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Abstract — In  practical  abnormal  traffic  detection  scenarios,  traffic  often  appears  as  drift,  imbalanced  and  rare
labeled streams, and how to effectively identify malicious traffic in such complex situations has become a challenge
for malicious traffic detection. Researchers have extensive studies on malicious traffic detection with single challenge,
but the detection of complex traffic has not been widely noticed. Queried adaptive random forests (QARF) is pro-
posed to detect traffic streams with concept drift, imbalance and lack of labeled instances. QARF is an online active
learning  based  approach  which  combines  adaptive  random forests  method  and adaptive  margin  sampling  strategy.
QARF achieves querying a small number of instances from unlabeled traffic streams to obtain effective training. We
conduct experiments using the NSL-KDD dataset to evaluate the performance of  QARF. QARF is compared with
other state-of-the-art methods. The experimental results show that QARF obtains 98.20% accuracy on the NSL-KDD
dataset. QARF performs better than other state-of-the-art methods in comparisons.
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 I. Introduction
Network-based  intrusion  detection  system  (NIDS)

analyzes  traffic  data  in  network  to  identify  malicious
behavior, which is widely used in organizations and com-
panies  to  detect  network  attack.  Traditional  NIDS  is
mostly  based  on  matching  the  fingerprint  of  attack  or
strict  identification  of  normal  behavior.  However,  in
practical  applications,  fingerprint  matching  brings  high
overhead on the maintenance of fingerprint database and
failure  to  identify  unknown  attacks,  while  strict  normal
behavior  identification  suffers  from  a  high  false  alarm
rate  [1].  Compared  with  traditional  intrusion  detection
techniques,  machine  learning based detection techniques
perform well  on  detecting  malicious  traffic  and  have  no
need to  maintain  a  large  database,  which  makes  ma-
chine  learning  techniques  widely  discussed  and  used  in
intrusion detection.

However, the performance of machine learning-based

algorithms is  significantly  affected by the quality  of  the
training data. An ideal training dataset contains a large
number of  balanced  and  labeled  samples,  but  in  practi-
cal  applications,  the  traffic  data  is  usually  evolutionary
streaming, imbalanced, and rare labeled. Specifically, ma-
chine  learning-based  network  intrusion  detection  tech-
niques are facing the following three challenges:

1) Evolving  traffic  streams  are  unable  to  be  pro-
cessed  by  offline  learning  based  techniques.  In  network,
traffic data  continues  to  generate  and  change,  e.g.,  fea-
ture  distribution  of  traffic  data  is  changed  by  unknown
malware,  which  requires  frequent  updates  of  machine
learning-based  detection  models  to  capture  the  changes.
However,  frequent  retraining  and  redeployment  will
bring unacceptable cost and time overhead [2], [3].

2) Labeled traffic samples are rare while the acquisi-
tion of  the  ground truth  of  unlabeled  samples  is  expen-
sive,  which  leads  to  inadequate  training  of  supervised
learning based model. Continuous generation of network 
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traffic makes raw traffic easy to acquire,  but these traf-
fic are unlabeled that cannot be used to train supervised
learning based  models,  while  the  ground  truth  of  unla-
beled data is very expensive to obtain. One possible solu-
tion to this challenge is to employ semi-supervised learn-
ing technology, which expands labeled dataset size. How-
ever, in semi-supervised learning techniques, the scope of
pseudo-labels  is  limited  to  existing  labeled  instances,
causing unknown malicious traffic mislabeled [4].

3) The imbalance of traffic data leads to the degra-
dation  of  machine  learning  based  detection  models.  In
traffic streams, benign flow is much more than malicious
ones, which causes models bias towards the benign cate-
gory, resulting in ignorance of uncommon attacks [5].

To complicate matters further, the above challenges
are not  individual  to  each  other  in  malicious  traffic  de-
tection task. In practical applications, the traffic streams
may be drift, rare labeled and imbalanced, making solu-
tions that aim to solve individual challenges no longer ef-
fective [6].

The specific objective of this study is to explore how
to effectively  detect  malicious  streaming traffic  which is
drift, rare labeled and imbalanced. In this study, a holis-
tic approach, queried advanced random forests (QARF),
is  utilized,  integrating  adaptive  random  forests  (ARF)
and  adaptive  margin  sampling  strategy  to  establish  an
online  active  learning-based  malicious  traffic  detection
approach.  ARF  is  an  online  supervised  algorithm  that
works with evolving data streams, and the adaptive mar-
gin  sampling  strategy  selects  representative  instances
from  a  large  amount  of  unlabeled  traffic  streams  and
queries  the  ground  truth  of  the  selected  instances  for
ARF training.  QARF achieves  adaptive  adjustment  fol-
lowing  the  change  of  traffic  streams,  which  maintains  a
good balance between the cost of  querying and the per-
formance of the detection classifier.

The contribution of this paper is as follows:
1) QARF, an online active learning based malicious

traffic detection  approach,  is  proposed,  which  can  effec-
tively  identify  malicious  traffic  data in  streaming traffic
that drift, rare labeled and imbalanced.

2) An adaptive sampling strategy is proposed, which
can  adaptively  adjust  the  threshold  of  margin  sampling
strategy  with  following  the  change  of  traffic  flow.
Through the strategy, QARF achieves saving the cost of
querying in representative instances selection.

3)  We  conducted  experiments  on  the  NSL-KDD
dataset and verified the superiority of our approach.

The rest  of  this  paper  is  organized  as  follows:  Sec-
tion  II  discusses  the  related  work,  Section  III  presents
preparatory  knowledge,  Section  IV  details  the  design
methodology, Section V evaluates the performance of the
proposed approach, and Section VI concludes the paper.

 II. Related Work
Malicious traffic is any suspicious content or connec-

tion created or received over the network which has the

threat  of  causing  a  security  incident  [7].  In  the  field  of
cyberspace  security,  the  detection  of  malicious  traffic  is
usually  implemented  by  intrusion  detection  systems  [8].
Intrusion detection techniques were proposed by Denning
et al. [9] and have been widely studied. Traditional intru-
sion  detection  techniques  are  classified  into  anomaly
detection  and  misuse  detection  [10],  [11].  Misuse-based
detection  determines  the  attack  behavior  by  matching
attack  signatures,  and  anomaly-based  detection  records
the  normal  behavior  pattern  of  the  system  and  regards
behavior  as  an  intrusion  when  the  behavior  is  found  to
be  out  of  the  normal  behavior  pattern  characteristics.
The  two  traditional  intrusion  detection  techniques  have
different defects. Misuse-based detection can only detect
the attacks that can be matched by the signatures in the
attack  signature  database,  which  makes  high  cost  on
maintaining  fingerprint  database  and  powerless  in  the
face  of  new  attacks,  while  anomaly-based  detection  has
the problem of a high false alarm rate.

With the widespread application of machine learning
technology,  malicious  traffic  detection  methods  based
on  machine  learning  techniques  have  become  the  focus
of  related  research  and  been  widely  used  [12].  Machine
learning-based malicious traffic  detection models classify
network  behavior  to  detect  attack.  Compared  with  the
traditional  intrusion  detection  techniques,  the  machine
learning-based detection techniques are free from the re-
liance on  fingerprints,  which  greatly  improves  the  effi-
ciency. Meanwhile, the machine learning based detection
techniques are better at detecting unknown attacks.

However,  the complex state of  traffic  is  a challenge
to machine learning based detection methods.  The ideal
training  data  for  machine  learning  based  models  is  off-
line, balanced and labeled, but the traffic data is usually
streaming, drift, imbalanced and rare labeled in practical
applications. Researchers have focused on how to detect
suboptimal  traffic  effectively.  To  detect  evolving  traffic
streams, researchers employ online learning techniques to
achieve  adaptive  adjustment.  Murugaraj et  al. [13] pro-
posed  a  hybrid  online-offline  system,  in  which  online
model  keeps  learning  from  traffic  streams  and  offline
model  selects  samples  for  learning.  Mahmodi et  al. [14]
proposed a new drift aware adaptive method for detect-
ing attack  in  streams  by  employing  linear-order  algo-
rithms and  Gaussian-order  algorithms  with  a  slide  win-
dow  to  capture  the  drift  in  streams.  Bhatia et  al. [15]
proposed MemStream  which  uses  auto-encoder  tech-
niques  to  extract  features  and  memory  module  to  save
the trend of streams to adapt to the drift of the stream-
ing traffic. Jain et al. [16] combined MapReduce technol-
ogy and K-means sliding window clustering technique to
handle  concept  drift  in  massive  amounts  of  traffic.  To
detect traffic  with  rare  labeled  samples,  researchers  em-
ploy  active  learning  technology  to  query  the  ground
truth of unlabeled samples for retraining model. Consid-
ering that  active  learning  techniques  are  effective  tech-
niques  to  avoid  keeping  redundant  training  instances,
Deka et al. [17] proposed an abnormal detection method

  646 Chinese Journal of Electronics, vol. 33, no. 3



based  on  parallel  active  learning  to  detect  DDoS  (dis-
tributed denial of service) in traffic. Zhang et al. [4] com-
bined semi-supervised learning and active  learning tech-
niques to  extract  unlabeled  samples  with  rich  informa-
tion  to  query  the  ground  truth,  and  then  uses  the
queried samples  to  retrain  the  model.  To  detect  imbal-
anced traffic, Al-Yaseen et al. [18] proposed a hybrid IDS
combining support vector machine, extreme learning ma-
chine  and  K-means  clustering  algorithm to  improve  the
detection  rate  of  uncommon  attacks.  Ahmim et  al. [19]
proposed  HCPTC-IDS,  an  IDS system based  on  predict
probabilities  of  decision  trees.  The  HCPTC-IDS  system
consists  of  two  layers,  the  first  layer  is  a  decision  tree,
and  the  second  layer  is  an  end  classifier  that  combines
the different probabilities of the first layer to make pre-
dictions.  Wang et  al. [20]  proposed  DA-Transfer  based
on deep transfer learning, to improve the performance of
small-sample  classification  models  in  anomaly  detection.
Lin et al. [21] proposed a multi-level feature fusion mod-
el  (MFFusion)  with  employing  deep  learning  techniques
and adaptive balanced training method to achieve auto-
matic feature extraction and effective training when the
training  samples  are  imbalanced.  Chapaneri et  al. [22]
proposed  Wasserstein  GAN  improved  deep  regret
(WGAN-IDR) to generate augmented samples to extend
the size of labeled dataset, aiming to train the detection
model with a balanced training set.

The  above  approaches  are  proposed  to  response  to
challenges in traffic streams, but each approach can only
response one  single  challenge.  However,  in  practical  ap-
plications,  traffic  streams  do  not  come  with  only  one
challenge, but with multiple challenges at the same time.
Therefore,  the  purpose  of  this  research  is  to  investigate
how to detect malicious traffic effectively when the traf-
fic streams are drift, rare labeled and imbalanced.

 III. Adaptive Random Forests

λ=6

Adaptive  random  forests  [23]  (ARF)  is  a  stream-
adapted version  of  the  random forests  algorithm.  Origi-
nal random forests  algorithm is  an offline learning algo-
rithm and can only be trained on offline dataset,  which
conflicts  with  data  streams.  For  stream  learning,  ARF
uses VFDT [24] (very fast decision tree) tree as the base
classifier  to  build  the  forest  model,  but  differs  from
VFDT in feature selection,  sampling method, and prun-
ing  strategy  of  trees  to  avoid  overfitting.  In  the  feature
selection,  basic  classifier  in  ARF  uses  a  subset  rather
than full set of features that used in VFDT. On the sam-
pling  strategy,  rather  than  using  full  dataset  in  VFDT,
ARF  uses  online  Bagging  approach  [25]  with  Poisson
( )  to  assign  a  unique  training  subset  to  each  basic
classifier. On the pruning strategy, the trees of ARF will
not  be  pruned,  but  grown  completely.  Unique  subsets,
different  feature  subsets  and  full  growth  of  the  trees
widen the difference between basic classifiers in ARF and
thus avoid overfitting during ARF training.

Concept  drift  in  streaming  data  is  a  challenge  that

online  learning-based  models  need  to  face.  To  combat
concept  drift,  ARF  employs  ADWIN  [26]  (ADaptive
WINdowing) and makes some improvements on ADWIN
to  work  as  the  concept  drift  detector  to  monitor  data
streams.  Different  from ADWIN,  ARF does  not  replace
the working base classifier with a new initial based clas-
sifier  once  the  concept  drift  is  detected,  instead,  a  two-
stage setup  of  drift  warning  and  drift  detection  is  per-
formed. If a drift warning occurs, ARF creates a new tree
in the background as a background tree. The new back-
ground  tree  is  trained  together  with  the  working  base
tree.  When  a  drift  detection  threshold  is  triggered,  the
working  base  tree  which  triggers  the  drift  detection
threshold  will  be  replaced  with  the  background  tree.  In
this way, ARF ensures that the base classifiers are adap-
tively adjusted when detecting evolving data streams.

 IV. The Proposed Method

 1. Overview
QARF is  proposed to detect  streaming traffic  data,

therefore  the  system  of  QARF  processes  newly-arrived
instances  one  by  one.  QARF  consists  of  ARF  and  a
query and filtering component (QFC) which includes the
adaptive sampling strategy,  and the overall  architecture
of QARF is shown in Figure 1. In QARF, ARF works as
a  basic  classifier  to  identify  newly-arrived  instance,  and
QFC determines whether the newly-arrived instance need
to  be  queried  for  the  ground  truth.  If  an  instance  is
queried  and  labeled  by  experts,  both  the  ARF  and  the
QFC will  be  updated  through  learning  the  queried  in-
stance.
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Figure 1  Overview of queried adaptive random forests to malicious
traffic detection in a traffic stream.
 

Combined with the overall architecture of QARF in
Figure 1, the main process of QARF is as follows:

1) A newly-arrived instance is inputted into ARF.
2) ARF outputs the prediction to QFC.
3) QFC determines whether the instance is valuable

to query. If valuable, QFC sends the instance to supervi-
sor to query for the ground truth.

4)  The  labeled  instance  is  sent  from the  supervisor
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to ARF and QFC for updating. Specifically, ARF learns
the  labeled  instance  and  updates  the  parameters  in  the
model.  Meanwhile,  QFC  compares  the  ground  truth  of
the instance with the predicted label made by ARF, and
then updates  the threshold value in QFC which is  used
to determine whether instances are valuable.
 2. Query and filtering component

Query and filtering component (QFC) is proposed to
select  representative  instances  from  traffic  streams  for
querying when labeling budget is limited. Data in traffic
streams  is  large  but  unlabeled,  while  labeling  instances
by  experts  is  accurate  but  costly,  which  means  labeling
all  raw instances is not feasible. Selecting representative
instances from traffic  streams to label  and train the de-
tection  model  rather  than  labeling  the  whole  traffic
stream is acceptable on both the requirements for model
training  and  the  spending  of  label  querying.  However,
ARF is an algorithm for classification and does not have
the ability  to  identify  whether  instances  are  representa-
tive or not,  thus QFC is proposed in this paper by em-
ploying margin sampling method to select representative
instances out from traffic streams for querying.

margin(x)
ŷ1 ŷ2

Margin sampling is one of query strategies in active
learning  technology  [27]. Margin  sampling  selects  in-
stances that can be easily determined to be in two cate-
gories,  i.e.,  instances  with  small  differences  between  the
maximum  posteriori  probability  and  the  second  most
posteriori  probability.  The  calculation  of  is
shown  in  (1),  where  and  represent  the  category
with the maximum posteriori probability and the catego-
ry  with  the  second  maximum  posteriori  probability  in
the classification, respectively. The instances selected by
margin sampling are provided to experts for labeling and
then  used  to  train  ARF to  improve  the  performance  of
the basic classifier.
 

margin(x) = argmin
x

(P (ŷ1|x)− P (ŷ2|x)) (1)

In  QFC,  representative  instances  are  filtered  by
comparing  their  margin  values  with  the  threshold  of
QFC. Margin sampling provides the formula for calculat-
ing the  margin value  of  instances,  but  does  not  provide
how to determine the appropriate threshold to select un-
certain instances, which is the focus of QFC. Because the
evolving  traffic  flow  is  always  in  dynamic  change,  fixed
threshold  is  not  appropriate  in  QFC.  The  threshold
should  change  adaptively  to  minimize  the  expert  query
cost in condition of effective training of ARF, e.g., if con-
cept drift occurs in traffic streams, the threshold should
be increased  to  let  the  classifier  learn  more  queried  in-
stances,  otherwise  the  threshold  should  be  decreased  to
let only the most uncertain instances labeled which aims
to reduce  the  expert  query  cost.  To  achieve  the  ad-
vanced  adjustment  of  the  threshold,  sliding  window
structure is adopted in QFC to cache information about
the latest instances and update the threshold value.

Figure  2 describes  the  procession  in  QFC  and  the
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n
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pseudo-code  of  QARF  is  shown  in Algorithm  1.  First,
supposing  that  data  is  the  data  block  captured  in
traffic stream by QARF at moment  (step 1, Figure 2).
ARF identifies  and outputs  prediction  including  the
predict label and the predicted probability for each label
(step 2, Figure 2), and then margin value of  is calcu-
lated in formula (1) (step 3, Figure 2). After calculation,
margin of  is used to compared with threshold in QFC
(step  4, Figure  2),  and  if  margin  value  of  is  lower
than the threshold in QFC,  will be regarded as repre-
sentative  instances  and  sent  to  the  expert  to  query  for
the ground truth (steps 5 and 6, Figure 2). After labeled
by experts,  is used to update ARF and QFC (steps 7
and 8, Figure 2).

Algorithm 1  Queried adaptive random forests algorithm
A n T

winf

wint

winrec

grad w

Input: :  traffic  data  stream; :  number  of  instances; :
margin  sampling  threshold  in  QFC; :  window  to
cache  margin  of  incorrect  predictions; :  window  to
cache  margin  of  correct  predictions; :  window  to
cache the performance of basic classifier in the classifica-
tion; :  gradient  of  the  window  weight; :  weight  of
sliding windows.

yn An yp
An

Output: : the predict label of ; : the posteriori proba-
bility of .

A　While HasNext( ) do:
An A　　get the next instance  = next( );
yn An　　get the predict label  = ARF.predict( );

yp An　　get posteriori probability  =ARF.predict_proba( );
k yp　　calculate margin  = Margin( );

k < T　　select representative instances If ( ) then:
An　　　query for the ground truth y = Label_query( );

An

yp
　　　the predict label of  is compared with the queried

ground truth If NotSame(y, ) then:
winf k　　　 .First_In_First_Out( );
winrec　　　 .First_In_First_Out(1);

　　　Else:
wint k　　　 .First_In_First_Out( );
winrec　　　 .First_In_First_Out(0);

　　　evaluate the performance of ARF
cr winrec winrec　　　  = log( .count(0)/ .count(1))+1;

　　　update the weight of sliding windows
w = w + grad× cr　　　 ;

　　　update the margin sampling threshold
T =w × (wint.mean()− wint.std())

+ (1− w)× (winf .mean() + winf .std());
　　　

　End function

wint winf winrec

wint

winf

In  QFC,  every  time  an  instance  queried,  threshold
will be updated according to the performance of ARF in
the  classification.  First,  the  predict  label  which  is  given
by ARF is compared with the ground truth given by ex-
pert to determine whether ARF makes a correct predic-
tion  for  the  instance  (step  8, Figure  2).  Three  sliding
windows, , ,  and ,  are  used  to  store  the
information of  the  comparison.  Among  the  sliding  win-
dows,  is used  to  cache  margin  of  correct  predic-
tions  and  is  for  incorrect  predictions,  meaning  if
the instance is correctly classified by ARF, the margin of
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wint

winf winrec

winrec

winrec

the  instance  is  cached  in ,  otherwise  the  margin  is
cached  in .  Another  sliding  window  is  used
to  cache  the  performance  of  ARF  in  the  classification,
meaning if the instance is correct predicted by ARF, the
value “1” is cached into , otherwise “0” is input in-
to  (step 9  and 10, Figure  2). To capture  the  re-
cent changes  of  traffic  streams,  the  three  sliding  win-
dows work as queues with FIFO (first-in-first-out) strate-
gy  to  store  the  information  of  latest  instances,  meaning
when the  windows are  filled  up,  the  imformation of  the
earliest  instance  will  be  deleted  and  the  new  one  is
cached.

wint

winf

x
s

w
wint

winf

The average  and  standard  deviation  of  sliding  win-
dows  reflect  the  distribution  of  current  traffic  streams,
thus  the  average  and  standard  deviation  of  and

 are  used  to  calculate  threshold  (step  11  and  12,
Figure  2).  The  calculation  of  threshold  is  shown in  (2),
where  represents  the  average  of  elements  in  sliding
windows, and  represents the standard deviation of slid-
ing  windows.  In  (2),  represents  the  weight  of  sliding
windows,  and  works  to  adjust  the  weight  between 
and  according to the change of traffic streams.
 

threshold =w × (xwint − swint)

+ (1− w)× (xwinf
+ swinf

)) (2)

w
w

The weight  updates  once  an instance  is  inputted
into QFC, and the update of  begins at calculating the
change rate of threshold. The change rate of threshold is
different  at  different  moment,  for  example,  when  ARF
has a high error rate in the recent time, it means the dis-
tribution of traffic streams has changed, and the thresh-
old  needs  to  be  increased  rapidly  to  let  more  uncertain
instances queried and used to update ARF so that ARF

winrec

m
winrec winrecm Winrec m
cr

can adapt  to  the  traffic  changes  rapidly.  On  the  con-
trary,  when  the  error  rate  of  ARF is  low,  it  means  the
streaming  traffic  is  smooth,  and  the  threshold  needs  to
be  decreased  gradually  to  reduce  the  number  of  labeled
instances so that the cost of expert querying is reduced.

 is used to calculated the change rate and the cal-
culation is  shown in (3),  where  represents  the length
of ,  represents  at  the  element,
and  represents the change rate.
 

cr = ln

∑n

i=0
winrecm

m−
∑n

i=0
winrecm

+ 1 (3)

cr wAfter the calculation of ,  is calculated as shown
in (4).
 

w =
{
w + grad× cr, t < 0
w − grad× cr, t ≥ 0 (4)

grad w t

t ≥ 0
t < 0

In (4),  represents the gradient of , and  rep-
resents the  flag  whether  ARF  predicts  the  queried  in-
stance correctly. If ARF makes correct prediction, ,
otherwise .

 V. Experiments and Analysis

 1. Data sets
NSL-KDD [28]  is  used  to  evaluate  the  performance

of QARF  in  this  paper,  because  NSL-KDD is  a  bench-
mark  dataset  of  intrusion  detection  research  and  also
widely used in online learning research. NSL-KDD is an
improved  version  of  the  well-known  network  intrusion
traffic dataset KDD’99 [29]. In the training set of KDD’99,
many  records  are  redundant,  which  makes  the  classifier
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Figure 2  Schematic representation of complete query and filtering component procedure.
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often biased towards more frequent records. At the same
time, the duplicate records in the test set make the per-
formance of  machine  learning-based model  suffered,  and
the  overall  detection  rate  is  relatively  high  due  to  the
high detection rate of frequent records. NSL-KDD has a
more reasonable data distribution compared with KDD’99,
as  NSL-KDD  removes  the  redundant  data  of  KDD’99.
NSL-KDD can be used as a benchmark dataset to evalu-
ate the performance of intrusion detection methods.

In  NSL-KDD,  there  are  22  attacks  in  the  training
set,  which  can  be  classified  into  four  attack  categories:
DoS,  Probe,  R2L  and  U2R.  The  details  are  shown  in
Table 1. Meanwhile, there are another 16 attacks in the

test  set,  and  the  presence  of  the  extra  attacks  allows
NSL-KDD  to  evaluate  the  performance  of  the  machine
learning-based model in the face of new attacks.

However, even after eliminating the redundant data
from  KDD’99,  the  data  distribution  in  NSL-KDD  still
leaves some problems because of  the objective condition
that the attack samples are difficult to collect. The num-
bers  of  various  samples  are  shown  in Table  2.  In  the
training  set,  there  are  few  samples  of  R2L  and  U2R,
which often makes the model undertrained for these two
attacks, resulting in a low detection rate. In practical ap-
plications, R2L and U2R are very dangerous attacks for
the system.

 
 

Table 1  Attack types in NSL-KDD

Category Types in train set Additional types in test set

Normal normal –

DoS neptune, back, land, pod, smurf, teardrop Apache2, mailbomb, processtable

Probe ipsweep, nmap, portsweep, satan mscan, saint

R2L
warezmaster, warezclient, ftpwrite,

guesspassword, imap, multihop, phf, spy
sendmail, snmpguess, snmpgerattack,

named, xlock, xsnoop, worm

U2R Rootkit, bufferoverflow, loadmodule, perl httptunnel, ps, sqlattack, xterm
 
 
 
 

Table 2  The distributions of samples in NSL-KDD

Attack category Train set (KDDTrain) Test set (KDDTest)

Normal 67343 9711

DoS 45927 7458

Probe 11656 2421

R2L 995 2754

U2R 52 200

Total 125973 22544
 
 

 2. Experimental environment
This experiment was carried out in windows 10 op-

erating  system  on  a  computer  configured  with  Intel  i7-
6700@3.40 GHz and 32G RAM. The  implemented  algo-
rithm was  written  in  Python  3.7,  using  the  sklearn  li-
brary, the tensorflow library and the river library [30].
 3. Evaluation indicators

Pre-quential  validation  [31]  is  used  to  evaluate  the
performance of methods in this paper. Pre-quential vali-
dation is  a  method  to  evaluate  online  learning  tech-
niques,  which  is  also  named  test-and-train  validation.
Through prequential  validation,  the  new  coming  in-
stances from the data stream will be used to test before
used to update model. In terms of evaluation indicators,
we evaluate the effectiveness of QARF using the Accura-
cy, Prediction, Recall and F1-score.
 4. Experiment description and results

In terms of data settings, the feature distributions of
the  training  set  and test  set  of  NSL-KDD are  different,
thus  a  streaming  dataset  is  created  by  splicing  the  test

w grad

set  of  NSL-KDD  after  the  training  set  and  the  point
where concept drift occurs is the connection point of the
training  set  and  the  test  set.  Samples  in  the  streaming
dataset are inputted into the evaluated model one by one
to  simulate  a  drift  traffic  stream.  Different  numbers  of
instances are labeled for pre-training in different experi-
ments, and  the  other  instances  are  regarded  as  unla-
beled traffic data for methods to identify. The preset val-
ue of  is  0.5,  is  0.01 in QARF. Four ARF based
algorithms are evaluated and compared:

1)  ARF trained with initial  labeled samples  (Initial
learning).  In  this  scenario,  the  model  is  only  trained  in
pre-training  stage,  and  the  other  instances  are  used  for
evaluation.

2) ARF trained with all instances (Supervised learn-
ing). In this scenario, the whole streaming dataset are la-
beled and  can  be  learned  by  the  model.  The  perfor-
mance  of  ARF  in  this  scenario  can  be  regarded  as  the
upper limit of performance in the comparisons.

3) QARF. In this scenario, QARF is trained in pre-
training  stage  and  then  select  unlabeled  instances  to
query  in  the  process  of  detecting  the  unlabeled  traffic
stream.

4)  ARF  with  random  sampling  strategy  (Random
sampling). In this scenario, ARF is trained in pre-training
stage  and the  query  unlabeled  samples  randomly  in  the
process of detecting the unlabeled traffic stream.

Three experiments are designed to evaluate the per-
formance of QARF.

In  experiment  1,  we  explored  the  performance  of
each method with different numbers of instances learned
in pre-training stage. In this experiment, we observed the
accuracy  rate  and  the  number  of  queried  instances  of
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each  method,  which  shows  the  performance  and  query
cost overhead of each method.

In  experiment  2,  we  observed  the  performance  of
each method in multi-classification, especially focusing on
the accuracy on detecting R2L and U2R attacks to eval-
uate the  performance  of  methods  in  the  face  of  imbal-
anced traffic streams.

In  experiment  3,  we  explored  the  performance  of
QARF in the face of concept drift traffic data. In this ex-
periment,  the  accuracy  of  each  method  near  the  drift
point is recorded to observe how the performance of each
method  changes  when  the  methods  process  drift  traffic
streams.

Further,  we  compared  QARF  with  other  state-of-
the-art  abnormal  traffic  detection  methods  for  concept
drift traffic in terms of accuracy and query cost.

1) Experiment  1:  Evaluation  under  different  num-
ber of labeled instances in pre-training

In  this  experiment,  QARF  and  other  methods  are
evaluated to  process  traffic  streams  with  different  num-
ber of  labeled  instances  used  in  pre-training.  The  num-
ber  and  ratio  of  instances  for  pre-training  are  shown in
Table  3 and  the  results  are  illustrated  in Figure  3.  In
addition,  we  record  the  metrics  and  query  cost  of  the
methods when the labeled instances are 100, 1000, 10000
and 118813 in Table 4, where 100, 1000, and 10000 rep-
resent  the  cases  that  rare  labeled  instances  in  traffic
streams,  and 118813 represents  the  cases  that  a  large
number of labeled instances in traffic streams.

As shown in Figure 3, accuracy of Supervised learn-
ing is 98.46%, which can be regarded as the upper limit
of  the  performance  of  methods.  When  the  label  budget
increases  from 29703 to 118813 (30%–80%), the  perfor-
mance of methods is relatively stable, QARF has an ac-
curacy of around 98%, Random sampling has an accura-
cy of around 97%, and Initial learning has an accuracy of
around 95%.  However,  when  the  number  of  labeled  in-
stances for pre-training is less than 29703 (30%), the per-

formance  of  both Initial  learning and Random sampling
shows  a  significant  decline,  while  the  performance  of
QARF is still  close to Supervised learning. As shown in
Table 4, when the instances for pre-training is from 100

 

Table 3  Number and ratio of labeled instances in rounds.

Rounds Number Ratio

1 100 0.07%

2 500 0.34%

3 1000 0.67%

4 5000 3.37%

5 10000 6.73%

6 14851 10%

7 29703 20%

8 44555 30%

9 59406 40%

10 74258 50%

11 89110 60%

12 103961 70%

13 118813 80%
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Figure 3  performance of  methods  under  different  numbers  of  la-
beled instances used in pre-training.
 

  

Table 4  Results of methods under learning different numbers of instances in pre-training.

Model Instances for pre-training Accuracy Precision Recall F1-score Query cost

QARF

100 97.74% 97.75% 97.74% 97.69% 2237

1000 98.20% 98.18% 98.20% 98.15% 2365

10000 97.96% 97.94% 97.96% 97.88% 2089

118813 98.40% 98.38% 98.40% 98.37% 1285

Initial learning

100 82.82% 83.39% 82.82% 80.58% 0

1000 91.84% 89.64% 91.84% 90.29% 0

10000 93.84% 93.83% 93.84% 92.55% 0

118813 95.31% 95.32% 95.31% 94.53% 0

Random sampling

100 92.29% 92.12% 92.29% 91.55% 2237

1000 94.48% 94.58% 94.48% 93.88% 2365

10000 95.36% 95.14% 95.36% 94.74% 2089

118813 96.99% 96.84% 96.99% 96.68% 1285
Supervised learning 148517 98.46% 98.44% 98.46% 98.42% 0
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to 10000,  the  accuracy  of  Initial  learning  is  improved
from 82.82%  to  93.84%,  the  accuracy  of  Random  sam-
pling is improved from 92.29% to 95.36%, while QARF is
stable at around 98%.

Further, we record the query cost of QARF in differ-
ent  training  scenarios  to  evaluate  the  label  budget  of
QARF, and the results are as follows in Figure 4.
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Figure 4  Instances  queried  and  learned  by  QARF  in  different
rounds of experiments.
 

As shown in Figure 4, the increase or decrease of the
pre-training dataset size does not affect the query cost of
QARF.  No  matter  how  many  instances  learned  in  pre-
training,  the  unlabeled  instances  queried  by  QARF  is
around 2200.  Only  when  the  pre-training  instances  ac-
count for 80%, the number of query instances is reduced
to  1285.  Combining  the  performance  and  query  cost  of
methods,  QARF  obtains  high  accuracy  and  low  query
cost under the condition of rare labeled instances for pre-
training,  which  shows  that  QARF  is  more  suitable  for
online malicious  traffic  detection  when  the  labeled  in-
stances in data streams are rare and the label budget is
limited.

2) Experiment 2: Comparison on multi-classification
When  detection  models  identify  malicious  instances

in imbalanced traffic, the overall accuracy cannot specifi-
cally reflect the performance of methods on rare attacks.
Therefore,  we  record  the  multi-classification  confusion
matrix of models to observe the performance of methods
on identifying  specific  attack  types,  especially  the  mali-
cious attack types with few instances like R2L and U2R.
We focus on the performance of the methods in the con-
dition  of  insufficient  labeled  instances  for  pre-training,
thus  labeled  instances  for  pre-training  are 1000 in  this
experiment  except  Supervised  learning  which  uses  the
whole  traffic  streams  to  train.  The  classification  results
are shown in the following Figure 5.

As can be seen in Figure 5, all of the four methods
get accuracy  of  99%  on  identifying  common  traffic  in-
stances like  Normal.  However,  on  identification  of  un-
common attacks like R2L and U2R, the identifying capa-
bilities of the four methods are not as accurate as the de-
tection  of  Normal  category.  Among  them,  QARF  and
Supervised learning can still  effectively classify R2L and
some U2R instances, while Random sampling and Initial

learning are severely compromised and nearly impossible
to distinguish these two attacks. Further, we record the
instances  of  different  categories  that  methods  used  in
pre-training  and  queried  in  identifying  traffic  streams,
which is shown in Table 5. As shown in Table 5, the pro-
portion of instances learned by methods in pre-training is
same, but  in  the  identification  of  traffic  streams,  in-
stances  that  queried  for  ground  truth  are  significantly
different.  The  distribution  of  instances  in  pre-training
dataset  is  consistent  with  the  distribution  of  the  whole
traffic  stream,  and pre-training dataset  is  the  only  data
used to update the model of Initial learning. In the pre-
training dataset, Normal and DDoS instances account for
the majority, while the number of Probe, R2L, and U2R
instances is relatively small, especially U2R instances do
not  appear  in  the  pre-training  stage,  which  corresponds
to the low detection rate of Probe instances and the in-
ability to detect R2L and U2R attacks in Initial learning.
Unlike Initial  learning,  Random  sampling  queries  in-
stances  for  ground truth  from traffic  streams randomly,
and the query cost of Random sampling keeps consistent
with  the  cost  of  QARF.  The  distribution  of  instances
queried by Random sampling conforms to the overall dis-
tribution  of  the  whole  streaming  dataset,  which  makes
the  number  and  proportion  of  R2L  and  U2R  instances
are small,  resulting in weakness  of  Random sampling in
identifying  R2L  and  U2R.  QARF  selects  instances
through QFC, which captures uncertain instances in traf-
fic streams to query. Because of the uncertainty exhibit-
ed by R2L and U2R instances in identification, more U2R
and R2L instances are captured by QARF, leading to the
distribution of  training  data  more  balanced.  The  bal-
anced distribution of  training data helps  QARF achieve
the  significantly  improved  accuracy  in  the  detection  of
R2L  and  U2R  and  better  performance  compared  with
Initial learning and Random sampling. Supervised learn-
ing performs best, but it uses the whole traffic streams to
train,  which  means  all  instances  in  traffic  are  queried,
leading to the query cost unacceptable.

3)  Experiment  3:  Evaluation  on  the  drifting  data
streams

To evaluate  the performance of  methods on detect-
ing malicious traffic data in drifting data streams, we ob-
serve accuracy curve of methods during processing of the
streaming dataset, as shown in Figure 6.

As shown in Figure 6 that when concept drift occurs
(red barline), the accuracy of all four methods decreases.
Among  them,  the  decline  rate  of  Supervised  learning  is
the slowest, the decline rate of QARF is relatively faster
but  close  to  Supervised  learning,  while  the  performance
of  Random  sampling  and  Initial  learning  has  dropped
significantly after concept drift occurs. For further analy-
sis,  we  record  the  distribution  of  instances  queried  and
learned  by  methods  before  and  after  the  drift  point,
which is shown in Table 6.

As  shown in Table  6,  Supervised  learning  has  used
the  whole  streaming  dataset  as  labeled  instances  for
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training, including  traffic  data  with  concept  drift,  lead-
ing to the smoothest drop in performance. Compared to
Random  sampling,  with  the  same  label  budget,  QARF
queries more  samples  after  concept  drift  occurs,  there-
fore QARF has lower attenuation on detecting drift traf-
fic data than Random sampling and Initial learning.

Figure 7 shows the distribution of instances learned
and queried  by  QARF and  change  curve  of  the  thresh-
old value in QFC. The threshold shown in Figure 7 is 500
times  magnified  on  the  real  threshold  in  order  to  show
the  changes  of  thresholds  and  the  distribution  of  query
instances in the same figure. The two barlines in Figure
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Figure 5  Normalized confusion matrix of methods under learning 1000 labeled samples in pre-training.
 

  

Table 5  Number of instances learned by methods in pre-training and label querying.

Instance
QARF Initial learning Random sampling Supervised learning

Pre-training Query cost Pre-training Query cost Pre-training Query cost Pre-training Query cost

Normal 515 165 515 0 515 692 515 76539

DDos 380 253 380 0 380 487 380 53005

Probe 91 549 91 0 91 145 91 13986

R2L 13 268 13 0 13 40 13 3736

U2R 0 50 0 0 0 2 0 252
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Figure 6  Accuracy of methods under learning 1000 labeled samples
in pre-training.
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7 represent  the  point  where  pre-training  ends  and  the
point  where  concept  drift  occurs,  respectively.  The  two
barlines split Figure 7 into three regions, which are pre-
training region, smooth flow region, and drift flow region.
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Figure 7  Density  of  learned  samples  and  curve  of  threshold  in
QARF.
 

As  shown  in Figure  7, the  distribution  of  the  in-
stances  learned  by  QARF  and  the  trend  of  threshold
change  curve  overlap.  From  pre-training  region  to  the
smooth flow region, the traffic stream is stable, thus the
threshold of QARF is constantly decreasing to reduce the
query  cost.  When  the  threshold  tends  to  converge,  the
query instances size also gradually converges, and it can
be seen from Figure 7 that the query instances  size  has
been in a  low query level  from the point  where  stream-
ing data reaches 40000 to the end of smooth flow region.
When concept drift occurs, as shown in drift flow region
of Figure 7, the threshold increases rapidly, which leads
to  a  rapid  increase  in  the  number  of  queried  instances.
Meanwhile,  the  threshold  is  relatively  high  in  drift  flow
region,  leading  to  more  uncertain  instances  captured,
thus  QARF  obtains  more  instances  from  the  drift  flow
for training so that QARF can update faster to adapt to
the drift traffic.

4) Comparison with other methods
In  addition,  QARF  is  compared  with  three  other

state-of-the-art methods.  1)  OFE  (online  fusion  of  ex-
perts)  proposed  in  Mahmodi et  al.  [14]  is  a  drift  aware
adaptive method to capture social network-attack in traf-
fic streams  through  employing  online  learning  algo-
rithms to identify drift in streams. 2) OALEnsemble (on-
line active ensemble framework) proposed in Shan et al.
[32] is  a  paired ensemble  framework consisting of  a  sta-
ble  classifier  and  a  dynamic  classifier  to  react  concept
drift to raw data streams with labeling small number of

instances.  In  the  framework,  random  sampling  strategy
and  uncertainty  strategy  are  combined  to  select  and
label  instances  for  updating  both  stable  classifier  and
dynamic  classifier  in  online  way.  3)  IDDAL  (intrusion
detection with deep active learning) proposed in Ahmed
et al. [33] is a deep active learning method to achieve in-
trusion  detection  in  software-defined  network,  which
combines pooling strategy and entropy uncertainty strat-
egy  to  select  instance  for  training  from  traffic  data.
QARF is compared with the above methods on accuracy
and percentage of queried instances required for training,
and the results are as follows in Table 7.
 
 

Table 7  Comparison of QARF and other methods.

Algorithms Accuracy Percentage of queried instances

QARF 98.20% 2.26%

OFE [14] 97.02% 100%

OALEnsemble [29] 96.90% 36.19%

IDDAL [30] 94.00% 60.00%
 
 

The results in Table 7 show that QARF is an effec-
tive approach, outperforming other methods in all indica-
tors.

 VI. Conclusion and Future Work
This  research  aims  to  effectively  detect  malicious

traffic when the traffic streams are drift, imbalanced and
rare labeled.  The  study  contributes  to  our  understand-
ing of  malicious  traffic  detection  in  complex  environ-
ment.  We  proposed  queried  adaptive  random  forests
(QARF),  a  malicious  traffic  detection  method  based  on
adaptive random forests (ARF) to achieves adaptive up-
dating when detecting drift streaming traffic. In addition,
by  employing  adaptive  sampling  strategy,  QARF
achieves effective training with limited label budget and
sensitive to  uncommon attacks.  We implement  a  proto-
type of QARF and evaluate the performance of the mod-
el  with  NSL-KDD  dataset.  The  experimental  results
show  that  QARF  achieves  an  accuracy  of  98.20%  with
low query cost for malicious traffic classification. In addi-
tion,  QARF has  better  performance  by  comparing  with
other representative methods.

Although QARF still  works  stably  after  encounter-
ing traffic streams with concept drift, it has some perfor-
mance degradation. QARF is less accurate when detect-
ing  traffic  flows  with  concept  drift  than when detecting
the traffic flows before concept drift occurs. However, it
is  important  for  malicious  traffic  detection  systems  to
timely recover from the influence of drift traffic streams.
For fast performance recovery, QARF needs to obtain a
sufficient  amount  of  representative  traffic  data  to  train.
In  this  context,  we  will  conduct  further  research  on
adding cluster analysis to adaptive sampling strategy so
that  more  representative  instances  can  be  selected  by
considering the position of instances on the clusters.

 

Table 6  Distribution of instances learned by methods.

Method Pre-training Before drift After drift

QARF 1000 1732 544

Supervised learning 1000 124973 22544

Random sampling 1000 1935 340

Initial learning 1000 0 0
 

  654 Chinese Journal of Electronics, vol. 33, no. 3



 Acknowledgements
This work was supported by the Major Scientific and

Technological Innovation Projects of Shandong Province
(Grant No. 2020CXGC010116) and the National Natural
Science Foundation of China (Grant No. 62172042).

References
 H. Y. Liu and B. Lang, “Machine learning and deep learning
methods for  intrusion detection systems:  A survey,” Applied
Sciences, vol. 9, no. 20, article no. 4396, 2019.

[1]

 L. Yang, D. M. Manias, and A. Shami, “PWPAE: An ensem-
ble  framework  for  concept  drift  adaptation  in  IoT  data
streams,” in Proceedings of 2021 IEEE Global Communica-
tions Conference, Madrid, Spain, pp.1–6, 2021.

[2]

 G. Andresini, F. Pendlebury, F. Pierazzi, et al., “INSOMNIA:
Towards concept-drift robustness in network intrusion detec-
tion,” in Proceedings of the 14th ACM Workshop on Artifi-
cial  Intelligence  and  Security,  Virtual  Event,  pp.111–122,
2021.

[3]

 Y. Zhang, J. Niu, G. J. He, et al., “Network intrusion detec-
tion  based  on  active  semi-supervised  learning,” in Proceed-
ings of the 2021 51st Annual IEEE/IFIP International Con-
ference  on  Dependable  Systems  and  Networks  Workshops,
Taipei, China, pp.129–135, 2021.

[4]

 H. L. Du, Y. Zhang, K. Gang, et al., “Online ensemble learn-
ing  algorithm  for  imbalanced  data  stream,” Applied  Soft
Computing, vol. 107, article no. 107378, 2021.

[5]

 A. Chhabra, T. S. A. Nandyala, and P. Branco, “HEAL: Het-
erogeneous ensemble and active learning framework,” in Pro-
ceedings  of the 34th  Canadian Conference  on Artificial  In-
telligence, Vancouver, Canada, pp.1-6, 2021.

[6]

 C. A. M. S. Teles, C. R. G. V. Filho, and F. da Rocha Hen-
riques, “A black-box  framework  for  malicious  traffic  detec-
tion in ICT environments,” in Handbook of Research on Cy-
ber Crime and Information Privacy, M. M. Cruz-Cunha and
N.  R.  Mateus-Coelho,  Eds.  IGI-Global,  Hershey,  PA,  USA,
pp.1–20, 2021.

[7]

 M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Net-
work anomaly detection: Methods, systems and tools,” IEEE
Communications  Surveys & Tutorials,  vol.  16,  no.  1,  pp.
303–336, 2014.

[8]

 D. E. Denning, “An intrusion-detection model,” IEEE Trans-
actions  on  Software  Engineering,  vol.  SE-13,  no.  2,  pp.
222–232, 1987.

[9]

 A. Javaid, Q. Niyaz, W. Q. Sun, et al., “A deep learning ap-
proach for network intrusion detection system, ” in Proceed-
ings  of  the  9th  EAI  International  Conference  on  Bio-in-
spired Information and Communications Technologies,  New
York City, NY, USA, pp.21–26, 2015.

[10]

 J.  Klein,  S.  Bhulai,  M.  Hoogendoorn, et  al., “Plusmine: Dy-
namic active learning with semi-supervised learning for auto-
matic classification,” in Proceedings of the IEEE/WIC/ACM
International Conference  on  Web  Intelligence  and  Intelli-
gent  Agent  Technology,  Melbourne,  Australia,  pp.146–153,
2021.

[11]

 H. P. Yao, D. Y. Fu, P. Y. Zhang, et al., “MSML: A novel
multilevel semi-supervised machine learning framework for in-
trusion detection system,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 1949–1959, 2019.

[12]

 M. Odiathevar, W. K. G. Seah, and M. Frean, “A hybrid on-
line  offline  system  for  network  anomaly  detection,” in Pro-
ceedings of 2019 28th International Conference on Comput-
er  Communication  and  Networks,  Valencia,  Spain,  pp.1–9,

[13]

2019.
 E. Mahmodi, H. S. Yazdi, and A. G. Bafghi, “A drift aware
adaptive method based on minimum uncertainty for anoma-
ly  detection in  social  networking,” Expert Systems with Ap-
plications, vol. 162, article no. 113881, 2020.

[14]

 S. Bhatia, A. Jain, P. Li, et al., “MStream: Fast anomaly de-
tection in  multi-aspect  streams,” in Proceedings of the Web
Conference 2021, Ljubljana, Slovenia, pp.3371–3382, 2021.

[15]

 M. Jain and G. Kaur, “Distributed anomaly detection using
concept  drift  detection  based  hybrid  ensemble  techniques  in
streamed  network  data,” Cluster  Computing,  vol.  24,  no.  3,
pp. 2099–2114, 2021.

[16]

 R. K. Deka, D. K. Bhattacharyya, and J. K. Kalita, “Active
learning to detect DDoS attack using ranked features,” Com-
puter Communications, vol. 145, pp. 203–222, 2019.

[17]

 W. L. Al-Yaseen, Z. A. Othman, and M. Z. A. Nazri, “Multi-
level  hybrid  support  vector  machine  and  extreme  learning
machine  based  on  modified  K-means  for  intrusion  detection
system,” Expert  Systems  with  Applications,  vol.  67,  pp.
296–303, 2017.

[18]

 A. Ahmim, L. Maglaras, M. A. Ferrag, et al., “A novel hier-
archical intrusion detection system based on decision tree and
rules-based models,” in Proceedings of the 15th Internation-
al Conference on Distributed Computing in Sensor Systems,
Santorini, Greece, pp.228–233, 2019.

[19]

 R.  N.  Wang,  J.  L.  Fei,  M.  Zhao, et  al., “DA-transfer:  A
transfer  method  for  malicious  network  traffic  classification
with small sample problem,” Electronics, vol. 11, no. 21, arti-
cle no. 3577, 2022.

[20]

 K. D. Lin, X. L. Xu, and F. Xiao, “MFFusion: A multi-level
features fusion model for malicious traffic detection based on
deep  learning,” Computer  Networks,  vol.  202,  article  no.
108658, 2022.

[21]

 R.  Chapaneri  and  S.  Shah, “Enhanced detection  of  imbal-
anced  malicious  network  traffic  with  regularized  Generative
Adversarial  Networks,” Journal  of  Network  and  Computer
Applications, vol. 202, article no. 103368, 2022.

[22]

 H.  M.  Gomes,  A.  Bifet,  J.  Read, et  al., “Adaptive  random
forests  for  evolving  data  stream  classification,” Machine
Learning, vol. 106, no. 9-10, pp. 1469–1495, 2017.

[23]

 P.  Domingos  and  G.  Hulten, “Mining  high-speed  data
streams,” in Proceedings of the Sixth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Min-
ing, Boston, MA, USA, pp.71–80, 2000.

[24]

 N. C. Oza, “Online bagging and boosting,” in Proceedings of
2005  IEEE International  Conference  on  Systems,  Man and
Cybernetics, Waikoloa, HI, USA, pp.2340–2345, 2005.

[25]

 A. Bifet and R. Gavaldà, “Learning from time-changing data
with adaptive windowing, ” in Proceedings of the 2007 SIAM
International Conference on Data Mining, Minneapolis, MA,
USA, pp.443–448, 2007.

[26]

 A. Shahraki, M. Abbasi, A. Taherkordi, et al., “Active learn-
ing  for  network  traffic  classification:  A  technical  study,”
IEEE Transactions on Cognitive Communications and Net-
working, vol. 8, no. 1, pp. 422–439, 2022.

[27]

 M. Tavallaee, E. Bagheri, W. Lu, et al., “A detailed analysis
of  the  KDD CUP 99  data  set,” in Proceedings  of the  2009
IEEE Symposium on Computational Intelligence for Securi-
ty  and  Defense  Applications,  Ottawa,  ON,  Canada,  pp.1–6,
2009.

[28]

 V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betan-
zos, “Feature  selection  and  classification  in  multiple  class
datasets:  An  application  to  KDD  Cup  99  dataset,” Expert
Systems  with  Applications,  vol.  38,  no.  5,  pp.  5947–5957,

[29]

QARF: A Novel Malicious Traffic Detection Approach via Online Active Learning for Evolving Traffic Streams 655  



2011.
 J.  Montiel,  M.  Halford,  S.  M.  Mastelini, et  al., “River: Ma-
chine learning for streaming data in Python,” The Journal of
Machine  Learning  Research,  vol.  22,  no.  1,  article  no.  110,
2021.

[30]

 J. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in evalu-
ation  of  stream  learning  algorithms,” in Proceedings  of the
15th ACM  SIGKDD  International  Conference  on  Knowl-
edge Discovery and Data Mining, Paris, France, pp.329–338,
2009.

[31]

 J.  C.  Shan,  W.  K.  Liu,  C.  X.  Chu, et  al., “Online  active
learning  with  drifted  data  streams  using  paired  ensemble
framework,” ITM  Web  of  Conferences,  vol.  12,  article  no.
05016, 2017.

[32]

 U. Ahmed, J. C. W. Lin, and G. Srivastava, “A resource allo-
cation deep  active  learning  based  on  load  balancer  for  net-
work  intrusion  detection  in  SDN  sensors,” Computer Com-
munications, vol. 184, pp. 56–63, 2022.

[33]

Zequn NIU  was born in 1994. He received the
B.E.  degree  in  software  engineering  from
Beijing Institute of Technology, Beijing, China.
He is a Ph.D. candidate of Beijing Institute of
Technology.  His  research  interests  include
data mining and traffic analysis.
(Email: niuzq@ouchn.edu.cn)

Jingfeng XUE  was born in 1975. He is a Pro-
fessor and  Ph.D.  Supervisor  in  Beijing  Insti-
tute of  Technology.  His  main  research  in-
terests focus  on network security,  data  secur-
ity and software security.

Yong WANG  was born in 1975. She is an As-
sociate Professor of  Beijing Institute of  Tech-
nology.  Her  main  research  interests  focus  on
cyber security and machine learning.
(Email: wangyong@bit.edu.cn)

Tianwei LEI  was  born  in  1993.  She  received
the  M.E.  degree  in  software  engineering  from
Beijing Institute of Technology. She is a Ph.D.
candidate  of  Beijing  Institute  of  Technology.
Her  research  interests  include  software  fault
and malware analysis.

Weijie HAN  was  born  in  1980.  He  received
the  Ph.D.  degree  from  Beijing  Institute  of
Technology.  He  is  currently  a  Lecture  in
Space Engineering University. His research in-
terests  include  malware  detection  and  APT
detection.

Xianwei GAO  was  born  in  1978.  He  received
the  Ph.D.  degree  from  Beijing  Institute  of
Technology. He has many years of experience
in security  operation  and  software  engineer-
ing in a famous IT enterprise. His research in-
terests  mainly  focus  on  artificial  intelligence
and cyber security.

  656 Chinese Journal of Electronics, vol. 33, no. 3


