
 

RESEARCH ARTICLE

Long Short-Term Memory Spiking Neural
Networks for Classification of Snoring
and Non-snoring Sound Events

Rulin ZHANG, Ruixue LI, Jiakai LIANG, Keqiang YUE, Wenjun LI, and Yilin LI

Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China 

Corresponding author: Wenjun LI, Email: liwenjun@hdu.edu.cn
Manuscript Received July 10, 2022; Accepted June 21, 2023
Copyright © 2024 Chinese Institute of Electronics

Abstract — Snoring  is  a  widespread  occurrence  that  impacts  human  sleep  quality.  It  is  also  one  of  the  earliest
symptoms of  many sleep disorders.  Snoring is  accurately  detected,  making further  screening and diagnosis  of  sleep
problems easier. Snoring is frequently ignored because of its underrated and costly detection costs. As a result, this
research  offered  an  alternative  method  for  snoring  detection  based  on  a  long  short-term  memory  based  spiking
neural network (LSTM-SNN) that is appropriate for large-scale home detection for snoring. We designed acquisition
equipment  to  collect  the  sleep  recordings  of  54  subjects  and  constructed  the  sleep  sound  database  in  the  home
environment. And Mel frequency cepstral coefficients (MFCCs) were extracted from these sound signals and encoded
into  spike  trains  by  a  threshold  encoding  approach.  They  were  classified  automatically  as  non-snoring  or  snoring
sounds by our LSTM-SNN model. We used the backpropagation algorithm based on an alternative gradient in the
LSTM-SNN to complete the parameter update. The categorization percentage reached an impressive 93.4%, accom-
panied by a remarkable 36.9% reduction in computer power compared to the regular LSTM model.
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I. Introduction
Snoring is one of the most typical sleep problems in

humans.  In  daily  life,  the  likelihood  of  snoring  during
sleep ranges from 13% to 42.4% [1]. Because snoring is so
prevalent and has little impact in the short term, it has
yet to be taken seriously. Snoring can lower the amount
of oxygen in the blood, which might mainly contribute to
health issues, including heart disease, high blood pressure,
stroke, diabetes, and so on [2], [3]. In addition, snoring is
one of the earliest and most common symptoms of many
sleep disorders, such as obstructive sleep apnea hypopnea
syndrome (OSAHS) [4], which has a high prevalence and
affects people of all ages. The global prevalence of OSAHS
is between 2% and 10%, with an increased tendency [5].
At  night,  patients  with  OSAHS  may  feel  shortness  of
breath and hypoxia. Severe instances can result in hypox-
emia and hypercapnia and even lead to sudden death [6].

Polysomnography  (PSG)  is  now  the  most  reliable
diagnostic tool for detecting sleep problems. It has various
sensors  which  monitor  multiple  physiological  indicators
of  sleep,  such  as  respiratory  airflow,  electrocardiogram,
electroencephalogram, and so on [7].  However,  there are
certain  drawbacks  to  adopting  PSG  detection.  On  the
one  hand,  PSG  is  time-consuming,  costly,  and  requires
experienced personnel. It is not popularized in each hos-
pital [8]. As a result, some patients missed the best timing
of treatment. On the other hand, when a patient wears a
variety  of  sensors  for  long-term  monitoring  during  the
recording by PSG, the patient’s sleep quality would un-
doubtedly be altered, altering the measurement data and
the diagnostic results. Therefore, the development of more
efficient,  cost-effective,  and  non-contact  approaches  for
screening  and  diagnosing  sleep  disorders  is  of  primary
scientific importance. 
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When  employing  non-contact  methods  to  identify
sleep  issues,  an  auxiliary  diagnostic  method  based  on
snoring  has  naturally  become  the  most  straightforward
and  successful  approach.  First,  the  snoring  sound  has  a
simple recording procedure as an acoustic  signal  [9]  and
entirely  fits  the  non-contact  standards.  Second,  there  is
the fact that snoring is a prevalent symptom of a variety
of sleep problems [10]. Such as nearly 75% of sleep snorers
suffer from OSAHS [11]. Moreover, research [12] showed
that  acoustic  parameters  of  snoring  noises  changed  sig-
nificantly  between regular  snorers  and OSAHS patients.
By examining the acoustic features of snoring, it is possi-
ble to detect and assess the severity of OSAHS [13]–[15].
Hence,  the  ability  to  distinguish  massive  snoring  sound
episodes from raw  respiratory  sounds  quickly  and  accu-
rately has become a sufficient and necessary requirement.

Due to the prevalence of sleep problems, snoring de-
tection at  home  is  an  important  study  area.  Many  re-
searchers [16]–[21] constructed neural networks to detect
snoring.  However,  traditional  neural  networks  have  a
vast number of parameters, making it challenging to dir-
ectly  transplant  the  trained  model  to  embedded devices
for  completing  local  detection.  Some  studies  [22]  used
mobile phones  to  collect  sound  to  accomplish  localiza-
tion.  Nevertheless,  it  was  still  necessary  to  upload  the
sound data to the server for calculation and then return
the detection  results  to  the  mobile  phone.  This  tech-
nique of transmitting sound data to the server for detec-
tion required a large amount of storage and computation-
al  resources,  and  it  did  not  fully  fulfill  home  detection
localization.  One approach to transferring the algorithm
from the server to the local side was to create a network
model with fewer parameters, allowing to transfer of the
trained model to the integrated device immediately. This
paper  employed  an  automatic  snore  detection  model
based on a LSTM-SNN. The model inherited the accura-
cy of the LSTM networks in sound recognition and had
the characteristics of SNN receiving spiking sequences as
input  for  information  transmission  and  processing  and
sharing  spiking  instead  of  floating  point  values.  So  the
LSTM-SNN reduced the networks’ computational param-
eters  and  provided  a  solution  for  porting  the  algorithm
to integrated devices without losing accuracy.

The content of this paper is as follows: Section I in-
troduces  the  research  background.  Section  II  describes
the research status  of  snoring  detection.  Section III  dis-
cusses data collection and model architecture. Section IV
details the design of the specific parameters in the exper-
iment and the  analysis  of  the  experimental  results.  Sec-
tion V presents the conclusion and discussion. 

II. Related Work
Many academics have presented various approaches

to  identify  snoring  occurrences  automatically  in  recent
years. For example, Bruno Arsenali et al. [8] worked with
the  Center  for  Sleep  Medicine  to  gather  sleep  sounds
from  20  people  who  had  standard  PSG  reports.  They

used  Mel  frequency  cepstral  coefficient  (MFCC)  and  a
recurrent neural network (RNN) to identify snoring and
non-snoring events in binary, which obtained an accura-
cy of 95%. Smartphones were utilized by Lim et al.  [16]
to  capture  the  individuals’ sleep sound  data.  They  ex-
tracted  several  characteristics  from  the  sound  data  and
employed  RNN  to  identify  snoring.  On  their  dataset,
their  model  has  a  high  accuracy  rate  of  98.9%.  Nguyen
et  al.  [17]  used  a  microphone  worn  around  the  neck  to
capture nocturnal sleep sound data from 15 subjects with
snoring complaints.  They  proposed  a  multilayer  percep-
tron neural network with a correlation filter (f-MLP) and
acquired an average detection rate of 96%. Jiang et al. [18]
teamed up with a hospital to collect sleep sound data us-
ing a  microphone.  They  extracted  five  spectrogram fea-
tures  from  audio  data.  They  also  created  two  models,
convolutional  neural  networks  (CNNs)-deep neural  net-
works (DNNs) and CNNs-LSTMs-DNNs, for combination
experiments. Khan [19] extracted MFCC spectrograms as
input  features  from  different  online  public  datasets  and
constructed  CNN to  categorize  snoring  and  non-snoring
occurrences.  Based  on  the  constant-q  transform (CQT),
Xie et al. [20] employed the SOMNIN [21] to create a 3-
layer CNN, 1-layer LSTM for snoring sound classification.
The model’s categorization accuracy was more than 94%.

These researchers produced positive findings in their
experiments  but  did  not  consider  snoring  data  in  the
home environment. Sleep disorders are a common occur-
rence, as evidenced by several statistics. Therefore, snor-
ing detection at  home is  critical  for  screening and diag-
nosing  sleep  problems  and  may  become  a  future  trend.
Sound data  gathered  in  a  home  environment  can  con-
tain more  complicated  background  noise  than  data  col-
lected in a professional sleep laboratory or quiet hospital.
It necessitates a model with more generality and stabili-
ty.  In  addition,  designing  a  hardware-friendly  model  for
the home environment is critical,  as the model could be
readily translated to the edge device and applied to the
home.  Using  CNNs  and  RNNs  with  high  parameters  is
not an ideal option.

For  the  two  problems  mentioned  above,  first,  our
team  designed  a  convenient  collection  device  for  proper
storage  and  uploading  for  sleep  sound  recording  in  a
home environment  and  constructed  a  database  of  snor-
ing  clips  in  daily  life.  Second,  spiking  neural  network
(SNN)  offers  the  advantage  of  having  fewer  parameters
and consuming less energy. Data-driven learning is used
in current DNN models, which demand many processing
resources.  SNN  relies  on  event-based spiking  computa-
tional units for learning and computation. It is more en-
ergy and resource-efficient because of its temporal sparsi-
ty.  As  a  result,  we  created  a  low-energy  LSTM-based
spiking neural network to detect snoring and non-snoring
events automatically. In the end, we achieved a recogni-
tion  effect  comparable  to  traditional  neural  networks,
providing an alternative solution for sleep sound acquisi-
tion and snoring detection in a home environment. 
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III. Dataset and Methods
This section describes  the specifics  of  the whole  ar-

chitecture  of  the  LSTM-SNN system used in  our  study.
The  general  system framework  is  shown  in Figure  1.  It
consists of four parts: dataset generation, feature extrac-
tion,  spike  encoding,  and  model  building.  The  model-
building part includes spiking neural units and backprop-
agation  methods  based  on  alternative  gradients.  Details
of all these four parts are described in the following sub-
sections.
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Figure 1  Framework of the LSTM-SNN algorithm in this work.
  

1. Dataset acquisition and annotation
In  our  experiment,  we  cooperated  with  Hangzhou

Normal University Affiliated Hospital to record subjects’
overnight  sleep  sound  with  their  consent.  In  order  to
adapt to the home environment, we designed acquisition
equipment to record sound data. The primary main con-
trol  module  of  this  acquisition  equipment  was  NXP’s
Cortex-A7  architecture  I.MX6ULL.  The  I.MX6ULL
microcontroller unit worked at 800 MHz and easily sup-
ported the embedded Linux system. Functional modules
included audio acquisition, wireless communication, stor-
age,  and  power  supply  modules.  The  audio  acquisition
module  was  responsible  for  sleep  audio  recording  and
quantization coding. A high-resolution microphone (NIS-
80V, FengHuo  Electronic  Technology  Co.,  Ltd,  Guang-
dong, China; 20–2000 Hz frequency range, −45 dB sensi-
tivity) was used to record sleep sounds.  It  was connect-
ed to the audio code chip to encode the sound signal dig-
itally.  The  audio  data  was  sent  online  to  the  server

through 4G wireless transmission or saved locally on an
SD card.  Furthermore,  the  equipment  used  the  Type  C
interface for  the  wired  power  supply.  A  voltage  regula-
tor circuit was included inside the power supply module
to provide the needed working voltage for each module.

In our experiment, we used a portable PSG and our
acquisition equipment  to  collect  physiological  data  syn-
chronously  during  the  nocturnal  sleep  of  subjects.  PSG
was  used  to  diagnose  subjects  with  sleep  disturbances,
ensuring the diversity of sleep sounds in our dataset. Our
acquisition equipment was installed at the bedside to col-
lect respiratory sounds while sleeping. The distance from
the device to the subject should be kept within 3 m, with
1.5  m  being  an  ideal  limit.  The  device  used  a  16  kHz
sampling frequency, 16-bit sample bits, and monophonic
sound to record sleep sounds. We formatted each piece of
audio  data  in  a  fixed-size  format  of  100  MBytes.  (each
audio duration was about 50 minutes). We collected au-
dio  data  from 54  subjects  aged  16  to  58,  comprising  41
males and 13 females, and included 21 usual snorers and
33 individuals with various degrees of OSAHS. Each indi-
vidual was monitored for 7 hours each night on average.
Table 1 includes all of these individuals’ information.
  
Table 1  Subject demographic information

Features Normal OSAHS

No. of subjects 21 33

Age (year) 35.10±12.51 45.91±14.01

BMI (kg/m2) 24.43±3.52 26.90±3.13
AHI (times/hour) 2.00±1.05 25.47±15.77

Note: BMI: body mass index, calculated by the weight and hight; AHI:
apnea hypopnea index, which clinically is used for OSAHS diag-
nosis.

 

This study  aimed  to  automatically  categorize  snor-
ing and non-snoring events in recorded sleep audio. Thus,
we needed  to  create  a  dataset  that  included  both  snor-
ing  and  non-snoring  incidents. Figure  2 depicts  how we
processed raw sleeping sound data. First, we applied the
Wiener filter algorithm [23] to denoise the raw data. We
can see the reduction of burrs on the audio waveform after
denoise  processing.  Then,  we  utilized  a  dual-threshold
endpoint  detection  algorithm  based  on  short-term ener-
gy  and  short-term  zero-crossing  rate  [24]  to  recognize
voiced  segments  in  raw  sleep  sounds.  We  marked  the
sound  segments  that  will  be  intercepted  with  vertical
lines of the same color (red or green) in Figure 2. Finally,
experienced  doctors  marked  snoring  and  non-snoring
events.  Our  experiment  generated  a  dataset  containing
6052 snoring  clips,  including  basic  snorers  and  OSAHS
sufferers of  various severity,  and 6052 non-snoring clips,
containing  various  ambient  noises  such  as  speaking,
phone ringing, coughing, and other sounds. 

2. Feature extraction
Mel frequency cepstral  coefficient  (MFCC) [25]  is  a

nonlinear  characteristic  based on human hearing.  It  has
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x(t)

been widely  used in  audio  recognition studies,  including
snoring  recognition  [22],  and  it  also  performed  well  for
audio  signals  with  a  lower  signal-to-noise  ratio  [26].  In
our experiment,  we  calculated  MFCCs  as  input  charac-
teristics  for  each  sample.  For  a  sound  signal ,  the
MFCCs calculation process is as follows:

Step  1  Data  preprocessing  including  pre-emphasis,
framing,  and  windowing.  Pre-emphasis  was  passing  the
speech signal through a high-pass filter. Then the signal
was separated into 2040 ms per frame, with overlapping
between  two  consecutive  frames  to  minimize  significant
changes between them. Per frame passed a window func-
tion, such as a Hamming window, reduced spectral leakage.

Step 2  Calculated the fast Fourier transform (FFT)
of each frame to obtain the spectrum.

 

X(k) =

N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, . . . , N − 1 (1)

k n
N

where  is the spectral line (frequency component),  is
the  sampling point,  and  is the  total  number of  sam-
pling points.

Step 3  For each frame, calculated the power spec-
trum  and  passed  through  a  set  of  Mel-scale  triangular
filters, which could obtain the energy value of the signal.
It was achieved by

 

s(m) = ln

(
N−1∑
k=0

|X(k)2Hm(k)|

)
, 0 ≤ m ≤ M (2)

H(k)
m M
where  is  the frequency response of  triangle  filters,

 denotes the mth filter, and  is the number of Mel-
scale triangular filters.

Step  4  The  discrete  cosine  transform  (DCT)  was
applied to decorrelate the filter bank coefficients.

 

C(l) =

M∑
m=0

s(m) cos
(
πl(m− 0.5)

M

)
, l = 1, 2, . . . , L (3)

Lwhere  is the order of MFCCs.

39× 280

In  this  work,  we  divided  the  sound  sample  into  32
ms per frame, set the number of FFT points to 512, and
chose  the  number  of  Mel-scale  triangular  filters  in  the
filter bank to be 26. The number of MFCCs was set to 39,
including  13-dimensional  MFCCs,  13-dimensional  first-
order  difference  coefficients,  and  13-dimensional  second-
order difference  coefficients.  The  first  dimension  coeffi-
cients were replaced with logarithmic energy values. Fur-
ther, we  normalized  the  feature  matrix.  Then  the  fea-
ture matrix size of all samples was unified . We
called  the  audio  processing  library  librosa  to  calculate
MFCCs. Figure 3 plots a non-snoring class sample and a
snoring class  sample in the time domain and its  MFCC
representation. 

3. Model
1) Spike encoding
A spiking  neural  network  is  a  type  of  neural  net-

work  replicating  biological  neuron  cells  fed  a  series  of
spikes as  input.  It  is  required  to  encode  the  input  fea-
tures into discrete pulse sequences to create an effective
spiking  neural  network  [27]. The  collected  MFCC  fea-
tures were encoded in this  paper  using a threshold cod-
ing  approach  based  on  Gaussian  distribution  [28].  We
created  a  MFCCs  spectrum  for  all  samples  throughout
the  feature  extraction  method  in  section  III-2.  Then  we
generated a threshold matrix comprising values to cover
the MFCCs spectrum. The Gaussian distribution of this
threshold  matrix  had  a  mean  of  0  and  a  variance  of  1.
We compared each sample’s MFCCs spectrogram to the
threshold  matrix  as  (4).  When  the  sample’s  MFCCs
spectrum  value  exceeded  the  encoding  threshold,  the
characteristic data was encoded as a spike; otherwise, it
was encoded as null.

 

Sij (l) =

{
0, Cij (l) ≤ µij

1, Cij (l) > µij

(4)

µij (i, j)where  denotes the threshold at the  position of
the threshold  matrix.  As  a  result,  the  MFCC  spectro-
gram  was  converted  into  the  0-1  matrix. Figure  4 de-
picts the threshold encoding procedure.

2) LSTM spiking neural networks
Long short-term memory network (LSTM) [29]  is  a

particular case of RNN, which has the outer loop of RNN
and an intracellular self-loop. It works well with time se-
ries  signals  [30].  The  classification  model  in  this  paper
adopted the LSTM-SNN [28] that leverage the LSTM ca-
pability of learning temporal dependencies and the SNN
advantages  of  energy saving.  As shown in Figure 5,  the
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Figure 2  Process of labeling for raw audio data.
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σ1(·) σ1(·)

LSTM spiking  cell  we  used,  like  the  typical  LSTM cell,
has  three  crucial  gate  structures:  the  input  gate  checks
the information entering the cell, the forget gate helps to
discard  superfluous  information,  and  the  output  gate
produces  the  cell’s  result.  The  difference  is  that  the
LSTM spiking  cell  used  two  threshold  activation  func-
tions  and  instead of sigmoid and tanh in the
conventional LSTM.  These  activation  functions  deter-
mine  the  output  of  spikes  or  nulls  at  each  time  step  in
their respective gates. The key of such an LSTM spiking
unit, like ordinary LSTMs, is the unit state which acts as

{x1, x2, . . . , xT }

a conduit and manager of information flow between units
[28].  More  specifically,  given  a  set  of  spiking  inputs

,  the  gates  and  states  are  characterized
as follows:

 

ft = σ1(ωf,hht−1 + ωf,xxt−1 + bf,h + bf,x)

it = σ1(ωi,hht−1 + ωi,xxt−1 + bi,h + bi,x)

gt = σ2(ωg,hht−1 + ωg,xxt−1 + bg,h + bg,x)

ct = ft ⊙ ct−1 + it ⊙ gt

ot = σ1(ωo,hht−1 + ωo,xxt + bo,h + bo,x)

ht = ot ⊙ ct (5)

ft it gt
ct ot

gt ⊙
σ1(·) σ2(·)

θ1 θ2

ct = ft ⊙ ct−1+it ⊙ gt

where  is forget gate layer,  is input gate layer,  is
modulated input,  is unit state,  is output gate layer,

 is hidden state,  represents the Hadamard product,
 and  are  threshold  activation  functions  that

can map their  input  to  a  spike  if  it  exceeds  the thresh-
old  value  and ,  respectively.  Both  thresholds  were
set  to  0.1  in  our  experiments,  as  shown  in  (6).  Notice
that the unit state ( ) can take the
values 0, 1, or 2. Since the gradients around 2 are not as
informative,  we threshold this  output to  output 1  when
it is 1 or 2.

 

σ1(u) = σ2(u) =

{
0, u ≤ 0.1
1, u > 0.1

(6)

3) Backpropagation based on alternative gradient

L
ω

Most models  employ the  gradient  descent  approach
to update parameters during backpropagation, either di-
rectly or  indirectly.  Gradient  descent  is  used  to  mini-
mize the  loss  function.  Equation  (7)  approximately  ex-
presses  the relationship between the model  loss  value 
and the weight  in the LSTM unit:

 

∂L

∂ω
=

∂L

∂σ
· ∂σ
∂u

· ∂u
∂ω

(7)

∂σ
∂u

The activation process of the LSTM spiking unit de-
scribed above was represented as a step function with an
infinite derivative at the threshold and zero at all  other
points.  That is  to say,  cannot be directly calculated
in the LSTM spiking unit. As a result, we could not use
gradient descent methods to optimize the LSTM-SNN di-
rectly.  Recently,  alternative  gradient  methods  [31]–[33]
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Figure 3  Sound  signals  and  their  corresponding  MFCC  spectrum.
(a) The non-snoring sound; (b) The snoring sound.
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∂σ1

∂u G1(u)
∂σ2

∂u

G2(u)
L

ω

were  proposed  to  deal  with  non-differentiable pulse  se-
quences.  They  tried  to  update  the  gradient  information
based  on  various  approximation  functions  of  the  step
function using  the  derivative  of  the  approximate  func-
tion  as  a  replacement  gradient  without  modifying  the
spiking  neuron’s  activation  process.  The  study  by  Lotfi
Rezaabad et al. [28] found that the choice of the alterna-
tive derivative function is preferable to a Gaussian distri-
bution  with  suitable  variance.  Based  on  the  derivatives
of the sigmoid and tanh functions employed in standard
LSTM cells, we looked for other alternative functions, in-
cluding  the  Gaussian  function,  Gaussian  error function,
and fast sigmoid function, as shown in Figure 6. In this
work, we  concluded the  best  result  was  achieved  by  re-
placing  with  a  Gaussian  distribution  with
mean 0 and variance 4, and  with a Gaussian distri-
bution  with  mean  0  and  variance  0.3.  Therefore,
the relationship between the model loss value  and the
weight  during  the  back-propagation  process  of  the
LSTM-SNN model can be expressed as

 

∂L

∂ω
=

∂L

∂σ
· ∂σ
∂u

· ∂u
∂ω

≈ ∂L

∂σ
·G(u) · ∂u

∂ω
(8)

4) Evaluation metrics
In  this  paper,  the  performance  of  the  model  was

evaluated with multiple metrics, including accuracy, sen-
sitivity, specificity, precision, and the F1 score. The cal-
culation formulas are shown as follows:

 

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN+ FP

Precision =
TP

TP+ FP

F1score = 2
Precision · Sensitivity
Precision+ Sensitivity

(9)

TP TN FP FNwhere , , , and  represent the number of the
true  positives,  true  negatives,  false  positives,  and  false
negatives, respectively. 

IV. Experiment and Results
 

1. Experience setups
We separated  the  annotated  sound  clips  into  three

sets  in  our  experiment:  a  training  set,  a  validation  set,
and a test set, which accounted for 60%, 20%, and 20%
of  the  total,  respectively.  The  training  and  validation
sets data came from 44 subjects, while the test set came
from another ten subjects. Table 2 shows the comprehen-
sive details of the sound data. We used the validation set
in  fine-tuning the  parameters  to  enhance  the  evaluation
results.  Once we obtained the best  parameters  from the

training and validation set, we used the test set to validate
the model’s performance on the snoring detection task.
 
 

Table 2  The partition of our dataset

Name of dateset Training set Validation set Test set

Snoring 3632 1210 1210

Non-snoring 3632 1210 1210

Number of subjects 34 10 10
 

39× 4
σ1(·) σ2(·)

softmax
yt = softmax(wy × ht + by)

The experiment constructed a one-layer LSTM spik-
ing neural network with 70 spiking units. Each unit had
an input size of  with one hidden layer of size 1000.
Activation function  and  activation thresholds
were  set  to  0.1.  The  output  layer  used  to con-
nect  to  the  last  spike  unit, .
Figure 7 shows the network structure. We illustrated the
spike raster plots shown as Figure 8. In detail, we adopt-
ed  the  random  threshold  method  to  encode  MFCCs  as
the input of the model. The output was the hidden layer
of the last LSTM spiking unit.

β1 β2 ω 10−8

In the experiment, we adopted the cross-entropy loss
function as the loss function, set the initial value of the
learning rate  to  0.005,  and  adopted  the  piecewise  con-
stant decay.  We used the Adam optimization algorithm
for  parameter  update,  where  the  exponential  decay rate

 was  set  to  0.9,  to  0.999,  and  to .  All
weights in (5) were initialized by np.random.randn, and
all biases were initialized to 0.

Experiments  were  performed  on  a  server  equipped
with NVIDIA GEFORCE RTX-2080Ti GPU and Intel®
Core™ i7-8700K CPU. The computer operating system is
Ubuntu 18.10. 

2. Results
This section  records  results  of  the  model  to  recog-

nize  different  sounds.  We  evaluated  the  model’s perfor-
mance through the training process, as shown in Figure 9.
As  the  training  progressed,  the  training  set’s  accuracy
and  the  test  set’s  accuracy  continued  to  improve.  After
about 800 epochs, the model started to converge, and the
accuracy curve and loss curve of the training set and val-
idation  set  were  quite  close  and  remained  stable.  For  a
more  detailed  analysis,  we applied  the  trained model  to
the test set for prediction, and the accuracy rate reached
93.4%. We calculated the confusion matrix of the test re-
sults, as shown in Figure 10. Each row of the matrix rep-
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Figure 6  Derivatives for multiple alternative activation functions.
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resented the true value of  the sample,  and each column
represented the  predicted  value  of  the  sample.  Accord-
ing  to  the  confusion  matrix,  the  sensitivity  was  93.1%,
the  specificity  was  93.6%,  the  precision  was  93.6%,  and
the  F1  score  was  93.3%.  As  a  result,  the  LSTM-SNN
model is  effective  in  the  snore  detection  task.  We  con-
ducted  a  comparative  experiment  using  traditional
LSTM.  The  traditional  LSTM  input  and  hidden  layer
sizes  were  consistent  with  the  LSTM-SNN. We  com-
pared two model’s consumptions. The accuracy of tradi-
tional  LSTM model  on  the  test  set  was  94.6%,  and the
parameter  size  was  34.1  MBytes.  The  accuracy  of  the
LSTM-SNN  model  was  93.4%,  and  the  parameter  size
was  24.9  MBytes.  The  comparison  results  are  shown  in
Figure  11.  Compared  with  LSTM,  the  accuracy  of  the
LSTM-SNN decreased  by  1.2%,  but  the  number  of  pa-
rameters decreased by 36.9%. We also compared our re-
sults with other studies, and the details are documented
in Table 3. The experiments for comparison used multi-
layer CNNs or RNNs for classification,  which inevitably
led to a large amount of computation. Our model signifi-
cantly  reduced  the  model’s  size  but  retained  the  high
recognition accuracy of mainstream networks, which was

very meaningful for the terminal algorithm. 

V. Conclusion and Discussion
In  this  work,  we  used  a  self-developed  acquisition

apparatus to capture sleep sound signals and built a self-
made sound event dataset to establish an algorithm suit-
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ed  for  large-scale  home  snoring  identification.  Based  on
this,  we  employed  the  long  short-term  memory  spiking
neural networks model. We spiked the features with en-
coding and utilized a threshold activation function in the
LSTM spike  units  to  minimize  the  computational  com-
plexity of the model after extracting MFCCs features for
sound events. We used a gradient substitution approach
to complete parameter updating to address the problem
of  updating  SNN  parameters.  Finally,  we  used  a  set  of
assessment  measures  to  verify  our  model’s  performance

on the snoring detection job.
We employed the LSTM-SNN model instead of typi-

cal  convolutional  neural  networks  or  recurrent  neural
networks,  which  were  used  in  much  recent  research  on
snoring  detection  [16]–[20].  We  spiked  the  feature  data
before feeding it into the LSTM spiking neural networks.
So,  the  feature  fed  into  the  network  was  matrices  of  0s
and  1s.  Further,  we  adjusted  the  activation  function  in
the LSTM spiking unit to two threshold activation func-
tions. When  calculating  the  input  features,  the  calcula-
tion results exceeding the threshold were 1, and the cal-
culation results not exceeding the threshold were 0. The
information transmitted in  the  LSTM spiking units  was
matrices of 0s and 1s. When the calculation core operat-
ed on the matrix, the value 0 did not participate. Thus,
the LSTM spiking neural networks exhibited recognition
performance equivalent to classic neural networks on the
snoring detection  test  while  using  less  energy  and  re-
sources. In  the  daily  environment,  the  collection  equip-
ment  we  designed  was  ideal  for  collecting,  storing,  and
transferring sleep sound data. It prepared the ground for
us to complete mass home detection. We also labeled the
sound data ourselves, which had a low signal-to-noise ra-
tio and was more in line with the sound characteristics of
a home environment.  Based on the dataset,  we adopted
an automatic classification model that has improved gen-
eralization performance in the home detection scenario.

We  also  exploited  key  points  coding  [34]  of  MFCC
spectrums  to  find  effective  spike  coding  algorithms.  We
detected  key  points  on  the  spectrum  by  looking  for  a
local maximum. Figure 12 shows the MFCC spectrum of
snoring  and  non-snoring  after  key  points  coding.  In  the
comparison  experiments,  we  used  the  feature  matrix
after  key  points  encoding  as  the  input  of  the  LSTM-
SNN. The parameter settings were kept the same as Sec-
tion IV.1. The results are shown on Figure 13. It can be
seen  that  the  validation  loss  starts  to  rise  after  25
epochs, which indicates that the model is overfitting. The
accuracy  can  only  reach  about  85%.  By  contrast,  the
threshold-based  encoding  is  better  than  the  key  points
for snoring detection.
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Table 3  Comparison with other works

Authors Number of subjects Features Models Results (%)

Jiang et al. [18] 15 Mel-spectrogram CNN-LSTM-DNN

Accuracy: 95.07
Sensitivity: 95.42
Soecificity: 95.82
F1 Score: 95.02
Precision: 94.62

Khan et al. [19] – MFCC image CNN Accuracy: 96

Xie et al. [20] 38 CQT-spectrogram CNN-LSTM
Accuracy: 95.3
Sensitivity: 92.2
Specificity: 97.7

This work 54 MFCCs LSTM-SNN

Accuracy: 93.4
Sensitivity: 93.1
Specificity: 93.6
F1 Score: 93.6
Precision: 93.3
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The input size of the spike unit and the size of the
hidden layer were the two most noticeable elements that
determined the classification effect of the LSTM spiking
neural  networks.  The  spike  unit’s  input  size  determined
the model’s complexity. Furthermore, the hidden layer’s
size  specifies  how  much  data  was  transferred  from  one
unit to the next. If it was set too small, it quickly led to
a  decline  in  learning  ability,  and  if  it  was  too  large,  it
needed  to  be  more  computationally  complex  and  prone
to overfitting. After many trials, we used a  spike
unit  input  size  and  a 1000 hidden  layer  size  to  get  the
best classification results.

The model  currently  ignores  the  impact  of  respon-
dents’ gender, age, BMI, AHI, and other characteristics.
It is also possible to consider the silent period in the au-
tomated categorization for  the night’s  sleep sound data.
In  future  work,  on  the  one  hand,  the  dataset’s  variety

can be enhanced and more spike coding and spike calcu-
lation methods can be tried. The model structure may be
improved based on the present model to improve the de-
tection algorithm’s accuracy. On the other hand, snoring
detection is the first step in identifying OSAHS by snor-
ing. Then  we  can  look  at  ways  to  employ  snoring  fea-
tures to classify OSAHS patients automatically. 
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