic.

GCNAX [26]  comes  up  with  an  optimized  dataflow
that is designed to flexibly adapt the loop order and loop
fusion techniques for different GCN configurations, with
the  support  of  a  hardware  accelerator.  GCNAX  adopts
an outer-product based method for sparse matrix multi-
plications in GCNs to alleviate the workload imbalance.
Moreover, the compute engine, buffer size and structure
are adapted to fit with the execution order and tile sizes
of the dataflow. SGCNAX [71] adopts GCNAX as its sin-
gle  PE,  aiming  to  tackle  with  both  inter-PE and  intra-
PE workload imbalances to better cope with a variety of
graphs  and  GCNs.  Since  GCNAX  has  almost  adopted
optimizations  for  alleviating  the intra-PE workload  im-
balances, SGCNAX  employs  a  group-and-shuffle  ap-
proach to conquer the inter-PE workload imbalances.

GNNIE  [72]  partitions  both  feature  vectors  and
weight  matrix  into  blocks  and  schedules  the  weighting
computation in the CPE(computation PE) array. A flexi-
ble  MAC  architecture  with  adaptive  number  of  MACs
per  CPE,  and dynamic  workload redistribution  between
paired  rows  of  CPEs  are  adopted  by  GNNIE  to  ensure
the  load-balancing  during  GNN  computation.  GNNIE
optimizes GAT  computation  of  aggregation,  character-
izes the dataflow and maps the edge-based computation
to  the  CPE  array  with  the  support  of  SPUs  (special
functional units) for LeakyReLU and exponentiation, etc.
A graph-specific frequency-based caching policy is intro-
duced into GNNIE, ensuring all random accesses are con-
fined to on-chip buffers and all  the off-chip accesses are
sequential.

ReFlip [73] adopts a unified hardware design to ac-
celerate both  the  aggregation  and  combination  execu-
tions  of  GCNs  by  using  crossbar-based  processing-in-
memory architectures. The design of ReFlip mainly con-
sists of a number of processing engines (PEs) connected
with  a  bus  [89],  each  of  which  is  composed  of  multiple
crossbar-based computation units (CUs). ReFlip can exe-
cute the  combination  and  aggregation  kernels  alterna-
tively to complete  the computation of  all  the GCN lay-
ers, and it  also provides a flexible  scheduling orders  be-
tween  the  two  kinds  of  kernels  in  each  layer.  A  layer-
wise weight mapping for combination phase and a flipped

mapping for aggregation phase is introduced to ReFlip to
exploit both inter- and intra-vertex parallelism, improve
the utilization of crossbar cells, and reduce the overhead
of data  accesses.  Software-hardware  cooperative  opti-
mizations, including execution model and storage format,
and locality-aware design, are conducted to maximize the
efficiency and minimize energy consumption.

ReaDy  [74]  follows  the  design  of  ReFlip  [73]  and
modified it to support the acceleration of dynamic graph
convolutional  networks  (DGCN).  Since  matrix-vector
multiplication (MVM) is the dominant operation in both
GCN and  RNN kernels  within  the  execution  of  DGCN,
ReaDy is able to utilize homogeneous PEs with crossbar-
based computation units to handle all the computations.
Based on a vertex-centric mapping strategy, i.e., a flipped
mapping strategy of  ReFlip,  ReaDy further  provides  re-
dundancy-free scheduling and locality-aware dataflow re-
spectively  for  GCN  and  RNN  kernels  so  as  to  reduce
data loads and exploit inter-vertex data reuse. An inter-
kernel  pipeline  with  decoupled  execution  of  GCN  and
RNN kernels is  introduced to enhance the computation-
al parallelism and the data reuse of aggregated results of
GCN kernels.

Rubik [75] consists of an input scheduling methodol-
ogy, a  mapping  methodology,  and  a  hardware  architec-
ture design cooperating with the two methodologies. The
input scheduling methodology adopts a lightweight graph
reordering  methods  to  exploit  graph-level  locality,  and
the mapping methodology partitions the input graph and
maps  inter-vertex  and  intra-vertex  computation  to  PEs
and multiply-and-accumulator (MAC) arrays inside them.
The hardware architecture design is tailored from a neu-
ral  network  accelerator  to  utilize  graph-level  locality.
The on-chip  memory  hierarchy  is  well-designed  to  en-
hance  inter-  and  intra-PE  data  reuse  and  reduce  the
overhead of memory accesses.

PASGCN [76] adopts the design of PIMGCN [27] as
a baseline architecture, together with its two scheduling
strategies to  exploit  inter-vertex  parallelism  and  im-
prove  the  system  throughput.  Meanwhile,  a  lightweight
GCN, named AsparGCN, is introduced to remove redun-
dant edges so as to speed up the inference processed by
{PIMGCN} as much as possible with insignificant loss of
accuracy. AsparGCN includes a number of trainable pre-
dictors  which  learns  the  edge  selection  strategy  in  a
layer-wise manner. Based on the prediction results of the
predictors, the graph of each layer is sparsified and edges
interfering the  inter-vertex  parallelism are  dropped.  De-
spite a little change on the CAM crossbars of {PIMGCN},
{PASGCN} directly  uses  the  resulting  sparsified  graphs
to  accelerate  GCN  inference  with  almost  no  hardware
overhead.

FusedGCN [77] provides a new systolic architecture
that computes the product of the three matrices of GCNs’
computation in a combined/fused manner. The architec-
ture  can  well  support  the  sparsity  of  graph  adjacency
matrices and that of input features of the first layer. The
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structure  of  the  systolic  array  and  the  corresponding
dataflow can be unrolled to adapt to the input and out-
put bandwidth.

G-CoS  [78]  is  a  GNN  and  accelerator  co-search
framework automatically searching for the matched GNN
structures  and  accelerators.  The  framework  integrates  a
generic GNN accelerator search space applicable to vari-
ous  GNN structures  and a  on-hot  GNN and accelerator
co-search algorithm  capable  of  simultaneously  and  effi-
ciently  searching  for  optimal  GNN  structures  and  the
matched accelerators.  Different  from  a  previous  frame-
work  DeepBurning-GL  [65] which  utilizes  a  heteroge-
neous  template,  G-CoS adopts  a  homogeneous  multi-ac-
celerator  micro-architecture  template  to  accelerate  both
the combination and aggregation phases.

LW-GCN  [79]  proposes  a  lightweight  software  and
hardware  co-optimized  accelerator  to  efficiently  perform
GCN inference.  The  sparse  matrix  is  compressed  into  a
packet-level  column-only  coordinate-list  (PCOO)  format
that can be easily decompressed by hardware. A unified
micro-architecture is  adopted  to  execute  both  combina-
tion  and  aggregation,  which  are  exactly  matrix-matrix
multiplication (MM) and  sparse  matrix-matrix  multipli-
cation (SpMM). Each PE contains an optimized compu-
tation pipeline  to  alleviate  the  irregularity  in  computa-
tion and  memory  accesses  caused  by  SpMM.  An  addi-
tional  pre-processing  algorithm  is  utilized  to  prevent
data collisions caused by sparse matrix.

DARe [80] is  a manycore architecture for accelerat-
ing GNN training by leveraging the benefits of ReRAM-
based PEs and efficient on-chip communication support-
ed by a Drop-aware 3D NoC. The Drop-aware 3D NoC,
inspired by DropLayer techniques including DropEdge [90]
and  Dropout  [91], is  utilized  to  reduce  the  communica-
tion  latency  by  allocating  adequate  number  of  ReRAM
PEs to each layer. Each ReRAM-based PE contains mul-
tiple crossbars for MAC operations and a router for data
exchange.  The  DropLayer  is  implemented  in  the  NoC-
based  architecture  by  a  reconfigurable  linear  feedback
shift register (LFSR) based control mechanism to decide
which data to drop per epoch.
 3. Large-scale architectures

This sub-section introduces hardware approaches be-
longing to  large-scale  architectures  as  defined  in  Defini-
tion 3. Table 4 summarizes large-scale architectures and
offer  an  overview  of  GNN  applications  supported  by
them, and the implementation technology they are based
on. Note that both the applications and the implementa-
tion  technology  are  a  little  bit  different  from  the  other
two categories.

Graphite [81] provides a combination of a number of
cooperative software-hardware techniques to tackle mem-
ory problems during execution of GNNs on CPUs, which
are mainly  motivated  by  the  potential  benefits  of  run-
ning GNNs on CPUs, related to the demands of datacen-
ters. Software  optimizations,  including  parallel  vector-

ized  aggregation,  layer  fusion,  feature  compression,  and
temporal locality improvement are adopted to relieve the
DRAM bandwidth pressure during both training and in-
ference of  GNNs  on  multi-core  CPUs.  To  further  im-
prove the performance and reduce stalls during aggrega-
tion caused by memory accesses, DMA engines (Figure 4)
are  modified  to  support  a  DMA-aggregation  algorithm.
The hardware aided aggregation can work cooperatively
with  most  of  the  software  optimizations  mentioned
above, and the overall execution is pipelined.
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Figure 4  Graphite’s enhanced DMA engine [81].
 

SmartSAGE  [82]  is  an  in-storage-processing  (ISP)
GNN training  system targeting  at  problems  induced  by
the scaling up of both graph datasets and GNNs. Smart-
SAGE is  able  to  intelligently  offload  the  data  intensive
stages  to  ISP units  coupled closely  inside the SSD. The
architecture adopts  a  ISP  accelerator  modified  to  sup-
port  sub-graph  generation,  cooperative  with  a  latency-
optimized runtime system and host driver.

Li et al. [83] aim to provide a practical and promis-
ing solution  to  handle  the  problems  of  large  scale  dis-
tributed  GNN (LSD-GNN)  at  hyperscale.  They  propose
a customized scalable and programmable hardware archi-
tecture to solve LSD-GNN’s problems, and integrate the
hardware  with  an  industrial  framework.  Moreover,  they
utilize  FPGA-as-a-Service  (FaaS)  together  with  their
customized hardware as a solution to achieve accessibili-
ty, scalability, and flexibility. Furthermore, they provide
suggestions for future FaaS system designs based on ex-
tensive exploration of a variety of FaaS system architec-
ture and their proposed solution.

GNNear  [84] harnesses  both  near-memory  process-
ing  (NMP)  and  centralized  processing  to  achieve  high-
throughput,  energy-efficient  and  scalable  GNN  training
on  large-scale  graphs.  Specifically,  DIMM-based  near-
memory  engines  (NMEs)  and  a  centralized  acceleration
engine (CAE) are both adopted to process the memory-

 

Table 4  Summary  of  existing  hardware  acceleration  approaches  of
large-scale architectures (GS = GraphSAGE)

Approach Applications Technology

Graphite [81] GCN, GS, etc. CPU-DMA

SmartSAGE [82] GS, etc. CPU-ISP

Li et al. [83] GS + DSSM [55], etc. FaaS

GNNear [84] GCN, GIN, GS, GAT NMP

MultiGCN [85] GCN, GIN, GS MultiAccSys
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intensive  reduce  operations  and  computation-intensive
update  operations  respectively.  Optimization  strategies
are proposed to tackle with resource under-utilization and
load-imbalance problems to improve training throughput,
concerning  data  reuse,  data  mapping,  graph  partition,
and dataflow scheduling.

MultiGCN  [85]  is  an  efficient  MultiAccSys  (multi-
node  acceleration  system)  that  accelerates  the  inference
phase of large-scale GCNs by trading network latency for
network  bandwidth.  The  architecture  is  scaled  from  a
single-node accelerator to form a system like tensor pro-
cessing unit (TPU) Pod [92]. The single-node accelerator
serves as a single processing node, and multiple process-
ing nodes of  that kind are connected to a topology net-
work  to  construct  the  whole  system.  A  topology-aware
multicast mechanism with a one put per multicast mes-
sage-passing model is utilized to alleviate network band-
width requirements, and a scatter-based round execution
mechanism works with the multicast mechanism in a co-
operative  fashion.  The  graph  is  partitioned  in  to  sub-
graphs to reduce redundant off-chip memory accesses.

 IV. Optimization Techniques
Researchers have applied optimization techniques to

their base  architectures  mainly  from  three  aspects,  in-
cluding memory hierarchy, memory access, and computa-
tion to enhance the processing efficiency. For processing-
in-memory architectures,  dedicated  optimization  tech-
niques is adopted to improve the throughput and energy
efficiency and lower the hardware overhead.
 1. Memory hierarchy optimizations

Memory hierarchy  optimizations  include  modifica-
tions  applied  to  the  on-chip/off-chip  memory  system to
alleviate architecture-aware  bottlenecks  and  further  im-
prove the overall performance, such as dedicated on-chip
buffers, graph-aware caches, and so on.

Auten et  al. [19] utilize  buffers  for  intermediate  re-
sults and  data  transmission,  different  sizes  of  scratch-
pads are utilized for control information and (large) da-
ta  storage.  HyGCN  [21]  employs  embedded  DRAM  to
cache various data and introduces different buffers to the
two  engines  (Figure  1).  For  aggregation  engine,  edge
buffers are  utilized  to  cache  edges  so  as  to  exploit  spa-
tial  locality,  while  input  buffers  are  used  to  cache  the
vertex features. Aggregation buffers are used to cache in-
termediate results of aggregation phase to exploit tempo-
ral locality. For Combination engine, weight buffer is uti-
lized to cache weight matrix to exploit temporal locality,
and output  buffer  is  used  to  merge  write  accesses  of  fi-
nal features. Edge buffer, input buffer, weight buffer and
output buffer all leverage the double buffer techniques to
hide the latency. In a similar way, a number of existing
hardware  approaches  [26],  [29],  [59],  [63]–[66],  [68],  [71],
[77]–[79]  employ dedicated buffers  with double  buffering
techniques  for  input,  output and intermediate  results  in
their architecture. AWB-GCN [24] also adopts a scratch-
pad  so  as  to  cache  part  of  adjacency  matrix  on-chip  as
much as  possible,  to  reduce  off-chip  bandwidth  require-
ments.

Different  from  approaches  using  various  dedicated
buffers mentioned, EnGN [25] employs a dedicated three-
level on-chip memory hierarchy (Figure 5), including reg-
ister files, multi-level caches, and result banks, to allevi-
ate  the  overhead  of  memory  accesses.  The  register  files
are  equipped  with  processing  elements  (PEs),  while  the
multi-level  caches,  exactly  degree  aware  vertex  caches
(DAVC) for  high-degree  vertices  only,  are  inserted  be-
tween  register  files  and  result  banks.  The  result  banks
are utilized to store temporary aggregation results, as the
last  level  of  the  on-chip  memory  hierarchy.  Rubik  [75]
offers  another  on-chip  memory  hierarchy,  composed  of
global buffer for PE array, private G-D and G-C cache in
each PE, and register files in each MAC.
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Figure 5  Three-level on-chip memory hierarchy of EnGN [25].
 

Cambricon-G [70] adopts a software-hardware hybrid
memory  hierarchy  to  leverage  shared  data,  which  con-
tains  the  software-controlled  scratchpad memory (SPM)
for  regular  data  accesses  and  the  hardware-managed
topology-aware  cache  for  irregular  data  accesses.  The
hardware-managed cache is designed to handle the reuse
of  source  vertices  in  computational  operations,  and it  is
topology-aware  to  improve  the  data  locality  of  vertex
accesses (Figure 6).

GNNIE  [72]  adopts  a  frequency-based  caching  pol-
icy, i.e., graph-specific caching, to maximize the reuse of

cached data and reduce off-chip random memory accesses.
Contrary to  existing frequency-based caching for  graphs
in software frameworks, e.g., Cagra [93], the caching pol-
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α, γ

icy is hardware-centric dynamic approach with consider-
ably low hardware overhead. Under the proposed caching
policy,  a  set  of  vertices  and  edges  between  them  are
cached as a sub-graph, and then a partial aggregation is
performed  in  it.  Vertices  with  the  most  unprocessed
edges are most likely to be preserved in the caches after
replacement,  as  depicted in Figure 7,  where  denote

degree of two vertices. Coupled with an inexpensive pre-
processing that bins vertices in order of their degrees so
that they are stored contiguously in DRAM in descend-
ing  degree  order  of  the  bins,  the  graph-specific  caching
policy  is  able  to  avoid  random off-chip  DRAM accesses
and  ensure  all  random  accesses  are  confined  to  on-chip
buffers.
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Figure 7  Input buffer replacement policy during aggregation [72]

NTGAT [69] is coupled with a feature oriented set-
associate cache. Each cache line of a set stores features of
a  vertex,  and the length and quantity of  cache line can
be dynamically configured to adapt to various vertex fea-
ture  size  with  the  same  cache  capacity,  achieving  high
flexibility using limited resources. The least recently used
(LRU) caching policy is introduced to the feature cache.
 2. Memory access optimizations

Memory access optimizations involve techniques ap-
plied  to  the  architectures  so  as  to  regularize  off-chip
memory  access  pattern  and  reduce  volume  of  both  off/
on-chip memory accesses and data transmission.

Q ∈ N+

Q

Q2

EnGN  [25]  adopts  graph  tiling  to  tile  large  graphs
into intervals  and  shards  using  a  graph  partition  ap-
proach  proposed  by  GridGraph  [94].  Given ,
vertices are divided into  disjointed intervals, and edges
of  the  graph  with  both  source  and  destination  vertices
limited to one interval can be partitioned into  shards.
EnGN processes  with  the  granularity  of  a  tile,  and  the
size of  shards  is  fitted  with  the  on-chip  memory  to  en-
sure efficient  computation  without  off-chip  memory  ac-
cesses.  An  adaptive  scheduling  approach  is  adopted  to
resolve  the  data  dependency  among  tiles  and  maintain
the sequence of  execution considering the structure  of  a
graph.

GCoD  [29]  adopts  a  split  and  conquer  algorithm
which leverages  sub-graph classification to  enforce  regu-
larity  at  both  fine-  and  coarse-grained  granularity,  and
utilizes  graph  partitioning  to  further  boost  efficiency.
Vertices with similar degrees are clustered into the same
class to reduce the irregularity of GCNs’ graph adjacen-
cy matrices. Each class is then divided into sub-graphs to
further  achieve  a  finer-grained  regularity.  Using  graph
partitioning, sub-graphs  within  the  same  class  are  uni-

formly  distributed  into  different  groups,  reducing  the
boundary connections to enforce  the sparser  patterns  so
as to reduce the irregularity of memory accesses. Similar
with GCoD, H-GCN [67] utilizes input graph reordering
at  training  stage  to  group  vertices  with  more  shared
neighbors together to improve the data reuse.

X = X t ∪ X oo ∪ X f∪
X u ∪ X oi X t,X oo,

X f ,X u,X oi

L, Vd,
Vs

SX , SW , SB1, SA, SO, SB2

ω1, ω2

GCNAX [26] and SGCNAX [71] adopts local memo-
ry promotion  and  fused  matrix  multiplication  to  mini-
mize external data transfer during execution of their pro-
posed chain sparse-dense matrix multiplication. The loop
order of  consecutive matrix multiplication is  changed to
reduce redundant memory accesses, and data transfer of
intermediate data is eliminated by fusing consecutive ex-
ecution of matrix multiplications. Off-chip data access is
modeled as an optimization problem using several design
choices  as  variables,  and  thus  the  overhead  caused  by
off-chip  data  accesses  is  minimized  by  appropriately
adopting  corresponding  design.  Equation  (16)  illustrates
the  optimization  problem  used  in  SGCNAX  to  achieve
optimal  computation  latency,  on-chip  SRAM  accesses,
and off-chip DRAM accesses, where 

 denotes  the  entire  search  space,  and 
 denote the parameter spaces of tile size, inter-

tiling loop order, loop fusion strategy, respectively. 
 denote  the  computation  latency,  the  number  of  off-

chip DRAM accesses and the on-chip SRAM accesses, re-
spectively.  denote  the  required
on-chip storage size of the corresponding matrices, which
are  determined  by  the  tile  size.  are  adjustment
parameters that reflect  the difference in the energy cost
between  basic  arithmetic  operation,  DRAM  access  and
SRAM access.

I-GCN [28]  utilizes  a  runtime  locality  enhancement
technique termed Islandization. Each vertex in an island,
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labeled as an island vertex, only connects to the those of
the same island and the hub vertices connected to the is-
land. This ensures that the space between the L-shapes,
i.e. the  hubs,  is  purely  blank.  Therefore,  when  process-
ing  a  GCN layer,  the  associated  data  of  island  vertices
are only needed when the island is being processed. Con-
sequently,  they  only  need  to  be  fetched  from  off-chip
once. The hubs do have the chance of being used multi-
ple  times  during  the  processing  of  different  islands  and
inter-hub connections. However, since hubs are normally
a small fraction of the entire graph, their associated data
will likely be stored on-chip and sufficiently reused. Even
if the hubs’ associated data is too large to fit in the on-
chip  memory,  Islandization  still  reduces  off-chip  data
movement.  In  summary,  for  GCN  processing  of  real-
world  graphs  with  component  structures  using  I-GCN,
most  data  are  fetched  only  once,  except  the  adjacency
data of  some  island  vertices  which  may  need  to  be  ac-
cessed multiple  times  during  the  multi-round  island  lo-
cating.

Rubik  [75]  employs  a  lightweight  graph  reordering
methodology that improves the graph-level data locality.
The algorithm is developed by using synergistic locality-
sensitive hashing (LSH) and row-column ordering. Based
on  the  reordered  graph,  the  intermediate  aggregation
computation results can be better reused. An alternative
heuristic  is  adopted  to  efficiently  obtain  shared  vertex
sets  within  adjacent  vertices  in  the  execution  order  to
maximize the potential computation results reuse.

Moreover,  ReaDy  [74] adopts  a  dedicated  schedul-
ing strategy to eliminate redundant data accesses during
computation.  Zhang et  al. [57],  Cambricon-G  [70]  both
adopt  data  partitioning  to  improve  the  locality  of  data
accesses. GNNerator adopts dimension-blocked dataflows
supported  by  a  hardware-aided  algorithm  to  eliminate
irregular  off-chip  memory  accesses  by  exploiting  extra
on-chip  memory  accesses,  as  expressed  in Algorithm  1.
HP-GNN [68] uses a novel data layout and internal rep-
resentation to  reduce  the  memory  traffic  and  the  num-
ber of random memory accesses at training phase.
 

Minimize
X

J = L(X u) + ω1 · Vd(X t,X oo,X f )

+ ω2 · Vs(X u,X oi)

s.t. 0 < Tm ≤ M, 0 < Tk ≤ K,

0 < Tn0 ≤ N, 0 < Tn1 ≤ N,

0 < Tc0 ≤ C, 0 < Tc1 ≤ C,

SX + SW + SB1 ≤ GLBsize,

SA + SO + SB2 ≤ GLBsize,

Pn0 × Pc0 × Pk ≤ #PEs,
Pn1 × Pc1 × Pk ≤ #PEs. (16)

Algorithm 1  Dimension-blocking algorithm
G

S D h L
Input: sharded graph ; width/height of square shard grid

, hidden dimension size , features , layers .
l← 0 L 1: for  to  do

blockD← 0 D/B 2:　for  to  do
dst← 0 S 3:　　for  to  do
src← 0 S 4:　　　for  to  do

Shard← G.Shards(src, dst) 5:　　　　 ;
v ← 0 Shard(src, dst).V 6:　　　　　for  to  do

u← 0 v.U 7:　　　　　　for  to  do
d← 0 B 8:　　　　　　　　for  to  do

dim← f(d, blockD) 9:　　　　　　　　　

hagg[v][dim]← Aggregate(hu[dim],10:　　　    　　　　

hv[dim])　　　　 　　　　　　　　   　　　 ;

h′[dst][:]← FeatureExtract(hagg[dst][blockD×B :11:　　　

(blockD+ 1)×B], h′[dst][:])　　　　　　　   　 ;
h← h′12:　 .

BoostGCN [64] uses data tiling by a low-complexity
index-based  partion  scheme  together  with  a  dedicated
data storage  scheme in  external  memory while  perform-
ing  partition-centric  feature  aggregation  to  optimize  on-
chip dataflow and off-chip data storage. Vertices are div-
ided into disjoint subsets (internals),  and edges are div-
ided into subsets (blocks). Vertex features are divided in-
to  slices  by  3-D  partitioning.  The  increased  edge  block
size leads to better data reuse within blocks, less compu-
tation  steps,  and  lower  overall  memory  access  latency
with  the  support  of  the  dedicated  data  storage  scheme,
achieving massive parallelism.

The sub-accelerators designed by G-CoS [78] are inte-
grated with functions of weight buffer sharing and buffer
re-purposing to further increase on-chip reuse opportun-
ities and reduce off-chip accesses. All the on-chip weight
buffers  are  inter-connected,  and the  feature,  weight  and
output buffers are inter-changeable, so the off-chip mem-
ory accesses are minimized.

LW-GCN  [79]  adopts  a  data  compression  strategy
including  a  novel  PCOO  format  and  quantization.  The
input matrices of the first layer of GCN is compressed to
the PCOO format so that only valuable information will
be  processed  afterwards,  and  storage  requirement  and
computation complexity  can  be  reduced.  To  further  re-
duce memory  consumption,  LW-GCN  apply  quantiza-
tion onto  the  values  of  all  the  matrices  in  GCNs.  Post-
training quantization strategy is utilized to save time for
pre-processing  since  LW-GCN  targets  at  inference  of
GNNs. The  quantization  scheme  consists  of  several  for-
mats  for  different  matrices.  16-bit  signed  fixed  point
(SINT16)  is  selected  to  quantize  the  features  and
weights.  For  sparse  matrices,  4-bit  signed  fixed  point
(SINT4)  is  selected  to  quantize  the  non-zero  elements.
All  the  intermediate  results  are  stored  as  32-bit  signed
fixed  point  (SINT32)  to  maintain  accuracy.  Moreover,
data  collision  resolution  is  introduced  to  enable  several
PEs to access a single row in the same memory slices at
the same  time.  A  multi-bank  memory  system  is  devel-
oped to reduce such collision as  a muti-port  memory to
store weights with row grouping and data replication in
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the  micro-architecture  of  {LW-GCN},  and  empty  ele-
ments  are  inserted  to  further  alleviate  unresolved  colli-
sion.
 3. Computation optimizations

Computation  optimizations  involve  techniques  ap-
plied  to  the  hardware  architectures  to  increase  overall
throughput, and reduce execution latency, including pipe-
lining, eliminating redundant computation and workload
balancing.
 1) Pipelining

HyGCN  [21]  forms  a  execution  pipeline  of  aggre-
gation  engine  and  combination  engine,  which  supports
latency-aware  and  energy-aware  functions  to  reduce  the
processing latency  for  each  vertex  and  the  energy  con-
sumption  caused  by  redundant  accesses,  as  depicted  in
Figure 8. The data reuse of aggregation results is enhanced
and the  parallelism of  the  two engines  are  improved by
decoupling  the  executions  of  them,  coupled  with  the
ping-pong buffering mechanism.

AWB-GCN [24] utilizes the pipelining SpMM chains
(Figure  9),  including  intra-layer  SpMM  pipelining  and
inter-layer SpMM pipelining to fully exploit the parallel-
ism between consecutive SpMMs to improve the through-
put and reduce the latency.

GraphACT

H-GCN [67] exploit the parallelism between consecu-
tive  SpMMs  in  a  layer  through  fine-grained  pipelining,
with  generated  STPEs/TPEs,  PL,  and  customized  tile
size.  GNNerator  [60]  provides  fine-grained  pipelining  of
the  feature  extraction  and  aggregation  stages,  in  which
each of its graph engine or dense engine can be either the
producer or the consumer, to further support more vari-
ants  of  GCNs.  [58]  utilizes  two kinds of  pipe-
lines, one of which is between CPU and FPGA, and the
other is between modules of FPGA.

ReaDy [74] proposes a inter-kernel pipeline to reuse
the aggregated results of GCN kernels. Both DyGNN [59]
and Chen et al. [63] adopt a flexible pipelined execution
flow to  support  variants  of  GNNs  and  reduce  the  over-
head of memory accesses.
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Figure 8  Timing illustration of (a) Latency-aware pipeline and (b) Energy-aware pipeline [21].
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Figure 9  Pipelined SpMMs [24].
 

BoostGCN  [64] utilizes  a  task  scheduling  optimiza-
tion to reduce the pipeline stalls. The internals are sorted
by their vertex degrees, and a buffer in external memory
is  allocated  to  temporarily  store  intermediate  results  to
ensure  consecutive  modules  are  ready  to  continue  pro-
cessing. The computation order of the three-matrix multi-
plication in GCN layer is also considered to achieve high
computation efficiency in a pipeline fashion.

NTGAT [69] designs pipelines with two stages in the
node engines.  The sorting processor and the vector pro-
cessor share the ping-pong buffer and work simultaneously
so as to exploit abundant parallelism.
 2) Eliminating redundant computations

HyGCN [21] proposes a dynamic data-aware sparsi-

ty elimination to to reduce the redundant accesses since
the graph connections are sparsely distributed, utilizing a
window-based sliding and shrinking approach. Similarly,
I-GCN [28] first pre-aggregates the results of the combi-
nation,  and  then  scan  the  local  adjacency  bitmap  and
performs aggregation, after all the combination results of
all vertices in an island are ready. If the number of non-
zeros in the sliding window exceeds half of the window’s
size, the features of corresponding vertices will be merged.
Otherwise, their connections will be removed from the lo-
cal adjacency bitmap.

DyGNN [59] adopts an extra module called Pruner to
eliminate edge redundancy and vertex redundancy, while
Chen et al. [63] integrate the redundancy-elimination with
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modules  (e.g.,  aggregator  and  coordinator)  to  construct
several  redundancy-eliminated units  to  prune redundant
vertices and edges.

PASGCN  [76]  uses  the  lightweight  GCN  network
architecture,  named  ASparGCN,  to  remove  redundant
edges so as to accelerate the inference of GCN inference
on  PIMGCN  [27]  accelerator.  ASparGCN  integrates  a
parameterized  predictor  for  learning  the  edge  selection
strategy for each GCN layer in inference stage. The pre-
dictor  is  able  to  predict  edges  preserved  for  each  layer
based on the graph structure and input vertex features.
Based on the  prediction result,  the  irrelevant  edges  will
be  dropped.  In  the  test  phase,  the  resulting  sparsified
graphs can be used directly in each layer’s inference sep-
arately,  thereby  accelerating  the  total  GCN  inference.
ReaDy [74] provides redundancy-free scheduling for GCN
kernels, so that redundant operations can be eliminated.
 3) Workload balancing

AWB-GCN [24] utilizes approaches at three levels of
granularity  to  rebalance  workloads  between  processing
elements (PEs) round by round. Distribution smoothing
balances the workload among neighbors. Remote switch-
ing shuffles workloads of regions with the most and least
clustered non-zero elements, making efficient distribution
smoothing  possible.  If  a  row is  observed to  still  contain
too many elements to be smoothed or balanced by remote
switching,  it  is  designated  as  an  evil  row,  and  then  it’s
partitioned and non-zero elements are remapped to mul-
tiple regions (with least clustered elements).

g ∈ N+

g

|MAC|i
|MAC|1 ≤ |MAC|2 ≤ · · ·≤ |MAC|g

GNNIE  [72]  utilizes  a  adaptable  MAC  architecture
and  adopts  load  redistribution.  Given ,  the  CPE
array  is  divided  into  groups,  each  of  which  has  equal
number  of  rows.  The  number  of  MACs  in  each  CPE,

,  is  monotonically  nondecreasing  along  the  rows:
.  CPE  rows  are  paired

and a portion of workload from heavily loaded CPE rows
can be offloaded to lightly loaded ones.

SGCNAX [71]  utilizes  a  group-and-shuffle  approach
to balance workloads among PEs in which the rows of a
sparse matrix are grouped by the density-sorted rank order
and mapped to  PEs so  that  all  the  PEs will  simultane-
ously  complete  the  task.  An  extra unshuffle operation
executed afterwards is required to recover the correct po-
sitions of the rows so as to ensure the correctness of the
computation.

BoostGCN [64]  utilizes  a  centralized load balancing
scheme to allocate the tasks for its FAMs so as to resolve
load imbalance caused by uneven degree distribution. A
task pool containing all 3-D partitions is maintained, and
tasks are assigned to each FAM at 3-D partition granu-
larity.

G-CoS [78] uses a flexible workload allocation includ-
ing  two  flexible  workload  allocation  schemes  to  ensure
workload  better  fit  sub-accelerators’ micro-architecture.
The  processing  element  (PE)  array’s  dimensions  and
tiling sizes can be adjusted to achieve high hardware util-

ization and efficiency, which balancing the workload with
the  number  of  feature  rows  and  the  number  of  weight
columns respectively.

LW-GCN  [79] employs  pre-processing  steps  to  bal-
ance workload for  each pair  of  tiles  during computation
as  it  utilizes  out-product  tiling  approach.  Each  PE  is
able to work independently and starts computation of a
new row immediately when the previous one is finished,
so as  to  increase  PE efficiency.  Multiple  rows  are  effec-
tively  concatenated  before  assigned  to  PEs  to  eliminate
idle time.
 4. Processing-in-memory optimizations

Due to unique characteristics of emerging systems and
devices,  such  as  ReRAM-based  crossbars  for  processing-
in-memory,  some  of  the  optimization  techniques  and
their objectives are tightly coupled with their implemen-
tations.

Both PIMGCN [27] and PASGCN [76] aim to reduce
the hardware overhead of  ReRAM crossbars induced by
data mapping, and choose a design with CAM crossbars
and  MAC  crossbars  for  GCN  acceleration  to  eliminate
the data duplication, lowering the overhead of crossbars
to store extra data, so that the area occupation and en-
ergy consumption can be significantly reduced.

ReFlip [73] and ReaDy [74] adopt a flipped mapping
to  improve  the  utilization  of  crossbars  and  fully  exploit
intra-vertex parallelism between features  (Figure  10),  in
which  vertex  features  are  mapped  into  crossbars  and
edge data are fed as input of crossbars.
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Figure 10  The flipped-mapping scheme in ReFlip [73]
 

ReGNN [61] designs three sub-engines for vertices of
different degrees,  and provides a vertex scheduler to as-
sign  different  aggregation  tasks  to  different  sub-engines,
so that the processing efficiency of the aggregation engine
can be improved.

Ogbogu et al. [95] introduce a crossbar-aware prun-
ing  technique,  termed  DietGNN,  targeted  for  training
purpose to  reduce  crossbar  overhead  and  energy  con-
sumption.  Since  selective  shutdown  of  certain  rows  or
columns  of  a  crossbar  may  not  contribute  to  energy
reservation, DietGNN aims to shut an entire crossbar by
pruning the data mapped to it. DietGNN first prunes the
GNN model based on the crossbar knowledge to produce
a wining ticket, i.e., an optimal sub-network, inspired by

  616 Chinese Journal of Electronics, vol. 33, no. 3



state-of-the-art  pruning  techniques,  such  as  the lottery
ticket  hypothesis [96],  and then train  the  winning  ticket
on a ReRAM-based platform. DietGNN incorporates key
characteristics  of  hardware  and  extracts  a  hardware-
friendly  sub-network  from  the  original  one  that  can
be trained on a  crossbar  diet  without  compromising  ac-
curacy.

 V. Discussions and Challenges
Hardware acceleration for GNNs has achieved great

breakthroughs in  efficient  processing  of  GNNs,  signifi-
cantly  outperforming  typical  software  frameworks  for
GNNs on CPUs and GPUs in overall throughput, laten-
cy,  and  energy  efficiency  of  the  whole  system.  Though
different  from  algorithmic  GNNs  defined  and  executed
by conventional software frameworks, hardware accelera-
tion for  GNNs exactly  offers  GNNs defined  by  underly-
ing  hardware  platform  with  customized  execution
dataflow without  modifying  the  algorithmic  representa-
tion of GNNs. In this section, we provide discussions on
issues that may be concerned by researchers.

Extra  overhead  In fact,  the  existing  hardware  ap-
proaches can not work independently of software frame-
works,  since  they  either  target  at  inference  or  training
with  limited  capability.  Generally,  hardware  approaches
that target  at  inference of  GNNs require  trained weight
matrices of each layer, the adjacency matrix of the graph
data, and feature matrices of vertices or edges as the input
sources  of  their  architecture.  Sometimes  the  adjacency
matrix  is  processed  by  algorithmic  methods,  depending
on  specific  requirements  of  GNNs.  A  little  bit  different
from  approaches  targeting  at  inference,  those  targeting
at training require layer-wise initialized weight matrices,
the  adjacency  matrix,  feature  matrices  of  vertices  or
edges, and representation of specific necessary functions,
e.g., graph sampling and dropout, as inputs of the archi-
tectures.  Fortunately,  all  the  inputs  are  consistent  with
those  used  in  inference  and  training  of  algorithmic
GNNs.  They  have  to  be  computed  only  once,  and  then
they can be shared by both algorithmic approaches and
hardware approaches  afterwards.  In  this  way,  the  over-
head of pre-processing is amortized. With respect to for-
mat  conversion  overhead,  different  from accelerators  for
basic operations such as SpMM and SpMV that have up-
stream tasks, the input sources of GNN accelerators have
been  transformed  into  correct  formats  only  once  before
execution, and no format conversion is needed during the
execution. Since the format conversion before the execu-
tion is not tracked in evaluation by existing approaches,
the overhead of such a kind of pre-processing can be ne-
glected. Thus, the hardware acceleration itself incurs lit-
tle extra overhead in respect of the input sources. Some
of  the  hardware  approaches  follow  a  software-hardware
co-design methodology and introduce algorithmic methods
in their system, but the algorithmic component and hard-
ware  component  usually  form  a  macro  pipeline  so  that
potential extra costs can be reduced as much as possible.

Versatility  Existing hardware  approaches  of  accel-
eration for GNNs support different variants of GNNs, as
shown in Tables 2-4. Given a certain approach, its archi-
tecture is usually designed to cope with the computation
of workloads  with  similar  characteristics.  Thus,  the  ap-
proaches designed for different variants may differ in the
architecture  since  they  target  at  different  execution
dataflow. Some  of  the  hardware  approaches  may  intro-
duce special  function  units  to  extend  the  overall  func-
tion  of  the  system,  such as  GNNIE [72].  However,  with
respect  to  architecture-aware  optimization  techniques  in
Section  IV,  few  of  them  are  dedicated  to  certain  GNN
workloads,  since  they  target  at  characteristics  of  the
execution dataflow,  which is  related with intrinsic  char-
acteristics of graph-structured data and the architecture
design. Hence, the architecture design and the customized
dataflow  may  be  dedicated  to  certain  GNN  workloads,
but different approaches may share general optimization
techniques.

GraphACT

Performance   The  existing  hardware  acceleration
approaches  choose  different  SOTA  works  as  baselines
and use various GNN applications to evaluate their hard-
ware  design.  Most  of  them have achieve  extremely high
speedup and energy efficiency than typical software frame-
works  on CPUs and GPUs.  However,  the  complexity  of
implementation and  the  workloads  can  increase  the  un-
certainty  of  performance  evaluation.  Generally,  SOTA
accelerators  are  first  re-implemented  and  then  scaled  to
match  the  on-chip  resources  of  the  evaluation  platform,
due to  difference  between  their  original  hardware  plat-
forms. Moreover,  since  most  of  the  hardware  accelera-
tion approaches  for  GNNs are  based on ASIC technolo-
gy, and they mostly concerns about the area and power
consumption of hardware components, the analysis of on-
chip  resource  utilization  are  somewhat  neglected,  but
that is critical to approaches based on FPGAs. Some ap-
proaches may have mentioned this issue in their papers,
but  their  metrics  are  not  unified.  [58] com-
pares  the  utilization  of  DSP  slices  and  BRAM  while
DNNs  working  on  different  graph  dataset  is  computed,
and  HP-GNN  [68] further  analyzes  the  overall  utiliza-
tion  of  LUTs.  Detailed  analysis  on  the  utilization  of
hardware components is needed and that can contribute
to FPGA-based accelerators.

Pros and cons  The three categories of hardware ap-
proaches have their strengths and weaknesses respective-
ly,  despite  the  effectiveness  in  evaluation  on  certain
workloads. Hybrid  architectures  usually  have  high  fre-
quency to reduce processing latency and increase overall
throughput,  so  as  to  maximize  the  performance  of  the
pipelined execution  dataflow.  Optimizations  are  intro-
duced  separately  to  different  compute  engines.  With
proper  scheduling  strategies  and  pipeline  control  logic,
hybrid architectures can be enhanced with a flexible exe-
cution  dataflow  to  support  different  computation  order
of the different phases, leading to improvement of versa-
tility. However,  the  on-chip  buffers  for  intermediate  re-
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sults may occupy a considerable amount of total on-chip
resources. The data transmission by read and write oper-
ations  can  incur  extra  latency  and  energy  consumption,
leading to degradation of the overall performance and en-
ergy efficiency. Moreover, hybrid architectures pose strict
requirements on pipeline scheduling strategies, and poorly
designed strategies can also reduce the overall efficiency.
With respect to holistic architectures, they do not usual-
ly need  on-chip  buffers  to  store  and  transfer  intermedi-
ate results, and all the intermediate results are kept with
the compute engines during the execution. Thus, holistic
architectures usually  have  respectively  high  energy  effi-
ciency,  and  homogeneous  compute  engines  can  reach
high  utilization  with  proper  configuration.  However,
holistic architectures  rely  on  methods  to  extract  com-
mon operations from the computation to design homoge-
neous compute engines to compute them, and extra soft-
ware  and  hardware  components  are  required  to  handle
exceptions, leading to complexity of the design. With re-
spect to  large-scale  architectures,  they  are  heavily  driv-
en by industrial demands. Those architectures are evalu-
ated on limited number of GNN workloads, and their ca-
pability of processing other GNN variants remains to be
studied.  For  those  that  adopts  topological  networks  for
data exchange between nodes, the communication can be
a  bottleneck of  the  whole  system,  and  a  dedicated  effi-
cient topology  network  is  required  for  those  architec-
tures.

 VI. Future Directions
Existing  researches  on  hardware  acceleration  for

GNNs  have  proved  their  efficiency  and  effectiveness  for
accelerating either training or inference phase of various
workloads,  i.e.,  variants  of  GNNs  and  graph-structured
data  with  clearly  different  characteristics.  They  have
outperformed general-purpose platforms and SOTA solu-
tions significantly on several critical performance metrics.
However,  problems still  lie  somewhere,  primarily  due  to
the rapid development of approaches for deep learning on
graph, and the evolution of the practical demands of in-
dustries, which can lead to increasing complexity of graph-
structured  data  and  variants  of  GNNs.  In  other  words,
current  solutions,  even SOTA ones,  may not  be  able  to
cope  with  workloads  that  appears  afterwards.  Thus,  we
would give four suggestions about the future directions of
hardware acceleration for  GNNs to facilitate  our follow-
ing researches.

Acceleration for complicated variants of GNNs  The
fast  evolution of  algorithms for  deep learning on graphs
have born a number of variants of GNNs. Though most
of them originate from the family of GCNs [2] and share
some  characteristics,  they  are  quite  different  in  some
aspects.  Typically,  both  GATs  [4]  and  GINs  [3]  can  be
seen as a kind of GCN, but many of the hardware accel-
eration  designed  for  GCNs  are  inadequately  efficient  to
accelerate  GINs  and  GATs,  due  to  distinct  functions
adopted  by  the  two  kind  of  models.  Moreover,  both

GraphSAGE-Pool  [1]  and STGNN [97]  combines several
computation kernels to improve capability of representa-
tion. Thus, GNNerator [60] adopts an execution pipeline
that can  be  configured  to  support  different  GCN  vari-
ants.  GNNIE  [72]  introduces  special  processing  units  to
execute  the  LeakyReLU  activation  functions  of  GATs,
and it further optimize the workflow for GATs’ aggrega-
tion.  However,  most  of  researches  pay  few  attention  to
those variants, and optimization techniques for them are
limited. To  further  improve  the  overall  efficiency  of  ac-
celeration, researches  should  take  the  variants  into  con-
sideration.

Acceleration  for  large-scale  GNNs  The  amount  of
graph-structured  in  industries  is  extraordinarily  large-
scale, which is almost impossible to store and process on
a  single  machine.  Large-scale  distributed  processing  is
the most commonly utilized solution to cope with large-
scale graph learning.  Meanwhile,  in order to acquire ex-
act  knowledge  from  large-scale  graph-structured  data,
the amount of  GNNs adopted in practical  scenarios  can
also be extremely large,  which costs  expensive time and
energy overhead  to  complete  model  training  and  infer-
ence. Graphite [81] provide a hardware-assisted aggrega-
tion  using  a  modified  DMA engine  to  accelerate  GNNs’
execution on CPUs in datacenters. SmartSAGE [82] pro-
vides  a  solution  for  in-storage-processing  GNN training.
Li et  al. [83]  offers  a  practical  solution  for  deploying  a
FaaS system for GNN acceleration in a typical datacen-
ter. GNNear [84] aims to cope with full-batch training of
large-scale graph deep learning which needs large amount
of  memory  space.  MultiGCN  [85]  targets  at  GCNs  on
large-scale  graph-structured  data.  Most  of  researches  on
large-scale  GNN  acceleration  are  mainly  conducted  on
general-purpose  platforms  with  modifications  applied  to
the original architecture, focusing on algorithm design to
alleviate bandwidth- and latency-related problems. Thus,
there remains  works  to  be  done  if  oriented  to  require-
ments of industries.

Acceleration  with  emerging  devices  Processing-in-
memory architectures  have  been adopted as  a  choice  to
efficiently  accelerate  execution  of  GNNs.  Emerging  de-
vices, such as ReRAM crossbars, have been used for the
MVM computations. PIMGCN [27] offers a state-of-the-
art  PIM-based  accelerator  using  ReRAM crossbars,  and
achieves breakthroughs on both speedup and energy effi-
ciency.  Though  it  achieves  both  high  energy  efficiency
and high speedup over previously designed hybrid archi-
tectures, it does not achieve significant speedup over an-
other SOTA holistic solution, i.e., AWB-GCN. Since there
exist only a few researches based on processing-in-memory
architectures and most of them targets at energy efficien-
cy,  future  researches  may  adopt  approaches  to  further
elevate  the  throughput  of  PIM-based  architectures  to
acquire  higher  speedup.  Moreover,  with  other  emerging
devices beyond  ReRAM crossbars,  other  novel  architec-
tures may be designed.

Algorithm-architecture  co-design  Algorithms  and
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software applications are easily to be developed and mod-
ified. Hardware acceleration for GNNs typically follows a
software-hardware  co-designed  or  algorithm-hardware
co-designed methodology.  Here,  we  would  refer  to  algo-
rithm-hardware co-design  as  implementing  a  certain  al-
gorithm with the underlying hardware to create a work-
flow consistent with it.  Contrary to existing lightweight
graph reordering algorithms, I-GCN [28] propose a hard-
ware-assisted runtime graph reordering approach. The al-
gorithms  proposed  by  I-GCN  are  exactly  the  execution
flow of processing elements and the overhead of reorder-
ing is eliminated by overlapping the stages of reordering
and  computing.  Future  researches  can  adopt  such  a
methodology and propose algorithms of runtime versions
to  support  efficient  processing.  Intuitively,  a  number  of
SOTA graph  processing  algorithms  may  also  be  modi-
fied into runtime ones to create efficient workflows.

Heuristic-hardware  co-operation  Heuristics  hold
prior  knowledge  about  the  environment,  which  can  be
utilized  as  useful  guidelines  for  operations.  Following
software-hardware  co-designed  methodology,  PASGCN
[76] propose a lightweight GCN to learn knowledge about
the  input  graph  together  with  information  of  ReRAM
crossbars  in  PIMGCN [27]  to  directly  predict  neighbors
during  inference,  leading  to  extremely  high  energy  effi-
ciency and speedup over SOTA solutions. Ogbogu et al.
[95] propose DietGNN which performs pruning based on
information of  the crossbars to achieve high energy effi-
ciency  during  training  stage.  The  application  of  heuris-
tics  can  generate  hardware-aware  networks  that  can  be
executed efficiently on the underlying hardware, but ex-
isting  works  are  limited  to  ReRAM  crossbars.  Future
researches  may  develop  more  sophisticated  heuristics  to
further  improve  the  effectiveness  of  acceleration,  or  de-
velop  heuristic-based  approaches  that  can  be  applied  to
more kinds of devices.

 VII. Conclusion
In this article, we provide a survey on hardware ac-

celeration for GNNs. We propose a methodology of cate-
gorization and classify existing researches into three cate-
gories based on the type of their hardware architectures:
hybrid  architectures,  holistic  architectures,  and  large-
scale  architectures.  We  introduce  the  overall  design  of
representative approaches and recent advances. Then, we
introduce their optimization techniques at different levels
and  conduct  a  concise  analysis  upon  them.  Finally,  we
propose five suggestions on future directions of hardware
acceleration for GNNs.
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