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Abstract — Related-key model  is  a  favourable  approach to  improve  attacks  on block  ciphers  with  a  simple  key
schedule. However, to the best of our knowledge, there are a few results in which zero-correlation linear attacks take
advantage of the related-key model. We ascribe this phenomenon to the lack of consideration of the key input in zero-
correlation linear attacks. Concentrating on the linear key schedule of a block cipher, we generalize the zero-correlation
linear attack by using a related-key setting. Specifically, we propose the creation of generalized linear hulls (GLHs)
when the key input is involved; moreover, we indicate the links between GLHs and conventional linear hulls (CLHs).
Then, we prove that the existence of zero-correlation GLHs is completely determined by the corresponding CLHs and
the linear key schedule. In addition, we introduce a method to construct zero-correlation GLHs by CLHs and transform
them into  an  integral  distinguisher.  The  correctness  is  verified  by  applying  it  to  SIMON16/16,  a  SIMON-like  toy
cipher. Based on our method, we find 12/13/14/15/15/17/20/22-round related-key zero-correlation linear distinguish-
ers of SIMON32/64, SIMON48/72, SIMON48/96, SIMON64/96, SIMON64/128, SIMON96/144, SIMON128/192 and
SIMON128/256, respectively. As far as we know, these distinguishers are one, two, or three rounds longer than current
best zero-correlation linear distinguishers of SIMON.
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 I. Introduction
Related-key attacks were independently proposed by

Knudsen in 1992 [1] and Biham in 1994 [2]. This type of
attack improves the attackers’ permissions to control the
relation  of  keys  without  obtaining  their  specific  values.
Consequently, combined with other attack methods, such
as differential attacks, impossible differential attacks and
rectangle attacks, many results on ciphers, such as AES
and KASUMI, are improved under the related-key model.

For linear attacks, Bogdanov et al. in 2013 [3] found
an invariant bias of some linear approximations of block
ciphers under certain key differences, which provides access
to applying related-key linear attacks. Later, several works
developed  this  idea.  At  SAC  2019,  Lee et  al.  [4] intro-
duced related-key linear approximations obtained from a
linear  trail  of  block  ciphers  with  a  linear  key  schedule
under arbitrary known key differences. In 2021, Cao and
Zhang [5] combined multidimensional linear cryptanalysis

with key difference invariant bias.
Zero-correlation linear attack, proposed by Bogdanov,

utilizes  zero-correlation  linear  approximations  instead  of
linear approximations  with  a  large  bias,  and  can  be  re-
garded as a dual attack of impossible differential attacks
[6]. It also inherit the idea of multidimensional linear at-
tacks in [7],  which establishes the link with the integral
attack [8]. However, only a few related-key zero-correlation
linear attacks have appeared. At FSE 2019, Ankele et al.
[9] proposed a novel idea to construct zero-correlation lin-
ear hulls by making contradictions in the linear tweakey
schedules.  Niu et  al.  [10]  generalized  the  idea  to  key
schedules  at  CT-RSA 2021.  The scope  of  their  methods
is limited to linear (twea)key schedules using only word-
wise operations. Thus, related-key zero-correlation linear
attacks need be further extended to ciphers with bitwise
operation.

Note  that  a  key  schedule  determines  the  attackers’ 
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controlling abilities of keys under the related-key model.
The key schedule is usually regarded as a major factor of
security against related-key attacks. Inspired by previous
works, we concentrate on linear schedules as well and con-
struct related-key zero-correlation linear distinguishers at
the bitwise level.

The  family  of  the  lightweight  block  cipher  SIMON
[11], proposed by the National Security Agency in 2013,
is  exactly a favourable type of  objective for bit-oriented
research.  It  is  a  Feistel-structure  block  cipher  with  its
round function only consisting of AND, rotation and XOR
operations. While  its  various  versions  provide  high  per-
formance across a range of  devices,  its  security strength
have  attracted  numerous  cryptanalysts’ eyes.  A  larger
number of results such as differential, linear and integral
attacks have been published. To date, differential attacks
and linear attacks combined with automatic search tools
and Mastui’s search algorithm [12] have achieved the re-
markable results  and  are  producing  further  results  con-
stantly [13], [14]. Integral attacks are not only theoretically
enriched  by  division  property  [15],  but  also  practically
boosted by automatic search tools [16], [17]. In contrast,
recently, the results from zero-correlation attacks seem to
stagnate after the work in [18]–[20].

The  main  results  of  zero-correlation  linear  distin-
guishers of SIMON are shown in Table 1.
 
 

Table 1  Zero-correlation linear distinguishers on SIMON

Cipher Attack model Rounds Ref.

SIMON32

SK 10 [19]

SK 11 [20]

RK 12 This work

SIMON48
SK 11 [19]

SK 12 [20]

SIMON48/72 RK 13 This work

SIMON48/96 RK 14 This work

SIMON64

SK 12 [19]

SK 13 [18]

RK 15 This work

SIMON96
SK 15 [19]

SK 16 [18]

SIMON96/144 RK 17 This work

SIMON128
SK 18 [19]

SK 19 [18]

SIMON128/192 RK 20 This work

SIMON128/256 RK 22 This work

Note: SK represents a single key model; RK represents a related-key
model.

 
 

In this  paper,  we are  devoted to  taking full  advan-
tage  of  previous  work  on  conventional  linear  hulls,  and
improving  the  results  of  zero-correlation  linear  attacks
with the aid of the related-key model.

Our contribution  In the theoretical aspect, for block

ciphers  with  a  linear  schedule,  we  first  introduce  their
zero-correlation generalized linear hulls (GLHs) when the
key  input  mask  is  considered.  We establish  the  relation
between  GLHs  and  conventional  linear  hulls  (CLHs),
which  indicates  that  some  zero-correlation  GLHs  come
from  a  CLH.  Then,  we  prove  that  the  correlation  of  a
GLH is completely determined by the linear key schedule
and its corresponding CLH.

In the practical aspect, we propose a method to con-
struct  a  series  of  zero-correlation  GLHs  at  the  bitwise
level  with  their  corresponding  CLHs,  which  are  verified
by applying the method to SIMON16/16, a SIMON-like
toy cipher.  Based on this  method,  we obtain a  series  of
12/13/14/15/15/17/20/22-round  zero-correlation  GLHs
of SIMON32/64, SIMON48/72, SIMON48/96, SIMON64/
96,  SIMON64/128,  SIMON96/144,  SIMON128/192,  and
SIMON128/256,  respectively,  which  can  be  transformed
into equal-length integral distinguishers.

Note that the motivation to transform ZCGLHs into
integral distinguishers  is  to  reduce  the  high  data  com-
plexity  of  the  zero-correlation  linear  attack.  Since  the
distinguishers  originate  from  zero-correlation  GLHs,  our
attack is essentially a zero-correlation linear attack. More
clear  relation  between zero-correlation  linear  attack  and
integral attack is demonstrated by Bogdanov et al. in [8].

In some sense,  our theory might inspire research to
find  longer  zero-correlation  GLHs  that  have  never  been
discovered, even if the corresponding CLHs are not zero-
correlation. Our method could also be applied to several
block ciphers with different structures, such as SKINNY
(AES-like  structure),  QARMA (PRINCE-like  structure)
and CHAM (generalized Feistel-structure).

Organization  In  Section  II,  we  recall  some  basic
concepts of linear cryptanalysis. Then, in Section III, we
introduce generalized linear hulls and establish a related-
key  zero-correlation  linear  attack.  Next,  in  Section  IV,
we propose a method to construct zero-correlation GLHs
and apply the method to the block cipher SIMON. Final-
ly, we conclude in Section V.

 II. Preliminaries
In this section, we recall the basic concepts of linear

cryptanalysis and  multidimensional  zero-correlation  lin-
ear distinguishers.

x, y ∈ Fn
2 x y

⟨x, y⟩ = xTy

Definition 1 (Canonical scalar product)  For column
vector , the canonical scalar product of  and 
is defined as .

h : Fm
2 → Fn

2 Mn×m

x
h(x) = Mx

h

Definition 2 (Adjoint linear mapping)  For a linear
mapping , if the binary matrix  is its
matrix form (under some basis) and the input variable 
is treated as a column vector, i.e., , then the
adjoint linear mapping of  is defined by
 

hT : Fn
2 → Fm

2

y 7→ MTy

F :Definition 3 (Correlation) [21]  Given a function 
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Fm
2 → Fn

2 (α, γ) ∈
Fm
2 × Fn

2 ⟨α, x⟩ ⊕ ⟨γ, F (x)⟩
F α → γ

 and a pair of input and output masks 
, we call  a linear approximation

of function  (  for short). Then the correlation of
the linear approximation is defined as
 

corF (α, γ) =
1

2m

∑
x∈Fm

2

(−1)
⟨α,x⟩⊕⟨γ,F (x)⟩

F
r fi : Fn

2 → Fn
2 (i = 1, 2,

. . . , r)

Definition  4 (Linear  trail)  [22]  Let  function  be
the  composition  of  functions  

, i.e.,
 

F (x) = fr ◦ fr−1 ◦ · · · ◦ f1(x)

(Γi−1, Γi) ∈
Fn
2 × Fn

2 fi

For the pair of input and output masks 
 of , we called the concatenation

 

Γ = (Γ0, Γ1, . . . , Γr)

r Fof the masks an -round linear trail of . Then the corre-
lation of the linear trail is defined by
 

CΓ =

r∏
i=1

corfi(Γi−1, Γi)

For iterative block ciphers, the two following propo-
sitions are deduced from Definition 3 when the keys are
treated differently.

Proposition 1 [21]  Given an iterative block cipher:
 

Ek(x) = Gr(· · · (G2(G1(x⊕ k0)⊕ k1)⊕ k2 · · · )⊕ kr

Gi : Fn
2 → Fn

2 (i = 1, 2, . . . ,
r) k = (k0, k1, . . . , kr)

(α, γ)

where  are its round functions 
 and  is  fixed. Then, for the pair of

input and output masks , we have
 

corEk
(α, γ) =

∑
Γ=(Γ0,...,Γr)
Γ0=α,Γr=γ

(−1)
⟨Γ,k⟩

r∏
i=1

corGi(Γi−1, Γi)

For the completeness of the paper, we provide a brief
proof of Proposition 1 in Appendix A.

α → γ
Ek

Ek α γ

We  call  the  linear  approximation  a conven-
tional linear hull  of  (CLH for short),  which contains
all possible linear trails of  from  to .

α → γ∏
r
i=1corGi

(Γi−1, Γi) = 0
Γ = (α1, Γ1, . . . , Γr−1, γ)

The  linear  approximation  is  called  a  zero-
correlation conventional linear hull (ZCCLH for short) if
and only if  holds for any linear
trail .

corEk
(α, γ) = 0 α → γ

CΓ

k corEk
(α, γ) = 0 k α → γ

Note that  does not mean  is a
ZCGLH because of the sign of , which is controlled by
. Only when  holds for any , is  a

ZCCLH.
r

E : Fn
2 × Ft

2 → Fn
2 r

Gi : Fn
2 → Fn

2 (i = 1, 2, . . . , r)

L : Ft
2 → (Fn

2 )
r+1

Proposition  2 [23]  Let  an -round  iterative  block
cipher  be  the  composition  of  round
functions   with a linear key
schedule , i.e.,

 

E(x, k) : = F (x, L(k))

= Gr(· · · (G2(G1(x⊕ k0)⊕ k1)⊕ k2 · · · )⊕ kr

E
L(k) = (k0, k1, . . . , kr)

((α1, α2), γ) ∈ (Fn
2×

Ft
2)× Fn

2

where  the  key  is  one  of  input  variable  of  and
. Then for the pair of plaintext in-

put,  key  input  and  output  masks 
,

 

corE((α1, α2), γ) =
∑

Γ=(Γ0,...,Γr)∈(Fn
2 )

r+1

Γ0=α1,Γr=γ,LT(Γ )=α2

r∏
i=1

corGi(Γi−1, Γi)

A  brief  proof  of  Proposition  2  is  also  presented  in
Appendix A.

(α1, α2) → γ

E (α1, α2) → γ∏
r
i=1corGi

(Γi−1, Γi) = 0
Γ = (α1, Γ1, . . . , Γr−1, γ) LT(Γ ) = α2

We call the linear approximation  a gen-
eralized linear hull (GLH) of . Then,  is a
zero-correlation  generalized  linear  hull  (ZCGLH)  if  and
only if  holds for any linear trail

 that satisfies .
According  to  the  definitions  and  propositions  of

CLHs, GLHs and ZCGLHs, when the key input is treat-
ed  as  a  constant,  we  are  discussing  CLHs,  and  the  key
value only influences the sign of the correlation of linear
trails  in  a  linear  approximation;  when  the  key  input  is
treated  as  a  variable,  we  are  discussing  GLHs,  and  the
correlation of a linear approximation is restricted by the
key’s mask.

H : Fm
2 → Fn

2 m ≥ n A ⊆ Fm
2

H−1
A (y) = {x ∈ A|H(x) =y}

y ∈ Fn
2 H A

Definition 5 (Balance of vectorial Boolean function)
Let  be a mapping ( ) and . If
the size of the set  is indepen-
dent of , we call  is balanced on .

A
Fm
2 A⊥ = {x ∈ Fm

2 |⟨a, x⟩ = 0, a∈A}
A⊥ A

Definition  6 (Dual  space)  Let  be  a  subspace  of
. The set  can be proven

to be a subspace. We call  is a dual subspace of .
F : Fn

2 → Fn
2

Fn
2 A Fn

2 b ∈ Fn
2\{0n}

a ∈ A a → b

F λ ∈ Fn
2 ⟨b, F (x⊕ λ)⟩

A⊥ = {x ∈ Fn
2 |⟨a, x⟩ = 0, a ∈ A}

Theorem 1 [24]  Let  be  a  function  on
, and let  be a subspace of  and . Sup-

pose  that  for  any ,  is a  zero-correlation  lin-
ear hull of ; then, for any constant , 
is balanced on .

A → b
x F

A⊥ ⟨b, F (x⊕ λ)⟩

A⊥

Fn
2

Theorem  1  shows  that  one  can  transform  several
zero-correlation linear hulls ( ) into an integral dis-
tinguisher.  Hence,  if  the input  of  the function  goes
through ,  then  the  sum  of  XORing  all 
is zero. And the data complexity of the distinguishing at-
tack can be reduced up to the size of  from the size of

.

 III. On the Existence of ZCGLHs
In  this  section,  the  relation  between  CLHs  and

GLHs is established. Then the question about whether a
GLH is zero-correlation is transformed into an analysis of
linear  trails  of  a  corresponding  CLH.  Subsequently,  the
theorem  presented  below  indicates  the  existence  of
ZCGLHs.  It  turns  out  that  the  existence  of  ZCGLHs is
only  relevant  to  the  corresponding CLHs and the linear
key schedule.

  674 Chinese Journal of Electronics, vol. 33, no. 3



 1. Relation between ZCCLH and ZCGLH
rFor an -round iterative block cipher

 

E(x, k) : = F (x,KS(k))

= Gr(· · · (G2(G1(x⊕ k0)⊕ k1)⊕ k2 · · · )⊕ kr

Gi : Fn
2 →Fn

2 (i=1, 2, . . . , r) KS : Ft
2→(Fn

2 )
r+1

KS(k) = (k0, k1, . . . , kr)

where   and 
are its  round  functions  and  linear  key  schedule,  respec-
tively; and .

((α1, α2), γ) ∈ (Fn
2 × Ft

2)×
Fn
2 E

Given  a  pair  of  masks 
 of , let

 

Ω0(α1→γ)={Γ∈ (Fn
2 )

r+1|(Γ0, Γr)=(α1, γ) and CΓ ̸=0}

Ek

α γ k
be the subset consisting of all possible linear trails of 
from  to  (here  is fixed).

And let
 

Ω1((α1, α2) → γ) = {Γ ∈ Ω0(α1 → γ)|KST(Γ ) = α2}

Ω1((α1, α2) → γ)
Ω0(α1 → γ)

KST(Γ ) = α2

Thus,  is  actually  the  subset  of
,  in  which  any  linear  trail  satisfies

.

Ω0(α1 → γ)
α1 → γ

Ω1((α1, α2) → γ)
(α1, α2) → γ

According  to  Propositions  1  and  2,  the  trails  in
 are exactly all trails contributing to the cor-

relation  of  the  CLH ,  while  the  trails  in
 are exactly all trails contributing to the

correlation  of  the  GLH .  We  conclude  this
property as the following theorems.

r Ek

k α1 → γ Ek

Ω0(α1 → γ) = ∅

Theorem  2  Given  an -round  iterative  cipher 
with a fixed key , the CLH  of  is zero-corre-
lation if and only if .

α1 → γ
Ek α1 γ

Ω0(α1 → γ)

Proof  Based on Proposition 1,  is a ZCCLH
if and only if no possible trails of  from  to  exist,
i.e.,  has no elements.□

r E
KS : Ft

2 → (Fn
2 )

r+1

(α1, α2) → γ E
Ω1((α1, α2) → γ) = ∅

Theorem  3  Given  an -round  iterative  cipher 
with a linear key schedule ,  the GLH

 of  is  zero-correlation  if  and  only  if
.

(α1, α2) → γ EProof  (Necessity) If  is a ZCGLH of ,
then there are two cases as follows:

Ω0(α1 → γ) = ∅ Ω1((α1, α2) → γ) = ∅Case 1: , then ;
Ω0(α1 → γ) ̸= ∅ Ω0(α1 →

γ) KST(Γ ) = α2 Ω1((α1, α2) → γ) = ∅
Case  2:  but  no  trails  in 

 satisfies , then .
Ω1((α1, α2) → γ) = ∅

(α1, α2) → γ E

(Sufficiency)  If ,  then  one  of
the  above  two  cases  holds.  Each  of  the  cases  indicates
that  of  is a ZCGLH according to Proposi-
tion 2.

(α1, α2) → γ ECorollary 1    is  a  ZCGLH of ,  if  one
of the following two conditions holds:

Ω0(α1 → γ) = ∅1) ;
Ω0(α1 → γ) ̸= ∅ KST(Γ ) ̸= α2

Γ ∈ Ω0(α1 → γ).
2)  but  holds for any

α1 → γ Ek

α2 ∈ Ft
2 (α1, α2) → γ E

Corollary 2  If  is a ZCCLH of , then for
any ,  is a ZCGLH of .

According  to  the  above  theorems  and  corollaries,  a
ZCCLH can deduce its corresponding ZCGLHs. However,

a nonzero-correlation CLH could not ensure all its corre-
sponding GLHs are nonzero-correlation. Based on such a
conclusion, we present a theorem to demonstrate the ex-
istence of ZCGLHs.
 2. The existence of ZCGLHs

E : Fn
2 × Ft

2 → Fn
2 r

KS : Ft
2 →(Fn

2 )
r+1

α1 → γ Ek k
(α1, α2) → γ E

α2 /∈ KST(Ω0(α1 → γ))

Theorem 4  Let  be an -round it-
erative cipher, and let its key schedule 
be linear. Given a CLH  of  (  is a fixed key),
the corresponding GLH  is a ZCGLH of  if
and only if .

Proof  The theorem can be proved by Corollary 1.
α1 → γ

KST(Ω0(α1 →
γ))

α2 /∈ KST(Ω0(α1 →
γ)) (α1, α2) → γ

According  to  Theorem  4,  given  a  CLH ,  all
ZCGLHs are exactly determined by the set 

.  Even  though  the  CLH  is  not  zero-correlation,  one
can choose a mask of the key input (

)  to  generate  a  ZCGLH .  Thus,  once  we
consider  the  key  input  (in  the  related-key  model),  the
previous  upper  bound  of  ZCCLHs  might  be  broken
through, which inspires us to explore a new upper bound
of ZCGLHs.

In addition, we can give a general description of the
existence of ZCGLHs.

ZC =
{(α1, α2) → γ|α2 ∈ Ft

2\KST(Ω0(α1 → γ))}}
Corollary  3  All  ZCGLHs come from the  set 

.
α1 → γ Ek

Ω0(α1 → γ)
∩
kerKST = ∅ (α1, 0) → γ

E kerKST

KST

Corollary 4  Given a CLH  of the cipher ,
if ,  then  is  a
ZCGLH of , where  represents the kernel of the
linear map .

Corollary 4 supports the transformation of ZCGLHs
into an integral distinguisher.
 3. Zero-correlation linear attack based on

ZCGLHs
(α1, α2) → γThe correlation of the ZCGLH  is

 

corE((α1, α2), γ) =
1

2n+t

∑
(x,k)∈Fn

2 ×Ft
2

(−1)
⟨α1,x⟩⊕⟨α2,k⟩⊕⟨γ,E(x,k)⟩

2n+t E

According  to  the  zero-correlation  linear  attack  [6],
we  need  nearly  data  to  distinguish  from a  ran-
dom  permutation.  Obviously,  it  is  not  a  valid  attack
when we only use one ZCGLH. However, a multidimen-
sional  zero-correlation  linear  attack  [8],  [24]  provides  us
with the idea of taking advantage of ZCGLHs, i.e., com-
bining several ZCGLHs to attack ciphers.

A ⊂ Fn+t
2

b ∈ Fn
2 a ∈ A

a → b

2n+t/|A|

Suppose that we obtain a linear subspace 
and  an  output  mask  such  that  any  leads
the  GLHs  to  be  zero-correlation.  According  to
Theorem 1, we obtain an integral distinguisher of which
the data complexity is only .

α1 → γ
E(x,K) KS : Ft

2 → (Fn
2 )

r

A2 ⊂ Ft
2

s−1 {α(1)
2 , α

(2)
2 , . . . ,α

(s−1)
2 }

Ω0(α1 → γ)
∩
kerKST = ∅

α2 ∈ A2 (α1, α2) → γ A ⊂

Example  1  Let  be  a  CLH  of  the  cipher
, let  be the key schedule of the

cipher and let  be a linear subspace spanned by
 linearly independent elements .

Suppose  that ,  and  for  each
,  is a ZCGLH. Then a subspace 
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Fn
2 × Ft

2 {(α1, 0t), (0n, α
(1)
2 ), (0n, α

(2)
2 ), . . . ,

(0n, α
(s−1)
2 )} (α1, α2) → γ

(α1, α2) ∈ A

E A⊥

2(n+t−s) (t− s+ 1)

 spanned  by 
 satisfies  that  is  a  ZCGLH for

any . Hence, according to Theorem 1, the ci-
pher  is balanced on . In other words, we only need
to  use  data  under -bit  related-key  to
distinguish the cipher from a random permutation.

Thus,  one  can  first  obtain  several  ZCGLHs  from
CLHs by Theorem 4, and then transforms these ZCGLHs
into  a  related-key  zero-correlation  linear  distinguisher.
The required data complexity is determined by the num-
ber of valid ZCGLHs.

In the next section, we present an attack instance to
illustrate the details of our zero-correlation linear attack
based on  ZCGLHs.  Our  theory  above  can  also  be  veri-
fied.

 IV. Application to SIMON
In this section, we apply our theory to construct zero-

correlation  linear  distinguishers  of  SIMON,  an  And-RX
block cipher.

Ω0

We  first  briefly  describe  the  specifics  of  SIMON.
Next, we establish the propagation rules of mask propa-
gation  in  the  round  functions  of  SIMON and  collect  all
truncated linear  trails  propagation  forward  (or  back-
ward). After linking a forward trail and a backward trail,
we obtain a rough set containing an  discussed above.
The rest of this section presents a method to construct a
series of ZCGLHs of SIMON and to transform them into
integral distinguishers. The correctness is verified by ap-
plying the method to SIMON16/16, a SIMON-like toy ci-
pher.

Finally, we obtain 12-round, 13-round, 13-round, 15-
round, 15-round, 17-round, 20-round, and 21-round related-
key integral distinguishers of SIMON32/64, SIMON48/72,
SIMON48/96,  SIMON64/96,  SIMON64/128,  SIMON96/
144, SIMON128/192 and SIMON128/256, respectively.
 1. Brief description of SIMON

r
n mn

n mn n ∈ {16, 24, 32, 48, 64}
m ∈ {2, 3, 4} r ∈ {32, 36, 36, 42, 44, 52, 54, 68, 69, 72}

The SIMON block cipher is an -round Feistel block
cipher with an -bit word and an -bit master key, de-
noted  by  SIMON2 / ,  where ,

 and .
There  are  ten  versions  in  the  SIMON  family,  and  the
corresponding parameters are listed in Table 2.

i
i

2n

Round  function  Figure  1 shows  the -th  round
function round Function. As shown in Figure 1, the -th
round function of SIMON  is defined by
 

FRKi−1
: F2n

2 → F2n
2

(Xi−1
L , Xi−1

R ) 7→ (Xi
L, X

i
R)

and
  {

Xi
R = Xi−1

L

Xi
L = F (Xi−1

L )⊕Xi−1
R ⊕RKi−1

RKi−1 i S(XL) := XL ≪ 1where  is  the -th  roundkey, ,

and 

F (XL) := S8(XL) & S1(XL)⊕ S2(XL)

Fis the  function in the Feistel structure. Therefore, the
round function can also be written as
 

FRKi−1
(Xi−1

L , Xi−1
R ) ≜ Gi−1(X

i−1
L ⊕ 0n, X

i−1
R ⊕RKi−1)

RKi

m n

Key schedule  The roundkeys  are derived from
the master key by a key schedule chosen by the parame-
ters  and . It can be written as
 

KS : Fmn
2 → (Fn

2 )
r

K 7→ (RK0, RK1, . . . , RKr−1)

z0, z1, z2, z3, z4The following five constant sequences 
with a period of 62 are used in different key schedules to
generate round keys.
 

z0 = z0{0}z0{1}z0{2} · · ·
= 11111010001001010110000111

00101111101000100101011000011100110 . . .
 

z1 = z1{0}z1{1}z1{2} · · ·
= 10001110111110010011000010

110101000111011111001001100001011010 . . .
 

z2 = z2{0}z2{1}z2{2} · · ·
= 10101111011100000011010010

011000101000010001111110010110110011 . . .
 

z3 = z3{0}z3{1}z3{2} · · ·
= 11011011101011000110010111

100000010010001010011100110100001111 . . .
 

 

Table 2  Parameters in the family of SIMON block cipher

Variants
n

Word
size ( ) m

Key word
number ( ) zjConstant ( ) rRounds ( )

SIMON32/64 16 4 z0 32

SIMON48/72 24 3 z0 36

SIMON48/96 24 4 z1 36

SIMON64/96 32 3 z2 42

SIMON64/128 32 4 z3 44

SIMON96/96 48 2 z2 52

SIMON96/144 48 3 z3 54

SIMON128/128 64 2 z2 68

SIMON128/192 64 3 z3 69

SIMON128/256 64 4 z4 72
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Figure 1  Round function of SIMON.
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z4 = z4{0}z4{1}z4{2} · · ·
= 11010001111001101011011000

100000010111000011001010010011101111 . . .

K=(k0, k1 . . . , km−1) ∈ (Fn
2 )

m

(RK0, RK1, . . . , RKm−1) = K RKi+m

Let the master key be  ;
then,  and we have 
as follows: 

RKi+m =


c⊕ zj{i} ⊕RKi ⊕ (I ⊕ S−1)(S−3(RKi+1)), m = 2

c⊕ zj{i} ⊕RKi ⊕ (I ⊕ S−1)(S−3(RKi+2)), m = 3

c⊕ zj{i} ⊕RKi ⊕ (I ⊕ S−1)(RKi+1 ⊕ S−3(RKi+3)), m = 4

c = 2n − 4 = 0xff . . . fc zj{i} i
zj i = 0, 1, . . . , r −m− 1, j ∈ {0, 1, 2, 3, 4}

where ,  is  the -th  bit  of  the
sequence  and .

Hence, SIMON is an iterative cipher
 

E(P,K) = Gr−1(◦· · · ◦G1 ◦G0(P ⊕ (0n, RK0))

⊕ (0n, RK1)⊕ · · · ⊕ (0n, RKr−1))⊕ 02n

i Ki =
(0n, RKi) ∈ Fn

2 × Fn
2

whose  linear  key  schedule  satisfies  the  conditions  of
Proposition  2.  The -th  round  key  of  SIMON  is 

 when  we  apply  the  proposition,  so
the key schedule should be written as
 

L : Fmn
2 → (F2n

2 )
r+1

K 7→ (02n,Kr−1, . . . ,K0)

 2. Propagation rules for linear masks

Ω0

Ω0 Ω0

According to Theorem 4, the key point to construct
ZCGLHs is to ascertain . Although it is impractical to
accurately target all elements in , narrowing down 
to a rough set is sometimes enough.

Here,  we  adapt  the  idea  of  truncated  differences  to
compute truncated linear trails  propagating with proba-
bility 1, where the truncated linear trails mean the mask
values  are  replaced  by  asterisks  if  we  fail  to  determine
their  specific  values.  Thus,  such trails  do not stop until
there are asterisks covering all bits of one-round masks.

Ω0

Hence, the collection of all linear trails following the
form of  the  truncated  linear  trail  is  a  roughly  descrip-
tion of .

The following four lemmas are easily proven.
h(x1, x2) =

x1 ⊕ x2 (α, β)
γ corh((α, β), γ) ̸= 0 α = β = γ

Lemma 1 [25]  Given  a  linear  mapping 
, then for a pair of input masks  and an out-

put mask ,  if and only if .
h(x) = (x, x)

α
(β, γ) corh(α, (β, γ)) ̸= 0 α⊕ β ⊕ γ = 0

Lemma 2 [25]  Given a linear mapping ,
then  for  an  input  mask  and  a  pair  of  output  masks

,  if and only if .
ha(x) = x ≪

a a
(α, γ) corh(α, γ) ̸= 0 α ≪ a = γ

Lemma 3 [6]  Given a linear mapping 
,  is  a  constant,  then  for  a  pair  of  input  and  output

masks ,  if and only if .
Lemma 4  Given a nonlinear mapping:

 

g : F2 × F2 → F2

(x, y) 7→ x & y

γ ̸= 0
(α, β) corh((α, β), γ) ̸= 0
γ = 0 corh((α, β), γ) ̸= 0

α = β = 0

when  the  output  mask , no  matter  values  the  in-
put masks  take, ; when the out-
put  mask ,  if  and  only  if

.
Based on the lemmas above,  we can compute trun-

cated linear  trails  of  SIMON  after  given  specific  plain-

text input and output masks.

α1 → γ r1
Γ+ r2
Γ− r1 = 6, r2 = 6 r

Γ
r < r1 + r2

Γ5 Γ6

r > r1 + r2
Γ7 Γ8

Example  2  As  shown in Tables  3–6,  given  a  CLH
 of  SIMON32,  it  derives  an -round  forward

truncated  linear  trail  and  an -round  backward
truncated  linear  trail  (where ).  An -
round truncated linear trail  can be generated by con-
necting  them.  If  (e.g.,  an  11-round  trail  in
Table  5),  the  overlapping  parts  (  and ) of  the  for-
ward and  backward  trails  take  the  intersection;  other-
wise,  if  (e.g.,  an  15-round  trail  in Table  6),
the  vacant  parts  (  and )  are  filled  with  asterisks
(unknown bits).
 
 

Γ+Table 3  Forward truncated linear trail 

Γ+
0 0000000000000100　0000000000000000

Γ+
1 0000000000000000　0000000000000100

Γ+
2 0000000000000100　00000*00000000*1

Γ+
3 00000*00000000*1　*10000**00000*0*

Γ+
4 *10000**00000*0*　***10*0***0000**

Γ+
5 ***10*0***0000**　*****1******0*0*

Γ+
6 *****1******0*0*　****************

 
 

Γ−Table 4  Backward truncated linear trail 

Γ−
0 0000000000000000　0000000000000010

Γ−
1 0000000000000010　0000000000000000

Γ−
2 100000*00000000*　0000000000000010

Γ−
3 **10000**00000*0　100000*00000000*

Γ−
4 ****10*0***0000*　**10000**00000*0

Γ−
5 ******1******0*0　****10*0***0000*

Γ−
6 ****************　******1******0*0

 
 

 3. Method to construct ZCGLHs
Since  all  linear  trails  included  in  a  CLH  can  be

roughly estimated by the corresponding truncated linear
trails,  we  present  a  method  to  construct  ZCGLHs  by
computing target key input masks with these trails.

(α1, γ) ∈ F2n
2 × Fn

2 r

Γ ∈ (F2n
2 )r

α1 → γ
Ω0

Given  a  pair  of  specific  plaintext  input  and  output
masks ,  we  can  compute  an -round
truncated  linear  trail .  The  collection  of  all
possible  linear  trails  of  the  CLH  is  denoted  by

.
LTThe binary matrix form of  is denoted by

 

[L0, L1, . . . , L2nr−1]

Lj j mnwhere  is  the -th -dimensional  column  vector  in
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the matrix.
J={j|Γ{j}≡1 or 0, Γ∈Ω0} η0=⊕j∈J(Γ{j}·

Lj) Γ{j} j Γ

Let ,  and 
, where  is the -th bit of  and the operation “·”

is a scalar product in the vector space.
Γ ∈ Ω0Then, for ,

 

LT(Γ ) = ⊕2nr−1
j=0 (Γ{j} · Lj) = η0 ⊕ (⊕j /∈J(Γ{j} · Lj)) ∈ Ft

2

The following theorem helps us to find the ZCGLHs
that are used in our attack.

η0
{Lj}j /∈J

(t−1) A2 A2

∩
LT(Ω0)=∅ (t−s)

A2 A2

∩
LT(Ω0) = ∅ s

{Lj}j /∈J

Theorem 5  If  the  vector  above is  linearly  inde-
pendent  with  the  vector  group , then  there  ex-
ists a -dimensional subspace  that satisfies 

; otherwise, there exists an -dimensional
subspace  that  satisfies ,  where  is
the rank of the group .

{Lj1 , Lj2 , . . . ,
Ljs} {Lj}j /∈J

Proof  Suppose that the vector group 
 is a maximal linearly independent group of .

{Lj1 , Lj2 , . . . , Ljs}In the first case, the vector group 
can be extended to be a basis group of the vector space

Ft
2. Then the basis group could be denoted by

 

{Lj1 , Lj2 , . . . , Ljs , η0, η1, . . . , ηt−s−1}

{Lj1 ,
Lj2 , . . . , Ljs , η1, η2, . . . , ηt−s−1} A2

LT(Ω0) ⊂ η0 ⊕A2 A2

∩
(η0 ⊕A2) = ∅

A2

∩
LT(Ω0) = ∅

And  let  the  subspace  spanned  by  the  group 
 be  denoted  by ,  then

.  Since ,  we  have
.

{Lj1 , Lj2 , . . . , Ljs , η1, η2, . . . ,
ηt−s} Ft

2 {η1, η2,
. . . , ηt−s} A2

(A2\{0t})
∩
LT(Ω0) = ∅

In  the  second  case,  let 
 be  a  basis  group  of ,  then  the  group 

 could  span  to  be  a  subspace  that  satisfies
.

LT(Ω0)

W
{L0, L1, . . . , L2nr−1} W = η0 ⊕A2

W {Lj1 , Lj2 , . . . , Ljs}

A2

α2 /∈ LT(Ω0) α2 ∈ A2

The proof  of  Theorem 5 indicates  that  is  a
subset  of  the  space  spanned  by  the  vector  group

.  In  addition,  in  the
first  case,  while  is  spanned  by  in
the second case. In both cases, we can easily construct a
space  to  feed  the  condition  of  Theorem  4,  i.e.

 holds  for  any .  Hence,  we obtain a
class of ZCGLHs to construct zero-correlation linear dis-
tinguishers.

s = tIn  most  cases,  because  of  the  pursuance  for
longer ZCGLHs.  Thus,  we often expect  the first  case in
Theorem 5 to happen. If it happens, we could follow the
steps in Example 1 to construct ZCGLHs and transform
them into an integral distinguisher.

r
α1 → γ

Finally,  according  to  Theorem  5,  we  propose  a
method  to  construct -round  ZCGLHs  from  a  CLH

 as follows.
Γ

α1 → γ
J

Step 1  Generate a truncated linear trail  from an
input  CLH  based on the  lemmas in  Section IV,
then the index set  can be determined.

LT

L

Step  2  Compute  the  matrix  of  with  the  key
schedule .

η0 = ⊕j∈J(Γ{j} · Lj)Step  3  Compute  the  vector .

{Lj}j /∈J {Lj1 , Lj2 , . . . , Ljs}
Step  4  Compute  a  maximal  linearly  independent

group of , and we denote it by .

η0 {Lj1 , Lj2 , . . . , Ljs}
Step  5  Determine  the  linear  dependence  between

 and . If  they  are  linearly  indepen-
dent,  continue  the  procedure;  otherwise,  terminate  the
procedure  and  the  CLH  cannot  be  used  to  construct
ZCGLHs by this method.

{Lj1 , Lj2 , . . . , Ljs ,
η0} Ft

2

{Lj1 , Lj2 , . . . , Ljs , η0, η1, . . . , ηt−s−1}
A2 {Lj1 , Lj2 , . . . ,

Ljs , η1, η2, . . . , ηt−s−1}

Step  6  Extend  the  vector  group 
 to  be  a  basis  group  of ,  and  we  denote  the  basis

group  by .  Then  let
the subspace  be spanned by the group 

.
A1 = {α1, 0t} A = A1 ×A2 ⊂

F2n
2 × Ft

2

Step  7  Let  and  let 
.  Terminate  the  procedure  and  we  construct

ZCGLHs that can be transformed into an integral distin-
guisher. Specifically,
 

⊕
(x,K)∈A⊥

⟨γ,E(x⊕ λ1,K ⊕ λ2)⟩ = 0

(λ1, λ2) ∈ F2n
2 × Ft

2where  is any constant.
After  obtaining  ZCGLHs  from  a  CLH  by  the

method above  and  transform them into  an  integral  dis-

 

Table 5  11-round truncated linear trail

Γ0 0000000000000100　0000000000000000
Γ1 0000000000000000　0000000000000100
Γ2 0000000000000100　00000*00000000*1
Γ3 00000*00000000*1　*10000**00000*0*
Γ4 *10000**00000*0*　***10*0***0000**
Γ5 ***10*0***0000**　*****11*****0000
Γ6 *****11*****0000　****10*0***0000*
Γ7 ****10*0***0000*　**10000**00000*0
Γ8 **10000**00000*0　100000*00000000*
Γ9 100000*00000000*　0000000000000010
Γ10 0000000000000010　0000000000000000
Γ11 0000000000000000　0000000000000010

 

 

Table 6  15-round truncated linear trail

Γ0 0000000000000100　0000000000000000
Γ1 0000000000000000　0000000000000100
Γ2 0000000000000100　00000*00000000*1
Γ3 00000*00000000*1　*10000**00000*0*
Γ4 *10000**00000*0*　***10*0***0000**
Γ5 ***10*0***0000**　*****1******0*0*
Γ6 *****1******0*0*　****************
Γ7 ****************　*****1******0*0*
Γ8 ******1******0*0　****************
Γ9 ****************　******1******0*0
Γ10 ******1******0*0　****10*0***0000*
Γ11 ****10*0***0000*　**10000**00000*0
Γ12 **10000**00000*0　100000*00000000*
Γ13 100000*00000000*　0000000000000010
Γ14 0000000000000010　0000000000000000
Γ15 0000000000000000　0000000000000010

 

  678 Chinese Journal of Electronics, vol. 33, no. 3



⊕(x,K)∈A⊥⟨γ,
E(x⊕ λ1,K ⊕ λ2)⟩

A 2n− 1 (A1, 0t)
(02n, A2)

22n

tinguisher by Theorem 1, we can compute 
 under  the  related-key  setting.  Since

the subspace  consist of  basis vectors in 
and one basis vector in , the data complexity of
the distinguisher is  with one-bit related-key.

The method above only involves CLHs and the key
schedule, so it can also be utilized in a number of block
ciphers  with  different  structures,  (such  as  SKINNY,
QARMA, and CHAM), as long as the description of their
linear  hulls  are  relatively  clear  and  the  key  schedule  is
linear.  The  clearer  the  description  is,  the  better  this
method works.
 4. Experimental verification

To verify our theory (especially Theorem 4) and the
method above, we present two experiments.

n = 8,m = 2, r = 8
z2 F (XL) :=

S4(XL) & S1(XL)⊕ S2(XL)

The  first  experiment  This  experiment  is  to  verify
Theorem 4 by testing ZCGLHs of SIMON16/16. In this
paper, relative to SIMON, we set  and
the constant to be , and let the F-function be 

 .
232 (K,P,E(P,K))

K P E(P,K)
Firstly,  we  store  all  3-tuples  of

SIMON16/16,  where ,  and  represent  key,
plaintext and ciphertext, respectively.

α1 → γ

232 (K,HK)
Secondly,  given  a  CLH ,  compute  and  store

 2-tuples , where
 

HK =
∑
P

(−1)
⟨α1,P ⟩⊕⟨γ,E(P,K)⟩

α2 ∈ F16
2Thirdly, for each , compute

 

corE((α1, α2), γ) =
∑
K

(−1)
⟨α1,K⟩

HK

η0 A2 α1 → γForthly,  compute  and  from the  CLH 
by the method to construct ZCGLHs.

232

232 + 216 × 216 = 233 232
The first experiment cost about  data complexity,

 time  complexity  and  memory
complexity. We repeat the experiment by using 10 differ-
ent CLHs. It turns out that
 

corE((α1, α2), γ) =

{
0,
uncertain,

α2 /∈ η0 ⊕A2

otherwise

Therefore, the result strongly sustains our theory.
The second experiment  This experiment is to veri-

fy the method to construct ZCGLHs by testing the inte-
gral distinguishers of SIMON32/64.

α1 → γ

A⊥

Firstly, given a CLH  of 12-round SIMON32/
64, we get an integral distinguisher by using the method.
Secondly,  set 1000 different  key  values  and  go  through
the space . It turns out that the integral distinguish-
er is valid for these 1000 keys. So the result promises the
correctness of the method.
 5. Related-key zero-correlation linear

distinguishers of SMION
We apply our method to the SIMON family and the

best  results  can  be  seen  in Table  7.  Please  refer  to  the

Appendix B for detailed intermediate results.
2n

(2n− 1)

22n ⊕(x,K)∈A⊥⟨γ, E(x⊕ λ1,

K ⊕ λ2)⟩

Our attacks on SIMON only need to use -bit data
that involves -bit plaintext and 1-bit related-key.
With  the  cost  of  a  constant  memory  complexity  and

 time complexity to compute 
,  one  can  distinguish  SIMON  from  a  random

permutation. Hence, our distinguishing attacks are valid.
 
 

Table 7  Related-key  zero-correlation  and  integral  distinguishers  of
SIMON

Version Round Related-key Data Time Memory

SIMON32/64 12 1-bit O(232) O(232) O(1)

SIMON48/72 13 1-bit O(248) O(248) O(1)

SIMON48/96 14 1-bit O(248) O(248) O(1)

SIMON64/96 15 1-bit O(264) O(264) O(1)

SIMON64/128 15 1-bit O(264) O(264) O(1)

SIMON96/144 17 1-bit O(296) O(296) O(1)

SIMON128/192 20 1-bit O(2128) O(2128) O(1)

SIMON128/256 22 1-bit O(2128) O(2128) O(1)

 
 

 V. Conclusions
In this paper, with the aid of the related-key model,

we  present  a  generalized  zero-correlation  linear  attack
both from the theoretical aspect and the practical aspect.
More  specifically,  by  studying  block  ciphers’ linear  key
schedules, we establish the links between the convention-
al zero-correlation  linear  attack  and  the  generalized  at-
tack. Then  we  prove  that  the  existence  of  the  general-
ized zero-correlation linear distinguisher is completely de-
termined by conventional linear approximations and the
linear key schedule. Hence, we present a method to con-
struct  generalized  zero-correlation  linear  distinguishers.
Based on this method, we find zero-correlation linear dis-
tinguishers of the SIMON family, which are at least one-
round longer than previous zero-correlation linear distin-
guishers of SIMON.

Our  theory  further  extends  zero-correlation  linear
attacks  to  the  related-key  model,  which  should  prompt
reasearchers  to  more  cautiously  analyse  the  security  of
block ciphers with a linear key schedule against the zero-
correlation linear attack.

Since  the  method  only  involves  a  cipher’s conven-
tional linear hulls and the key schedules, it not only can
be  applied  to  several  other  ciphers,  such  as  SKINNY,
QARMA and  CHAM,  but  also  works  better  along  with
recent developments  in the research on linear  hulls.  Be-
cause a more clear discription on linear hulls provide us
more possibility to construct zero-correlation and obtain
the improvement.

By the way, we believe that the ciphers using non-
linear  key  schedule  might  be  threatened  by  related-key
zero-correlation linear attacks as well.  For instance, Niu
et al. [10] found related-key zero-correlation linear distin-
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guishers of TWINE and Lblock, whose key schedules are
both nonlinear. Though the nonlinear components in key
schedules weaken the controlling force of related-key at-
tacks,  there might have some information that could be
used  to  cause  zero-correlation.  It  will  be  an  interesting
direction for us to do further research.
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 Appendix A. Proof of Proposition 1

F : Fn
2 × (Fn

2 )
r+1 → Fn

2 Ek(x) := F (x, k)

(α, γ) ∈ Fn
2 × Fn

2

Lemma  5  Let  and  ,
then for ,

 

corEk
(α, γ) =

∑
Λ∈(Fn2 )r+1

(−1)⟨Λ,k⟩corF ((α,Λ), γ)

Proof
  ∑
Λ∈(Fn2 )r+1

(−1)⟨Λ,k⟩corF ((α,Λ), γ)

=
1

2nr+2n

∑
Λ

(−1)⟨Λ,k⟩ ∑
x,k′

(−1)⟨α,x⟩⊕⟨Λ,k′⟩⊕⟨γ,F (x,k′)⟩

=
1

2nr+2n

∑
x,k′

(−1)⟨α,x⟩⊕⟨γ,F (x,k′)⟩ ∑
Λ

(−1)⟨Λ,k⊕k′⟩

=
2nr+n

2nr+2n

∑
x,k′=k

(−1)⟨α,x⟩⊕⟨γ,F (x,k′)⟩

= corEk
(α, γ)

F : Fn
2 × (Fn

2 )
r+1 → Fn

2 Ek(x) := F (x, k)

((α1, Λ), γ) ∈ (Fn
2 × Fnr+n

2 )× Fn
2

Corollary  5  Let  and  ,
then for ,

 

corF ((α,Λ), γ) =
1

2nr+n

∑
k∈(Fn2 )r+1

(−1)⟨Λ,k⟩corEk
(α, γ)

Lemma 6  Given
 

gi : Fn
2 × Fn

2 → Fn
2

(x, ki) 7→ Gi(x)⊕ ki

and
 

f : Fn
2 × (Fn

2 × Fn
2 ) → Fn

2

(x, (k1, k2)) 7→ g2(g1(x, k1), k2)

((Γ0, (Λ1, Λ2)), Γ2) ∈ (Fn
2 × (Fn

2 × Fn
2 ))× Fn

2then for ,
 

corf ((Γ0, (Λ1, Λ2)), Γ2)

=
∑

Γ1∈Fn2

corg1 ((Γ0, Λ1), Γ1)corg2 ((Γ1, Λ2), Γ2)

Gi : Fn
2 → Fn

2 ki ∈ Fn
2 i = 1, 2where ,  is constant and .

Proof
  ∑

Γ1∈Fn2

corg1 ((Γ0, Λ1), Γ1)corg2 ((Γ1, Λ2), Γ2)

=
1

24n

∑
Γ1∈Fn2

∑
x,k

(−1)⟨Γ0,x⟩⊕⟨Λ1,k⟩⊕⟨Γ1,g1(x,k)⟩

 

∑
y,k′

(−1)⟨Γ1,y⟩⊕⟨Λ2,k
′⟩⊕⟨Γ2,g2(y,k

′)⟩

=
1

24n

∑
x,k,y,k′

(−1)⟨Γ0,x⟩⊕⟨Λ1,k⟩⊕⟨Λ2,k
′⟩⊕⟨Γ2,g2(y,k

′)⟩

∑
Γ1∈Fn2

(−1)⟨Γ1,y⟩⊕⟨Γ1,g1(x,k)⟩

=
1

24n

∑
x,k,k′

(−1)⟨Γ0,x⟩⊕⟨Λ1,k⟩⊕⟨Λ2,k
′⟩⊕⟨Γ2,f(x,(k,k

′))⟩

∑
Γ1∈Fn2

(−1)0 = corf ((Γ0, (Λ1, Λ2)), Γ2)

  □
Lemma 7  Given
 

g0 : Fn
2 × Fn

2 → Fn
2

(x, k0) 7→ G1(x⊕ k0)

and
 

g1 : Fn
2 × Fn

2 → Fn
2

(x, k1) 7→ G1(x)⊕ k1

((Γ0, Γ1), (Λ0, Λ1)) ∈ (Fn
2 × Fn

2 )× (Fn
2 × Fn

2 )then for ,
 

corg0 ((Γ0, Λ0), Γ1) =

{
corG1

(Γ0, Γ1), if Λ0=Γ0

0, otherwise

and
 

corg1 ((Γ0, Λ1), Γ1) =

{
corG1

(Γ0, Γ1), if Λ1=Γ1

0, otherwise

G1 : Fn
2 → Fn

2 k0, k1 ∈ Fn
2where , and  are constants.

Proof
 

corg0 ((Γ0, Λ0), Γ1)

=
1

22n

∑
x,k

(−1)⟨Γ0,x⟩⊕⟨Λ0,k⟩⊕⟨Γ1,G0(x,k)⟩

=
1

22n

∑
x′,k

(−1)⟨Γ0,x
′⊕k⟩⊕⟨Λ0,k⟩⊕⟨Γ1,G0(x

′)⟩

=
1

22n

∑
x′

(−1)⟨Γ0,x
′⟩⊕⟨Γ1,G0(x

′)⟩ ∑
k

(−1)⟨Λ0⊕Γ0,k⟩

=
1

2n
corG0

(Γ0, Γ1)
∑
k

(−1)⟨Λ0⊕Γ0,k⟩

=

{
corG1

(Γ0, Γ1), if Λ0=Γ0

0, otherwise

Similarly, we also get
 

corg1 ((Γ0, Λ1), Γ1) =

{
corG1

(Γ0, Γ1), ifΛ1=Γ1

0, otherwise

Proof of Proposition 1
E(x, k) := Ek(x)Let , so

 

E(x, k) = gr(· · · (g2(g1(x⊕ k0), k1), · · · , kr),

gi(x, ki) = Gi(x)⊕ ki (α, γ) ∈ Fn
2 × Fn

2where . Then for ,
 

corEk
(α, γ)

=
∑

Λ∈(Fn2 )r+1

(−1)⟨Λ,k⟩corE((α,Λ), γ)

=
∑

Λ∈(Fn2 )r+1

(−1)⟨Λ,k⟩ ∑
Γ=(Γ0,Γ1,...,Γr)

Γ0=α,Γr=γ

r∏
i=1

corgi ((Γi−1, Λi), Γi)

=
∑

Γ=(Γ0,Γ1,...,Γr)
Γ0=α,Γr=γ

(−1)⟨Γ,k⟩
r∏

i=1

corGi
(Γi−1, Γi)
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Proof of Proposition 2
E(x, k) = F (x, L(k)) = EL(k)(x)Let , then

 

corE((α1, α2), γ) =
1

2t

∑
mk∈Ft2

(−1)⟨α2,mk⟩corEL(mk)
(α1, γ) =

1

2t

∑
mk∈Ft2

(−1)⟨α2,mk⟩ ∑
Λ=(Λ0,...,Λr)∈Fnr+n

2

(−1)⟨Λ,L(mk)⟩corF ((α1, Λ), γ)

=
1

2t

∑
Λ=(Λ0,...,Λr)∈Fnr+n

2

corF ((α1, Λ), γ)
∑

mk∈Ft2

(−1)⟨Λ,L(mk)⟩⊕⟨α2,mk⟩

=
1

2t

∑
Λ=(Λ0,...,Λr)∈Fnr+n

2

corF ((α1, Λ), γ)
∑

mk∈Ft2

(−1)⟨L
T(Λ),mk⟩⊕⟨α2,mk⟩ =

∑
Λ=(Λ0,...,Λr)∈Fnr+n

2

LT(Λ)=α2

corF ((α1, Λ), γ).

Based on the proof of Proposition 1, we obtain  ∑
Λ =(Λ0,...,Λr)∈Fnr+n

2 LT(Λ)=α2

corF ((α1, Λ), γ) =
∑

Γ=(Γ0,...,Γr)∈Fnr+n
2 Γ0=α1,Γr=γ,LT(Γ )=α2

r∏
i=1

corGi
(Γi−1, Γi).

 Appendix B. Distinguishers of SIMON

Here, we  display  the  details  of  some  of  the  best  results  we  ob-
tained  for  SIMON32/64,  SIMON48/72,  SIMON48/96,  SIMON64/96,
SIMON64/128, SIMON96/144, SIMON128/192, and SIMON128/256.

α1 → γ A⊥
2

A2
∩

LT(Ω0) = ∅ η0

{Lj}j /∈J LT(Ω0) (s+ 1)

According  to  the  method  to  construct  ZCGLHs  in  Section  IV.3,
given  a  CLH ,  we  figure  out  the  that  satisfies

.  In  the  results  below,  all  are linearly  indepen-
dent with . So we denote the rank of  by .

A⊥
2 (t− 1)

ξ {ξ, 0t} = A⊥
2 A⊥ = A⊥

1 ×A⊥
2

A⊥
1 = {α1, 02n} ξ

A⊥ A

s < t− 1

Since  is a -dimensional subspace, we can also figure out
a  vector  that  satisfies .  Then ,  where

. Therefore, we only list the vector  instead of the ba-
sis of  for brevity. Note that, the dual subspace of  is not unique
when . It means we can get more plaintext structures to dis-
tinguish the cipher when a single plaintext structure is  not enough to
distinguish.

1) SIMON32/64’s 12-round distinguisher
 α1 :
γ :

s :
η0 :

ξ :

0X 1 0000
0X 4
56
0X E3F2 5045 477A AA78
0X 9224 5CC1 9DE7 7100

2) SIMON48/72’s 13-round distinguisher
 α1 :
γ :

s :
η0 :

ξ :

0X 1000 0000
0X 8
70
0X 9F A120 2099 0743 8C3A
0X 2800 0000 8800 0000

3) SIMON48/96’s 14-round distinguisher
 α1 :
γ :

s :
η0 :

ξ :

0X 100 0000
0X 8
95
0X C399 FD36 6747 7385 D9B4 ADD8
0X 2520 0037 1000 2CE8 001A

4) SIMON64/96’s 15-round distinguisher
 α1 :
γ :
s :
η0 :

ξ :

0X 1 0000 0000
0X 400 0000
95
0X DE17 0DEF 1A0C 3923 29D8 EB04
0X 3C00 0000 0000 0000 0440 000C

5) SIMON64/128’s 15-round distinguisher
 

α1 :
γ :
s :
η0 :

ξ :

0X 1 0000 0000
0X 8
123
0X D1F3 BBC6 A7C6 F422 F858 B5AB 6EDF 884D
0X 9000 123B 5800 182A 2400 1E65 7D00 0E50

6) SIMON96/96’s 15-round distinguisher
 α1 :
γ :

s :
η0 :

ξ :

0x 1 0000 0000 0000
0X 8
92
0X 6D17 2926 5D5F 56BC 9137 EA1C
0X E600 0010 D478 B2A0 0001 3212

7) SIMON96/144’s 17-round distinguisher
 α1 :
γ :

s :
η0 :

ξ :

0x 1 0000 0000 0000
0X 2
139
0X 3A32 15F7 157D 4F52 5B11 15A4 A878 1849 1333
0X 2000 0000 0602 0000 0000 001E 6600 0000 00A0

8) SIMON128/128’s 18-round distinguisher
 α1 :
γ :

s :
η0 :

ξ :

0x 1 0000 0000 0000 0000
0X 2
127
0X 199A 29F6 F325 A287 DB59 B9C9 8946 0741
0X 8280 0000 0280 2B83 5078 0000 287A A7D8

9) SIMON128/192’s 20-round distinguisher
 

α1 :
γ :

s :
η0 :

ξ :

0x 1 0000 0000 0000 0000
0X 200
187
0X 4164 B0FB 5103 0CF3 4799 E1A9 DF9B 4F15 E881

6FC9 E47B 7A08
0X 4000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0002
10) SIMON128/256’s 22-round distinguisher
 

α1 :
γ :

s :
η0 :

ξ :

0x 1 0000 0000 0000 0000
0x 400 0000 0000 0000
255
0X 4FD7 E1AB E9E5 EA7E FAB6 024B E569 FAA5 811D CD81

D617 8878 35DA F955 F003 7762
0x 2195 0000 0000 0003 9722 6000 0000 0002 227D 2000

0000 0000 7D4A
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