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Abstract — Compared with support vector machine, large margin distribution machine (LDM) has better general-
ization performance.  The central  idea of LDM is to maximize the margin mean and minimize the margin variance
simultaneously. But the computational complexity of LDM is high. In order to reduce the computational complexity
of LDM, a weighted linear loss LDM (WLLDM) is proposed. The framework of WLLDM is built based on LDM and
the weighted linear loss. The weighted linear loss is adopted instead of the hinge loss in WLLDM. This modification
can  transform the  quadratic  programming  problem into  a  simple  linear  equation,  resulting  in  lower  computational
complexity. Thus, WLLDM has the potential to deal with large-scale datasets. The WLLDM is similar in principle to
the LDM algorithm, which can optimize the margin distribution and achieve better generalization performance. The
WLLDM algorithm is compared with other models by conducting experiments on different datasets. The experimental
results show that the proposed WLLDM has better generalization performance and faster training speed.
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I. Introduction
Support  vector  machine  (SVM)  [1]  proposed  by

Vapnik et  al.,  is  a  kind  of  machine  learning  method.  It
obtains an optimal classification hyperplane by solving a
quadratic programming problem (QPP). On the one hand,
SVM  obeys  the  structural  risk  minimization  principle,
which  makes  maximum  margin  be  considered.  On  the
other hand, the kernel trick can be directly used for solv-
ing  the  nonlinear  classification problem.  Owing to  these
advantages,  SVM  has  been  successfully  applied  in  the
fields [2]–[4] of pattern classification and regression anal-
ysis  and  many  improved  models  [5]–[8]  based  on  SVM
are proposed by various scholars. All algorithms improve
the SVM algorithm in  efficiency  and generalization  per-
formance to some extent.

Although SVM has many advantages, there are still
two important problems that may affect its  application.
One problem is that SVM is based on the margin theory,
which  ignores  the  effect  of  margin  distribution  on  the

model. Reyzin et al., [9] revealed that the margin distri-
bution is  more  important  for  the  generalization  perfor-
mance, rather than the minimum margin. Such a conjec-
ture  has  been  researched  theoretically  and  has  been
proved by Gao et al. [10] recently. In addition, Zhou [11]
pointed that both the margin mean and variance instead
of a single-point margin are more crucial. Inspired by the
above results,  Zhang et al.  [12] proposed a large margin
distribution machine (LDM). LDM can improve the gen-
eralization ability of SVM-type classifiers more effective-
ly. Therefore, LDM has been extensively studied [13]–[15]
in pattern recognition field.

O(m3) m

The other problem is that SVM and its variants are
the  high  computational  complexity,  especially  for  large-
scale datasets. As we know that SVM solves a large QPP
costing around , where  is the number of train-
ing samples. With the increase of the number of samples,
the computational  complexity  increases.  In  order  to  re-
duce the computational complexity, some improved algo- 
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rithms have been proposed. For instance, Suykens et al.
[16]  proposed  a  least  squares  support  vector  machine
(LSSVM) algorithm.  LSSVM is  implemented  by  solving
a linear equation instead of solving a QPP in SVM, lead-
ing  to  a  faster  learning  speed.  Jayadeva et  al.  [17] pro-
posed  a  twin-type  SVM,  called  twin  SVM  (TSVM).
TSVM  is  realized  by  solving  two  smaller  QPPs  rather
than a QPP, leading to very fast training speed. Shao et
al.  [18],  [19]  proposed  the  weighted  linear  loss  support
vector machine  (WLSVM)  model  and  the  weighted  lin-
ear  loss  TSVM  (WLTSVM)  model.  Both  WLSVM  and
WLTSVM are constructing by defining a weighted linear
loss. They only need to take less time to solve simple lin-
ear equations.

Similar  to  SVM,  LDM  also  needs  to  solve  a  large
QPP. In  addition,  the  dual  form  in  LDM involves  ma-
trix inversion. Thus, LDM is more time-consuming than
SVM in theory. In fact, in order to reduce the time cost
of  LDM,  Abe  [20]  proposed  a  least  squares  LDM
(LSLDM) algorithm.  The framework of  LSLDM is  built
by using the  least  squares  loss,  which can speed up the
training  procedure  than  LDM.  But  Abe  revealed  that
LSLDM is  not  a  good  formulation  because  very  similar
measures are  mixed in  the  model.  In  this  paper,  follow-
ing  WLSVM  [18]  and  WLTSVM  [19],  instead  of  using
the hinge  loss  or  least  squares  loss  in  LDM,  we  formu-
late a weighted linear loss LDM (WLLDM) algorithm. In
WLLDM, the objective function is the sum of the margin
mean,  the  margin  variance,  the  regularization  term and
the  slack  variables,  and includes  the  equality  constraint
term. The following is the discussion about advantages of
WLLDM.

i)  The  weighted  linear  loss  is  used  to  measure  the
empirical risk of WLLDM. On the one hand, the weight-
ed  linear  loss  can  weigh  the  impact  of  each  sample  on
classification hyperplane, resulting in a more stable mod-
el.  On  the  other  hand,  the  use  of  weighted  linear  loss
makes  WLLDM  solve  a  simple  linear  equation,  rather
than a QPP, leading to lower computational complexity.

ii)  An  additional  regularization  term  is  added  in
WLLDM.  This  is  a  common  method  to  guarantee  the
global  solution  and  stability  of  optimization  problem.
Strong  convexity  plays  an  important  role  on  the  very
fast computational times obtained.

iii) The classification hyperplane fulfills the require-
ment  that  the  positive  and  negative  samples  be  on  one
side  respectively.  Thus,  the  boundary  hyperplanes  are
not adopted in WLLDM.

iv)  Inspired  by  the  theorem  in  [21],  the  solution
methods  of  linear  WLLDM and  nonlinear  WLLDM are
different. 

II. Large Margin Distribution Machine

X = [x1,x2, . . . ,xm]T ∈ Rm×d

y = [y1,y2, . . . ,ym]T ∈ Rm

x1 ∈ Rd yi ∈ {+1,−1}

For a binary classification problem, assume that the
training  set  is ,  and  the
corresponding label is , where

, , m is  the  number  of  training

samples, and d is the dimension of the feature space.
Similar to SVM, LDM also searches for a classifica-

tion hyperplane
 

wTx = 0 (1)

w ∈ Rd

r̄ r̂
r̄ r̂

where  is the normal vector. Differently, the clas-
sification hyperplane is obtained by maximizing the mar-
gin mean  and minimizing the margin variance .  The
formulas of  and  are as follows:

 

r̄ =
1

m

m∑
i=1

yiw
Txi =

1

m
yTXw (2)

 

r̂ =
1

m2

m∑
i=1

m∑
j=1

(
yiw

Txi − yjw
Txj

)2
=

2

m2
(mwTXTXw −wTXyyTXTw) (3)

Then, the primal problem of LDM can be formulat-
ed as

 

min
w,ξi

1

2
wTw + λ1r̂ − λ2r̄ + C

m∑
i=1

ξi

s.t. yiwTxi ≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . ,m (4)

ξi C, λ1 λ2

1
2 ||w||2

wTx = +1 wTx = −1
wTx = 0

where  denotes  the  slack  variable,  and  are
trading-off  parameters among the training error,  margin
mean and margin variance. The primal problem (4) can
be explained as the following. The first term implies that
the  structural  risk  principle  is  measured  by  the  term

. The  second  and  third  terms  are  the  maximiza-
tion  of  margin  mean  and  the  minimization  of  margin
variance, respectively,  resulting  in  a  better  generaliza-
tion performance. The last term and the inequality con-
straint  are  used to  construct  two boundary  hyperplanes

 and . And the classification hyper-
plane  is located in the middle of two boundary
hyper-planes. As can be observed, LDM also adopts the
hinge loss, leading to high computational complexity. 

III. Weighted Linear Loss LDM
Though LDM obtains  perfect  generalization  perfor-

mance  by  optimizing  margin  distribution,  it  is  the  high
computational  complexity.  In  order  to  reduce  the  time
cost  of  LDM  under  the  premise  of  high  accuracy,  the
WLLDM model  is  proposed  in  this  section.  On the  one
hand, the weighted linear loss is applied to WLLDM in-
stead of hinge loss, so the QPP can be replaced by a lin-
ear equation, resulting in lower computational complexi-
ty than LDM. On the other hand, WLLDM is similar in
principle to  the  LDM,  which  can  get  better  generaliza-
tion  ability  than  WLSVM  and  WLTSVM.  Thus,
WLLDM not only inherits almost all advantages of LDM
but also has lower computational complexity. 
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1. Loss function
In the SVM-type classifiers, the commonly used loss

functions  include  hinge  loss,  square  loss  and  linear  loss.
The hinge loss is defined as

 

Lhinge(u) = max{0, 1− yu}, y = ±1 (5)

The square loss is defined as
 

Ls(u) =
∑

(1− yu)2, y = ±1 (6)

And the linear loss is defined as
 

Ll(u) = 1− yu, y = ±1 (7)

u y
x

where  is the decision function, and  is the correspond-
ing  label  of  a  sample . Figure  1 are  examples  of  the
above loss functions.
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(c) Linear loss
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(d) Weighted linear loss
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Figure 1  Different loss functions.
 

Simiar to SVM, to measure the empirical risk, LDM
also adopts the hinge loss, leading to high computation-
al complexity. In terms of SVM-type classifiers, there are
some  models  with  high  computational  speed,  such  as
LSSVM. The reason is that they are constructed by us-
ing  the  linear  loss,  leading  to  the  QPPs  with  equality
constraints  be  solved.  Therefore,  one  way  to  solve  the
problem  of  low  computational  efficiency  is  to  apply
equality constraints in LDM, such as least squares LDM
(LSLDM).

vi

As  you  can  see  from Figure  1(c),  the  optimization
problem based on linear loss may suffer the negative in-
finity problem. So, in this section, the linear loss is limit-
ed by weighted parameter , and a weighted linear loss
(seen in Figure 1(d)) is defined as

 

Lwl(u) = vi(1− yu), y = ±1 (8)

viwhere  is formulated as 

vi =

{
10−4, |1− yu| ≥ J
1, |1− yu| < J

(9)

J ≥ 0where  is a constant. 

2. Linear WLLDM
In spirt of the characteristics of weighted linear loss

and LDM, the linear WLLDM can be formulated as
 

min
w,b

1

2
(wTw + b2) + λ1r̂ − λ2r̄ + c1

m∑
i=1

Lwl(f(xi)) (10)

c1, λ1 λ2 b
f(x) : wTx+ b = 0

where  and  are positive plenty parameters,  is
a  bias,  is the  classification  hyper-
plane.

Based on (8), the problem (10) can be further equiv-
alently transformed into

 

min
w,ξi

1

2
(wTw + b2) + λ1r̂ − λ2r̄ + c1

m∑
i=1

viξi

s.t. yi(wTxi + b) = 0− ξi (11)

ξi xi vi
r̄ r̂

where  is the error variable of sample , and  can be
derived from formula (9).  and  can be derived from (12)
and (13).

 

r̄ =
1

m

m∑
i=1

yi(w
Txi + b) =

1

m
(XTy)Tw +

1

m
yTeb (12)

 

r̂ =
1

m

m∑
i=1

[
yi(w

Txi + b)− r̄
]2

=
1

m2
(∆1 −∆2) (13)

∆1 = m(Xw + eb)T(Xw + eb) ∆2 = (Xw+
eb)TyyT(Xw + eb))
where  and 

vi

f(x)

Next,  the  illustration  of  formula  (11)  is  given.  The
object  function includes  four  terms.  The first  one is  the
regularization term, which can realize the structural risk
minimization. The second and third terms represent the
margin  distribution  described  by  margin  variance  and
margin  mean.  WLLDM  tries  to  maximize  the  margin
mean and minimize the margin variance to improve the
generalization performance. The last term is to minimize
the training errors, which means the mis-classification is
allowed  and  the  errors  should  be  as  small  as  possible.
The  weighted  information  not  only  be  used  to  avoid
the negative infinity problem, but also balance the influ-
ence of  each sample  on the hyperplane .  Moreover,
the  inequality  constraints  are  replaced  by  the  equality
constraints, improving the computational efficiency.

In order to obtain the optimal solution of  (11),  the
Lagrange function is constructed as the following:

 

L =
1

2
(wTw + b2) +

λ1
m2

(∆1 −∆2)

− λ2
m

[yTXw + yTeb] + c1v
Tξ (14)

ξ = −Y Xw − yb Y = diag(y) v = (v1,v2,where ,  and 
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. . . ,vm)T is the weight vector.
Based on the KKT conditions, we have
 

∂L

∂w
= w +

2λ1
m2

⨿⨿⨿
− λ2
m

XTy − c1X
TY v = 0 (15)

 

∂L

∂b
= b+

2λ1
m2

∏∏∏
− λ2
m

eTy − c1y
Tv = 0 (16)

⨿⨿⨿
= mXT(Xw + eb)−XTyyT(Xw + eb)∏∏∏

= meT(Xw + eb)− eTyyT(Xw + eb)
where  and

.
Then, the combined matrix form of (15) and (16) is
 [
P Q
QT N

] [
w
b

]
=

 λ2
m

XTy + c1X
TY v

λ2
m

eTy + c1y
Tv

 (17)

P =I+
2λ1
m2

(mXTX−XTyyTX) Q=
2λ1
m2

(mXTe−

XTyyTe) N=1+
2λ1
m2

(meTe− eTyyTe) I

where , 

,  and  is  the
identity matrices with appropriate dimensions.[

w
b

]
Later, we can obtain the solution  as follows:
 [
w
b

]
=

[
P Q
QT N

]−1

 λ2
m

XTy + c1X
TY v

λ2
m

eTy + c1y
Tv


(18)

xt

Once the optimal  solution is  obtained,  an unknown
sample  can  be  classified  by  the  following  decision
function:

 

label(xt) = sgn
{
[xt, 1]

[
w
b

]}
(19)

The detailed process of linear WLLDM is described
in Algorithm 1.

Algorithm 1  Lagrange multiplier  method  solver  for  prob-
lem (11)
Require:
X  : training samples;
y  : label;
c1, λ1, λ2  : appropriate parameters.

v = e = (1, 1, . . . , 1)T1: Let ; [
w
b

]
2: Calculate the initial solution  by equation (18);[

w
b

]
ξ

ξ = −Y Xw − yb

3: Based on , calculate the slack variable , that is,

;
ξ J = |ξ|mean

vi
4: According to the slack variable , we can get ,

then the  is obtained by equation (9);

vi

[
w
b

]
5: Based on , the optimal solution  is calculated by

(18);

6: According to the solution, the decision function in equa-
tion (19) is constructed.
 

3. Nonlinear WLLDM
Φ(·)

x
x → Φ(x)

XΦ = [Φ(x1), Φ(x2), . . . , Φ(xm)] ∈ Hd×m

For nonlinear case, a mapping function  is con-
sidered, which maps the input sample  from the origi-
nal  space  to  the  Hibert  space,  i.e., .  Let

 be  the  training
set  in  Hilbert  space.  Then,  the  primal  formulation  of
nonlinear WLLDM can be described as

 

min
w,ξi

1

2
(wTw + b2) + λ1r̂ − λ2r̄ + c1

m∑
i=1

viξi

s.t. yi(wTΦ(xi) + b) = 0− ξi (20)

Inspired by the theorem in reference [21], for nonlin-
ear case, let

 

w = XT
Φα (21)

then, we have
 

XΦw = ψ(XΦ,X
T
Φ)α = Gα (22)

 

wTw = αTψ(XΦ,X
T
Φ)α = αTGα (23)

According to equations (22) and (23), the formula (20)
can be reformulated as

 

min
w,ξi

1

2
(αTGα+ b2) +

λ1
m2

Ω − λ2
m

ϖ + c1

m∑
i=1

viξi

s.t. yi(αTXΦΦ(xi) + b) = 0− ξi (24)

Θ = m(Gα+ eb)
T
(Gα+ eb) ⊙ = (Gα+ eb)T×

yyT(Gα+ eb) ϖ = yTGα+ yTeb Ω = Θ−⊙ α =

[α1, α2, . . . , αm]T G=ψ(XΦ,

XT
Φ) ψ(·, ·)

where , 
, ,  and 

 is  the  Lagrange  multiplier, 
 and  is an appropriately kernel.
In order to obtain the optimal solution of  (24),  the

Lagrange function is constructed as forllows:
 

L =
1

2
(αTGα+ b2) +

λ1
m2

Ω

− λ2
m

ϖ + c1v
T(−Y Gα− yb) (25)

Y = diag(y) v = (v1,v2, . . . ,vm)Twhere ,  and  is  the
weight vector.

Based on the KKT conditions, we have
 

∂L

∂α
= Gα+

2λ1
m2

τ − λ2
m

GTy − c1G
TY v = 0 (26)

 

∂L

∂b
= b+

2λ1
m2

ϱ− λ2
m

eTy − c1y
Tv = 0 (27)

τ = mGT(Gα+ eb)−GTyyT(Gα+ eb) ϱ =

meT(Gα+ eb)− eTyyT(Gα+ eb)
where  and 

.
Then,  the  combined  matrix  form  of  formulas  (26)

and (27) is 
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[
P1 Q1

Q1T N1

] [
α
b

]
=

 λ2
m

Gy + c1GY v

λ2
m

eTy + c1y
Tv

 (28)

P1 = G+
2λ1
m2

(mGTG−GTyyTG) Q1 =
2λ1
m2

×

(mGTe−GTyyTe) N1 = 1+
2λ1
m2

(meTe− eTyyTe)

where , 

, .[
α
b

]
Later, we can obtain the solution  as follows:
 [
α
b

]
=

[
P1 Q1

Q1T N1

]−1

 λ2
m

Gy + c1GY v

λ2
m

eTy + c1y
Tv


(29)[

α
b

]
Applying  the  solution ,  the  decision  function

of nonlinear WLLDM can be obtained as follows:
 

label(xt) = sgn
{[

ψ(xT
t ,X

T
Φ) 1

] [ α
b

]}
(30)

The detailed  process  of  nonlinear  WLLDM  is  de-
scribed in Algorithm 2.

Algorithm 2  Lagrange multiplier  method  solver  for  prob-
lem (20)
Require:
XΦ  : training samples;
y  : label;
ψ(, )  : appropriate kernel;
c1, λ1, λ2  : model parameters.

v = e = (1, 1, . . . , 1)T1: Let ; [
w
b

]
2: Calculate the initial solution  by equation (29);[

α
b

]
ξ

ξ = −Y Xw − yb

3: Based  on ,calculate  the  slack  variable ,  that  is,

;
ξ J = |ξ|mean

vi
4: According to the slack variable , we can get ,

then the  is obtained by equation (9);

vi

[
α
b

]
5: Based on , the optimal solution  is calculated by

equaiton (29);
6: According to the solution, the decision function in equa-

tion (30) is constructed.
 

IV. Analysis of WLLDM
 

1. Realationship with SVM, LDM and LSLDM
Compared  to  standard  SVM,  LDM,  LSLDM  and

WLLDM  show  better  metrists  in  two  aspects.  On  the
one  hand,  LDM,  LSLDM  and  WLLDM  optimize  the
margin distribution of training samples. Hence, they are
more  accurate  than  SVM.  On  the  other  hand,  LDM,

LSLDM and  WLLDM are  more  robust  than  SVM.  The
reason is that all training samples contribute to the clas-
sification hyperplane, which makes the hyperplane insen-
sitive to noise.

Different  from LDM and LSLDM, WLLDM change
the inequality  constraint  into  equality  constraint,  which
is similar to LSLDM. Therefore, they solve a simple lin-
ear equation instead of a single QPP, which can lead to
the  reduction  of  time  cost.  Hence,  both  LSLDM  and
WLLDM are suitable for large-scale classification.

Although WLLDM and LSLDM solve a linear equa-
tion,  the  losses  they  used  are  markedly  different.  For
LSLDM,  the  quadratic  loss  is  adopted.  Reference  [20]
points out that LSLDM is not a good formula because it
mixes  very  similar  measures.  As  for  WLLDM,  the
weighted linear loss is used, which is built by adding the
weights on linear loss. In WLLDM, the training samples
in  the  different  positions  are  given  different  penalties,
which can avoid over-fitting to a certain extent and yield
better generalization performance than linear loss. 

2. Realationship with LSSVM, WLSVM and
WLTSVM

For  WLLDM,  LSSVM,  WLSVM  and  WLTSVM,
what they  have  in  common  is  that  different  loss  func-
tions are used in them rather than the hinge loss. Thus,
they  only  need  to  solve  simple  linear  equations,  leading
to a fast-training speed.

The difference is that, for LSSVM, the least squares
loss is employed and the importance of each sample is the
same. But some samples corrupted by noises are less sig-
nificant and should be ignored. LSSVM lacks this kind of
ability. However, for WLLDM, WLSVM and WLTSVM,
they can  weigh  the  effect  of  each  sample  on  the  hyper-
plane by the weighted vectors in the weighted linear loss.
Compared to LSSVM, WLLDM, WLSVM and WLTSVM
are  more  robust  and  accurate.  Furthermore,  compared
with WLSVM and WLTSVM, our WLLDM can achieve
better generalization performance. The reason is that the
influence of  the  margin  distribution  on  classifier  is  con-
sidered  in  WLLDM.  Theoretical  research  indicates  that
the margin  distribution  is  more  important  than  mini-
mum margin for SVM-style classifiers. 

3. Computational complexity

O(m3)

m
O(m3)

d× d
O(d3)

Notice that some algorithms may have various ways
to  optimize.  For  example,  SVM  can  be  solved  by
stochastic gradient descent, sequential minimal optimiza-
tion  and  dual  coordinate  descent.  Hence,  to  make  the
comparation  fair,  in  this  section,  all  algorithms  are
solved  by  the  optimization  toolbox  QP  in  MATLAB.
From [17], we conclude that the complexity of the usual
SVM is no more than .  For LDM [12],  as can be
seen  from  its  dual  form,  LDM  needs  to  solve  a  vector
with  variables. Thus,  the  time  complexity  of  obtain-
ing the optimal solution can reach to . Moreover,
the  matrix  of  dimension  needs  to  be  inverted,
which costs . Thus, the total cost for solving LDM
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O(m3 + d3)

m

O(8m3)

Q P

is  about .  For  optimal  margin  distribution
machine (ODM), according to the [22],  we found that a
vector with 2  variables needs to be solved. Meanwhile,
there is no matrix inversion in ODM. Thus, ODM costs
around .  For  WLLDM,  all  samples  are  used  to
optimize  the  QPP  with  equality  constraints.  WLLDM
used  all  samples  with  weighted  linear  loss.  So,  the
WLLDM has better computational efficiency than ODM,
LDM  and  SVM.  However,  WLLDM  is  lower  than
LSSVM,  WLSVM and  LSLDM.  The  one  reason  is  that
LSSVM  [16],  WLSVM  [18] and  LSLDM  [20]  also  solve
the QPP  with  equality  constraint.  Also,  WLLDM  per-
forms  more  matrix  operations  than  LSSVM,  WLSVM
and LSLDM, such as  and . The other reason is that
WLLDM needs to train the model  twice,  which is  simi-
lar to WLTSVM [19] and WLSVM. Therefore, compared
with LSSVM, they are more time-consuming. 

V. Experiments
In  order  to  verify  the  classification  performance  of

the proposed WLLDM, we compare WLLDM with some
related  algorithms  on  some  different  datasets,  including
UCI  datasets  [23],  NDC dataset  [24]  and  defect  dataset
[25], [26]. Before the experiments, each feature of all sam-
ples is  normalized  into  [0,  1].  All  algorithms  are  imple-
mented in MATLAB 2016b. The software platform is in-
stalled  on  a  PC  with  an  Intel  I7  processor  (3.60  GHz)
and  16  GB  RAM.  For  the  sake  of  fairness,  all  QPPs
based  on  inequality  constraints  were  solved  using  the
built-in “quadprog” function  in  MATLAB.  As  for  all
QPPs based on equality constraints, they are directly im-
plemented by solving linear equations in MATLAB.

{2i|i = −7,

−6, . . . , 7}
ψ(xi,xj) = exp(−||xi − xj ||2/2δ2)

δ {2i|i = −7,−6, . . . , 7}

The model parameters are important for the general-
ization performance of the model. In the experiments, the
5-fold  cross-validation  and  the  grid  search  are  used  to
choose the optimal parameters. All penalty parameters in
aforementioned algorithms are  selected  from 

. For nonlinear case, the Gaussian kernel func-
tion  is  used,  and  the
kernel parameter  is chosen from .
For  large-scale  datasets,  due  to  the  long  training  time,
the range of  optimization parameters  should be reduced
accordingly.  Since  the  SVM-type  classifiers  are  binary
classifiers  for  pattern  recognition.  For  learning  a  multi-
class problem, SVM-type classifiers must be extended to
multi-class  classifiers.  For  multiple  class  problems,  the
SVM-type classifiers are generally combined with “1 vs. 1”,
“1 vs.  rest”, “binary tree” and “directed acyclic  graph”.
Binary tree [27] is one of the most commonly used meth-
ods in multi-classification technology. Hence,  in this pa-
per,  the  binary  tree  method  is  combined  with  binary
classifier to construct multi-class classification model. 

1. UCI datasets
In order  to  verify  the  influence  of  margin  distribu-

tion  on  performance,  twenty-two  benchmark  datasets
were  selected  from UCI  datasets  [23],  including  12  two-

category  datasets  and  10  multi-category  datasets.  Their
attributes are listed in Table 1. Since the SVM-type clas-
sifiers are used to binary classification, for multiple class
classification problem, the binary tree method is utilized.
In  the  experiments,  WLLDM  is  compared  with  SVM,
LDM, ODM and LSLDM.
 
 

Table 1  The  attributes  of  twenty-one  benchmark  datasets  in  UCI
datasets

Datasets Samples Features Classes

Australian 690 14 2

Blood 748 5 2

Diabetes 768 8 2

German 24 1000 2

Haberman 306 3 2

Heart 270 12 2

Ionosphere 351 34 2

Liverdisorder 345 6 2

Sonar 208 60 2

Vote 435 16 2

Wdbc 569 31 2

Wpbc 198 34 2

Air 359 65 3

Balance 625 5 3

Glass 214 10 6

Iris 150 5 3

Libras_Movement 360 90 15

Soybean 47 36 4

Vehicle 846 19 4

Vowel 528 11 11

Wine 178 13 3

Zoo 101 17 7
 

1) Binary classification
In this  section,  we  conducted  a  series  of  experi-

ments  on  twelve  binary  datasets.  For  each  dataset,  we
randomly split the data into five subsets, one for testing
and the others for training. This process is repeated five
times until  all  of  the five subsets have been set to be a
testing  set.  Finally,  the  testing  result  is  represented  by
the average result taken by five experiments.  In the ex-
periments, both the linear and nonlinear are considered.
The  testing  results  of  five  classifiers  are  recorded  in
Tables 2 and 3, including the accuracy and running time.
“Accuracy” refers to the average accuracy with standard
deviation  taken by five-fold  cross-validation. “Time” in-
dicates the total time of training and testing.

In  terms  of  time  cost,  some  conclusions  can  be
drawn  from Tables  2 and 3.  Firstly,  WLLDM  and
LSLDM are faster than SVM, LDM and ODM. The rea-
son is that they solve a simple linear equation instead of
a  QPP.  Secondly,  WLLDM  is  slower  than  LSLDM  on
some  datasets.  The  reason  is  that  WLLDM  needs  to
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train the model twice. Thirdly, LDM is even faster than
SVM on some datasets. There are two reasons for this re-
sult. On the one hand, on some datasets, LDM needs less
iterations  than  SVM  to  get  the  optimal  value.  On  the
other  hand,  for  the regular-scale dataset,  the matrix  in-
version will not consume too much time. Hence, LDM is
even faster  than SVM. This  also  reveals  that  the  intro-
duction  of  margin  distribution  can  make  the “quadprog
function” easier to converge in the optimization process.
Lastly,  the  results  show  that  ODM  is  nearly  ten  times
slower than LDM. The reason is that the introduction of
square term makes the QPP of ODM with more inequali-
ty  constraints.  This  result  leads  to  that  ODM needs  to
optimize a larger dual problem than LDM.

In terms of accuracy, we can see that LDM, ODM,
LSLDM and WLLDM obtain higher accuracy than SVM
on most datasets. The reason is that almost all datasets
have hidden margin distribution. It can enhance the ac-
curacy by optimizing the margin distribution of training
samples. In addition, it can be observed that WLLDM is
superior to LSLDM, ODM and LDM in accuracy. Cause
is that the use of weighted linear loss is more reasonable.
The training samples in the different positions are given
different penalties, which can avoid over-fitting to a cer-
tain  extent  and  achieve  better  learning  performance.
This also reveals that our WLLDM, whose solution is ob-

tained  by  solving  a  linear  system,  performs  comparable
or  better  than  LDM.  In  addition,  from  the  last  row  of
Tables  2 and 3,  we  can  observe  that  our  WLLDM gets
the best classification accuracy in most cases. The result
further indicates that WLLDM exceeds other four classi-
fiers in classification accuracy.

For further fair and objective comparison of the five
classifiers on the UCI datasets, the Friedman test [28] is
resorted. First,  the  classification  accuracy  of  five  classi-
fiers on all datasets is ranked, and the results are shown
in Tables 4 and 5. The lower the rank is, the better the
performance  of  the  classifier  is.  Obviously,  the  average
rank of WLLDM is the lowest among the five classifiers
in both linear and nonlinear cases.

l

n

Next, let  represent the number of comparable algo-
rithms  and  be  the  number  of  datasets.  Based  on  the
average rank of five classifiers, the Friedman statistic pa-
rameter can be calculated as

 

χ2
F =

12n
l(l + 1)

∑
j

Rank2j −
l(l + 1)

2

4

 (31)

Rankj jthwhere  denotes  the  average  rank of  the  algo-
rithm. And

 

 

Table 2  The results of five linear classifiers on binary class UCI datasets

Dataset WLLDM accuracy(%)
Time(s)

LSLDM accuracy(%)
Time(s)

ODM accuracy(%)
Time(s)

LDM accuracy(%)
Time(s)

SVM accuracy(%)
Time(s)

Australian 87.82±1.26
0.0314

87.10±1.53
0.0094

87.68±1.5884
1.9338

87.54±1.54
0.1870

86.81±1.95
0.1573

Blood 77.95±4.11
0.0356

60.70±3.98
0.0076

64.04±3.71
3.3388

64.31±5.27
0.4329

63.91±4.94
0.4862

Diabetes 77.47±3.84
0.0369

73.96±3.02
0.0094

74.09±3.00
3.9478

74.09±2.73
0.3277

73.57±2.70
0.3470

German 76.80±3.00
0.0667

70.00±4.89
0.0088

69.90±5.12
4.0830

70.00±5.26
0.3618

69.20±4.80
0.2792

Haberman 75.50±3.66
0.0056

71.25±6.24
0.0065

71.59±6.59
0.4059

74.19±4.87
0.0660

74.19±4.87
0.0641

Heart 85.19±3.31
0.0064

84.44±3.81
0.0064

84.81±2.96
0.2680

84.44±3.81
0.0244

84.07±3.01
0.0358

Ionosphere 88.34±4.97
0.0120

86.91±4.23
0.0082

88.91±3.09
0.6296

89.19±3.36
0.0985

89.19±3.36
0.0936

Liverdisorder 66.67±5.27
0.0072

62.61±3.48
0.0072

63.77±3.66
0.5533

62.32±4.58
0.0628

62.03±4.62
0.0610

Sonar 77.46±7.20
0.0057

76.98±7.94
0.0073

77.46±8.09
0.1491

77.47±8.49
0.0171

76.93±5.51
0.0232

Vote 94.71±0.59
0.0087

93.33±1.87
0.0079

92.87±1.56
0.7652

94.48±0.46
0.1027

94.25±0.73
0.1260

Wdbc 97.36±1.11
0.0209

97.18±1.04
0.0070

98.25±1.11
1.5178

98.59±0.90
0.2436

98.59±1.32
0.2795

Wpbc 81.85±2.67
0.0066

59.67±4.02
0.0069

61.58±4.00
0.2479

61.09±3.58
0.0130

56.54±3.14
0.0317

W-T-L – 12-0-0 9-1-2 9-0-3 10-0-2
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FF =
(n− 1)χ2

F

n(l − 1)− χ2
F

(32)

F (l − 1)

(l − 1)(n− 1)

is  distributed  according  to -distribution  with 
and  degrees of freedom.

FF

Table  6 records  the Friedman test  results  on linear
and  nonlinear  cases.  As  can  be  seen  from Table  6,
whether linear case or nonlinear case,  is much greater

than  the  critical  value.  Therefore,  we  reject  the  null-
hypothesis.  The  result  means  that  there  are  significant
differences between the five classifiers. Because the null-
hypothesis  is  rejected,  the Nemenyi  post-hoc test  [29]  is
used.  The  critical  difference  (CD)  of  the  Friedman  test
with Nemenyi  test  is  calculated by equation (33) as be-
low. The results are listed in Table 6.

 

Table 3  The results of five nonlinear classifiers on binary class UCI datasets

Dataset WLLDM accuracy(%)
Time(s)

LSLDM accuracy(%)
Time(s)

ODM accuracy(%)
Time(s)

LDM accuracy(%)
Time(s)

SVM accuracy(%)
Time(s)

Australian 87.10±1.84
0.0352

86.81±1.33
0.0330

86.96±1.59
2.2485

87.39±1.32
0.2210

86.96±1.34
0.2093

Blood 79.81±2.71
0.0408

79.81±2.41
0.0352

79.95±2.11
2.4497

78.61±2.75
0.3062

78.48±2.49
0.3186

Diabetes 78.13±3.09
0.0431

77.86±3.37
0.0389

77.60±3.13
3.0151

77.87±4.09
0.2421

77.47±3.70
0.4419

German 77.70±2.29
0.0885

76.80±2.06
0.0804

76.60±1.88
5.3144

76.10±2.27
0.5570

75.90±2.22
0.5012

Haberman 76.15±1.87
0.0082

74.84±1.53
0.0113

75.17±2.13
0.3503

75.17±1.153
0.0372

74.18±1.22
0.0505

Heart 85.19±3.31
0.0068

84.44±4.16
0.0096

84.44±4.16
0.3247

84.44±3.43
0.0999

84.07±3.81
0.0403

Ionosphere 95.45±2.88
0.0175

92.33±3.72
0.0166

91.47±3.47
0.5596

91.75±3.81
0.0634

91.47±3.43
0.0731

Liverdisorder 73.62±4.44
0.0092

72.17±3.60
0.0111

71.59±2.35
0.4803

71.59±4.64
0.0754

71.59±4.64
0.0570

Sonar 87.04±3.51
0.0092

87.04±4.13
0.0117

87.04±3.20
0.1921

86.56±3.83
0.0216

85.60±3.97
0.0252

Vote 96.09±1.18
0.0123

95.86±1.18
0.0151

96.09±0.95
0.8215

95.63±0.87
0.0823

95.40±0.73
0.0874

Wdbc 98.24±1.12
0.0402

98.06±1.41
0.0324

98.59±1.64
1.4944

98.41±1.97
0.2470

98.24±2.31
0.1875

Wpbc 80.93±7.04
0.0070

80.88±6.48
0.0095

80.90±5.52
0.1778

79.89±5.07
0.0218

78.85±4.03
0.0178

W-T-L – 10-2-0 8-2-2 10-0-2 11-1-0

 

Table 4  Average rank of linear classifiers

Datasets WLLDM LSLDM ODM LDM SVM

Australian 1 4 2 3 5

Blood 1 5 3 2 4

Diabetes 1 4 2.5 2.5 5

German 1 2.5 4 2.5 5

Haberman 1 5 4 2.5 2.5

Heart 1 3.5 2 3.5 5

Ionosphere 4 5 3 1.5 1.5

Liverdisorder 1 3 2 4 5

Sonar 2.5 4 2.5 1 5

Vote 1 4 5 2 3

Wdbc 4 5 3 1.5 1.5

Wpbc 1 4 2 3 5

Average rank 1.63 4.08 2.92 2.42 3.96

 

Table 5  Average rank of nonlinear classifiers

Datasets WLLDM LSLDM ODM LDM SVM

Australian 2 5 3.5 1 3.5

Blood 2.5 2.5 1 4 5

Diabetes 1 3 4 2 5

German 1 2 3 4 5

Haberman 1 4 2.5 2.5 5

Heart 1 3 3 3 5

Ionosphere 1 2 4.5 3 4.5

Liverdisorder 1 2 4 4 4

Sonar 2 2 2 4 5

Vote 1.5 3 1.5 4 5

Wdbc 3.5 5 1 2 3.5

Wpbc 1 3 2 4 5

Average rank 1.54 3.04 2.67 3.13 4.63
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Table 6  The results in the Friedman test on UCI datasets

Case Significant level χ2
F FF Critical value qα CD

Linear
α = 0.1 20.96 8.53 2.584 2.728 1.761

α = 0.05 20.96 8.53 2.077 2.459 1.587

Nonlinear
α = 0.05 23.88 10.89 2.584 2.728 1.761

α = 0.1 23.88 10.89 2.077 2.459 1.587
 

 

CD = qα

√
l(l + 1)

6× n
(33)

α = 0.05 α = 0.1

α = 0.05
α = 0.1

If the  difference  between  the  ranks  of  two  algo-
rithms is  larger  than  CD,  their  performance  is  consid-
ered  to  be  significantly  different.  For  the  linear  case,
when  and , the performance of WLLDM
is  always  significantly  different  from  LSLDM and  SVM
algorithms.  As  for  the  nonlinear  case,  obviously,  when

,  only  the  difference  between  the  ranks  of
WLLDM  and  SVM  is  larger  than  CD.  When ,
WLLDM  performs  significantly  better  than  LDM  and
SVM.

c1, λ1, λ2 δ

c1, λ1, λ2 δ

Subsequently,  in  order  to  study  the  influence  of
penalty parameters  and kernel parameter  on
the performance  of  WLLDM,  the  comparative  experi-
ments  are  carried  out  on  some  datasets  by  fixing  other
parameters. These datasets are Wpbc, Sonar, Wdbc and
Vote. Figure  2 plots the  accuracy  of  WLLDM with  dif-
ferent parameters, where the x-axis represents the range
of  parameters,  and  the y-axis represents  the  classifica-
tion accuracy. As can be seen from Figure 2, the values
of  and  impact  on  the  accuracy  heavily  for
most cases, indicating that it is crucial to select the suit-
able parameters in the experiments.
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Figure 2  Parameters influence on some UCI datasets.
 

2) Multiple class classification
In order  to  further  verify  the  generalization  perfor-

mance  of  WLLDM,  ten  multiple  class  UCI  datasets  are

selected  for  experiments.  In  the  experiments,  only  the
nonlinear classifiers are compared. The testing results are
listed in Table 7, where the best accuracy is highlighted
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in boldface.
From Table  7,  some  conclusions  can  be  obtained.

Firstly,  WLLDM  has  the  best  accuracy  in  5  out  of  10
datasets.  On  the  rest  datasets,  WLLDM  is  the  second
best  with  comparable  performance.  Secondly,  it  can  be
observed that ODM, LSLDM and LDM can perform bet-
ter than SVM, indicating that the margin distribution is
important  for  generalization  performance  of  the  model.
Thirdly,  in  terms  of  execution  time,  WLLDM  and
LSLDM cost less time than LDM and ODM. The conclu-
sion is the same as that of binary classification. Last but
not least, according to the W-T-L summarization, it can
be observed that the accuracy of WLLDM is better than
that of LSLDM, LDM, ODM and SVM on most datasets. 

2. NDC dataset
In order  to  further  verify  the  computational  com-

plexity of WLLDM, we perform experiments on the NDC
dataset  [24].  In  the  experiments,  we  compare  WLLDM
with WLTSVM, WLSVM, LSSVM, LDM and SVM. Due
to the limitation of memory and running time, the maxi-
mum size of NDC dataset is limited to 10K in this exper-
iments. Table 8 shows the attributes of the NDC dataset.
Each dataset is randomly divided into a training set and
a testing set.

In  the  experiments,  only  the  nonlinear  algorithms
are  compared.  The  experimental  result  is  recorded  in
Table  9, including  the  classification  accuracy  and  run-
ning  time.  As  can  be  seen  from Table  9,  our  WLLDM,
WLTSVM,  WLSVM and  LSSVM are  faster  than  LDM

and SVM. Cause is  that they only need to solve simple
linear  equations  rather  than a  QPP in  LDM and SVM.
Meanwhile,  the  learning  speed  of  LSSVM is  the  fastest
among  the  all  algorithms.  The  reason  is  that  WLLDM,
WLTSVM and WLSVM need spend more time on train-
ing  model  twice.  In  addition,  it  is  not  surprising  that
WLLDM is slightly slower than WLTSVM and WLSVM,
due to  the  introduction  of  margin  distribution  informa-
tion. But the accuracy of our WLLDM on most datasets
exceeds that of WLTSVM and WLSVM. 

3. Steel surface defect dataset
In this sub-section, we discuss the application of the

proposed WLLDM to the steel surface defects classifica-
tion problem. In the experiments, six types of defect im-
ages are chosen from the Northeastern University (NEU)
surface defect database [25], [26], including the inclusion
(IN), scratches (SH), patches (PH), crazing (CG), pitted-

 

Table 7  The results of five nonlinear classifiers on multiple class UCI datasets

Dataset WLLDM accuracy(%)
Time(s)

LSLDM accuracy(%)
Time(s)

ODM accuracy(%)
Time(s)

LDM accuracy(%)
Time(s)

SVM accuracy(%)
Time(s)

Air 97.77±1.11
0.0383

98.32±1.05
0.0380

97.22±0.87
0.8726

97.77±0.69
0.0900

97.77±0.69
0.0898

Balance 91.52±0.78
0.0546

91.36±0.88
0.0485

91.05±1.11
3.3217

91.05±1.11
0.4839

90.89±1.33
0.4467

Glass 74.77±4.47
0.0268

74.76±5.40
0.0366

75.69±4.83
0.3936

72.43±4.76
0.0827

71.03±3.13
0.0792

Iris 98.67±1.63
0.0081

98.00±1.63
0.0160

97.33±1.33
0.1797

96.67±2.11
0.0293

96.67±2.11
0.0319

Libras_Movement 86.67±1.40
0.1717

86.95±2.24
0.2064

86.67±2.71
3.0851

86.39±2.38
0.4337

86.39±2.38
0.4241

Soybean 100±0
0.0094

100±0
0.0204

100±0
0.0828

100±0
0.0317

100±0
0.0299

Vehicle 81.80±2.37
0.1119

83.33±2.49
0.1028

77.06±2.47
5.8933

76.59±2.27
0.6113

76.23±2.35
0.6366

Vowel 97.73±0.96
0.1100

98.48±0.76
0.1278

97.73±1.14
5.2982

97.35±2.12
0.4980

96.96±2.79
0.4679

Wine 98.89±2.22
0.0119

97.75±2.76
0.0160

96.62±2.11
0.2273

96.06±1.39
0.0425

95.51±1.37
0.0365

Zoo 97.14±5.71
0.0237

97.04±3.86
0.0405

96.11±4.84
0.1948

97.14±5.71
0.0580

97.14±5.71
0.0587

Average rank 1.80 1.95 2.75 3.45 4.05

W-T-L – 5-1-4 6-1-3 7-3-0 8-2-0

 

Table 8  The attributes of NDC dataset

Dataset Training samples Testing samples Feature

NDC-500 500 100 32

NDC-1K 1000 200 32

NDC-2K 2000 400 32

NDC-3K 3000 600 32

NDC-4K 4000 800 32

NDC-5K 5000 1000 32

NDC-10K 10000 2000 32
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surface  (PE)  and  rolled-in-scale (RE).  The  typical  im-
ages are shown in Figure 3. Before the experiments, the
defect  images  are  preprocessed [30]–[32]  and each defect
is described with a feature vector with 35 dimensions. Fi-
nally,  these  feature  vectors  make  up  the  defect  dataset.
In the experiments, 2974 samples are  regarded as  train-
ing samples and the other samples are testing samples.
  

(a) SH (b) IN (c) PH

(d) RE (e) PE (f) CG

Figure 3  The typical defect images.
 

In general, the dataset collected from real-world sce-
narios  cannot  be  separable  linearly.  Thus,  the  nonlinear
classifiers  are  compared  in  the  experiments.  In  order  to
realize  the  multi-class  classification,  the  binary  tree
method  is  combined  with  the  SVM-type  classifiers.  The
accuracy and  the  running  time  of  five  nonlinear  classi-
fiers are shown in Figure 4.

From Figure  4,  we  observe  that  WLLDM  is  more
accurate than the other four models. One reason is that
the margin distribution of defect samples is considered in
WLLDM. Compared with margin theory, the margin dis-
tribution is more important for the generalization perfor-
mance  of  the  model.  Another  reason  is  that  WLLDM
gives different  penalties  to  training  samples,  which  en-
hances the robustness of the model. In addition, the exe-
cution time of WLLDM, LSLDM and LSSVM is relative-

ly short in comparison to LDM and SVM. These obser-
vations  help  us  conclude  that  WLLDM is  an  important
reference value for real-life applications. 

VI. Conclusions
In this paper, we mainly focus on reducing the com-

putational complexity of LDM under the premise of high
accuracy. Based on the studies of loss function and LDM,
we propose a weighted linear loss LDM (WLLDM) classi-
fier. On the one hand,  WLLDM inherits  the all  the ad-
vantages of LDM. On the other hand, the weighted lin-
ear  loss  is  adopted  in  WLLDM,  which  can  avoid  over-
fitting to a certain extent and yield better generalization
performance than linear loss. In addition, WLLDM solves
a simple linear equation instead of solving a single QPP,
which can speed up the  training process  and is  suitable
for  large-scale classification.  Lastly,  the  perfect  general-
ization  performance  and  greater  efficiency  of  WLLDM
are  proved  by  a  series  of  experiments  on  different
datasets.

There are three penalty parameters and a kernel pa-
rameter  in  WLLDM model,  these  parameters  will  affect

 

Table 9  The experimental results of nonlinear classifiers on NDC dataset

Dataset WLLDM accuracy(%)
Time(s)

WLTSVM accuracy(%)
Time(s)

WLSVM accuracy(%)
Time(s)

LSSVM accuracy(%)
Time(s)

LDM accuracy(%)
Time(s)

SVM accuracy(%)
Time(s)

NDC-500 96.00
0.0398

82.00
0.0370

94.00
0.0470

92.00
0.0368

93.00
0.1387

92.00
0.0906

NDC-1K 99.00
0.1481

95.50
0.1228

98.50
0.1531

96.50
0.0818

97.50
0.5775

97.00
0.5106

NDC-2K 100
0.7219

96.75
0.5597

99.00
0.6373

99.50
0.3221

99.75
2.9733

99.75
2.5047

NDC-3K 98.67
1.7813

97.00
1.3611

97.33
1.4420

98.17
0.7329

98.17
5.4340

98.17
4.2322

NDC-4K 99.25
3.9095

96.75
2.6763

98.75
2.8360

99.25
1.5911

99.38
11.5682

99.38
8.6171

NDC-5K 99.00
9.2003

97.40
4.4961

98.60
7.6191

98.60
5.1860

98.80
23.6666

98.80
18.1502

NDC-10K 99.45
50.1920

98.70
31.0330

99.35
41.4642

99.40
24.9432

99.40
136.9389

99.40
100.4095
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Figure 4  The results of five classifiers on defect dataset.

Weighted Linear Loss Large Margin Distribution Machine for Pattern Classification 763  



the classification  accuracy  of  the  model.  Thus,  the  fu-
ture  work  mainly  focuses  on  how to  obtain  the  optimal
parameters  more efficiently to improve the classification
performance of the model. 
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