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Abstract — The key to synthesizing the features of electronic medical records (EMR) big data and using them for
specific medical purposes, such as mortality and phenotype prediction, is to integrate the individual medical event and
the overall multivariate time series feature extraction automatically, as well as to alleviate data imbalance problems.
This  paper  provides  a  general  feature  extraction  method  to  reduce  manual  intervention  and  automatically  process
large-scale data. The processing uses two variational auto-encoders (VAEs) to automatically extract individual and
global features. It avoids the well-known posterior collapse problem of Transformer VAE through a uniquely designed
“proportional  and stabilizing” mechanism and forms a  unique  means  to  alleviate  the  data  imbalance  problem.  We
conducted experiments using ICU-STAY patients’ data from the MIMIC-III database and compared them with the
mainstream EMR time series processing methods. The results show that the method extracts visible and comprehen-
sive features, alleviates data imbalance problems and improves the accuracy in specific predicting tasks.
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 I. Introduction
The analysis of electronic medical records (EMR) of

big data  is  of  great  significance  for  diagnosis  and treat-
ment [1]. Over the years,  hospitals have built  many ap-
plications, almost all built on top of the database systems.
A comprehensive  collection  of  data  related  to  electronic
medical records from the back-end databases of these ap-
plications  form high-volume,  diverse,  and  time-spanning
EMR big data, which can then be used for data analysis
based on  defined  objectives  (e.g.,  mortality  and  pheno-
type prediction),  and using all  relevant data often leads
to better results.

However, there  are  many  vital  obstacles  and  chal-
lenges to EMR’s extensive data analysis. One of the most
significant difficulties is effectively extracting comprehen-
sive features objectively from the massive data [2]–[4].

Hospital applications are often built around business

processes,  and  their  database  systems  prioritize  serving
business management over data analysis. Data related to
analytic  objectives  are  often  scattered  among  various
process details. Therefore, even when EMR big data has
been  collected  and  organized,  the  information  available
for defined analytic objectives (e.g., mortality and pheno-
type prediction)  is  difficult  to  access  directly  and  is  of-
ten  hidden  in  many  nested  hierarchical  database  tables
with different structures and specifications. At this point,
each piece of data will likely be high-value data contain-
ing  necessary  information  but  more  likely  to  be  almost
useless, and overall, the vast majority of data has a mea-
ger  average  value.  Therefore,  it  is  imperative  for  EMR
big data  analytics  to  automatically  condense  the  valu-
able information in a single data record around the anal-
ysis objectives.

At the same time, for most healthcare analytics, the
information in a single piece of healthcare data is insuffi- 
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cient to predict a specific medical diagnosis (e.g., mortal-
ity  and  phenotype).  We  need  to  combine  multivariate
time series characteristics of patients over time to give a
relatively  definitive  assessment,  sometimes  even  in  the
context of multiple hospital admissions.

In  addition,  EMR  data  analysis  often  encounters
data imbalance  problems,  with  some  categories  of  sam-
ples being huge and others being particularly scarce. The
immediate  consequence  of  data  imbalance  is  that  it
makes  the  analysis  conclusions  unfair  and,  in  extreme
cases, even  makes  the  conclusions  seem  absurd  in  com-
mon sense. The problem in EMR big data analysis is se-
vere,  requiring  additional  natural  correlations  for  large
data tables. The imbalance in the original data tends to
be  amplified  in  the  process,  making  the  data  imbalance
almost unavoidable.

The  current  EMR  analysis  methods  for  addressing
these issues could include two ideas:

One  idea  is  first  to  assume  a  correlation  between
certain  phenomena  and  specific  disease  outcomes  based
on  professional  knowledge,  then  filter  the  data  to  do  a
correlation  analysis  between  phenomena  and  diseases,
and then conclude. In this “small” data analysis scenario,
all three of these problems can be avoided. However, the
disadvantage is obvious:

It requires professionals to perform the delicate pre-
processing  work  such  as  manual  screening  and  manual
completion of the data in advance. Manual processing is
often inefficient and will  become costly and unavailable.
Additionally, people often have prior mental expectations
and conjectures and will often operate according to sub-
jective  expectations  in  these  feature  selection  works.  It
will  be  easy  to  fall  into “survivorship  bias”. The  re-
searcher may  ignore  data  subjectively  considered  irrele-
vant  or  weakly  correlated  (but  may  affect  the  analysis
results) and then get wrong or unreliable conclusions.

The other idea is first to assume that certain specific
intermediate  features  in  a  single  record  are  meaningful
from a professional perspective, then extract these inter-
mediate features from single records to form a time ser-
ies, and finally extract the overall features of the time se-
ries for prediction.

These methods  have  many  advantages  incorporat-
ing prior expertise. However, it is still a semi-automated
process that requires human involvement in determining
which intermediate features in a single record are mean-
ingful for the outcome, which is still based on psychologi-
cal expectations, and still has the potential to introduce
an element of unfairness. In addition, it tends to lose im-
plicit features by emphasizing the explicit features related
to the final target orientation, which may lead to less ac-
curate predictions.

In  particular,  when  solving  the  imbalanced  data
problem, the first idea usually relies on the original dis-
tribution of  the  observed data,  which is  affected by the
solution of  most  unbalanced data  problems.  The second
idea involves two stages,  which can also pose challenges

in exerting  controlled  influence  on  the  original  distribu-
tion.

Instead, this paper proposes a generalized dual vari-
ational auto-encoder (VAE) feature extraction implemen-
tation  to  solve  the  related  problems  and  uses  mortality
and phenotype  prediction  analysis  objectives  as  exam-
ples for illustration. Its general block diagram is shown in
Figure 1.

We  first  generate  sparse  multidimensional  data  by
concatenating  related  database  tables  around  patients
and apply a specially designed 1D-CNN VAE to extract
the dimensionality reduction features of a single medical
record (considered as an event). After that, we treat the
reduced-dimensional  features  of  patients  as  multivariate
time series and process them by Transformer VAE to ex-
tract global fusion features of patients for mortality pre-
diction and  phenotype  prediction.  In  general,  our  pro-
posed method has the following characteristics:

1) We provide an automatic generic method for fea-
ture extraction. It minimizes human intervention and en-
ables  the  automatic  processing  of  data  at  scale,  and  is
suitable for big data analysis scenarios.

2) We consider a combination of single recording and
global  time-series  feature  auto-extraction.  Both  stages
can  be  automatically  optimized  according  to  universal
prediction objectives.

3) Based on the inherent advantage of VAE to gen-
erate any random data according to the distribution fea-
tures,  we  can generate  any number  of  different  data  on
demand, thus forming a unique means to solve the data
imbalance problem.

4) By a uniquely designed “proportional and stabil-
izing” mechanism,  we  avoid  the  well-known  intractable
posterior collapse problem [5] of Transformer VAE.

5) The on-demand generation of an arbitrary amount
of data can also improve prediction accuracy.

 II. Background and Related Work

 1. Data background
This  paper  uses  the  MIMIC-III  database  [6] for  re-

lated research,  but the readers  can extend the proposed
method to other databases.

The  Medical  Information  Market  of  Intensive  Care
(MIMIC-III)  is  a  sizeable  center  database  that  contains
information  about  patients  admitted  to  intensive  care
units in large tertiary care hospitals. Its data include vital
signs,  drugs,  laboratory  measurements,  doctor’s  orders,
operation codes,  diagnostic  codes,  image  reports,  hospi-
tal stay, and survival data.

MIMIC-III  contains  data  related  to 53423 hospital
admissions of  adult  patients  (16  years  old  or  older)  ad-
mitted to the intensive care unit between 2001 and 2012
and 7870 newborns admitted between 2001 and 2008.

The  database  contains  26  data  tables.  Besides  the
dictionary  tables,  the  tables  are  connected  by  a  patient
number (subject_id), one or more admission record num-
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bers (hadm_id), and ICU numbers (icustay_id).
The  dictionary  table  includes  item  code  (d_item),

surgery code (d_icd_procedures), and laboratory exami-
nation  code  (d_labs).  One  patient  corresponds  to  one
subject_id,  but  there  may  be  multiple  admissions  and
multiple  hadm_id;  one  admission  may  involve  multiple
ICU entries,  i.e.,  one  hadm_ id  may  correspond  to  nu-
merous icustay_id. Each ICU stay (indicated by icustay_
id) contains various events after the patient entered the
ICU,  such  as  DateTimeEvents,  InputEvents  (CV,  MV),
OutputEvents,  LabEvents,  MicrobiologyEvents,  Note-
Events,  Prescriptions,  ProceduresEvents,  ChartEvents,
and CPTEvents.
 2. Related works

1) Feature extraction in current EMR analysis tasks
Our  primary  purpose  is  to  extract  features  from

EMR big  data  for  specific  analysis  purposes  (prediction
of mortality and phenotype). In this direction, there are
three usual approaches: extracting only single record fea-
tures; single record features directly composing time series
and extracting time series features; single record extract-
ing features, features composing time series and then ex-
tracting time series features for EMR data analysis.

In the current literature [7]–[11], biological, pharma-
ceutical, and medical researchers prefer to extract single
record features for EMR analysis. The approaches usual-
ly begin  with  hypothesizing  that  there  is  some  correla-
tion between the phenomenon and the disease  based on
knowledge  and  principles  within  the  field  of  expertise,
hypothesizing one  or  more  conclusions,  and  then  select-
ing multiple features in the EMR relevant to the patient

for validation  or  disproof.  This  analysis  focuses  on  dis-
covering or validating some professionally relevant scien-
tific theories related to biology, pathology, and pharma-
cology. The  amount  of  data  used  is  usually  tiny  com-
pared with big data, but each piece of data is rigorously
screened, and data quality is ensured. The analytical ap-
proach is simple but highly interpretable. When massive
extensive data  are  involved,  it  involves  only  simple  sta-
tistical  features,  usually  setting  confidence  interval
thresholds for the association of individual features of the
phenomenon with  the  disease  and  validating  and  dis-
proving  the  original  hypothesis  by  calculating  p-values.
Clearly, rather  than  relying  on  data,  such  analyses  de-
pend more on the background of the analyst’s expertise.

There is also some literature [1], [2], [12]–[18] on au-
tomatic  feature  extraction  using  machine  learning  (in-
cluding deep learning) methods for single records. These
methods  usually  construct  single  records  carefully,  then
extract  certain  features  of  single  records  by  machine
learning  methods,  and  finally,  use  logistic  regression  or
softmax to  achieve  relevant  predictions.  Since  their  fea-
ture extraction process does not consider the integration
of time and space, part and whole, veracity and diversity
of  the  analysis  domain,  usually,  these  methods  are  used
to  solve  some  analysis  problems  with  explicit  inference
processes and  obvious  conclusions  (including  intermedi-
ate  results).  The  difficulty  of  their  work  usually  lies  in
the  manual  collation  of  raw  data  or  the  formulation  of
filtering rules.

Several studies have noted the importance of analyz-
ing  EMR  data,  composing  time  series  from  individual
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records and extracting time series features for regression
or  classification.  At  this  point,  the  excessive  number  of
variables in  multivariate  time  series  is  highly  detrimen-
tal to  the  analysis,  so  compressing  the  number  of  vari-
ables becomes critical. In the literature [19], only fields of
two tables  (LabEvents,  ChartEvents)  were  used to  con-
struct time series, thus limiting the number of variables;
in the literature [20],  [21],  only four features of  Disease,
Age, Position,  and  Segment  were  extracted  for  time  se-
ries  analysis;  in  the  literature  [22],  time  series  analysis
networks were constructed separately for continuous fea-
tures,  clinical  orders,  and  category  data,  the  number  of
input variables for each time series network could be lim-
ited in this case.

Several papers have used two stages to extract fea-
tures for EMR data analysis with exciting analytical re-
sults. They first customize a set of condensed features in
a single record that can be obtained computationally and
then use them to form a time series for analysis. The lit-
erature [23]  uses  EHR data through sequences  of  ICD-9
codes, CPT codes, medication lists, and codes represent-
ing  patient  visits,  which  are  first  unsupervised  and pre-
trained  through  masked  language  modeling  (MLM)  and
then  fine-tuned  downstream  using  another  network  in
conjunction with a predicting depression task. Moreover,
the literature [24], [25] first builds a semi-synthetic EHR
dataset based on MIMIC-III using custom rules and then
uses Transformer to train on the semi-synthetic dataset.
While the literature [26] first transforms EHR data into
topological  map  features  and  then  applies  multi-headed
attention  and  Transformer  on  the  topological  map  to
accomplish  the  prediction  task.  In  summary,  all  these
methods use unsupervised methods to extract dimension-
ality reduction features in the first stage and then use a
temporal  analysis  network  in  the  second  stage  to  com-
plete the specific prediction task. The first stage needs to
be optimized according to the prediction objective.

2) Imbalanced data problem and its solutions
Generally, the EMR big data is distributed unevenly

in  specific  analysis  tasks,  and  imbalanced  data  problem
always exists in EMR/EHR analysis [27].

Traditionally,  four  Strategies  for  methods  to  deal
with unbalanced category data exist [28]–[32]:

Under-sampling  When  a  small  number  of  samples
does not affect the model training, the balance between a
small number of samples and a large number of samples
can  be  achieved  by  undersampling  a  large  number  of
samples.

Oversampling  When a small number of samples do
not support model training, the balance between a small
number of samples and a large number of samples can be
achieved by oversampling a small number of samples.

Weight allocation  By introducing a weighted model
algorithm, focus on fitting a small number of samples to
improve  the  learning  of  the  characteristics  of  a  small
number of samples.

Generate  composite  data  Create  new  composite

points from small samples to increase their cardinality.
From the literature  in  recent  years,  many solutions

in the field of EMR analysis are still a combination or re-
finement  of  these  four  ideas  [33]–[36].  Solving  problems
based on VAE in this paper is still a method of generat-
ing composite data, but it has unique advantages.

3) VAE and its posterior collapse problem-solving
We study a global fusion feature extraction method

based  on  the  VAE  (variational  auto-encoder)  [37] tech-
nique.

As  an  auto-encoder,  VAE  first  has  the  function  of
extracting  features  by  dimensionality  reduction,  after
which it constructs a set of incomplete independent nor-
mally distributed  random  variables  based  on  these  fea-
tures,  lets  these  variables  generate  features,  and  then
decodes  them to  obtain  an  output  similar  to  the  input.
In this process,  we can get the dimensionality reduction
features  and  generate  an  arbitrary  number  of  synthetic
samples that are different from each other based on the
features. Since the data is generated based on the catego-
ry label orientation and overall data distribution charac-
teristics, using VAE-generated data to solve the data im-
balance problem is feasible and effective.

N(0, I)

However,  to  utilize  VAE  in  this  scenario,  we  must
overcome  the  well-known  posterior  collapse  problem  in
VAE [38],  which  is  particularly  likely  to  occur  in  time-
series-related VAE networks. In general, the cause of the
posterior collapse in VAE models is the disappearance of
KL divergence, which results in the decoder ignoring the
posterior distribution generated by the Encoder and only
sampling  from  the  noise ,  thus  invalidating  the
VAE network.

The usual idea to solve this problem is to transform
KL  to  find  more  flexible  priors  and  posteriors  for  the
later  variables.  For  example,  setting  a  weight  value  for
the KL loss so that the weights gradually anneal [38]–[40]
is a good approach, but its drawback is that the anneal-
ing rate needs to be adjusted for different datasets.

ϵ

In  addition,  Kingma et  al.  (2016)  [41],  Chen et  al.
(2017) [42], Razavi et al. (2019) [5], and Zhu et al. (2020)
[43] proposed the concept of “free bits” so that each di-
mension of the KL term “retains a little space”. In other
words, if the KL value of this dimension is too small, we
leave it  untouched until  it  increases  beyond a threshold
value.  This  approach  is  easy  to  follow,  but  the  proper
threshold  must be  obtained  after  several  manual  at-
tempts.

Kingma et al. [41] also proposed the idea of normal-
izing flow. Namely, sampling the latent variable by sim-
ple  distribution  and  then  making  the  latent  variable
more flexible by multiple reversible distribution transfor-
mations. Thus, the latent variable sampling is no longer
restricted to Gaussian distribution to avoid vanishing KL.

Techniques applicable to other scenarios can also be
used  to  solve  the  KL  vanishing  problem  [44]–[56]  (for
NLP,  music,  music,  video,  molecular  design,  text-image
generation, multimedia learning, text generation, material/
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drug discovery,  social  relations,  saliency prediction,  sen-
tence generation, computer vision, respectively), however,
they  are  too  closely  related  to  specific  application  scen-
arios  and are difficult  to migrate to the scenario of  this
article. Therefore, we propose a novel “proportional and
stabilizing” mechanism  to  solve  the  posterior  collapse
problem.

 III. Method

 1. Global data collecting and organization
The current relational database system’s “entity re-

lationship” is relatively straightforward. Therefore, using
foreign keys to collect all data related to the target enti-
ty  in  the  database  is  feasible  through  repeated  SQL
“join” operations.

Take  MIMIC-III  as  an  example.  The “subject_id”
(which can be regarded as the patient ID) can be associ-
ated with “hadm_id” (stand for hospital admission ID or
visits ID) and “icustay_id”, then through the “icustay_
id”, the patient can be associated with various events. In
various  events,  there  may  be  various  dictionary  code
fields, such as item code (defined in the “d_item” table),
summary code (“d_icd_procedures”), and laboratory ex-
amination  code  (“d_labs”).  The  exact  meaning  of  these
codes  can  be  obtained  by  looking  up  the  corresponding
dictionary table to get the code value pair, and then the
value represented by each code can be obtained.

Take the column names (field names) involved in all
event tables in the database as a collection, and use the
elements  of  this  collection  as  the  column  names  of  the
new table to obtain a structured, sparse, multidimension-
al  empty table.  In this  way,  almost  all  SQL “join” out-
puts  can  find  the  corresponding  fields  and  populate
themselves.

This table has the following characteristics:
1) In the database, For events’ attributes related to

its “subject_id” and its affiliated “hadm_id”, “icustay_
id”,  the  corresponding  column  names  can  always  be
found in the table. Therefore, the information about each
event can be filled in the table. Therefore, the event in-
formation can be fully collected in the “subject_id”.

2) For different table records, the position and quan-
tity  of  columns  with  data  may  differ.  The  structure  of
the table can make it compatible with vibrant diversity.

3) A record in the table represents an event during a
patient’s stay in an ICU ward. Events can be sorted by
time. The time sequence of events is one of the essential
global characteristics.

4)  Tables  are  multi-dimensional  and  sparse,  which
means  that  most  columns  are  empty  for  any  record  in
the table, and the table has colossal dimension reduction
space.

In  particular,  SQL “join” operations tend  to  pro-
duce many empty columns. In extreme cases, the foreign
key and its necessary auxiliary field may be insignificant.
We do not do special handling (we impute missing data

in the simplest way possible, i.e., 0, blank, or false). For
missing  features,  we  form  a  missing  vector  for  fields’
“missing” state, with a default setting of 1 and 0 denoting
absence. Our subsequent local VAE is an auto-coding di-
mensionality reduction network that requires the output
to match the input as closely as possible. After training,
it will automatically filter out low-density information.

The different “hadm_id” obviously represent differ-
ent “visit” records of the patient. In other papers [20], [21],
[23], the data are specifically processed manually to make
them different  time series.  However,  when broken down
completely,  there  are  deeper  sub-series  within  the  time
series,  such  as  ICU  stay,  ward  transfer,  surgery,  and
drug  administration,  all  of  which  can  be  seen  as  sub-
visits  within  a  visit.  We  do  nothing  special  in  our
method except  time  ordering  since  the  global  Trans-
former  VAE  designed  for  multivariate  time  series  will
capture long-range dependent.

For multimodal data fusion, we only do simple pro-
cessing  in  the  pre-processing  stage:  the  category  data  is
processed as one hot vector; all-natural language descrip-
tion  fields  will  be  merged  and  converted  into  numerical
vectors using TensorFlow’s default vocabulary processor.
 2. The design of Dual-VAE

1) The local VAE
The  primary  purpose  of  designing  the  unique  local

feature extraction VAE is to extract dimension-reduction
features from a single ICU-STAY event. Figure 2 shows
its necessary auxiliary information and structure.

In  this  process,  we  first  define  the “proportional”
mechanism: the proportional mechanism refers to the in-
clusion of a loss function term in the VAE design so that
the relationship  between  the  high-dimensional  recon-
structed  data  and  the  low-dimensional  feature  hidden
variables  can  be  maintained  at  a  roughly  proportional
distance, which makes the magnitude of change of the re-
constructed  variables  consistent  with  the  magnitude  of
change of the hidden variables.

We  add  a  loss  function  item  to  constrain  hidden
variables:
 

le-proportional =
∣∣∣||x̂− x̂′|| − k||z0 − z

′

0||
∣∣∣ (1)

z0
x z′0

z0
x̂ x̂′ z0

z′0
z0 z′0

x̂ x̂′ z0 z′0

z0 z′0

where  is a dimension reduction feature extracted from
the input single medical event record , and  is a ran-
domly generated vector consistent with the  structure.
 and  are  the  reconstructed  samples  according  to 

and , respectively. It requires that, for any pair of vec-
tors  and , if there is a distance between them, there
should also be a distance between the reconstruction vec-
tors  and  generated by taking  and  as their hid-
den variables. In other words, the distance between them
should be proportional to the distance between  and 
as far as possible, which is also described in (2).
 

||x̂− x̂′|| ≈ k||z0 − z′0|| (2)
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The advantage of this is that it projects the hidden
variable and the generation record each into a space sim-
ilar in  Euclidean  distance  so  that  two  identical  genera-
tion  records  have  a  short  distance  in  both  the  original
high-dimensional  space  and  the  hidden  variable  low-
dimensional space. In comparison, the two different gen-
eration records are extended in both spaces. On the one
hand,  this  can facilitate  the  position  coding  in  the  next
Transformer VAE,  and  there  will  be  no  gradient  explo-
sion; On the other hand, it enables the KL calculation to
consider  other  distributions  different  from  the  Gaussian
distribution, which is convenient for solving the posteri-
or collapse problem.

Another key to the local VAE design is the design of
its  Encoder  and  decoder.  Here,  we  implement  encoding

and decoding based on 1D-CNN as shown in Figure 3.
For  encoding,  a  1D  convolutional  neural  network

(1D-CNN) is used for dimensionality reduction (shown in
Figure  3(a)), while  for  decoding,  the  corresponding  de-
convolutional design is used (shown in Figure 3(b)).

In Figure 3(a), the input data is normalized and dis-
cretized to 2074 dimensions. It undergoes three convolu-
tions and then global pooling to reduce the dimensionali-
ty to 34 dimensions, and we perform a batch normaliza-
tion and  pooling  operation  for  each  convolution.  We  fi-
nally use a Dense layer to align the dimensionality reduc-
tion data to 28 dimensions.

In Figure  3(b),  28-dimensional  hidden  variables  are
expanded  to  34  dimensions  by  a  Dense  layer,  then  up-
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sampled to 10 × 34. After three 1D deconvolutions, the
dimension is expanded to 2074 by global pooling.

In  this  way,  we  realize  the  coding  and  decoding  of
the  1D-CNN process,  whose  encoding  and  extraction  of
features are  almost  the  same  as  decoding  and  recon-
structing data.

2) The Transformer VAE

A specially designed Transformer VAE is used to ex-
tract the time series features of one patient. The key to
this is to solve the posterior collapse problem of the Trans-
former VAE.

First,  we  design  the  structure  of  Transformer  VAE
as Figure  4.  It  accepts  a  collection  of  hidden  variable
vectors as multivariate times series as its input.
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Figure 4  The diagram of the Transformer VAE.
 

ZZ0 z0
x̂

z0
x̂
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We can minimize the loss in the local VAE. There-
fore,  if  Transformer  VAE generates  the  required  hidden
variable ,  it  is  deemed  to  create  a  series  of  and
then a series of . After training, the Transformer VAE
can ensure the creation of proper  series approximately,
but cannot ensure the creation of approximate proper 
series  without  the “proportional” mechanism  because
there  always  be  a  slight  error  between  the  and .
Once  and  exists little difference,  there would be a
total complete new  created. The “proportional” mech-
anism ensures that, if there is a slight deviation of , the
departure  of  is proportional  to  it,  avoiding  the  situa-
tion that the slight variation of  causes a sharp expan-
sion of  deviation.

Ẑ0

Z ′
Z0

Z ′
Z0 ZZ0

For the solved  by the Transformer VAE decoder,
we will re-send it to the encoders (local VAE encoder and
Transformer VAE encoder) to generate  and require
the minimum distance between  and the original .

This  additional  process  makes  the  decoder  inverted
into  an “encoder”.  In  contrast,  the  original  encoder  is
switched  to “decoder” this time,  giving  the  original  en-
coder a chance to optimize from the representation when

participating in  the  optimization.  Thus,  when the  origi-
nal codec  extracts  consistent  features,  the  gradient  de-
scent has a clear and convenient path.

3) Balanced sampling design
This paper uses the feature that VAE can generate

different reconstruction data for the same sample and de-
signs a balanced sampling mechanism to solve the imbal-
anced data problem.

We conduct  a  balanced  sampling  with  the  replace-
ment method for each data category to ensure that every
category of sampled data is equal when training.

n k
c

Suppose that the number of multivariate time series
in the dataset  is ,  the number of  label  categories  is ,
and the number of iterations in the dataset is .

[n/k]

[n/k]

We  take  as  the  balanced  sampling  times  of
each  category  in  the  entire  dataset.  That  is  to  say,  no
matter whether the number of data records in each cate-
gory  is  greater  than  or  less  than  this  number,  the  data
within the category sampled before will  be put back for
sampling  next  time  until  the  whole  category  sampled

 times.
In this way, for small class data, even if each data is

sampled  multiple  times,  each  sampling  generates  non-
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repeated reconstruction data with a variation. Therefore,
we  can  extract  class  features  as  much  as  possible,  and
the  whole  network  can  pay  full  attention  to  small  class
data.

For large categories of data, the key lies in the par-
ticipation  of  each  data  since  each  data  is  precious.  We
need to let each data have a high probability of partici-
pating in the training process.

s
[n/k]

1−n/(ks) c
(1−n/(ks))c

c

25 1/2

9
1/10

10

Suppose  there  are  records  in  a  large  category.  In
each  training  iteration,  only  records  are  sampled
into  the  training  process.  Therefore,  the  probability  of
not  being  collected  for  each  record  in  this  category  is

. After  rounds of iteration, the chance of not
being collected is . Therefore, no matter how
uneven  the  data  is,  as  long  as  is  large  enough,  the
probability of not being collected for each record will be
small enough to guarantee that every record participates
in  the training process.  In  extreme cases,  for  a  data set
with  categories  and  of  them  is  large  categories,
the probability of each record not being hit has been re-
duced to less than 50% after only  iterations. While the
general  situation  accounts  for  in significant  cate-
gories,  the probability of not being taken after  itera-
tions decrease to 0.01%.
 3. Loss function constraint in training process

1) The local VAE’s loss function and its training
The  local  VAE  must  implement  the  function  of

basic VAE, Which will be realized through the formulas
below:
  

le_1(x) = RMSE(x, x̂) =

√√√√1

d

d∑
k=1

(
x(k) − x̂(k)

)2
le_2(x) = KL(p(z0 | x)∥q(z0))

=
1

2

d∑
k=1

(
µ2
(k)(x) + σ2

(k)(x)− lnσ2
(k)(x)− 1

)
le-vae(x) = le_1(x) + le_2(x)

(3)

le-proportionalThe previously mentioned formula 1 uses 
to  support  the  prevention  of  posterior  collapse,  and  it
should  be  included.  Therefore,  the  loss  of  VAE  during
initial training can be expressed by the formula below:
 

le-dividual(x) = αele-vae(x) + βele-proportional(x) (4)

αe βewhere  and  are the weights of various losses, which
can be adjusted during training.

When  the  loss  of  the  Transformer  VAE training  is
relatively stable, we add it to the alternative training so
that the  transformer  VAE  optimization  can  be  consid-
ered in the local VAE training, thus promoting the effi-
ciency improvement of the entire model.

z0
Z0

Z0

In  order  to  achieve  this  goal,  the  individual  record
features  involved in the patient are combined to form
a time series ,  which is  then sent to the Transformer
VAE, and then the Transformer VAE’s loss of  is ob-
tained from the  output.  The  loss  will  be  uniformly  dis-

z0tributed to .  In addition, this process is suitable for a
process at the end of the epoch.

Therefore, in alternative training, at the end of every
epoch,  the  weights  of  the  local  VAE  will  be  adjusted
once according to the equation below:
  {

lt(x) = l̄t(Z0)
le-co(x) = le-dividual(x) + lt(x)

(5)

2)  The  Transformer  VAE’s  training  and  its  loss
functions

Similarly,  for  Transformer  VAE,  to  achieve  VAE,
we use the formulas below:
  

lt_1(Z0) = RMSE(Z0, Ẑ0) =

√√√√ 1

D

D∑
k=1

(
Z0(k)−Ẑ0(k)

)2

lt_2(Z0) = KL(p(Zz0 | Z0)∥q(Z0))

=
1

2

D∑
k=1

(
µ2
(k)(Z0)+σ2

(k)(Z0)−lnσ2
(k)(Z0)−1

)
lt-vae(Z0) = lt_1(Z0) + lt_2(Z0)

(6)

Z0 Ẑ0When the  and  dimensions do not match, the
missing dimensions will be filled with zeroes.

To  support  the  mechanism for  preventing  posterior
collapse, we add the following:
 

lt-stablize(Z0) = ||Zz0 − Z
′

z0|| (7)

To  support  the  binary  classification  of  predicting
mortality, we add the following:
 

ltask(Z
′
z0, y) = −[y log ŷ + (1− y) log(1− ŷ)] (8)

Z ′
z0

ŷ
y 1 0

where  is the output of the Transformer VAE labeled
in Figure  3,  following  a  sigmoid  output  layer,  a  binary
probability  output  can  be  obtained.  When  predicting
mortality, the  is  for mortality and  for surviving.

K
K ŷk yk

Phenotyping is  a  combination  of  binary  classifica-
tions.  Assuming  that  there  are  phenotypes, the  net-
work needs  sigmoid outputs  for the ground truth ,
where each output represents the probability of predict-
ing  the  presence  of  a  particular  phenotype.  Thus,  the
classification loss will be:
 

ltask(Z
′
z0, Y ) =

1

k

K∑
k=1

[yk log(ŷk)− (1− yk) log(1− ŷk)] (9)

Therefore,  the  loss  of  the  Transformer  VAE during
training can be expressed by
 

lt(Z0, y) = αtlt-vae(Z0) + βtlt-stablize(Z0) + ltask (10)

αt βt

ltask

where  and  are the weights of various losses, which
can be adjusted during training, and  is chosen as (8)
or (9), depending on the specific task.

3)  Alternate  training  and  combination  of  the  dual
VAE
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x z0
z0

Z0

First,  we  can  pre-train  the  local  VAE  to  encode  a
single  medical  event  into  a  hidden  variable .  These
variables  are  collected  under  the  patient’s  name  to
form time series data  for the Transformer VAE. This
time  we  only  use  (1)  as  the  optimization  loss  function
without considering the Transformer VAE loss.

Z0

Then,  the  Transformer  VAE  can  be  trained  with
these time series data ( ) as input. Refer to (10) as its
loss function.

When  the  Transformer  VAE  trains  for  several
rounds and gets stable, it can train the local VAE alter-
nately. The Transformer VAE losses can be added to the
training  using  the  loss  function  of  (5).  After  alternately
training the local VAE and the Transformer VAE sever-
al times, the entire network can achieve optimal status.

 IV. Experiments
We  conduct  our  experiments  with  the  following

hardware and software environments:
Hardware:  CPU  XEON  2698v4  (20  cores  and  40

threads), memory 64 GB, SSD 1 TB, GPU Nvidia Tesla
V100.

Software:  operating  system  Ubuntu  18.04.3  LTS,
Nvidia  driver  version  440.33.01,  CUDA  v10.2,  cuDNN
v7.6.5, Keras GPU 2.3.1, Tensorflow GPU 1.15.0, Sci-kit
Learn 0.19.0.
 1. Unsupervised feature extraction

We expect to judge the natural feature extraction ef-
fect of the method in this paper by observations. There-
fore, we extract features by the Dual VAE without speci-
fying any analysis objectives and observing the visualiza-
tion of the features using PCA and t-SNE.

We labeled the individual samples (time series data
with  patients  as  the  integrated  object)  to  observe  the
features. That is, we color-code the samples with various
phenotype combinations.

25

25
(225 − 1)

467

In the MIMIC-III  data,  the phenotypes are ,  and
these  phenotypes  are  attached  to  each  sample  in  the
form of multiple labels, i.e., the same sample can be at-
tributed  to  multiple  phenotypes.  phenotypes  can  be
combined  into  categories, but  the  most  com-
mon ones are only a few hundred. Therefore, we extract
the most common  combinations to color the samples
with 467 colors.

Figure 5 is the visualization of the effects of the pro-
posed Dual VAE.

From Figure 5, we can see that:

1.25

The sample points in Figure 5(a) are not easily clas-
sified. Although  these  samples  are  normalized  and  dis-
cretized,  most  are  concentrated  in  a  small  area,  and  a
minimal number of them have a massive variance, so the
maximum  PCA  scale  is  stretched  to  hundreds  for  all
samples with unidimensional values around 1. The situa-
tion  is  significantly  improved  for  the  sample  points  in
Figure  5(b),  where  the  sample  points  are  more  evenly
distributed,  and  the  scale  is  reduced  to  a  maximum  of

.
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Figure 5  The  overall  visualization  (dimensionless)  of  the  effects  of
the proposed Dual VAE. (a)–(b) The 3-components PCA of (a) the
467  combinations  of  the  original  samples,  which  we  have  already
normalized  preprocessed,  and  (b)  the  467  combination  features,
which  the  proposed  Dual  VAE  extracts.  (c)–(d)  The  2-dimension
t-SNE of (c) the original samples and (d) the features we extract-
ed by the proposed Dual VAE method.
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Figures 5(c) and (d) show the divisibility of features
more  intuitively.  In Figure  5(c), although  a  few  cate-
gories are divisible,  most categories  have mixed and en-
tangled  samples,  which  are  difficult  to  distinguish.  In
Figure 5(d), the samples clearly show a tendency to clus-
ter in similar categories and move away from each other
in different categories, and the separability is significant-
ly improved.
 2. Feature extraction for predicting mortality

task
We can  extract  global  fusion  features  and  optimize

them  for  specific  binary  classification  tasks  (mortality
and phenotype prediction).

When  the  global  features  are  extracted  completely,
we randomly select 400 samples each time and use them
to  observe  the  distribution  of  the  samples.  We  do  this
because  most  of  the  overall  samples  are  not  mortal;  if
they are displayed thoroughly, the mortality samples will

be obscured.
The illustration is shown in Figure 6.
In contrast, Figures 6(a2), (b2), (c2) and (d2) show

that the sample has been separated clearly after the Du-
al  VAE  treatment.  Even  visual  observation  can  predict
efficiently. The usefulness of the method is prominent in
this case.

We studied the results using mortality as a positive
case  and  non-mortal  as  a  negative  case.  Most  patients
eventually  recover  after  leaving  the  ICU.  Mortal  cases
are  rare  compared  to  recovery  cases.  In  the  MIMIC-III
database, only 11.5% of the patients were mortal cases [6].
If  the  test  data  were  sampled  naturally  proportionally
and  tested  by  the  10-fold  cross-validation  method,  the
experimental results are shown in Table 1.

However, we are more concerned with positive cases
because  of  the  cost  of  incorrect  predictions.  When  the
model predicts a non-mortal patient as mortality, we lose
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Figure 6  (to be continued)
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some  medical  resources  at  most,  whereas  predicting  a
mortal patient as non-mortal is likely to put the patient
in mortal  danger.  In addition,  when a patient reaches a
point  where  their  mortality  needs  to  be  predicted,  the
patient  or  physician  must  have  felt  the  presence  of  a
death  threat,  in  which  case  the  mortality  rate  must  be
higher than  the  statistical  cases.  Therefore,  it  is  neces-
sary to artificially draw positive and negative samples in
equal  proportions  to  test  the  model.  The  results  of  the
equal  proportions  test  for  the  same model  are  shown in
Table 2. By comparing Tables 1 and 2 we find that:

1) Our  model  performs  better  in  the  equal  propor-
tion  test  set  than  the  natural  proportion  test  set.  In  a
balanced  dataset,  our  model  will  work  well  and  has  a

high  precision  due  to  the  raw data  proportion  having  a
large proportion of non-mortality. The AUROC remained
virtually  unchanged,  unaffected  by  the  proportion  of
samples tested. Thus the artificial sampling does not af-
fect the actual accuracy.

2) There are no significant fluctuations in each score
from “In  24  hours” to “In  48  hours” and “Category”,
which means that the model  can extract global  features
that can capture long-range dependencies.

3)  In Table  1,  the  precision  is  exceptionally  low,
leading  to  an  exact  low  F1  and  AUPRC.  Comparing
Table  2 shows that  this  is  an unfair  result  due to a se-
vere imbalance in the data. The results are significantly
different  simply  because  of  the  different  proportions  of
positive  and  negative  cases  in  the  test  set.  Suppose  we
invert the positive and negative cases, with non-mortality
as positive and mortality as negative (which means that
we emphasize the precisions of non-mortality predictions
more). In that case, we get Table 3.
 
 

Table 3  The  mortality  prediction  results  (Invert  the  positive  and
negative)

Case Acc Pre Rec F1 ROC PR

In 24h 0.880 0.991 0.881 0.933 0.876 0.936

In 48h 0.877 0.986 0.877 0.929 0.875 0.932

Category 0.881 0.981 0.883 0.929 0.875 0.932
 
 

The scores in Table 3 look very pleasing and create
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Figure 6  The left side (a1), (b1), (c1), (d1) and (e1) show the original data distribution (dimensionless) of Sample sets 1, 2, 3, 4, 5, respec-
tively, note that the distribution is different each time because a small number of samples are randomly selected. The right side (a2), (b2),
(c2), (d2) and (e2) show the distribution of the extracted features from the left original data. The features on the right are more favorable
for discrimination. (continued)
 

 

Table 1  The mortality prediction results (natural proportions)

Case Acc Pre Rec F1 ROC PR

In 24 h 0.881 0.309 0.871 0.456 0.876 0.590

In 48 h 0.882 0.412 0.872 0.560 0.877 0.642

Category 0.871 0.467 0.867 0.607 0.869 0.667
 

 

Table 2  The mortality prediction results (equal proportions)

Case Acc Pre Rec F1 ROC PRC

In 24 h 0.875 0.880 0.869 0.874 0.875 0.874

In 48 h 0.876 0.881 0.870 0.875 0.876 0.875

Category 0.870 0.871 0.869 0.870 0.870 0.870
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the  illusion  that  the  model  is  much  more  capable  than
Table 1, while these are just different test results for the
same model.
 3. Feature extraction for predicting phenotypes

We  can  extract  global  fusion  features  according  to
the  purpose  of  a  specific  multi-label  classification  task
and optimize the global features to favor phenotypic clas-
sification.

First,  we observe the PCA and t-SNE visualization
images of the extracted features, as shown in Figure 7.
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Figure 7  The  visualization  (dimensionless)  of  phenotypic  objective
feature extraction. (a) The 3-component PCA illustration of pheno-
typies;  (b)  The  unsupervised  feature  extraction  of  t-SNE from 25
random  combinations;  (c)  The  Dual  VAE  processed  features  of
t-SNE from 25 random com-binations.
 

From Figure  7(a),  it  can  be  seen  that  the  goal-ori-
ented PCA makes  the  orientation  of  the  data  more  ap-

parent  compared  to  the  unsupervised  feature  extraction
without  imposing  analysis  goals  (refer  to Figure  5(b)).
Moreover, comparing Figure 7(b) and (c), it can be seen
that although this is a multi-label classification, the anal-
ysis goal orientation makes the sample distribution more
consistent with  the  multi-class  classification  characteris-
tics.  We  display  the  multi-label  classification  results  in
Table 4 as below.
  
Table 4  Phenotypies prediction task results

Phenotype ROC PR

Acute and unspecified renal failure 0.844 0.729

Acute cerebrovascular disease 0.946 0.815

Acute myocardial infarction 0.812 0.696

Cardiac dysrhythmias 0.708 0.622

Chronic kidney disease 0.801 0.695

Chronic obstructive pulmonary disease 0.713 0.622

Complications of surgical/medical care 0.758 0.654

Conduction disorders 0.760 0.667

Congestive heart failure; Nonhypertensive 0.795 0.690

Coronary atherosclerosis and related 0.828 0.724

Diabetes mellitus with complications 0.915 0.793

Diabetes mellitus without complication 0.830 0.712

Disorders of lipid metabolism 0.751 0.659

Essential hypertension 0.703 0.618

Fluid and electrolyte disorders 0.771 0.662

Gastrointestinal hemorrhage 0.771 0.683

Hypertension with complications 0.772 0.671

Other liver diseases 0.802 0.697

Other lower respiratory disease 0.729 0.627

Other upper respiratory disease 0.808 0.705

Pleurisy; Pneumothorax; Pulmonary collapse 0.727 0.645

Pneumonia 0.842 0.724

Respiratory failure; Insufficiency; Arrest 0.949 0.822

Septicemia (except in labor) 0.888 0.767

Shock 0.929 0.804

All acute diseases (macro-averaged) 0.829 0.718

All mixed (macro-averaged) 0.796 0.694

All chronic diseases (macro-averaged) 0.771 0.671

All diseases (macro-averaged) 0.806 0.700
 
 

Table 4 shows that compared to the mortality pre-
diction task, the method performs relatively worse in the
phenotype prediction tasks but is still  available for con-
sideration. This  downside  is  mainly  because  the  imbal-
ance  between  positive  and  negative  cases  in  phenotype
prediction is more severe. However, the model still shows
a relatively good side: due to balanced sampling by phe-
notypes (with the same number of samples for each phe-
notype and  an  equal  proportion  for  positive  and  nega-
tive classes),  the  AUROC  and  AUPRC  of  each  pheno-
type tend to be consistent.
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 4. Ablation experiment
1) Ablation of the local VAE
Instead  of  extracting  single  record  features,  we  let

the  sparse  and  high-dimensional  data  go  directly  to
Transformer VAE for  mortality  and  phenotypes  predic-
tion.

X
Z0

In this case, too many variables would make it diffi-
cult  to  process  the  time  series  data  in  Transformer,  so
here  we  use  the  method  in  the  literature[19]  to  process
the  raw  data,  i.e.,  we  only  use  the  data  from  the
ChartEvents  and  LabEvents  tables  and  normalize  and
discretize the data before entering the Transformer. The
sparse  high-dimensional  data  is  directly  substituted
into ,  and  (6),  (7),  (8)  are  used  as  the  loss  functions
for  training.  We  observed  about  a  0.23  reduction  in
AUROC. In addition, due to the lack of the “proportion-
al  and stabilizing” mechanism, there is  an approximate-
ly  1/3  chance  that  Transformer  VAE  will  experience  a
posterior collapse randomly.

2) Ablation  of  posterior  collapse  prevention  mecha-
nisms

Our posterior  collapse  prevention  mechanism  con-
sists  of  two parts:  the  use  of  the “proportional” mecha-
nism in the local VAE, i.e., formula (1); the other is the
re-feeding of the reconstructed samples into the Encoder
in  the  Transformer  VAE  and  the  use  of  formula  (6).
When these  two  components  are  missing,  posterior  col-
lapse is inevitable. We experiment with mortality predic-
tion (the phenotyping experiment is similar and is omit-
ted here).

We observed  the  training  accuracy  curve  in  Trans-
former VAE training, as shown in Figure 8.
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Figure 8  The train accuracy curve of posterior collapse.
 

0.5

N(0, 1)

Figure  8 shows  a  brief  upward  trend  in  accuracy
during  the  initial  training  because  the  local  VAE  has
been fully  trained.  However,  with  the  gradual  adjust-
ment of  the  network  weights,  accuracy  violently  oscil-
lates,  drops  sharply,  and  finally  oscillates  around .
The network’s hidden layer no longer learns from the da-
ta but from .

3)  Ablation  of  imbalanced  data  problem alleviation
mechanisms

The  approach  in  this  paper  focuses  on  alleviating

the  data  imbalance  problem  by  generating  high-quality
synthetic  data  on  demand.  Therefore,  we  compare  the
mortality data under the condition of an equal number of
data bars (10000 patients) at 1 to 1, 1 to 2, ... and 1 to 18
to compare their ROC-AUC (note that the natural ratio
of the original data is 0.085:1, which can be treated as if
no  data  imbalance  mitigation  mechanism  is  used).  The
results are shown in Figure 9.
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Figure 9  The results  of  different  mortality  proportional  multipliers
in training set.
 

As seen from Figure 9, the ROC-AUC of this model
is lower than the natural ratio when the mortality sam-
ples to non-mortality samples are lower than 1 to 4. Pay-
ing particular attention to the mortality category is not
for free.

However,  when  the  ratio  of  mortality  samples  to
non-mortality samples reaches 1:6, the ROC-AUC of the
model  in  this  paper  reaches  its  peak,  and  its  value  is
higher than the natural ratio.

Therefore, it can be concluded that:
i) The  sample  rationing  affects  the  final  model  ef-

fect.
ii) The natural ratio of mortality and non-mortality

samples could  be  worse  for  constructing  the  classifica-
tion model.  However, the sample balance could also dif-
fer from the equal number of samples in both categories.

iii) The method in this paper can alleviate the sam-
ple imbalance problem in mortality prediction.

This  ablation  experiment  construction  method  can
also  be  utilized  to  explore  the  training  sample  ratio  of
the optimal model for binary classification.
 5. Comparison experiment

1) Comparing with benchmarks
We  give  the  mortality  accuracy  results  compared

with the benchmarks [19],  as shown in Table 5 (natural
proportion in the test set) and Table 6 (natural propor-
tion).

In order  to  be  consistent  in  caliber  with  the  com-
pared method, only events from two tables (ChartEvents
and LabEvents) are used in the experiment (the method
being compared does not lend itself to too many tables),
which makes  the  results  of  our  method here  slightly  in-
consistent with the results  the previous separate  experi-
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ments. Using only two tables limits the method’s perfor-
mance, and the true capability of our method is not ful-
ly realized here.

As can be seen from the two tables:
i) The main reason for pulling down the Precision is

the extreme data imbalance.
ii)  The method in this  paper can alleviate the data

imbalance problem.
iii)  The  method  in  this  paper  improves  prediction

accuracy (AUC-ROC)  while  alleviating  the  data  imbal-
ance problem.

2) Comparing with the latest methods
The method in this paper is compared with the cur-

rent methods related to EHR and EMR time series anal-
ysis.  Since  the  prediction  objectives  of  each  method  are

different,  the  methods  of  constructing  training  and  test
sets  are  also  different.  For  this  reason,  this  paper  takes
their basic ideas and modifies them appropriately accord-
ing to  the  mortality  prediction  task  objectives.  Mean-
while, in the training set and test set,  the ratio of mor-
tality to non-mortality was adjusted to 1:6 according to
the  random sampling,  which  is  likely  to  be  the  optimal
ratio  for  achieving  the  best  model  in  the  MIMIC-III
database based  on  the  results  of  the  ablation  experi-
ments  of  alleviating the data imbalance problem in this
paper.

The results of the experiments are shown in Table 7.
From  the  table,  the  experimental  results  of  the

methods in  this  paper  are  relatively  good  when  com-
pared with the latest methods.

 
 

Table 7  The mortality prediction results compared with the latest methods

Method Acc Pre Recall F1 ROC PR

Dual-VAE (ours) 0.920 0.667 0.877 0.758 0.902 0.772

BEHRT [21] 0.914 0.648 0.873 0.744 0.897 0.761

HI-BEHRT [20] 0.917 0.657 0.874 0.750 0.899 0.766

T-BEHRT [25] 0.905 0.618 0.872 0.723 0.891 0.745

HiTANet [57] 0.820 0.435 0.870 0.580 0.841 0.653

BRLTM [23] 0.847 0.479 0.862 0.616 0.853 0.671

MUFASA [22] 0.844 0.476 0.901 0.623 0.868 0.689

SETOR [26] 0.888 0.574 0.833 0.680 0.865 0.704
 
 

 V. Discussion
In this paper, we construct a Dual VAE, which inte-

grates two feature extraction processes (the single medi-
cal event and the integrating time series  feature extrac-
tion). By using these means, we can finally extract global
fusion features  of  the  whole  database  for  medical  elec-
tronic medical record analysis.

Extracting  individual  medical  event  features  makes
the  implied  variables  proportional  to  the  reconstructed
variables.  It  stabilizes  the  reconstructed  variables  to

recode  the  values  when  extracting  patient-related  time
series features,  making it possible to avoid the posterior
collapse phenomenon  in  complex  VAE  design  when  ex-
tracting patient global fusion features.

Meanwhile,  the  advantage  of  generating  different
implied features for the same sample each time by sam-
pling without replacement and using VAE alleviates the
common  data  imbalance  problem  in  medical  electronic
records analysis.

The paper  demonstrates  the  feature  extraction  ef-
fect using feature visualization and other means.

  

Table 5  The mortality prediction results with benchmarks (natural proportion)

Method Acc Pre Recall F1 ROC PR

Dual VAE 0.879 0.250 0.900 0.391 0.889 0.575

Logistics regression 0.846 0.200 0.850 0.323 0.848 0.525

Channel-wise LSTM 0.862 0.220 0.860 0.350 0.861 0.540

Multi-task chanel-wise LSTM 0.869 0.232 0.880 0.367 0.874 0.556
 

  

Table 6  The mortality prediction results compared with benchmarks (equal proportion)

Method Acc Pre Recall F1 ROC PR

Dual VAE 0.889 0.881 0.900 0.890 0.889 0.890

Logistics regression 0.848 0.847 0.850 0.848 0.848 0.848

Channel-wise LSTM 0.861 0.862 0.860 0.861 0.861 0.861

Multi-task chanel-wise LSTM 0.874 0.870 0.880 0.875 0.874 0.875
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 VI. Conclusion
This paper describes the method of establishing Dual

VAE,  which  can  extract  global  fusion  features  from
multi-dimensional  sparse  and  time-related  large  wide
tables. This method can avoid a posteriori collapse which
is difficult to avoid in traditional VAE methods for com-
plex time series  data,  and alleviate  the problem of  data
imbalance.

Experiments  show  that  this  method  can  achieve
better results than the benchmark methods in binary and
multi-label classification tasks. Therefore, it can be used
as a reference for the analysis of EMR, which has a rea-
sonable prospect today.
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