
REVIEW

A Survey on Graph Neural Network
Acceleration: A Hardware Perspective

Shi CHEN1,2, Jingyu LIU1,2, and Li SHEN1,2

1. School of Computer, National University of Defense Technology, Changsha 410073, China
2. Key Laboratory of Advanced Microprocessor Chips and Systems, Changsha 410073, China

Corresponding author: Li SHEN, Email: lishen@nudt.edu.cn
Manuscript Received April 18, 2023; Accepted August 24, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — Graph neural networks (GNNs) have emerged as powerful approaches to learn knowledge about
graphs and vertices. The rapid employment of GNNs poses requirements for processing efficiency. Due to incompati-
bility of general platforms, dedicated hardware devices and platforms are developed to efficiently accelerate training
and inference of GNNs. We conduct a survey on hardware acceleration for GNNs. We first include and introduce re-
cent advances of the domain, and then provide a methodology of categorization to classify existing works into three
categories. Next, we discuss optimization techniques adopted at different levels. And finally we propose suggestions
on future directions to facilitate further works.
Keywords — Graph neural networks, Deep learning acceleration, Domain-specific architecture, Hardware accel-
erator.
Citation — Shi CHEN, Jingyu LIU, and Li SHEN, “A Survey on Graph Neural Network Acceleration: A Hard-
ware Perspective,” Chinese Journal of Electronics, vol. 33, no. 3, pp. 601–622, 2024. doi: 10.23919/cje.2023.00.135.

 I. Introduction
Graph neural networks (GNNs) are emerging deep

learning-based methods operating on graph domain. Re-
cently, with wide adoption of graph-structured data in
various industries [1], [2] and significant breakthroughs
achieved by variants of GNNs [3], [4], GNN-based appli-
cations have been utilized to facilitate tasks and activities
in both industries and academia, due to its convincing
performance and high interpretability [5]. The rapid de-
velopment and application of GNNs have led to urgent
demands for acceleration, since many of their application
scenarios are quite sensitive to latency and throughput
[6]–[11]. With limited resources for computation and mem-
ory storage, the time overhead of training and inference
of GNNs can be easily out of range. Existing researches
have applied abundant approaches to improve the effi-
ciency of processing GNNs on general hardware devices
[12]–[18]. However, evidence is mounting that the irregu-
larity of graph-structured data and the complexity of
GNNs’ inherent characteristics in both computation and
memory access make general-purpose high-performance
platforms ill-suited for accelerating either training or infer-
ence of GNNs [19]–[21], since most of them are designed

for common applications with regular computation and
memory accesses. To be exact, the sparsity of graph-
structured data, i.e., non-zero numbers only account for
a small portion of adjacency matrix, and power-law dis-
tribution, i.e., degrees of vertices in a graph differs signif-
icantly, make it almost impossible for GNNs to benefit
from memory hierarchy, since there exist few consecutive
memory accesses and the spatial and temporal locality
are quite weak. Moreover, the power-law distribution can
also induce severe workload imbalance, leading to degrad-
ation of general-purpose hardware (e.g., CPUs and GPUs),
with no regard to their further optimizations [22], [23].
Based on comprehensive analysis of overall execution of
graph convolutional networks (GCNs) and stages inside,
Yan et al. discover potential opportunities to design a
dedicated hardware device to accelerate GCNs’ inference
[20], and propose a hybrid architecture for accelerating
inference of GCNs [21], as a real state-of-the-art solution
to hardware acceleration for GNNs. From then on, there
exist a number of solutions to hardware acceleration for
GNNs that adopt various architecture design and opti-
mization techniques [24]–[29].

Existing surveys on the topic of acceleration for

Associate Editor: Prof. Lei XU, Shanghai Jiao Tong University.

Chinese Journal of Electronics
vol. 33, no. 3, pp. 601–622, May 2024
https://doi.org/10.23919/cje.2023.00.135

GNNs mostly spare more efforts to cover algorithmic ap-
proaches and software acceleration on CPUs and GPUs,
but pay less attention to hardware acceleration. Liu et
al. [30] give a review on existing algorithmic acceleration
methods for GNNs, including graph-level and model-level
optimizations. They have mentioned some hardware tech-
niques and early progress of hardware acceleration for
GNNs as future prospects without further illustration and
explanation of those researches. By contrast, our article
purely target at hardware acceleration for GNNs with an
overview of existing hardware approaches and a discus-
sion of their adopted optimization techniques, approach-
ing the topic from a different perspective.

Abadal et al. [31] provide a review of the field of
GNNs and offer an analysis of software and hardware
acceleration schemes, categorizing both software and
hardware approaches into three types: software-hardware
co-design, graph awareness, and communication-centric
design. They investigate several early but representative
hardware acceleration approaches, but specific optimiza-
tion techniques of them are not well explained. To the
contrary, our article provide a different methodology only
for categorization of hardware approaches based on the
architecture of hardware design, including hybrid archi-
tecture, holistic architecture, and large-scale architecture.
Besides, we track more recent advances of hardware ac-
celeration to illustrate up-to-date trends. Moreover, we
separately offer detailed analysis of hardware optimiza-
tion techniques at different levels, including optimization
with relation to memory hierarchy, memory access, com-
putation and processing-in-memory architecture, which is
neglected by most existing surveys.

In this article, we provide a review on hardware ac-
celeration for graph neural networks with an overview of
existing hardware approaches and an analysis of related
hardware optimization techniques. The key contributions
of our article can be summarized as follows:

1) We introduce the representative and up-to-date
researches on hardware acceleration for GNNs.

2) We propose a methodology for categorization that
classifies existing researches into three categories based
on their hardware architecture, including hybrid architec-
ture, holistic architecture and large-scale architecture.

3) We introduce the optimization techniques adopt-
ed by existing researches at different levels, and conduct
concise analyses on them.

4) We discuss characteristics of GNNs and limita-
tions of existing researches, and provide five suggestions
on future directions to facilitate further researches.

 II. Preliminaries
In this section, we introduce background knowledge

about GNNs and offer a brief history of acceleration for
GNNs.
 1. Graph neural networks

Following previous literature done by Wu et al. [32]

and Liu et al. [33]–[35], we introduce the concept of
graph and GNNs. From the perspective of hardware ac-
celeration, the GNNs introduced in this sub-section are
exactly representative, since they commonly act as work-
loads of acceleration for GNNs.

G = (V,E) V E
i, j ∈ N

vi ∈ V eij = (vi, vj) ∈ E vj
vi N(v) = {u ∈ V |(v, u) ∈ E}

v

v A
n× n Aij = 1 eij ∈ E Aij = 0

eij /∈ E n = |V | ∈ N+

X ∈ Rn×d xv ∈ Rd

d ∈ N+

m = |E| ∈ N+

Xe ∈ Rm×c xe
v,u ∈ Rc

(v, u) c

Graph A graph can be typically represented as
, in which is the set of vertices, and is

the set of edges. Given , a vertex can be denoted
as , and denotes an edge from
to . denotes the neighbor-
hood of a certain vertex , containing several vertices
connected to by edges. The adjacency matrix is a

 matrix with if and if
. Given is the number of vertices in

a graph, the matrix of vertex features can be denoted as
, in which represents the feature vec-

tor of a certain vertex and is the dimension of a
vertex feature vector. Given is the num-
ber of edges in a graph, the matrix of edge features can
be denoted as , in which is the fea-
ture vector of an edge and is the dimension of a
edge feature vector. GNNs are exactly approaches to ac-
quire knowledge about the structure or topology of a
graph and properties of vertices in it by extending the
methods of conventional deep learning to the domain of
graph.

k

AGGREGATE(k)(·) COMBINE(k)(·)

AGGREGATE(k)(·)

COMBINE(k)(·)

AGGREGATE(k)(·)
COMBINE(k)(·)

The -th layer of general GNNs [3] can be depicted
as the following equation (1), which contains two major
execution phases. Although various alternatives exist for
both and , their pat-
terns of computation and memory access are distinct [20].
The phase of is similar with graph
processing and exhibits irregularities, while the phase of

 is similar with conventional neural net-
works and exhibits regularities, since the feature vectors
are updated with multi-layer perceptrons (MLPs). Some
variants of GNNs may look quite different, but all of them
exactly adopt such a pattern where ,
i.e., aggregation, and , i.e., combination,
take place in an alternative and iterative manner.

a(k)
v =

(k)

AGGREGATE({hk−1
u : u ∈ N(v)})

h(k)
v =

(k)

COMBINE(hk−1
v ,a(k)

v) (1)

θ0
′,θ1

′

A,D

gθ′ θ′ ∈ RN

gθ′ = diag(θ) L
L = LN −D− 1

2AD− 1
2 x ∈ RN

Graph convolutional networks The layer-wise con-
volution operation of graph convolutional network
(GCN) based on spectral methods proposed by Kipf et
al. [2] can be depicted as (2), where are two free
parameters w.r.t. Chebyshev coefficients, and are
adjacency matrix and degree matrix of the graph, respec-
tively. is a filter parameterized by , i.e.,

. is the normalized graph Laplacian
, and is an input signal.

 602 Chinese Journal of Electronics, vol. 33, no. 3

gθ′ ⋆ x≈θ0
′X+θ1

′(L−IN)x=θ0
′x−θ1

′D− 1
2AD− 1

2x
(2)

Ã = A+ IN D̃ii =
∑

j Ãij X ∈ RN×C Θ ∈ RC×F

Z ∈ RN×F

The definition can be generalized as equation (3),
with , , , ,
and .

Z = D̃− 1
2 ÃD̃− 1

2XΘ (3)

The forward model of a two-layer GCN in the litera-
ture can be simply depicted as (4). This model is widely
adopted as workload of acceleration.

Z=f(X,A)=softmax
(
ÂReLU(ÂXW (0))W (1)

)
(4)

W t t Nv

v ht
v

v t

GraphSAGE [1] is a general inductive framework us-
ing spatial-method-based graph convolutional networks.
The propagation step of GraphSAGE can be depicted as
(5), where is the parameter at layer , denotes
the set of neighbors of vertex , is the embedding of
vertex at layer .

ht
Nv

= AGGREGATE
t

({
ht−1
u ,∀u ∈ Nv

})
ht
v = σ

(
W t ·

[
ht−1
v ∥ht

Nv

])
(5)

AGGREGATEThe function of GraphSAGE can
have various forms. Three aggregator functions as follows
are suggested.

• Mean aggregator. The inductive version of the
GCN variant can be derived by (6).

ht
v = σ

(
W ·MEAN

(
{ht−1

v } ∪ {ht−1
u ,∀u ∈ Nv}

))
(6)

• LSTM aggregator. To operate as aggregators of
GraphSAGE, LSTMs are modified to execute on an un-
ordered set by permutating vertex’s neighbors.

• Pooling aggregator. A max-pooling operation is
applied to the set of the vertex’s neighbors, as depicted
in (7). Any symmetric function can be an alternative to
the max-pooling operation. A number of hardware ap-
proaches choose GraphSAGE with pool aggregators, i.e.,
GraphSAGE-Pool, as workload of acceleration.

ht
Nv

= max
(
{σ(Wpoolh

t−1
u + b),∀u ∈ Nv}

)
(7)

Graph recurrent networks Gate mechanism from
RNNs like GRU [36] and LSTM [37] are adopted in the
propagation step to eliminate the limitation of vanilla
GNNs [38] and enhance the effectiveness of the long-term
information propagation across the graph.

Av

A
v a

Li et al. [39] propose the gated graph neural networks
(GGNNs) with the gate recurrent units (GRUs) in the
propagation step. The basic recurrence of the propagation
model is depicted as equation (8). is the sub-matrix
of the graph adjacency matrix and denotes the con-
nection of vertex and its neighbors. Vector gathers

v z, rthe neighborhood information of vertex , and are
the update and reset gates. Few hardware approaches
exactly support acceleration for GGNNs introduced here,
but they support GNN workloads that adopts GRUs for
temporal-variable graph learning.

at
v = AT

V [h
t−1
1 ht−1

2 · · · ht−1
N]T + b

zt
v = σ(W zAt

v +Uzht−1
v)

rtv = σ(W rat
v +U rht−1

v)

h̃t
v = tanh(Wat

v +U(rtv ⊙ ht−1
v))

ht
v = (1− zt

v)⊙ ht−1
v + zt

v ⊙ h̃t
v (8)

(i, j) aij
j i Ni

i h = {h1,h2,

. . . ,hN}, hi ∈ RF

N,F
h′ = {h1

′,h2
′, . . . ,

hN
′}, hi

′ ∈ RF ′

W ∈ RF ′×F

a ∈ RF ′

σ

Graph attention networks Velickovic et al. [4] pro-
pose the graph attention networks (GATs), following
self-attention strategy. The layer-wise computation of
the coefficients in the attention mechanism of the vertex
pair is depicted as equation (9), in which is the
attention coefficient of vertex to , and denotes the
neighborhoods of vertex in the graph.

 represents the input vertex features,
and are the number of vertices and the dimension
of the features, respectively. Similarly,

 represents the output vertex features.
 is the weight matrix of a shared linear

transformation, is the weight vector. The final
output features of each vertex can be obtained after ap-
plying a nonlinearity as depicted in (10). Generally,
GATs are supported by hardware approaches as vari-
ants of GCNs.

αij =
exp

(
LeakyReLU(aT[Whi∥Whj])

)∑
k∈Ni

exp
(
LeakyReLU(aT [Whi∥Whk])

) (9)

hi
′ = σ

∑
j∈Ni

αijWhj

 (10)

h
(k)
v

v k N(v)

v ϵ

Graph isomorphism networks Xu et al. [3] propose
the graph isomorphism networks (GINs), which can be
seen as variants of GCNs. GINs update vertex represen-
tations as (11), where is the feature vector of vertex
 at the -th iteration/layer, and is a set of ver-

tices adjacent to . is a learnable parameter or a fixed
scalar. Multi-layer perceptrons (MLPs) is utilized to
model and learn parameters. Hardware approaches that
support GCNs usually support GINs as well.

h(k)
v =

(k)

MLP

(1 + ϵ(k)) · hk−1
v +

∑
u∈N(v)

hk−1
u

 (11)

l

Others Ying et al. [40] propose DiffPool, a differen-
tiable graph pooling module that can be adapted to vari-
ous graph neural network architectures in an hierarchi-
cal and end-to-end fashion. They stack L GNN modules
and learn to assign nodes to clusters at layer using em-

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 603

l − 1

l A(l)

l Z(l)

S(l) ∈ Rnl×nl+1

l

A(l+1)

X l+1

beddings generated at layer . Given an assignment
matrix, the DiffPool module pools nodes at each layer.
Given the input adjacency matrix at layer as , and
the input node embedding matrix at layer as , sup-
pose the learned assignment matrix at
layer has already been computed, the DiffPool layer
generate a new adjacency matrix and a new em-
bedding matrix , as depicted in (12) and (13).

X(l+1) = S(l)TZ(l) ∈ Rnl+1×d (12)

A(l+1) = S(l)TA(l)S(l) ∈ Rnl+1×nl+1 (13)

S(l) Z(l)

l

l

DiffPool utilize two separate GNNs to generate as-
signment matrices and embedding matrices . The
embedding GNN at layer is a standard GNN module
with given inputs, as depicted in (14). The pooling GNN
as layer use the inputs to generate an assignment mat-
rix, as depicted in (15).

Z(l) = GNN
l,embed

(A(l),X(l)) (14)

S(l) = softmax(GNN
l,pool

(A(l),X(l))) (15)

DiffPool is supported by a number of hardware ap-
proaches, though it is not as common as GCNs, GATs,
GraphSAGE, and GINs, it can be viewed as representa-
tive workloads since it can be easily integrated with ex-
isting GNN modules.

Beyond the GNNs introduced above, there exist
GNNs that are not commonly supported by hardware
approaches [41]–[55]. Those GNNs act as significant
workloads for specific approaches, and some of them,
such as Cluster-GCN [54] and EdgeConv [46], are SOTA
solutions for graph deep learning. Since we focus on
hardware approaches of GNN acceleration, for clarity
concerns, we don’t include the concepts of those GNNs
here, but we offer several tables to specify corresponding
relationships between hardware approaches and the
GNNs.
 2. Brief history of graph neural network

acceleration
GNNs have achieved state-of-the-art performance in

various graph-related tasks [1], [3] and applications, lead-
ing to increasing research interests in GNNs. However, as
GNNs are widely adopted for solving problems in differ-
ent domains, it is discovered that the execution efficiency
of GNNs is degraded due to real-world factors [30]. The
amount of the graph data generated by real-world appli-
cations and industries are extraordinarily large, posing
non-negligible challenges to both training and inference
of GNNs, which is not taken into consideration during
algorithmic design initially. Moreover, deeper and more
complicated GNNs are utilized as a promising approach
to enhance the ability of networks’ expression, especially
increasing the time overhead of training typical GNNs.
Furthermore, a large number of real-world applications

[6]–[11], running on either general-purpose or domain-
specific processing platforms, pose stringent constraints on
latency and throughput. However, with an inappropriate
algorithmic design and limited resources for computation
and storage, even large-scale and distributed, the time
overhead, i.e., latency and throughput related, of GNNs’
training and inference can be easily beyond users’ expec-
tations. Therefore, with the rapid development of GNNs,
accelerating both GNNs’ training and inference become
an urgent issue.

Existing researches have paid abundant efforts to
acquire acceleration methods for a variety of GNNs at al-
gorithm level, not only promoting the model accuracy
but also accelerating the model training and inference at
the same time [12]–[18]. However, evidence has shown
that GNNs’ execution on general-purpose platforms can
hardly benefit from general optimizations for common
applications, due to their unique characteristics [20]. To
be exact, GNNs’ execution benefits little from the general-
purpose memory hierarchy on CPUs and GPUs due to
low spatial and temporal locality primarily caused by the
sparsity and power-law distribution of the non-zero num-
bers in adjacency matrix, and different sizes of feature
matrices, i.e., irregularity of the data, can lead to degrad-
ation of conventional high-performance co-processors,
i.e., GPUs and TPUs [56], since most of them are designed
for computation of regular-sized data.

Motivated by both the inherent incompatibilities be-
tween typical GNN-based applications and the underly-
ing computation platforms, and the urgent demands
coming from various industries utilizing GNN-based ap-
plications, researchers focus on GNN-specific hardware-
based acceleration and achieve distinguished advances.
Existing works on hardware-based GNN acceleration
mainly use application-specific integrated circuits
(ASICs) for implementation of their design, and some of
them may use field programmable gate arrays (FPGAs)
as a platform for evaluation. Only a few of them really
couple FPGAs tightly with their design. With advances
of hardware devices, resistive random access memory
(ReRAM) is utilized for processing-in-memory (PIM) ac-
celeration. Auten et al. [19] propose the first accelerator
for GCN inference adopting a straightforward methodol-
ogy, in which two kinds of processing elements are de-
signed for acceleration of aggregation and combination
respectively. Following the similar methodology, HyGCN
[21] offers a real hybrid architecture for GCN accelera-
tion, which contains two engines for processing two
stages of GCN inference, and applies abundant and hier-
archical optimizations to improve the efficiency of single
engine and cooperation of the two engines. HyGCN
achieves great breakthrough and offers the first state-of-
the-art (SOTA) solution for hardware-based GCN accel-
eration. AWB-GCN [24], EnGN [25], and I-GCN [28]
study the execution order of layer-wise matrix multipli-
cation for propagation and offer holistic architecture for
GNN acceleration, in which the aggregation and combi-

 604 Chinese Journal of Electronics, vol. 33, no. 3

nation share one group of processing units, typically with
preprocessing for data reordering at a considerably low
cost. AWB-GCN, equipped with a novel workload rebal-
ancing technique, gives another SOTA solution for GNN
acceleration. PIMGCN [27] offers the first PIM-based
GCN acceleration using ReRAM crossbars, mainly tar-
geting at solving the incompatibilities between ReRAM
crossbars and GCN acceleration, and reducing the cross-
bar overhead caused by data mapping. PIMGCN
achieves relatively high speedup and improvement of en-
ergy efficiency compared with existing SOTA solutions,
and offers the first SOTA PIM-based design using
ReRAM crossbars for GCN acceleration. Beyond the rep-
resentative works mentioned above, there exist various
hardware-based solutions for GNN accelerations adopt-
ing distinct optimization techniques and architectural de-
signs. We thoroughly introduce them in following sec-
tions, together with their optimization techniques.

 III. Categorization
On the basis of the architectural design, existing ap-

proaches of hardware acceleration for GNNs can be pri-
marily classified into three categories, including hybrid
architectures, holistic architectures and large-scale archi-
tectures.

Table 1 provides an overview of the categories and
existing hardware approaches of acceleration for GNNs.
Generally, all the three categories refer to hardware ap-
proaches of acceleration for GNNs that adopt dedicated
hardware components in their design. In particular, hy-
brid architecture and holistic architecture refer to ap-
proaches using single chip or device for GNNs working
on graph-structured data limited in scale, while large-
scale architecture refer to approaches using multiple de-
vices or chips for GNNs working on large-scale and real-
world graph data.

Table 1 Categorization and representative hardware acceleration approaches for GNNs

Category Approaches

Hybrid architectures [19], [21], [29], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69]

Holistic architectures [24], [25], [26], [27], [28], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80]

Large-scale architectures [81], [82], [83], [84], [85]

In the following, we specifically give a definition of
each category to facilitate the understanding of the rest
of this article, as shown in Definition 1, Definition 2 and
Definition 3.

Definition 1 (Hybrid architectures) Hybrid archi-
tectures represent hardware approaches which follow the
two-phase pattern of modern GNNs depicted in (1) and
adopt heterogeneous components on one chip to handle
the computation of the two phases mentioned in Section
II.1 respectively. The execution of the two components is
usually coordinated by a workload-aware pipeline to re-
duce latency and enhance throughput.

Definition 2 (Holistic architectures) Holistic archi-
tectures represent hardware approaches which exploit the
common operations of GNNs’ layer-wise computation and
utilize homogeneous components on one chip to handle
the whole computation of specific GNNs mentioned in
Section II. This type of approaches usually require extra
methods for pre-processing and post-processing to regu-
late the pattern of computation.

Definition 3 (Large-scale architectures) Large-scale
architectures represent hardware approaches which aim
at GNNs working on large-scale and real-world graph data,
and adopt multiple dedicated chips and devices in a sys-
tem connected with a topological network to efficiently
scatter workloads and reduce the results. This type of
approaches usually adopt separate memory management
subsystems, or couple special processing units with large-
capacity DRAM on CPU side, to accommodate large-
scale graph data and improve the efficiency of memory
accesses.

 1. Hybrid architectures
In this subsection, we introduce representative hard-

ware approaches of GNN acceleration belonging to hybrid
architectures defined in Definition 1. Table 2 summarizes
existing hybrid architectures, showing GNN applications
supported by specific approaches and the implementation
technology they are based on.

Auten et al. [19] propose an architecture which
mainly consists of four modules for different categories of
operations during GNN inference, including the graph
processing element (GPE) for graph traversals and se-
quencing computation steps, the DNN accelerator (DNA)
for the DNN computation, the aggregator (AGG) for ag-
gregation of the features, and the DNN queue (DNQ) for
buffering memory requests and intermediate results. All
the modules are connected to a configurable bus so as to
support dataflow of different GNN models, and they then
together form a tile connected with others by a network
on chip (NoC). The GPE is also equipped with a light-
weight runtime to coordinate elements within the whole
system for workload scheduling and global synchroniza-
tion. Different sizes of scratchpads and buffers is utilized
to store control information and intermediate data.

HyGCN [21] adopts an architecture which includes
two engines (see Figure 1), i.e., Aggregation engine and
Combination engine, respectively for the computation of
aggregation and combination during GCN inference. The
Aggregation engine is designed for efficient execution of
irregular accesses and computation and is equipped with
operation-specific processing units, and the Combination

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 605

engine aims to maximize the efficiency of regular accesses
and computation, following the design of TPU [56], i.e.,
an optimized systolic array. A memory access handler is
utilized to manage all the requests to the DRAM, and a
Coordinator, i.e., a communication interface, is utilized
to mitigate the interference and enable pipelining be-
tween the two engines. HyGCN adopts abundant buffers

to hide the DRAM access latency, exploit the spatial
locality and enhance the data reuse. Besides, both intra-
and inter-engine optimizations are conducted to further
enhance the data reuse, exploit edge-level and vertex-level
parallelism, reduce the latency and energy consumption,
and coordinate the off-chip memory access of the two
engines during execution.

Aggregation engine

S
IM

D
S

IM
D

S
IM

D

Edge buffer

Sampler

Sparsity
eliminator

eSched

Input buffer

vSched

Weight buffer

Memory access handler

DRAM

Combination engine
A

ct
iv

at
e

u
n
it

O
u
tp

u
t

b
u
ff

er
PE

PE

PE

PE PE

PE

PE

PE PE

PE

PE

PE

A
g
g
re

g
at

io
n
 b

u
ff

er

C
o
o
rd

in
at

o
r

Figure 1 Architecture overview of HyGCN [21].

The hardware architecture proposed by Zhang et al.
[57] mainly consists of customized hardware modules for
aggregation and combination. The execution of the mod-
ules is pipelined, and a scheduling strategy is introduced
to improve the efficiency and versatility. A flexible data-
path is provided to support distinct computation order of
GCN inference. Moreover, a data partition scheme and a
scheduling strategy based on it is proposed to fully utilize
the on-chip storage capacity and improve the efficiency
of GCN inference. Following a methodology of algorithm-
hardware co-optimization, for reducing off-chip memory

accesses, a two-phase graph pre-processing algorithm is
utilized, including methods of graph sparsification and
vertex re-ordering.

GraphACT [58] offers a heterogeneous solution to ac-
celeration of GCN training, in which workload is parti-
tioned between CPU and FPGA, and the computation-
intensive parts are offloaded to FPGA while the commu-
nication-intensive parts are left for CPU. A processing
pipeline containing two main computational modules,
i.e., a feature aggregation module and a weight transfor-
mation module, is implemented on FPGA. Moreover,

Table 2 Summary of existing hardware acceleration approaches of hybrid architectures (GS = GraphSAGE)

Approach Applications Technology

Auten et al. [19] GCN, GAT, MPNN [41], PGNN [42] ASIC

HyGCN [21] GCN, GS, GIN, DiffPool ASIC

GCoD [29] GCN, GIN, GAT, GS, ResGCN [43] FPGA

Zhang et al. [57] GCN ASIC

GraphACT [58] GCN CPU-FPGA
DyGNN [59] GCN, GAT ASIC

GNNerator [60] GCN, GS ASIC

ReGNN [61] GCN, GS PIM

GCIM [62] GCN, GIN, GS PIM

Chen et al. [63] GCN, GS, G-GCN [44] ASIC

BoostGCN [64] GCN FPGA

DeepBurning-GL [65] GCN, GS, RGCN [45], EdgeConv [46] FPGA

Zhu et al. [66] GCN PIM

H-GCN [67] GCN ACAP

HP-GNN [68] GCN, GS CPU-FPGA

NTGAT [69] GAT ASIC

 606 Chinese Journal of Electronics, vol. 33, no. 3

GraphACT adopts scheduling strategies between CPU and
FPGA, and that of modules on FPGA to exploit the par-
allelism and improve the throughput of the system.

DyGNN [59] supports dynamic pruning for both ver-
tices and edges, and exploit that mechanism for perfor-
mance improvement. DyGNN is mainly composed of three
types of engines: Aggregator, Updater and Pruner. The
Pruner prunes vertices and edges based on a proposed
pruning algorithm. The Aggregator conducts aggrega-
tion, and the Updater is built with two multi-granular
systolic arrays to perform matrix-vector multiplication
either separately for edges and vertices or jointly for ver-
tices. A duplication-free mechanism is introduced into
the Pruner to fully exploit the data reuse so as to im-
prove efficiency of the execution. A configurable pipe-
lined architecture is also developed to support variants of
GNNs, with different execution flow controlled by pre-
defined configurations.

GNNerator [60] provides a programmable design with
heterogeneous compute engines, consisting of a Dense en-
gine for dense, regular computations and a Graph engine
for sparse, irregular computations. GNNerator manages
to exploit the inter-stage parallelism by decoupling the
combination and aggregation stages and enabling a flexi-
ble execution order of the two engines. The Dense and
Graph engines are provisioned to exploit the abundant
inter- and intra-vertex parallelism in GNNs. A feature
dimension-blocking dataflow with hardware support is
introduced to reduce the overhead during feature aggre-
gation stages by exploiting the independence of feature
dimensions.

ReGNN [61] uses heterogeneous ReRAM-based PIM
units for accelerating GNN inference. The architecture is
equipped with aggregation engine for accelerating non-
MVM operations, and combination engine for accelerating
MVM operations. Aggregation engine, designed with both
analog PIM (APIM) and digital PIM (DPIM), consists of
sub-engines for aggregation using different operators, in-
cluding max, sum, and mean, based on the degree of ver-
tices and the dimension of features. A vertex scheduler is
also introduced to assign tasks to sub-engines based on
the computation parallelism. Moreover, the sub-engines
for aggregation adopts novel data mapping strategies to
exploit inter- and intra-vertex parallelism. Combination
engine, mainly designed with APIM, follows a convention-
al neural network accelerator with analog PIM crossbars
to support intensive and regular MVM operations.

GCIM [62] adopts a 3D-stacked computation-in-
memory (CIM) architecture which stacks three types of
die, including base die, logic-in-memory (LIM) die, and
DRAM die. LIM die is exactly the DRAM die integrat-
ed with logic for the aggregation using some lightweight
logic units (LLU). The base die is integrated with the
combination logic mainly using a systolic array and aux-
iliary hardware units. Memory-bounded aggregation op-
erations are offloaded to LIM dies near memory banks
while the computation-bounded combination operations

are offloaded to base dies, which fully exploits bank-level
bandwidth and parallelism, and sufficient computational
ability. Moreover, a graph partitioning and mapping strat-
egy is introduced to eliminate overhead of data movement
and balance the workload, so as to further exploit the
data locality and utilize the high bandwidth of the CIM
architecture.

GCoD [29] provides a GCN algorithm and acceler-
ator co-design framework, which consists of a split and
conquer training strategy to polarize graphs to be either
denser or sparser, and a dedicated two-pronged acceler-
ator to leverage algorithm’s resulting graph adjacency
matrices for improvement of accelerating efficiency. The
hardware accelerator is composed of two branches, i.e.,
two parts, one of which adopts a chunk-based micro-
architecture to accelerate the polarized denser sub-graphs
with regular and denser patterns and balanced workloads,
the other accelerates irregular and sparser but largely
reduced sparser workloads.

The design proposed by Chen et al. [63] includes a
dynamic redundancy-eliminated neighborhood message
passing algorithm for GNNs based on a redundancy-
aware graph representation, targeting at redundancy of
EdgeUpdate and Aggregation. The hardware architec-
ture is designed for the proposed algorithm and it can
transform the redundancy elimination into performance
improvement. Furthermore, the architecture is also con-
figurable and pipelined so as to support different GNN
variants.

BoostGCN [64] proposes a system architecture con-
sisting of external memory and FPGA. The external
memory is utilized to accommodate adjacency matrix,
weight matrices, and feature matrices. The FPGA board
is programmed into heterogeneous processing units, in-
cluding feature aggregation modules (FAMs) to perform
feature aggregation and feature update modules (FUMs)
to perform feature update. A internal buffer is utilized to
cache the intermediate results produced by FAMs, and
memory controller is responsible for handling the data
transmissions between external memory and hardware
modules.

DeepBurning-GL [65] provides an automatic GNN
acceleration framework targeting at specific GNN appli-
cation by exploiting the reconfiguration capability of
FPGAs. The framework relies on a GNN accelerator tem-
plate and accelerator component templates to initiate the
design and generate the accelerator based on optimized
design parameters. It contains two categories of GNN
computation templates for regular computing, such as
the feature extraction and update, and irregular comput-
ing, such as graph-based aggregation, respectively. The
template for regular computing is exactly a systolic array
or a dot-production array while the template for irregu-
lar computing is an array of homogeneous processing
units. The two kinds of templates can be customized to
meet the requirements of GNNs’ different phases to max-
imize the computing efficiency. The memory template is

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 607

utilized to generate the design of on-chip memory blocks
to buffer data for computation, and a graph manipula-
tion template is adopted to sample from a large graph, or
construct graph from raw data, such as point cloud.

Zhu et al. [66] propose a parallelism enhancement
framework for PIM-based GCN architectures, composed
of a algorithmic GCN quantization method to transform
the 32-bit floating-poiont graph data to the fixed-point
form to reduce hardware overhead, and a RRAM-based
multi-core PIM architecture for GCNs called RP-GCN,
with an aggregation core array and a combination array
to exploit cluster-level computation parallelism. The two
categories of arrays form a coarse-grained pipeline data-
flow to improve the throughput.

H-GCN [67] proposes a GCN acceleration architec-
ture based on Xilinx Versal ACAP architecture [86], which
is an emerging heterogeneous compute platform with
strong heterogeneity. To fully exploit the capability of
ACAP, H-GCN mix sparse/dense systolic tensor arrays
to accelerate the hybrid pattern of GCNs. The architec-
ture generally consists of a sparse-dense matrix-matrix
multiplications (SpMM) unit and a PL controller in pro-
grammable logic (PL) and a sparse/dense systolic tensor
arrays in AI engines (AIEs). The PL controller controls
SpMM unit to cooperate with the sparse/dense systolic
tensor array to perform all GCN computation. Specifical-
ly, with a strategy of input graph reordering, the feature
aggregation of the vertices in the dense rectangular areas
and in the remaining areas are mapped onto AIEs and
the SpMM unit in the PL respectively.

HP-GNN [68] provides a framework for generation of

high throughput GNN training implementations on a
given CPU-FPGA platform. The framework takes GNN
training algorithms and GNN models as inputs, and per-
forms hardware mapping onto the target CPU-FPGA
platform. Sampling is executed on CPU since CPU is
flexible to support various sampling algorithms. Other
operations including feature aggregation and feature up-
date are performed on the proposed FPGA accelerator
with the support of Aggregate kernels and Update kernels
implemented on the board.

NTGAT [69] offers an acceleration architecture dedi-
cated to the acceleration for GATs together with a run-
time node tailoring algorithm and a pipelining insertion
sorting scheme. The algorithmic strategies reduce the
workloads for computation afterwards. The architecture
can be divided into a GAT convolution kernel and a
dense computing kernel. The dense computing kernel
processes the full connection layer and another linear
transformation in which vector inner-production is per-
formed. The GAT convolution kernel is composed of
graph encoder, attention coefficients chunks, node engines,
and feature cache, and it’s responsible for graph-based
attention-like computation.
 2. Holistic architectures

In this sub-section, we introduce hardware ap-
proaches belonging to holistic architectures as defined in
Definition 2. Table 3 summarizes holistic architectures
and provide corresponding relations between specific ap-
proaches, the GNN applications supported by the ap-
proaches, and the implementation technology they are
based on.

Table 3 Summary of existing hardware acceleration approaches of holistic architectures (GS = GraphSAGE)

Approach Applications Technology

AWB-GCN [24] GCN ASIC

EnGN [25] GCN, GS, Gated-GCN [47], GRN [48], R-GCN [45] ASIC

GCNAX [26] GCN FPGA

PIMGCN [27] GCN, GS, GIN PIM

I-GCN [28] GCN, GS, GIN ASIC

Cambricon-G [70] GCN, GS, DiffPool, DGMG [49], EdgeConv [46], GUN [50] ASIC

SGCNAX [71] GCN FPGA

GNNIE [72] GCN, GAT, GS, GIN, DiffPool ASIC

ReFlip [73] GCN, GAT, GS, GIN PIM

ReaDy [74] CD-GCN [87], TGCN [51], MPNN-LSTM [52] PIM

Rubik [75] GS, GIN ASIC

PASGCN [76] GCN, GS, GIN PIM

FusedGCN [77] GCN FPGA

G-CoS [78] GCN, GAT, LGCN [53], GS FPGA

LW-GCN [79] GCN, GS FPGA

DARe [80] Cluster-GCN [54] PIM

AWB-GCN [24] treats the layer-wise forward propa-
gation of a multi-layer spectral GCN as a two-step sparse
matrix multiplication (SpMM) and adopts an alterna-

tive computation order to exploit sparse-dense matrix
multiplications and reduce the number of operations
during computation. Therefore, AWB-GCN adopts a

 608 Chinese Journal of Electronics, vol. 33, no. 3

baseline architecture to accelerate SpMM kernels in a
column-wise-product manner with optimizations includ-
ing inter- and intra-layer pipelining and data forwarding,
matrix blocking and data mapping. Based on the pro-
posed architecture, AWB-GCN is further equipped with
strategies at three levels of granularity, i.e., distribution
smoothing, row switching, and row remapping, to cope
with the workload imbalance.

EnGN [25] is developed based on a unified process-
ing models covering general GNNs. Accompanied with
ring-edge-reduce update dataflow, the hardware architec-
ture (Figure 2) includes an array of homogeneous pro-
cessing units, the same column of which is interconnect-
ed with neighbors in a ring network, called ring-edge-
reduce array, for operations of aggregations. The on-chip
memory hierarchy is coupled with processing element
(PE) register file and multi-level caches to alleviate the
overhead of memory access. Moreover, dimension-aware
stage re-ordering, and graph tiling and scheduling is uti-
lized for optimization based on the characteristics of
GNN algorithms. The dimension-aware stage re-ordering
changes the computing order of GNNs based on the in-
put and output property dimension comparison. The
graph tiling splits vertices of the whole graph into sever-
al disjointed partitions so that each row of PE handles
features of vertices within the on-chip buffers, and the
graph scheduling is used to handle dependencies be-
tween tiles so as to fully exploit data reuse to reduce ex-
ternal memory accesses.

Edge

bank

Result

bankD
M

A

Format
converter

Prefecter

Controller

PE
controller

NPU Ring

Vector processing unit

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Instruction

Property

bank

Weight

bank

R
E

R
 a

rr
ay

H
ig

h
 b

an
d
w

id
th

 m
em

o
ry

M
em

o
ry

 c
o
n
tr

o
ll

er

Figure 2 EnGN hardware architecture [25].

The overall architecture (Figure 3) of PIMGCN [27]
is extended from a design pattern with both CAM cross-
bars and MAC crossbars, including a central controller
and two engines (search engine and compute engine).
The search engine consists of CAM crossbars, following
the design of GaaS-X [88]. The compute engine consists
of components respectively for aggregation and combina-
tion, which are both composed of MAC crossbars. The
central controller loads graph data and offloads the GCN
results to the external memory, and it controls CAM
crossbars, MAC crossbars and special functions units
(SFU) that handles the partial results from MAC cross-
bars. The two engines form a Ping-Pong architecture and
run alternatively to process GCN layers per iteration. To
maximize the exploitation of inter-vertex parallelism, the
execution of destination vertices are parallelized by set-

ting three constraints on the crossbars which ensure that
the features of source vertices of different destination
vertices locate in different crossbars, the destination ver-
tices to be aggregated locate in different crossbars as
well. Moreover, a latency-matching pipeline which writes
all the destination vertices after two cycles of aggrega-
tion and combination at once to minimize the diver-
gence between read/write latency, and an extra con-
straint is utilized to ensure two groups of destination
vertices locate in different crossbars. To better support
inter-vertex parallelism, a GroupCOO format is utilized
to store edges and weights.

CAM

crossbars

Attribute buffer

S
ea

rc
h
 e

n
g
in

e
PIMGCN

controller
SFU SFU

SFU

Aggregation
buffer

Aggregation
buffer

SFU

MAC

crossbars

Combination part

Layer2n Layer2n+1

MAC

crossbars

Aggregation part

Combination
buffer

Combination
buffer

MAC

crossbars

MAC

crossbars

In
p
u
t

v
ec

to
r

co
n
tr

o
ll

er

C
o
m

p
u
te

 e
n
g
in

e

Figure 3 PIMGCN architecture overview [27].

The irregularity and the sparsity of the adjacency
matrix can lead to poor data reuse during subsequent
computation, which consequently degrades the overall
performance. Thus, I-GCN [28] aims to handle the prob-
lems induced by the adjacency matrix as much as possi-
ble to gain improvement of performance. It adopts an
algorithm-hardware co-design methodology and provides
a hardware-assisted graph reconstructing algorithm, term-
ed Islandization, to significantly improve data locality
and reduce redundant computation. The hardware archi-
tecture mainly consists of a Island locator and a Island
consumer. The Island locator, primarily supported by a
breadth-first search algorithm, works round by round to
detect and fetch Islands, i.e., vertices with strong inter-
nal connections and week external connections, and usu-
ally share neighbors, and Hubs, i.e., vertices with consid-
erably high degree, to feed the Island consumer down-
stream so as to complete the computation of aggregation
and combination. The Island consumer treats the Is-
lands and related Hubs as a small, dense sub-graph and
adopts an alternative computation order to complete the
aggregation and combination using the same MAC array.
Moreover, with such two structures, the Island con-
sumer is able to conduct redundancy elimination with
ease and further accelerate the overall computation.

Cambricon-G [70] abstracts the computation of dif-
ferent GNN variants to the process of adjacent cuboid.

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 609

The adjacent cuboid combines the vertex feature dimen-
sion with the adjacent matrix and multidimensional mul-
tilevel tiling is introduced to improve the data reuse and
parallelism. Each cuboid can be tiled in three dimen-
sions, including vertex destination, source vertex, and
vertex feature, and the size of the partition called cubelet
is adapted for that of the on-chip memory. Multidimen-
sional spatial tiling is performed within a cubelet to ex-
ploit the data reuse and parallelism, supported by the
cuboid engine and hybrid on-chip memory of the pro-
posed architecture. To support multidimensional tempo-
ral tiling across cubelets for large GNNs, a programming
model is introduced to compute multiple cubelets by
specifying the tiling parameters and implementing the
computation logic.

GCNAX [26] comes up with an optimized dataflow
that is designed to flexibly adapt the loop order and loop
fusion techniques for different GCN configurations, with
the support of a hardware accelerator. GCNAX adopts
an outer-product based method for sparse matrix multi-
plications in GCNs to alleviate the workload imbalance.
Moreover, the compute engine, buffer size and structure
are adapted to fit with the execution order and tile sizes
of the dataflow. SGCNAX [71] adopts GCNAX as its sin-
gle PE, aiming to tackle with both inter-PE and intra-
PE workload imbalances to better cope with a variety of
graphs and GCNs. Since GCNAX has almost adopted
optimizations for alleviating the intra-PE workload im-
balances, SGCNAX employs a group-and-shuffle ap-
proach to conquer the inter-PE workload imbalances.

GNNIE [72] partitions both feature vectors and
weight matrix into blocks and schedules the weighting
computation in the CPE(computation PE) array. A flexi-
ble MAC architecture with adaptive number of MACs
per CPE, and dynamic workload redistribution between
paired rows of CPEs are adopted by GNNIE to ensure
the load-balancing during GNN computation. GNNIE
optimizes GAT computation of aggregation, character-
izes the dataflow and maps the edge-based computation
to the CPE array with the support of SPUs (special
functional units) for LeakyReLU and exponentiation, etc.
A graph-specific frequency-based caching policy is intro-
duced into GNNIE, ensuring all random accesses are con-
fined to on-chip buffers and all the off-chip accesses are
sequential.

ReFlip [73] adopts a unified hardware design to ac-
celerate both the aggregation and combination execu-
tions of GCNs by using crossbar-based processing-in-
memory architectures. The design of ReFlip mainly con-
sists of a number of processing engines (PEs) connected
with a bus [89], each of which is composed of multiple
crossbar-based computation units (CUs). ReFlip can exe-
cute the combination and aggregation kernels alterna-
tively to complete the computation of all the GCN lay-
ers, and it also provides a flexible scheduling orders be-
tween the two kinds of kernels in each layer. A layer-
wise weight mapping for combination phase and a flipped

mapping for aggregation phase is introduced to ReFlip to
exploit both inter- and intra-vertex parallelism, improve
the utilization of crossbar cells, and reduce the overhead
of data accesses. Software-hardware cooperative opti-
mizations, including execution model and storage format,
and locality-aware design, are conducted to maximize the
efficiency and minimize energy consumption.

ReaDy [74] follows the design of ReFlip [73] and
modified it to support the acceleration of dynamic graph
convolutional networks (DGCN). Since matrix-vector
multiplication (MVM) is the dominant operation in both
GCN and RNN kernels within the execution of DGCN,
ReaDy is able to utilize homogeneous PEs with crossbar-
based computation units to handle all the computations.
Based on a vertex-centric mapping strategy, i.e., a flipped
mapping strategy of ReFlip, ReaDy further provides re-
dundancy-free scheduling and locality-aware dataflow re-
spectively for GCN and RNN kernels so as to reduce
data loads and exploit inter-vertex data reuse. An inter-
kernel pipeline with decoupled execution of GCN and
RNN kernels is introduced to enhance the computation-
al parallelism and the data reuse of aggregated results of
GCN kernels.

Rubik [75] consists of an input scheduling methodol-
ogy, a mapping methodology, and a hardware architec-
ture design cooperating with the two methodologies. The
input scheduling methodology adopts a lightweight graph
reordering methods to exploit graph-level locality, and
the mapping methodology partitions the input graph and
maps inter-vertex and intra-vertex computation to PEs
and multiply-and-accumulator (MAC) arrays inside them.
The hardware architecture design is tailored from a neu-
ral network accelerator to utilize graph-level locality.
The on-chip memory hierarchy is well-designed to en-
hance inter- and intra-PE data reuse and reduce the
overhead of memory accesses.

PASGCN [76] adopts the design of PIMGCN [27] as
a baseline architecture, together with its two scheduling
strategies to exploit inter-vertex parallelism and im-
prove the system throughput. Meanwhile, a lightweight
GCN, named AsparGCN, is introduced to remove redun-
dant edges so as to speed up the inference processed by
{PIMGCN} as much as possible with insignificant loss of
accuracy. AsparGCN includes a number of trainable pre-
dictors which learns the edge selection strategy in a
layer-wise manner. Based on the prediction results of the
predictors, the graph of each layer is sparsified and edges
interfering the inter-vertex parallelism are dropped. De-
spite a little change on the CAM crossbars of {PIMGCN},
{PASGCN} directly uses the resulting sparsified graphs
to accelerate GCN inference with almost no hardware
overhead.

FusedGCN [77] provides a new systolic architecture
that computes the product of the three matrices of GCNs’
computation in a combined/fused manner. The architec-
ture can well support the sparsity of graph adjacency
matrices and that of input features of the first layer. The

 610 Chinese Journal of Electronics, vol. 33, no. 3

structure of the systolic array and the corresponding
dataflow can be unrolled to adapt to the input and out-
put bandwidth.

G-CoS [78] is a GNN and accelerator co-search
framework automatically searching for the matched GNN
structures and accelerators. The framework integrates a
generic GNN accelerator search space applicable to vari-
ous GNN structures and a on-hot GNN and accelerator
co-search algorithm capable of simultaneously and effi-
ciently searching for optimal GNN structures and the
matched accelerators. Different from a previous frame-
work DeepBurning-GL [65] which utilizes a heteroge-
neous template, G-CoS adopts a homogeneous multi-ac-
celerator micro-architecture template to accelerate both
the combination and aggregation phases.

LW-GCN [79] proposes a lightweight software and
hardware co-optimized accelerator to efficiently perform
GCN inference. The sparse matrix is compressed into a
packet-level column-only coordinate-list (PCOO) format
that can be easily decompressed by hardware. A unified
micro-architecture is adopted to execute both combina-
tion and aggregation, which are exactly matrix-matrix
multiplication (MM) and sparse matrix-matrix multipli-
cation (SpMM). Each PE contains an optimized compu-
tation pipeline to alleviate the irregularity in computa-
tion and memory accesses caused by SpMM. An addi-
tional pre-processing algorithm is utilized to prevent
data collisions caused by sparse matrix.

DARe [80] is a manycore architecture for accelerat-
ing GNN training by leveraging the benefits of ReRAM-
based PEs and efficient on-chip communication support-
ed by a Drop-aware 3D NoC. The Drop-aware 3D NoC,
inspired by DropLayer techniques including DropEdge [90]
and Dropout [91], is utilized to reduce the communica-
tion latency by allocating adequate number of ReRAM
PEs to each layer. Each ReRAM-based PE contains mul-
tiple crossbars for MAC operations and a router for data
exchange. The DropLayer is implemented in the NoC-
based architecture by a reconfigurable linear feedback
shift register (LFSR) based control mechanism to decide
which data to drop per epoch.
 3. Large-scale architectures

This sub-section introduces hardware approaches be-
longing to large-scale architectures as defined in Defini-
tion 3. Table 4 summarizes large-scale architectures and
offer an overview of GNN applications supported by
them, and the implementation technology they are based
on. Note that both the applications and the implementa-
tion technology are a little bit different from the other
two categories.

Graphite [81] provides a combination of a number of
cooperative software-hardware techniques to tackle mem-
ory problems during execution of GNNs on CPUs, which
are mainly motivated by the potential benefits of run-
ning GNNs on CPUs, related to the demands of datacen-
ters. Software optimizations, including parallel vector-

ized aggregation, layer fusion, feature compression, and
temporal locality improvement are adopted to relieve the
DRAM bandwidth pressure during both training and in-
ference of GNNs on multi-core CPUs. To further im-
prove the performance and reduce stalls during aggrega-
tion caused by memory accesses, DMA engines (Figure 4)
are modified to support a DMA-aggregation algorithm.
The hardware aided aggregation can work cooperatively
with most of the software optimizations mentioned
above, and the overall execution is pipelined.

(a) Top level (b) The DMA engine

Core

L1-D$

L2$

STLB
DMA L2$

STLB

Core

Control Memory
request

tracking tableVec.unit

Input buffIndex buff

Output buff

Addr. unit

Desc. queue

Factor buff

NoC

NoC

Directory

L3$ slice

Figure 4 Graphite’s enhanced DMA engine [81].

SmartSAGE [82] is an in-storage-processing (ISP)
GNN training system targeting at problems induced by
the scaling up of both graph datasets and GNNs. Smart-
SAGE is able to intelligently offload the data intensive
stages to ISP units coupled closely inside the SSD. The
architecture adopts a ISP accelerator modified to sup-
port sub-graph generation, cooperative with a latency-
optimized runtime system and host driver.

Li et al. [83] aim to provide a practical and promis-
ing solution to handle the problems of large scale dis-
tributed GNN (LSD-GNN) at hyperscale. They propose
a customized scalable and programmable hardware archi-
tecture to solve LSD-GNN’s problems, and integrate the
hardware with an industrial framework. Moreover, they
utilize FPGA-as-a-Service (FaaS) together with their
customized hardware as a solution to achieve accessibili-
ty, scalability, and flexibility. Furthermore, they provide
suggestions for future FaaS system designs based on ex-
tensive exploration of a variety of FaaS system architec-
ture and their proposed solution.

GNNear [84] harnesses both near-memory process-
ing (NMP) and centralized processing to achieve high-
throughput, energy-efficient and scalable GNN training
on large-scale graphs. Specifically, DIMM-based near-
memory engines (NMEs) and a centralized acceleration
engine (CAE) are both adopted to process the memory-

Table 4 Summary of existing hardware acceleration approaches of
large-scale architectures (GS = GraphSAGE)

Approach Applications Technology

Graphite [81] GCN, GS, etc. CPU-DMA

SmartSAGE [82] GS, etc. CPU-ISP

Li et al. [83] GS + DSSM [55], etc. FaaS

GNNear [84] GCN, GIN, GS, GAT NMP

MultiGCN [85] GCN, GIN, GS MultiAccSys

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 611

intensive reduce operations and computation-intensive
update operations respectively. Optimization strategies
are proposed to tackle with resource under-utilization and
load-imbalance problems to improve training throughput,
concerning data reuse, data mapping, graph partition,
and dataflow scheduling.

MultiGCN [85] is an efficient MultiAccSys (multi-
node acceleration system) that accelerates the inference
phase of large-scale GCNs by trading network latency for
network bandwidth. The architecture is scaled from a
single-node accelerator to form a system like tensor pro-
cessing unit (TPU) Pod [92]. The single-node accelerator
serves as a single processing node, and multiple process-
ing nodes of that kind are connected to a topology net-
work to construct the whole system. A topology-aware
multicast mechanism with a one put per multicast mes-
sage-passing model is utilized to alleviate network band-
width requirements, and a scatter-based round execution
mechanism works with the multicast mechanism in a co-
operative fashion. The graph is partitioned in to sub-
graphs to reduce redundant off-chip memory accesses.

 IV. Optimization Techniques
Researchers have applied optimization techniques to

their base architectures mainly from three aspects, in-
cluding memory hierarchy, memory access, and computa-
tion to enhance the processing efficiency. For processing-
in-memory architectures, dedicated optimization tech-
niques is adopted to improve the throughput and energy
efficiency and lower the hardware overhead.
 1. Memory hierarchy optimizations

Memory hierarchy optimizations include modifica-
tions applied to the on-chip/off-chip memory system to
alleviate architecture-aware bottlenecks and further im-
prove the overall performance, such as dedicated on-chip
buffers, graph-aware caches, and so on.

Auten et al. [19] utilize buffers for intermediate re-
sults and data transmission, different sizes of scratch-
pads are utilized for control information and (large) da-
ta storage. HyGCN [21] employs embedded DRAM to
cache various data and introduces different buffers to the
two engines (Figure 1). For aggregation engine, edge
buffers are utilized to cache edges so as to exploit spa-
tial locality, while input buffers are used to cache the
vertex features. Aggregation buffers are used to cache in-
termediate results of aggregation phase to exploit tempo-
ral locality. For Combination engine, weight buffer is uti-
lized to cache weight matrix to exploit temporal locality,
and output buffer is used to merge write accesses of fi-
nal features. Edge buffer, input buffer, weight buffer and
output buffer all leverage the double buffer techniques to
hide the latency. In a similar way, a number of existing
hardware approaches [26], [29], [59], [63]–[66], [68], [71],
[77]–[79] employ dedicated buffers with double buffering
techniques for input, output and intermediate results in
their architecture. AWB-GCN [24] also adopts a scratch-
pad so as to cache part of adjacency matrix on-chip as
much as possible, to reduce off-chip bandwidth require-
ments.

Different from approaches using various dedicated
buffers mentioned, EnGN [25] employs a dedicated three-
level on-chip memory hierarchy (Figure 5), including reg-
ister files, multi-level caches, and result banks, to allevi-
ate the overhead of memory accesses. The register files
are equipped with processing elements (PEs), while the
multi-level caches, exactly degree aware vertex caches
(DAVC) for high-degree vertices only, are inserted be-
tween register files and result banks. The result banks
are utilized to store temporary aggregation results, as the
last level of the on-chip memory hierarchy. Rubik [75]
offers another on-chip memory hierarchy, composed of
global buffer for PE array, private G-D and G-C cache in
each PE, and register files in each MAC.

SRC RF

Edge

(Src, dst)

Hit?

Match

DAVC

Tag Value
Result

bank

0
L3

1
2

N

L1

L2

Register

file

V0

PE

DST RF

Shadow RF

Shadow RF

Figure 5 Three-level on-chip memory hierarchy of EnGN [25].

Cambricon-G [70] adopts a software-hardware hybrid
memory hierarchy to leverage shared data, which con-
tains the software-controlled scratchpad memory (SPM)
for regular data accesses and the hardware-managed
topology-aware cache for irregular data accesses. The
hardware-managed cache is designed to handle the reuse
of source vertices in computational operations, and it is
topology-aware to improve the data locality of vertex
accesses (Figure 6).

GNNIE [72] adopts a frequency-based caching pol-
icy, i.e., graph-specific caching, to maximize the reuse of

cached data and reduce off-chip random memory accesses.
Contrary to existing frequency-based caching for graphs
in software frameworks, e.g., Cagra [93], the caching pol-

CMP

TP State Tag
Read tag Vertex size

Address

generator

Data

Miss

CMP
CMP
CMP
CMP

Hit

Figure 6 Topology-aware cache of Cambricon-G [70]

 612 Chinese Journal of Electronics, vol. 33, no. 3

α, γ

icy is hardware-centric dynamic approach with consider-
ably low hardware overhead. Under the proposed caching
policy, a set of vertices and edges between them are
cached as a sub-graph, and then a partial aggregation is
performed in it. Vertices with the most unprocessed
edges are most likely to be preserved in the caches after
replacement, as depicted in Figure 7, where denote

degree of two vertices. Coupled with an inexpensive pre-
processing that bins vertices in order of their degrees so
that they are stored contiguously in DRAM in descend-
ing degree order of the bins, the graph-specific caching
policy is able to avoid random off-chip DRAM accesses
and ensure all random accesses are confined to on-chip
buffers.

1
2

1
2

1
2

n

1
2

1
2

2
1

n n

n n

Input

buffer

Input

buffer

Input

buffer

n

…

…

…

… …
…

…
…

…… …

…
…

…

…

n+1 n+1 n+1

n+1+r n+1+r

V V V

DRAM DRAM DRAM

End of iteration (1)Start of iteration (1) Start of iteration (2)

r vertices of DRAM

(for next iteration)

r vertices of DRAM

(after replacement)

α<γ

Figure 7 Input buffer replacement policy during aggregation [72]

NTGAT [69] is coupled with a feature oriented set-
associate cache. Each cache line of a set stores features of
a vertex, and the length and quantity of cache line can
be dynamically configured to adapt to various vertex fea-
ture size with the same cache capacity, achieving high
flexibility using limited resources. The least recently used
(LRU) caching policy is introduced to the feature cache.
 2. Memory access optimizations

Memory access optimizations involve techniques ap-
plied to the architectures so as to regularize off-chip
memory access pattern and reduce volume of both off/
on-chip memory accesses and data transmission.

Q ∈ N+

Q

Q2

EnGN [25] adopts graph tiling to tile large graphs
into intervals and shards using a graph partition ap-
proach proposed by GridGraph [94]. Given ,
vertices are divided into disjointed intervals, and edges
of the graph with both source and destination vertices
limited to one interval can be partitioned into shards.
EnGN processes with the granularity of a tile, and the
size of shards is fitted with the on-chip memory to en-
sure efficient computation without off-chip memory ac-
cesses. An adaptive scheduling approach is adopted to
resolve the data dependency among tiles and maintain
the sequence of execution considering the structure of a
graph.

GCoD [29] adopts a split and conquer algorithm
which leverages sub-graph classification to enforce regu-
larity at both fine- and coarse-grained granularity, and
utilizes graph partitioning to further boost efficiency.
Vertices with similar degrees are clustered into the same
class to reduce the irregularity of GCNs’ graph adjacen-
cy matrices. Each class is then divided into sub-graphs to
further achieve a finer-grained regularity. Using graph
partitioning, sub-graphs within the same class are uni-

formly distributed into different groups, reducing the
boundary connections to enforce the sparser patterns so
as to reduce the irregularity of memory accesses. Similar
with GCoD, H-GCN [67] utilizes input graph reordering
at training stage to group vertices with more shared
neighbors together to improve the data reuse.

X = X t ∪ X oo ∪ X f∪
X u ∪ X oi X t,X oo,

X f ,X u,X oi

L, Vd,
Vs

SX , SW , SB1, SA, SO, SB2

ω1, ω2

GCNAX [26] and SGCNAX [71] adopts local memo-
ry promotion and fused matrix multiplication to mini-
mize external data transfer during execution of their pro-
posed chain sparse-dense matrix multiplication. The loop
order of consecutive matrix multiplication is changed to
reduce redundant memory accesses, and data transfer of
intermediate data is eliminated by fusing consecutive ex-
ecution of matrix multiplications. Off-chip data access is
modeled as an optimization problem using several design
choices as variables, and thus the overhead caused by
off-chip data accesses is minimized by appropriately
adopting corresponding design. Equation (16) illustrates
the optimization problem used in SGCNAX to achieve
optimal computation latency, on-chip SRAM accesses,
and off-chip DRAM accesses, where

 denotes the entire search space, and
 denote the parameter spaces of tile size, inter-

tiling loop order, loop fusion strategy, respectively.
 denote the computation latency, the number of off-

chip DRAM accesses and the on-chip SRAM accesses, re-
spectively. denote the required
on-chip storage size of the corresponding matrices, which
are determined by the tile size. are adjustment
parameters that reflect the difference in the energy cost
between basic arithmetic operation, DRAM access and
SRAM access.

I-GCN [28] utilizes a runtime locality enhancement
technique termed Islandization. Each vertex in an island,

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 613

labeled as an island vertex, only connects to the those of
the same island and the hub vertices connected to the is-
land. This ensures that the space between the L-shapes,
i.e. the hubs, is purely blank. Therefore, when process-
ing a GCN layer, the associated data of island vertices
are only needed when the island is being processed. Con-
sequently, they only need to be fetched from off-chip
once. The hubs do have the chance of being used multi-
ple times during the processing of different islands and
inter-hub connections. However, since hubs are normally
a small fraction of the entire graph, their associated data
will likely be stored on-chip and sufficiently reused. Even
if the hubs’ associated data is too large to fit in the on-
chip memory, Islandization still reduces off-chip data
movement. In summary, for GCN processing of real-
world graphs with component structures using I-GCN,
most data are fetched only once, except the adjacency
data of some island vertices which may need to be ac-
cessed multiple times during the multi-round island lo-
cating.

Rubik [75] employs a lightweight graph reordering
methodology that improves the graph-level data locality.
The algorithm is developed by using synergistic locality-
sensitive hashing (LSH) and row-column ordering. Based
on the reordered graph, the intermediate aggregation
computation results can be better reused. An alternative
heuristic is adopted to efficiently obtain shared vertex
sets within adjacent vertices in the execution order to
maximize the potential computation results reuse.

Moreover, ReaDy [74] adopts a dedicated schedul-
ing strategy to eliminate redundant data accesses during
computation. Zhang et al. [57], Cambricon-G [70] both
adopt data partitioning to improve the locality of data
accesses. GNNerator adopts dimension-blocked dataflows
supported by a hardware-aided algorithm to eliminate
irregular off-chip memory accesses by exploiting extra
on-chip memory accesses, as expressed in Algorithm 1.
HP-GNN [68] uses a novel data layout and internal rep-
resentation to reduce the memory traffic and the num-
ber of random memory accesses at training phase.

Minimize
X

J = L(X u) + ω1 · Vd(X t,X oo,X f)

+ ω2 · Vs(X u,X oi)

s.t. 0 < Tm ≤ M, 0 < Tk ≤ K,

0 < Tn0 ≤ N, 0 < Tn1 ≤ N,

0 < Tc0 ≤ C, 0 < Tc1 ≤ C,

SX + SW + SB1 ≤ GLBsize,

SA + SO + SB2 ≤ GLBsize,

Pn0 × Pc0 × Pk ≤ #PEs,
Pn1 × Pc1 × Pk ≤ #PEs. (16)

Algorithm 1 Dimension-blocking algorithm
G

S D h L
Input: sharded graph ; width/height of square shard grid

, hidden dimension size , features , layers .
l← 0 L 1: for to do

blockD← 0 D/B 2:　for to do
dst← 0 S 3:　　for to do
src← 0 S 4:　　　for to do

Shard← G.Shards(src, dst) 5:　　　　 ;
v ← 0 Shard(src, dst).V 6:　　　　　for to do

u← 0 v.U 7:　　　　　　for to do
d← 0 B 8:　　　　　　　　for to do

dim← f(d, blockD) 9:　　　　　　　　　

hagg[v][dim]← Aggregate(hu[dim],10:　　　 　　　　

hv[dim])　　　　 　　　　　　　　 　　　 ;

h′[dst][:]← FeatureExtract(hagg[dst][blockD×B :11:　　　

(blockD+ 1)×B], h′[dst][:])　　　　　　　 　 ;
h← h′12:　 .

BoostGCN [64] uses data tiling by a low-complexity
index-based partion scheme together with a dedicated
data storage scheme in external memory while perform-
ing partition-centric feature aggregation to optimize on-
chip dataflow and off-chip data storage. Vertices are div-
ided into disjoint subsets (internals), and edges are div-
ided into subsets (blocks). Vertex features are divided in-
to slices by 3-D partitioning. The increased edge block
size leads to better data reuse within blocks, less compu-
tation steps, and lower overall memory access latency
with the support of the dedicated data storage scheme,
achieving massive parallelism.

The sub-accelerators designed by G-CoS [78] are inte-
grated with functions of weight buffer sharing and buffer
re-purposing to further increase on-chip reuse opportun-
ities and reduce off-chip accesses. All the on-chip weight
buffers are inter-connected, and the feature, weight and
output buffers are inter-changeable, so the off-chip mem-
ory accesses are minimized.

LW-GCN [79] adopts a data compression strategy
including a novel PCOO format and quantization. The
input matrices of the first layer of GCN is compressed to
the PCOO format so that only valuable information will
be processed afterwards, and storage requirement and
computation complexity can be reduced. To further re-
duce memory consumption, LW-GCN apply quantiza-
tion onto the values of all the matrices in GCNs. Post-
training quantization strategy is utilized to save time for
pre-processing since LW-GCN targets at inference of
GNNs. The quantization scheme consists of several for-
mats for different matrices. 16-bit signed fixed point
(SINT16) is selected to quantize the features and
weights. For sparse matrices, 4-bit signed fixed point
(SINT4) is selected to quantize the non-zero elements.
All the intermediate results are stored as 32-bit signed
fixed point (SINT32) to maintain accuracy. Moreover,
data collision resolution is introduced to enable several
PEs to access a single row in the same memory slices at
the same time. A multi-bank memory system is devel-
oped to reduce such collision as a muti-port memory to
store weights with row grouping and data replication in

 614 Chinese Journal of Electronics, vol. 33, no. 3

the micro-architecture of {LW-GCN}, and empty ele-
ments are inserted to further alleviate unresolved colli-
sion.
 3. Computation optimizations

Computation optimizations involve techniques ap-
plied to the hardware architectures to increase overall
throughput, and reduce execution latency, including pipe-
lining, eliminating redundant computation and workload
balancing.
 1) Pipelining

HyGCN [21] forms a execution pipeline of aggre-
gation engine and combination engine, which supports
latency-aware and energy-aware functions to reduce the
processing latency for each vertex and the energy con-
sumption caused by redundant accesses, as depicted in
Figure 8. The data reuse of aggregation results is enhanced
and the parallelism of the two engines are improved by
decoupling the executions of them, coupled with the
ping-pong buffering mechanism.

AWB-GCN [24] utilizes the pipelining SpMM chains
(Figure 9), including intra-layer SpMM pipelining and
inter-layer SpMM pipelining to fully exploit the parallel-
ism between consecutive SpMMs to improve the through-
put and reduce the latency.

GraphACT

H-GCN [67] exploit the parallelism between consecu-
tive SpMMs in a layer through fine-grained pipelining,
with generated STPEs/TPEs, PL, and customized tile
size. GNNerator [60] provides fine-grained pipelining of
the feature extraction and aggregation stages, in which
each of its graph engine or dense engine can be either the
producer or the consumer, to further support more vari-
ants of GCNs. [58] utilizes two kinds of pipe-
lines, one of which is between CPU and FPGA, and the
other is between modules of FPGA.

ReaDy [74] proposes a inter-kernel pipeline to reuse
the aggregated results of GCN kernels. Both DyGNN [59]
and Chen et al. [63] adopt a flexible pipelined execution
flow to support variants of GNNs and reduce the over-
head of memory accesses.

Time Time
(a) (b)

V2 V3 V4 V1V2

V1 V2

V2

V3 V4 V1 V2

V2

V3

V3

V4

V4

V1

V1

V1

V1

V3 V4

V4

V1

V1

V1

V1

V3 V3
V4

V4

V4

X
k

X
(k−1)

X
k

V3 V4 V1

Aggregation Combination

I1

I2

I3

I4

Small group Large group

Figure 8 Timing illustration of (a) Latency-aware pipeline and (b) Energy-aware pipeline [21].

PEL: Layer;

XW

A (XW)

A (XW)

XW

δ (AXW)

G1

G1

G1

G1 G2

Execution time

G3 G4

G4G3

G3

G3

G2

G2

G2

L
1

L
2

G: Graph

Figure 9 Pipelined SpMMs [24].

BoostGCN [64] utilizes a task scheduling optimiza-
tion to reduce the pipeline stalls. The internals are sorted
by their vertex degrees, and a buffer in external memory
is allocated to temporarily store intermediate results to
ensure consecutive modules are ready to continue pro-
cessing. The computation order of the three-matrix multi-
plication in GCN layer is also considered to achieve high
computation efficiency in a pipeline fashion.

NTGAT [69] designs pipelines with two stages in the
node engines. The sorting processor and the vector pro-
cessor share the ping-pong buffer and work simultaneously
so as to exploit abundant parallelism.
 2) Eliminating redundant computations

HyGCN [21] proposes a dynamic data-aware sparsi-

ty elimination to to reduce the redundant accesses since
the graph connections are sparsely distributed, utilizing a
window-based sliding and shrinking approach. Similarly,
I-GCN [28] first pre-aggregates the results of the combi-
nation, and then scan the local adjacency bitmap and
performs aggregation, after all the combination results of
all vertices in an island are ready. If the number of non-
zeros in the sliding window exceeds half of the window’s
size, the features of corresponding vertices will be merged.
Otherwise, their connections will be removed from the lo-
cal adjacency bitmap.

DyGNN [59] adopts an extra module called Pruner to
eliminate edge redundancy and vertex redundancy, while
Chen et al. [63] integrate the redundancy-elimination with

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 615

modules (e.g., aggregator and coordinator) to construct
several redundancy-eliminated units to prune redundant
vertices and edges.

PASGCN [76] uses the lightweight GCN network
architecture, named ASparGCN, to remove redundant
edges so as to accelerate the inference of GCN inference
on PIMGCN [27] accelerator. ASparGCN integrates a
parameterized predictor for learning the edge selection
strategy for each GCN layer in inference stage. The pre-
dictor is able to predict edges preserved for each layer
based on the graph structure and input vertex features.
Based on the prediction result, the irrelevant edges will
be dropped. In the test phase, the resulting sparsified
graphs can be used directly in each layer’s inference sep-
arately, thereby accelerating the total GCN inference.
ReaDy [74] provides redundancy-free scheduling for GCN
kernels, so that redundant operations can be eliminated.
 3) Workload balancing

AWB-GCN [24] utilizes approaches at three levels of
granularity to rebalance workloads between processing
elements (PEs) round by round. Distribution smoothing
balances the workload among neighbors. Remote switch-
ing shuffles workloads of regions with the most and least
clustered non-zero elements, making efficient distribution
smoothing possible. If a row is observed to still contain
too many elements to be smoothed or balanced by remote
switching, it is designated as an evil row, and then it’s
partitioned and non-zero elements are remapped to mul-
tiple regions (with least clustered elements).

g ∈ N+

g

|MAC|i
|MAC|1 ≤ |MAC|2 ≤ · · ·≤ |MAC|g

GNNIE [72] utilizes a adaptable MAC architecture
and adopts load redistribution. Given , the CPE
array is divided into groups, each of which has equal
number of rows. The number of MACs in each CPE,

, is monotonically nondecreasing along the rows:
. CPE rows are paired

and a portion of workload from heavily loaded CPE rows
can be offloaded to lightly loaded ones.

SGCNAX [71] utilizes a group-and-shuffle approach
to balance workloads among PEs in which the rows of a
sparse matrix are grouped by the density-sorted rank order
and mapped to PEs so that all the PEs will simultane-
ously complete the task. An extra unshuffle operation
executed afterwards is required to recover the correct po-
sitions of the rows so as to ensure the correctness of the
computation.

BoostGCN [64] utilizes a centralized load balancing
scheme to allocate the tasks for its FAMs so as to resolve
load imbalance caused by uneven degree distribution. A
task pool containing all 3-D partitions is maintained, and
tasks are assigned to each FAM at 3-D partition granu-
larity.

G-CoS [78] uses a flexible workload allocation includ-
ing two flexible workload allocation schemes to ensure
workload better fit sub-accelerators’ micro-architecture.
The processing element (PE) array’s dimensions and
tiling sizes can be adjusted to achieve high hardware util-

ization and efficiency, which balancing the workload with
the number of feature rows and the number of weight
columns respectively.

LW-GCN [79] employs pre-processing steps to bal-
ance workload for each pair of tiles during computation
as it utilizes out-product tiling approach. Each PE is
able to work independently and starts computation of a
new row immediately when the previous one is finished,
so as to increase PE efficiency. Multiple rows are effec-
tively concatenated before assigned to PEs to eliminate
idle time.
 4. Processing-in-memory optimizations

Due to unique characteristics of emerging systems and
devices, such as ReRAM-based crossbars for processing-
in-memory, some of the optimization techniques and
their objectives are tightly coupled with their implemen-
tations.

Both PIMGCN [27] and PASGCN [76] aim to reduce
the hardware overhead of ReRAM crossbars induced by
data mapping, and choose a design with CAM crossbars
and MAC crossbars for GCN acceleration to eliminate
the data duplication, lowering the overhead of crossbars
to store extra data, so that the area occupation and en-
ergy consumption can be significantly reduced.

ReFlip [73] and ReaDy [74] adopt a flipped mapping
to improve the utilization of crossbars and fully exploit
intra-vertex parallelism between features (Figure 10), in
which vertex features are mapped into crossbars and
edge data are fed as input of crossbars.

V 2e21

e31

e41

e51

f 1

Flipped-mapping scheme

D

A

Edge

C

f 2 f 3 f 4 Dim.

V 2 V 2 V 2

V 3 V 3 V 3 V 3

V 4 V 4 V 4 V 4

V 5 V 5 V 5 V 5

Figure 10 The flipped-mapping scheme in ReFlip [73]

ReGNN [61] designs three sub-engines for vertices of
different degrees, and provides a vertex scheduler to as-
sign different aggregation tasks to different sub-engines,
so that the processing efficiency of the aggregation engine
can be improved.

Ogbogu et al. [95] introduce a crossbar-aware prun-
ing technique, termed DietGNN, targeted for training
purpose to reduce crossbar overhead and energy con-
sumption. Since selective shutdown of certain rows or
columns of a crossbar may not contribute to energy
reservation, DietGNN aims to shut an entire crossbar by
pruning the data mapped to it. DietGNN first prunes the
GNN model based on the crossbar knowledge to produce
a wining ticket, i.e., an optimal sub-network, inspired by

 616 Chinese Journal of Electronics, vol. 33, no. 3

state-of-the-art pruning techniques, such as the lottery
ticket hypothesis [96], and then train the winning ticket
on a ReRAM-based platform. DietGNN incorporates key
characteristics of hardware and extracts a hardware-
friendly sub-network from the original one that can
be trained on a crossbar diet without compromising ac-
curacy.

 V. Discussions and Challenges
Hardware acceleration for GNNs has achieved great

breakthroughs in efficient processing of GNNs, signifi-
cantly outperforming typical software frameworks for
GNNs on CPUs and GPUs in overall throughput, laten-
cy, and energy efficiency of the whole system. Though
different from algorithmic GNNs defined and executed
by conventional software frameworks, hardware accelera-
tion for GNNs exactly offers GNNs defined by underly-
ing hardware platform with customized execution
dataflow without modifying the algorithmic representa-
tion of GNNs. In this section, we provide discussions on
issues that may be concerned by researchers.

Extra overhead In fact, the existing hardware ap-
proaches can not work independently of software frame-
works, since they either target at inference or training
with limited capability. Generally, hardware approaches
that target at inference of GNNs require trained weight
matrices of each layer, the adjacency matrix of the graph
data, and feature matrices of vertices or edges as the input
sources of their architecture. Sometimes the adjacency
matrix is processed by algorithmic methods, depending
on specific requirements of GNNs. A little bit different
from approaches targeting at inference, those targeting
at training require layer-wise initialized weight matrices,
the adjacency matrix, feature matrices of vertices or
edges, and representation of specific necessary functions,
e.g., graph sampling and dropout, as inputs of the archi-
tectures. Fortunately, all the inputs are consistent with
those used in inference and training of algorithmic
GNNs. They have to be computed only once, and then
they can be shared by both algorithmic approaches and
hardware approaches afterwards. In this way, the over-
head of pre-processing is amortized. With respect to for-
mat conversion overhead, different from accelerators for
basic operations such as SpMM and SpMV that have up-
stream tasks, the input sources of GNN accelerators have
been transformed into correct formats only once before
execution, and no format conversion is needed during the
execution. Since the format conversion before the execu-
tion is not tracked in evaluation by existing approaches,
the overhead of such a kind of pre-processing can be ne-
glected. Thus, the hardware acceleration itself incurs lit-
tle extra overhead in respect of the input sources. Some
of the hardware approaches follow a software-hardware
co-design methodology and introduce algorithmic methods
in their system, but the algorithmic component and hard-
ware component usually form a macro pipeline so that
potential extra costs can be reduced as much as possible.

Versatility Existing hardware approaches of accel-
eration for GNNs support different variants of GNNs, as
shown in Tables 2-4. Given a certain approach, its archi-
tecture is usually designed to cope with the computation
of workloads with similar characteristics. Thus, the ap-
proaches designed for different variants may differ in the
architecture since they target at different execution
dataflow. Some of the hardware approaches may intro-
duce special function units to extend the overall func-
tion of the system, such as GNNIE [72]. However, with
respect to architecture-aware optimization techniques in
Section IV, few of them are dedicated to certain GNN
workloads, since they target at characteristics of the
execution dataflow, which is related with intrinsic char-
acteristics of graph-structured data and the architecture
design. Hence, the architecture design and the customized
dataflow may be dedicated to certain GNN workloads,
but different approaches may share general optimization
techniques.

GraphACT

Performance The existing hardware acceleration
approaches choose different SOTA works as baselines
and use various GNN applications to evaluate their hard-
ware design. Most of them have achieve extremely high
speedup and energy efficiency than typical software frame-
works on CPUs and GPUs. However, the complexity of
implementation and the workloads can increase the un-
certainty of performance evaluation. Generally, SOTA
accelerators are first re-implemented and then scaled to
match the on-chip resources of the evaluation platform,
due to difference between their original hardware plat-
forms. Moreover, since most of the hardware accelera-
tion approaches for GNNs are based on ASIC technolo-
gy, and they mostly concerns about the area and power
consumption of hardware components, the analysis of on-
chip resource utilization are somewhat neglected, but
that is critical to approaches based on FPGAs. Some ap-
proaches may have mentioned this issue in their papers,
but their metrics are not unified. [58] com-
pares the utilization of DSP slices and BRAM while
DNNs working on different graph dataset is computed,
and HP-GNN [68] further analyzes the overall utiliza-
tion of LUTs. Detailed analysis on the utilization of
hardware components is needed and that can contribute
to FPGA-based accelerators.

Pros and cons The three categories of hardware ap-
proaches have their strengths and weaknesses respective-
ly, despite the effectiveness in evaluation on certain
workloads. Hybrid architectures usually have high fre-
quency to reduce processing latency and increase overall
throughput, so as to maximize the performance of the
pipelined execution dataflow. Optimizations are intro-
duced separately to different compute engines. With
proper scheduling strategies and pipeline control logic,
hybrid architectures can be enhanced with a flexible exe-
cution dataflow to support different computation order
of the different phases, leading to improvement of versa-
tility. However, the on-chip buffers for intermediate re-

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 617

sults may occupy a considerable amount of total on-chip
resources. The data transmission by read and write oper-
ations can incur extra latency and energy consumption,
leading to degradation of the overall performance and en-
ergy efficiency. Moreover, hybrid architectures pose strict
requirements on pipeline scheduling strategies, and poorly
designed strategies can also reduce the overall efficiency.
With respect to holistic architectures, they do not usual-
ly need on-chip buffers to store and transfer intermedi-
ate results, and all the intermediate results are kept with
the compute engines during the execution. Thus, holistic
architectures usually have respectively high energy effi-
ciency, and homogeneous compute engines can reach
high utilization with proper configuration. However,
holistic architectures rely on methods to extract com-
mon operations from the computation to design homoge-
neous compute engines to compute them, and extra soft-
ware and hardware components are required to handle
exceptions, leading to complexity of the design. With re-
spect to large-scale architectures, they are heavily driv-
en by industrial demands. Those architectures are evalu-
ated on limited number of GNN workloads, and their ca-
pability of processing other GNN variants remains to be
studied. For those that adopts topological networks for
data exchange between nodes, the communication can be
a bottleneck of the whole system, and a dedicated effi-
cient topology network is required for those architec-
tures.

 VI. Future Directions
Existing researches on hardware acceleration for

GNNs have proved their efficiency and effectiveness for
accelerating either training or inference phase of various
workloads, i.e., variants of GNNs and graph-structured
data with clearly different characteristics. They have
outperformed general-purpose platforms and SOTA solu-
tions significantly on several critical performance metrics.
However, problems still lie somewhere, primarily due to
the rapid development of approaches for deep learning on
graph, and the evolution of the practical demands of in-
dustries, which can lead to increasing complexity of graph-
structured data and variants of GNNs. In other words,
current solutions, even SOTA ones, may not be able to
cope with workloads that appears afterwards. Thus, we
would give four suggestions about the future directions of
hardware acceleration for GNNs to facilitate our follow-
ing researches.

Acceleration for complicated variants of GNNs The
fast evolution of algorithms for deep learning on graphs
have born a number of variants of GNNs. Though most
of them originate from the family of GCNs [2] and share
some characteristics, they are quite different in some
aspects. Typically, both GATs [4] and GINs [3] can be
seen as a kind of GCN, but many of the hardware accel-
eration designed for GCNs are inadequately efficient to
accelerate GINs and GATs, due to distinct functions
adopted by the two kind of models. Moreover, both

GraphSAGE-Pool [1] and STGNN [97] combines several
computation kernels to improve capability of representa-
tion. Thus, GNNerator [60] adopts an execution pipeline
that can be configured to support different GCN vari-
ants. GNNIE [72] introduces special processing units to
execute the LeakyReLU activation functions of GATs,
and it further optimize the workflow for GATs’ aggrega-
tion. However, most of researches pay few attention to
those variants, and optimization techniques for them are
limited. To further improve the overall efficiency of ac-
celeration, researches should take the variants into con-
sideration.

Acceleration for large-scale GNNs The amount of
graph-structured in industries is extraordinarily large-
scale, which is almost impossible to store and process on
a single machine. Large-scale distributed processing is
the most commonly utilized solution to cope with large-
scale graph learning. Meanwhile, in order to acquire ex-
act knowledge from large-scale graph-structured data,
the amount of GNNs adopted in practical scenarios can
also be extremely large, which costs expensive time and
energy overhead to complete model training and infer-
ence. Graphite [81] provide a hardware-assisted aggrega-
tion using a modified DMA engine to accelerate GNNs’
execution on CPUs in datacenters. SmartSAGE [82] pro-
vides a solution for in-storage-processing GNN training.
Li et al. [83] offers a practical solution for deploying a
FaaS system for GNN acceleration in a typical datacen-
ter. GNNear [84] aims to cope with full-batch training of
large-scale graph deep learning which needs large amount
of memory space. MultiGCN [85] targets at GCNs on
large-scale graph-structured data. Most of researches on
large-scale GNN acceleration are mainly conducted on
general-purpose platforms with modifications applied to
the original architecture, focusing on algorithm design to
alleviate bandwidth- and latency-related problems. Thus,
there remains works to be done if oriented to require-
ments of industries.

Acceleration with emerging devices Processing-in-
memory architectures have been adopted as a choice to
efficiently accelerate execution of GNNs. Emerging de-
vices, such as ReRAM crossbars, have been used for the
MVM computations. PIMGCN [27] offers a state-of-the-
art PIM-based accelerator using ReRAM crossbars, and
achieves breakthroughs on both speedup and energy effi-
ciency. Though it achieves both high energy efficiency
and high speedup over previously designed hybrid archi-
tectures, it does not achieve significant speedup over an-
other SOTA holistic solution, i.e., AWB-GCN. Since there
exist only a few researches based on processing-in-memory
architectures and most of them targets at energy efficien-
cy, future researches may adopt approaches to further
elevate the throughput of PIM-based architectures to
acquire higher speedup. Moreover, with other emerging
devices beyond ReRAM crossbars, other novel architec-
tures may be designed.

Algorithm-architecture co-design Algorithms and

 618 Chinese Journal of Electronics, vol. 33, no. 3

software applications are easily to be developed and mod-
ified. Hardware acceleration for GNNs typically follows a
software-hardware co-designed or algorithm-hardware
co-designed methodology. Here, we would refer to algo-
rithm-hardware co-design as implementing a certain al-
gorithm with the underlying hardware to create a work-
flow consistent with it. Contrary to existing lightweight
graph reordering algorithms, I-GCN [28] propose a hard-
ware-assisted runtime graph reordering approach. The al-
gorithms proposed by I-GCN are exactly the execution
flow of processing elements and the overhead of reorder-
ing is eliminated by overlapping the stages of reordering
and computing. Future researches can adopt such a
methodology and propose algorithms of runtime versions
to support efficient processing. Intuitively, a number of
SOTA graph processing algorithms may also be modi-
fied into runtime ones to create efficient workflows.

Heuristic-hardware co-operation Heuristics hold
prior knowledge about the environment, which can be
utilized as useful guidelines for operations. Following
software-hardware co-designed methodology, PASGCN
[76] propose a lightweight GCN to learn knowledge about
the input graph together with information of ReRAM
crossbars in PIMGCN [27] to directly predict neighbors
during inference, leading to extremely high energy effi-
ciency and speedup over SOTA solutions. Ogbogu et al.
[95] propose DietGNN which performs pruning based on
information of the crossbars to achieve high energy effi-
ciency during training stage. The application of heuris-
tics can generate hardware-aware networks that can be
executed efficiently on the underlying hardware, but ex-
isting works are limited to ReRAM crossbars. Future
researches may develop more sophisticated heuristics to
further improve the effectiveness of acceleration, or de-
velop heuristic-based approaches that can be applied to
more kinds of devices.

 VII. Conclusion
In this article, we provide a survey on hardware ac-

celeration for GNNs. We propose a methodology of cate-
gorization and classify existing researches into three cate-
gories based on the type of their hardware architectures:
hybrid architectures, holistic architectures, and large-
scale architectures. We introduce the overall design of
representative approaches and recent advances. Then, we
introduce their optimization techniques at different levels
and conduct a concise analysis upon them. Finally, we
propose five suggestions on future directions of hardware
acceleration for GNNs.

 Acknowledgements
This work was supported by the National Natural

Science Foundation of China Key Program (Grant No.
62032001) and General Program (Grant No. 61972407).

References
 W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive repre-[1]

sentation learning on large graphs,” in Proceedings of the
31st International Conference on Neural Information Pro-
cessing Systems, Long Beach, CA, USA, pp. 1025–1035, 2017.
 T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in Proceedings of the
5th International Conference on Learning Representations,
Toulon, France, 2017.

[2]

 K. Xu, W. H. Hu, J. Leskovec, et al., “How powerful are
graph neural networks?,” in Proceedings of the 7th Interna-
tional Conference on Learning Representations, New Or-
leans, LA, USA, 2019.

[3]

 P. Veličković, G. Cucurull, A. Casanova, et al., “Graph at-
tention networks,” in Proceedings of the 6th International
Conference on Learning Representations, Vancouver, Cana-
da, 2018.

[4]

 R. Ying, D. Bourgeois, J. X. You, et al., “GNNExplainer:
Generating explanations for graph neural networks,” in Pro-
ceedings of the 33rd International Conference on Neural In-
formation Processing Systems, Vancouver, Canada, article
no. 829, 2019.

[5]

 H. T. Nguyen, Q. D. Ngo, and V. H. Le, “IoT botnet detec-
tion approach based on PSI graph and DGCNN classifier,” in
Proceedings of 2018 IEEE International Conference on In-
formation Communication and Signal Processing (ICICSP),
Singapore, pp. 118–122, 2018.

[6]

 R. Zhu, K. Zhao, H. X. Yang, et al., “AliGraph: A compre-
hensive graph neural network platform,” Proceedings of the
VLDB Endowment, vol. 12, no. 12, pp. 2094–2105, 2019.

[7]

 T. Xie and J. C. Grossman, “Crystal graph convolutional
neural networks for an accurate and interpretable prediction
of material properties,” Physical Review Letters, vol. 120, no.
14, article no. 145301, 2018.

[8]

 M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polyphar-
macy side effects with graph convolutional networks,” Bioin-
formatics, vol. 34, no. 13, pp. i457–i466, 2018.

[9]

 C. W. Coley, W. G. Jin, L. Rogers, et al., “A graph-convolu-
tional neural network model for the prediction of chemical re-
activity,” Chemical Science, vol. 10, no. 2, pp. 370–377, 2019.

[10]

 Y. X. Liu, N. Zhang, D. Wu, et al., “Guiding cascading fail-
ure search with interpretable graph convolutional network,”
arXiv preprint, arXiv: 2001.11553, 2020.

[11]

 J. Chen, T. F. Ma, and C. Xiao, “FastGCN: Fast learning
with graph convolutional networks via importance sampling,”
in Proceedings of the 6th International Conference on
Learning Representations, Vancouver, Canada, 2018.

[12]

 A. Bojchevski, J. Gasteiger, B. Perozzi, et al., “Scaling graph
neural networks with approximate PageRank,” in Proceed-
ings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, Virtual Event, CA,
USA, pp. 2464–2473, 2020.

[13]

 M. Fey and J. E. Lenssen, “Fast graph representation learn-
ing with PyTorch geometric,” arXiv preprint, arXiv:
1903.02428, 2019.

[14]

 M. J. Wang, D. Zheng, Z. H. Ye, et al., “Deep graph library:
A graph-centric, highly-performant package for graph neural
networks,” arXiv preprint, arXiv: 1909.01315, 2019.

[15]

 Z. Q. Lin, C. Li, Y. S. Miao, et al., “PaGraph: Scaling GNN
training on large graphs via computation-aware caching,” in
Proceedings of the 11th ACM Symposium on Cloud Comput-
ing,Virtual Event, USA, pp. 401–415, 2020.

[16]

 Q. X. Sun, Y. Liu, H. L. Yang, et al., “CoGNN: Efficient
scheduling for concurrent GNN training on GPUs,” in Pro-
ceedings of SC22: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, Dal-
las, TX, USA, pp. 1–15, 2022.

[17]

 Y. T. Gui, Y. D. Wu, H. Yang, et al., “HGL: Accelerating
heterogeneous GNN training with holistic representation and

[18]

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 619

optimization,” in Proceedings of SC22: International Confer-
ence for High Performance Computing, Networking, Storage
and Analysis, Dallas, TX, USA, pp. 1–15, 2022.
 A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration
of graph neural networks,” in Proceedings of 2020 57th
ACM/IEEE Design Automation Conference (DAC), San
Francisco, CA, USA, pp. 1–6, 2020.

[19]

 M. Y. Yan, Z. D. Chen, L. Deng, et al., “Characterizing and
understanding GCNs on GPU,” IEEE Computer Architec-
ture Letters, vol. 19, no. 1, pp. 22–25, 2020.

[20]

 M. Y. Yan, L. Deng, X. Hu, et al., “HyGCN: A GCN acceler-
ator with hybrid architecture,” in Proceedings of 2020 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), San Diego, CA, USA, pp. 15–29, 2020.

[21]

 S. Q. Zhang, Z. Qin, Y. H. Yang, et al., “Transparent partial
page migration between CPU and GPU,” Frontiers of Com-
puter Science, vol. 14, no. 3, article no. 143101, 2020.

[22]

 S. J. Fan, J. W. Fei, and L. Shen, “Accelerating deep learn-
ing with a parallel mechanism using CPU + MIC,” Interna-
tional Journal of Parallel Programming, vol. 46, no. 4, pp.
660–673, 2018.

[23]

 T. Geng, A. Li, R. B. Shi, et al., “AWB-GCN: A graph con-
volutional network accelerator with runtime workload rebal-
ancing,” in Proceedings of the 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
Athens, Greece, pp. 922–936, 2020.

[24]

 S. W. Liang, Y. Wang, C. Liu, et al., “EnGN: A high-
throughput and energy-efficient accelerator for large graph
neural networks,” IEEE Transactions on Computers, vol. 70,
no. 9, pp. 1511–1525, 2021.

[25]

 J. J. Li, A. Louri, A. Karanth, et al., “GCNAX: A flexible
and energy-efficient accelerator for graph convolutional neu-
ral networks,” in Proceedings of 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), Seoul, Korea, pp. 775–788, 2021.

[26]

 T. Yang, D. Y. Li, Y. B. Han, et al., “PIMGCN: A ReRAM-
based PIM design for graph convolutional network accelera-
tion,” in Proceedings of the 58th ACM/IEEE Design Au-
tomation Conference (DAC), San Francisco, CA, USA, pp.
583–588, 2021.

[27]

 T. Geng, C. S. Wu, Y. A. Zhang, et al., “I-GCN: A graph
convolutional network accelerator with runtime locality en-
hancement through islandization,” in Proceedings of MI-
CRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Virtual Event, Greece, pp.
1051–1063, 2021.

[28]

 H. R. You, T. Geng, Y. A. Zhang, et al., “GCoD: Graph con-
volutional network acceleration via dedicated algorithm and
accelerator co-design,” in Proceedings of 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), Seoul, Korea, pp. 460–474, 2022.

[29]

 X. Liu, M. Y. Yan, L. Deng, et al., “Survey on graph neural
network acceleration: An algorithmic perspective,” in Pro-
ceedings of the 31st International Joint Conference on Arti-
ficial Intelligence, Vienna, Austria, pp. 5521–5529, 2022.

[30]

 S. Abadal, A. Jain, R. Guirado, et al., “Computing graph
neural networks: A survey from algorithms to accelerators,”
ACM Computing Surveys, vol. 54, no. 9, article no. 191,
2021.

[31]

 Z. H. Wu, S. R. Pan, F. W. Chen, et al., “A comprehensive
survey on graph neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 32, no. 1, pp.
4–24, 2021.

[32]

 Z. Y. Liu and J. Zhou, “Graph convolutional networks,” in
Introduction to Graph Neural Networks, Z. Y. Liu, J. Zhou,
Eds. Springer, Cham, Switzerland, pp. 23–32, 2020.

[33]

 Z. Y. Liu and J. Zhou, “Graph recurrent networks,” in Intro-[34]

duction to Graph Neural Networks, Z. Y. Liu, J. Zhou, Eds.
Springer, Cham, Switzerland, pp. 33–37, 2020.
 Z. T. Liu and J. Zhou, “Graph attention networks,” in Intro-
duction to Graph Neural Networks, Z. Y. Liu, J. Zhou, Eds.
Springer, Cham, Switzerland, pp. 39–41, 2020.

[35]

 K. Cho, B. van Merrienboer, C. Gulcehre, et al., “Learning
phrase representations using RNN encoder–decoder for statis-
tical machine translation,” in Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Process-
ing (EMNLP), Doha, Qatar, pp. 1724–1734, 2014.

[36]

 S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[37]

 M. Gori, G. Monfardini, and F. Scarselli, “A new model for
learning in graph domains,” in Proceedings. 2005 IEEE In-
ternational Joint Conference on Neural Networks, Montreal,
Canada, pp. 729–734, 200.

[38]

 L. Ruiz, F. Gama, and A. Ribeiro, “Gated graph recurrent
neural networks,” IEEE Transactions on Signal Processing,
vol. 68, pp. 6303–6318, 2020.

[39]

 R. Ying, J. X. You, C. Morris, et al., “Hierarchical graph rep-
resentation learning with differentiable pooling,” in Proceed-
ings of the 32nd International Conference on Neural Infor-
mation Processing Systems, Montréal, Canada, pp.
4805–4815, 2018.

[40]

 J. Gilmer, S. S. Schoenholz, P. F. Riley, et al., “Neural mes-
sage passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning, Syd-
ney, Australia, pp. 1263–1272, 2017.

[41]

 Z. D. Chen, X. S. Li, and J. Bruna, “Supervised community
detection with line graph neural networks,” in Proceedings of
the 7th International Conference on Learning Representa-
tions, New Orleans, LA, USA, 2019.

[42]

 G. H. Li, C. X. Xiong, A. Thabet, et al., “DeeperGCN: All
you need to train deeper GCNs,” arXiv preprint, arXiv:
2006.07739, 2020.

[43]

 X. Bresson and T. Laurent, “Residual gated graph
ConvNets,” arXiv preprint, arXiv: 1711.07553, 2017.

[44]

 M. Schlichtkrull, T. N. Kipf, P. Bloem, et al., “Modeling rela-
tional data with graph convolutional networks,” in Proceed-
ings of the 15th European Semantic Web Conference, Herak-
lion, Crete, Greece, pp. 593–607, 2018.

[45]

 Y. Wang, Y. B. Sun, Z. W. Liu, et al., “Dynamic graph CNN
for learning on point clouds,” ACM Transactions on Graph-
ics, vol. 38, no. 5, article no. 146, 2017.

[46]

 Y. N. Dauphin, A. Fan, M. Auli, et al., “Language modeling
with gated convolutional networks,” in Proceedings of the
34th International Conference on Machine Learning, Syd-
ney, Australia, pp. 933–941, 2017.

[47]

 J. X. You, R. Ying, X. Ren, et al., “GraphRNN: Generating
realistic graphs with deep auto-regressive models,” in Pro-
ceedings of the 35th International Conference on Machine
Learning, Stockholm, Sweden, pp. 5694–5703, 2018.

[48]

 Y. J. Li, O. Vinyals, C. Dyer, et al., “Learning deep genera-
tive models of graphs,” arXiv preprint, arXiv: 1803.03324,
2018.

[49]

 H. Y. Gao and S. W. Ji, “Graph u-nets,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 9, pp. 4948–4960, 2022.

[50]

 L. Zhao, Y. J. Song, C. Zhang, et al., “T-GCN: A temporal
graph convolutional network for traffic prediction,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21,
no. 9, pp. 3848–3858, 2020.

[51]

 G. Panagopoulos, G. Nikolentzos, and M. Vazirgiannis,
“Transfer graph neural networks for pandemic forecasting,”
in Proceedings of the 35th AAAI Conference on Artificial
Intelligence, Virtual Event, USA, pp. 4838–4845, 2021.

[52]

 620 Chinese Journal of Electronics, vol. 33, no. 3

 H. Y. Gao, Z. Y. Wang, and S. W. Ji, “Large-scale learnable
graph convolutional networks,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, London, UK, pp. 1416–1424, 2018.

[53]

 W. L. Chiang, X. Q. Liu, S. Si, et al., “Cluster-GCN: An effi-
cient algorithm for training deep and large graph convolu-
tional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, pp. 257–266, 2019.

[54]

 P. S. Huang, X. D. He, J. F. Gao, et al., “Learning deep
structured semantic models for web search using click-
through data,” in Proceedings of the 22nd ACM Internation-
al Conference on Information & Knowledge Management,
San Francisco, CA, USA, pp. 2333–2338, 2013.

[55]

 N. P. Jouppi, C. Young, N. Patil, et al., “In-datacenter per-
formance analysis of a tensor processing unit,” in Proceed-
ings of the 44th Annual International Symposium on Com-
puter Architecture, Toronto, Canada, pp. 1–12, 2017.

[56]

 B. Y. Zhang, H. Q. Zeng, and V. Prasanna, “Hardware accel-
eration of large scale GCN inference,” in Proceedings of
IEEE 31st International Conference on Application-specific
Systems, Architectures and Processors (ASAP), Manchester,
UK, pp. 61–68, 2020.

[57]

 H. Q. Zeng and V. Prasanna, “GraphACT: Accelerating
GCN training on CPU-FPGA heterogeneous platforms,” in
Proceedings of the 2020 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, Seaside, CA,
USA, pp. 255–265, 2020.

[58]

 C. Chen, K. L. Li, X. F. Zou, and Y. F. Li, “DyGNN: Algo-
rithm and architecture support of dynamic pruning for graph
neural networks,” in Proceedings of the 58th ACM/IEEE
Design Automation Conference (DAC), San Francisco, CA,
USA, pp. 1201–1206, 2021.

[59]

 J. R. Stevens, D. Das, S. Avancha, et al., “GNNerator: A
hardware/software framework for accelerating graph neural
networks,” in Proceedings of the 58th ACM/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA,
pp. 955–960, 2021.

[60]

 C. Liu, H. K. Liu, H. Jin, et al., “ReGNN: A ReRAM-based
heterogeneous architecture for general graph neural
networks,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, San Francisco, CA, USA, pp.
469–474, 2022.

[61]

 J. X. Chen, Y. Q. Lin, K. Y. Sun, et al., “GCIM: Toward ef-
ficient processing of graph convolutional networks in 3d-
stacked memory,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 11,
pp. 3579–3590, 2022.

[62]

 C. Chen, K. L. Li, Y. F. Li, et al., “ReGNN: A redundancy-
eliminated graph neural networks accelerator,” in Proceed-
ings of 2022 IEEE International Symposium on High-Perfor-
mance Computer Architecture (HPCA), Seoul, Korea, pp.
429–443, 2022.

[63]

 B. Y. Zhang, R. Kannan, and V. Prasanna, “BoostGCN: A
framework for optimizing GCN inference on FPGA,” in Pro-
ceedings of 2021 IEEE 29th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM), Orlando, FL, USA, pp. 29–39, 2021.

[64]

 S. W. Liang, C. Liu, Y. Wang, et al., “DeepBurning-GL: An
automated framework for generating graph neural network
accelerators,” in Proceedings of the 2020 IEEE/ACM Inter-
national Conference on Computer Aided Design, San Diego,
CA, USA, pp. 1–9, 2020.

[65]

 Y. Zhu, Z. H. Zhu, G. H. Dai, et al., “Exploiting parallelism
with vertex-clustering in processing-in-memory-based GCN
accelerators,” in Proceedings of 2022 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Antwerp,

[66]

Belgium, pp. 652–657, 2022.
 C. M. Zhang, T. Geng, A. Q. Guo, et al., “H-GCN: A graph
convolutional network accelerator on versal ACAP architec-
ture,” in Proceedings of the 32nd International Conference
on Field-Programmable Logic and Applications (FPL),
Belfast, UK, pp. 200–208, 2022.

[67]

 Y. C. Lin, B. Y. Zhang, and V. Prasanna, “HP-GNN: Gener-
ating high throughput GNN training implementation on
CPU-FPGA heterogeneous platform,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Pro-
grammable Gate Arrays, pp. 123–133, 2022.

[68]

 W. T. Hou, K. Zhong, S. L. Zeng, et al., “NTGAT: A graph
attention network accelerator with runtime node tailoring,”
in Proceedings of the 28th Asia and South Pacific Design
Automation Conference, Tokyo, Japan, pp. 1–6, 2023.

[69]

 X. K. Song, T. Zhi, Z. Fan, et al., “Cambricon-G: A polyva-
lent energy-efficient accelerator for dynamic graph neural net-
works,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 1, pp. 116–128,
2022.

[70]

 J. J. Li, H. Zheng, K. Wang, et al., “SGCNAX: A scalable
graph convolutional neural network accelerator with work-
load balancing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 11, pp. 2834–2845, 2022.

[71]

 S. Mondal, S. D. Manasi, K. Kunal, et al., “GNNIE: GNN in-
ference engine with load-balancing and graph-specific
caching,” in Proceedings of the 59th ACM/IEEE Design Au-
tomation Conference, San Francisco, CA, USA, pp. 565–570,
2022.

[72]

 Y. Huang, L. Zheng, P. C. Yao, et al., “Accelerating graph
convolutional networks using crossbar-based processing-in-
memory architectures,” in Proceedings of 2022 IEEE Inter-
national Symposium on High-Performance Computer Archi-
tecture (HPCA), Seoul, Korea, pp. 1029–1042, 2022.

[73]

 Y. Huang, L. Zheng, P. C. Yao, et al., “ReaDy: A ReRAM-
based processing-in-memory accelerator for dynamic graph
convolutional networks,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no.
11, pp. 3567–3578, 2022.

[74]

 X. B. Chen, Y. K. Wang, X. F. Xie, et al., “Rubik: A hierar-
chical architecture for efficient graph neural network
training,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 4, pp. 936–949,
2022.

[75]

 T. Yang, D. Y. Li, F. Ma, et al., “PASGCN: An ReRAM-
based PIM design for GCN with adaptively sparsified
graphs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 42, no. 1, pp. 150–163,
2023.

[76]

 C. Peltekis, D. Filippas, C. Nicopoulos, et al., “FusedGCN: A
systolic three-matrix multiplication architecture for graph
convolutional networks,” in Proceedings of IEEE 33rd Inter-
national Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP), Gothenburg, Sweden, pp.
93–97, 2022.

[77]

 Y. A. Zhang, H. R. You, Y. G. Fu, et al., “G-CoS: GNN-ac-
celerator co-search towards both better accuracy and efficien-
cy,” in Proceedings of 2021 IEEE/ACM International Con-
ference on Computer Aided Design (ICCAD), Munich, Ger-
many, pp. 1–9, 2021.

[78]

 Z. F. Tao, C. Wu, Y. Liang, et al., “LW-GCN: A lightweight
FPGA-based graph convolutional network accelerator,” ACM
Transactions on Reconfigurable Technology and Systems,
vol. 16, no. 1, article no. 10, 2022.

[79]

 A. I. Arka, B. K. Joardar, J. R. Doppa, et al., “DARE:
Droplayer-aware manycore ReRAM architecture for training
graph neural networks,” in Proceedings of 2021 IEEE/ACM

[80]

A Survey on Graph Neural Network Acceleration: A Hardware Perspective 621

International Conference On Computer Aided Design (IC-
CAD), Munich, Germany, pp. 1–9, 2021.
 Z. X. W. Gong, H. X. Ji, Y. Yao, et al., “Graphite: Optimiz-
ing graph neural networks on CPUs through cooperative soft-
ware-hardware techniques,” in Proceedings of the 49th Annu-
al International Symposium on Computer Architecture, New
York, NY, USA, pp. 916–931, 2022.

[81]

 Y. Lee, J. Chung, and M. Rhu, “SmartSAGE: Training large-
scale graph neural networks using in-storage processing archi-
tectures,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture, New York, NY, USA,
pp. 932–945, 2022.

[82]

 S. C. Li, D. M. Niu, Y. H. Wang, et al., “Hyperscale FPGA-
as-a-service architecture for large-scale distributed graph neu-
ral network,” in Proceedings of the 49th Annual Internation-
al Symposium on Computer Architecture, New York, NY,
USA, pp. 946–961, 2022.

[83]

 Z. Zhou, C. Li, X. C. Wei, et al., “GNNear: Accelerating full-
batch training of graph neural networks with near-memory
processing,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques,
Chicago, Illinois, pp. 54–68, 2022.

[84]

 G. J. Sun, M. Y. Yan, D. Wang, et al., “Multi-node accelera-
tion for large-scale GCNs,” IEEE Transactions on Comput-
ers, vol. 71, no. 12, pp. 3140–3152, 2022.

[85]

 B. Gaide, D. Gaitonde, C. Ravishankar, et al., “Xilinx adap-
tive compute acceleration platform: VersalTM architecture,”
in Proceedings of the 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, Seaside, CA,
USA, pp. 84–93, 2019.

[86]

 F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph con-
volutional networks,” Pattern Recognition, vol. 97, article no.
107000, 2020.

[87]

 N. Challapalle, S. Rampalli, L. H. Song, et al., “GaaS-X:
Graph analytics accelerator supporting sparse data represen-
tation using crossbar architectures,” in Proceedings of
ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA), Valencia, Spain, pp. 433–445,
2020.

[88]

 P. Chi, S. C. Li, C. Xu, et al., “PRIME: A novel processing-
in-memory architecture for neural network computation in
ReRAM-based main memory,” in Proceedings of ACM/IEEE
43rd Annual International Symposium on Computer Archi-
tecture (ISCA), Seoul, Korea, pp. 27–39, 2016.

[89]

 Y. Rong, W. B. Huang, T. Y. Xu, et al., “DropEdge: To-
wards deep graph convolutional networks on node classifica-
tion,” in Proceedings of the 8th International Conference on
Learning Representations, Addis Ababa, Ethiopia, pp. 1-17,
2019.

[90]

 N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A
simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[91]

 N. P. Jouppi, D. H. Yoon, G. Kurian, et al., “A domain-spe-
cific supercomputer for training deep neural networks,” Com-

[92]

munications of the ACM, vol. 63, no. 7, pp. 67–78, 2020.
 Y. M. Zhang, V. Kiriansky, C. Mendis, et al., “Making caches
work for graph analytics,” in Proceedings of 2017 IEEE In-
ternational Conference on Big Data (Big Data), Boston,
MA, USA, pp. 293–302, 2017.

[93]

 X. W. Zhu, W. T. Han, and W. G. Chen, “GridGraph:
Large-scale graph processing on a single machine using 2-lev-
el hierarchical partitioning,” in Proceedings of the 2015
USENIX Conference on Usenix Annual Technical Confer-
ence, Santa Clara, CA, USA, pp. 375–386, 2015.

[94]

 C. Ogbogu, A. I. Arka, B. K. Joardar, et al., “Accelerating
large-scale graph neural network training on crossbar diet,”
IEEE Transactions on Computer-Aided Design of Integrat-
ed Circuits and Systems, vol. 41, no. 11, pp. 3626–3637, 2022.

[95]

 J. Frankle and M. Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” in Proceedings of
the 7th International Conference on Learning Representa-
tions, New Orleans, LA, USA, pp. 1-42, 2019.

[96]

 X. Y. Wang, Y. Ma, Y. Q. Wang, et al., “Traffic flow predic-
tion via spatial temporal graph neural network,” in Proceed-
ings of the Web Conference 2020, Taipei, China, pp.
1082–1092, 2020.

[97]

Shi CHEN received the B.E. degree in com-
puter science and technology from National
University of Defense Technology, Changsha,
China, in 2017. He is a Ph.D. candidate in the
College of Computer, National University of
Defense Technology, Changsha, China. His re-
search interests include computer architecture
and graph-based hardware accelerator.
　

(Email: chenshi17@nudt.edu.cn)

Jingyu LIU received the M.S. degree in integ-
rated circuit engineering from National Univer-
sity of Defense Technology, Changsha, China,
in 2021. He is a Ph.D. candidate in the College
of Computer, National University of Defense
Technology, Changsha, China. His research
interests include computer architecture, SoC
designs, and microprocessor architecture.
　

(Email: liujingyu@nudt.edu.cn)

Li SHEN received the B.S., M.S., and Ph.D.
degrees in computer science and technology
from National University of Defense Techno-
logy, Changsha, China. He is a Professor at
College of Computer, National University of
Defense Technology, Changsha, China. His re-
search interests include high performance pro-
cessor architecture, parallel programming, and
performance optimization techniques.

(Email: lishen@nudt.edu.cn)

 622 Chinese Journal of Electronics, vol. 33, no. 3

