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Abstract — Since the computing capacity and battery energy of unmanned aerial vehicle (UAV) are constrained,
UAV as aerial user is hard to handle the high computational complexity and time-sensitive applications. This paper
investigates a cellular-connected multi-UAV network supported by mobile edge computing. Multiple UAVs carrying
tasks fly from a given initial position to a termination position within a specified time. To handle the large number of
tasks carried by UAVs, we propose a energy cost of all UAVs based problem to determine how many tasks should be
offloaded to high-altitude balloons (HABs) for computing, where UAV-HAB association, the trajectory of UAV, and
calculation task splitting are jointly optimized. However, the formulated problem has nonconvex structure. Hence, an
efficient iterative algorithm by applying successive convex approximation and the block coordinate descent methods
is put forward. Specifically, in each iteration, the UAV-HAB association, calculation task splitting, and UAV trajec-
tory are alternately optimized. Especially, for the nonconvex UAV trajectory optimization problem, an approximate
convex  optimization  problem  is  settled.  The  numerical  results  indicate  that  the  scheme  of  this  paper  proposed  is
guaranteed  to  converge  and  also  significantly  reduces  the  entire  power  consumption  of  all  UAVs compared  to  the
benchmark schemes.
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 I. Introduction

6

Currently,  Unmanned  aerial  vehicles  (UAVs)  have
received  extensive  focus  from  academia  and  industry
ascribed  to  the  little  size,  cost-effectiveness  and  strong
mobility [1]–[5]. Hence, UAVs appear in a variety of well-
received  applications,  among  which  the  advantages  of
UAVs  as  aerial  mobile  users  [6]  should  not  be  under-
estimated. Nonetheless, in the G network, some related
applications of cellular-connected UAVs are emerging one
after  another  [7],  potentially  introducing  unparalleled
challenges  to  the  computational  capabilities  of  UAVs
owing to their restricted calculation capacity. Fortunately,
mobile edge computing (MEC) is envisioned as a ground-

breaking approach to perform computation at the edge of
the  networks  [8]–[11].  Specifically,  the  UAV  carrying
high  computational  complexity  or  time-sensitive  mis-
sions is  able to cooperate with the ground base stations
(GBSs), which own MEC servers [12]–[14],  which allows
that the cellular-connected network provides UAVs with
computing service supports. By these particular features,
MEC can potentially improve the computing performance
of UAV efficiently [15].

In practice, the GBSs may be largely damaged after
natural disasters or the ground is not suitable for build-
ing GBSs due to geographical  defects.  In this  case,  how
to quickly complete the computational tasks of the UAVs
for  carrying  computation-intensive  and  delay-sensitive 

Associate Editor: Prof. Chenren XU, Peking University.

 

Chinese Journal of Electronics
vol. 33, no. 3, pp. 823–832, May 2024
https://doi.org/10.23919/cje.2022.00.159



tasks  is  an  important  issue.  In  [16], the  authors  devel-
oped  the  architecture  of  a  two-layer  UAV  in  the  MEC
network,  where  the  low-altitude  platform  UAVs  (LAP-
UAVs)  offload  the  computing  tasks  to  the  high-altitude
platform UAVs (HAP-UAVs) equipped with MEC servers.
However,  the  LAP-UAVs  carrying  the  computing  tasks
are positioned in advance and the mobility of LAP-UAVs
is not  involved.  In  addition,  when  the  number  of  mis-
sions  carried  by  LAP-UAVs  increases,  the  resources  of
HAP-UAVs is often limited.

Recently, high-altitude balloons (HABs) are attract-
ing much attention because of their low deployment cost
and wide coverage [17], which have been applied in many
fields, involving  communication,  liaison,  and  investiga-
tion  [18].  In  particular,  when  the  wireless  transmissions
between the  ground  users  and  the  GBSs  are  inconve-
nient,  HABs can act  as  a  communication relay between
the ground users and the GBSs [19] such that the tasks
carried by users on the ground can be better completed.
However, the long-distance transmission may lead to sig-
nificant delays, which is very unfriendly for some delay-
sensitive tasks. Therefore, in order to reduce task trans-
fer latency and enable HABs to process computing local-
ly,  MEC can  be  deployed  locally  on  each  HAB [20].  In
this  sense,  when  MEC-supported  HABs  receive  tasks
from ground users,  they can use their  strong computing
power to process the offloaded tasks by themselves, with-
out the need to further transmit them to remote GBSs or
cloud,  which  is  of  great  significance  for  time-sensitive
tasks. Furthermore, HABs are capable of quickly arrang-
ing  in  the  stratosphere  and  the  energy  consumption
caused by hovering can be reduced to some extent [21].
As the aerial  flying users,  UAVs have also stronger and
more reliable visual range links with HABs, which allows
each UAV to connect to multiple HABs simultaneously,
leveraging their  distributed  computing  resources  to  in-
crease  computing  power.  And  it’s  a  huge  breakthrough
for dealing with situations where the GBSs are not built
on the ground or they are damaged. Accordingly, it is an
interesting  research  topic  to  plan  the  UAVs’ trajectory
and to select which HABs to unload computational tasks
in the whole flight process aiming to minimize the energy
cost.

Sparked by the above discussions, this paper consid-
ers  a  multi-HAB-enabled MEC network,  where  multiple
UAVs  depart  from  a  given  initial  position  and  fly  to  a
given  termination  position.  During  the  flight  of  UAVs,
they need  to  complete  their  computing  tasks.  We  sup-
pose that  the  UAVs  can  divide  tasks  into  smaller  sub-
tasks,  and simultaneously they can unload tasks to sev-
eral HABs  selected  for  the  parallel  process.  In  this  set-
ting, the intent is to make the energy that all UAVs con-
sumed minimization through joint optimization of UAV-
HAB association, the trajectory of UAV, and calculation
mission splitting.

For clarity,  the  significant  contributions  of  this  pa-
per are as follows:

• We propose a two-layer computing system consid-
ering both multi-UAV and multi-HAB, where a task par-
titioning strategy is furnished to oversee the allocation of
computing  tasks.  We  investigate  the  joint  optimization
problem of  UAV-HAB association,  UAV trajectory,  and
computation task  splitting  in  terms  of  energy  consump-
tion,  while  considering  the  constraints  related  to  delay
and speed.

•  Considering  the  complexity  and  nonlinearity  of
the formulated  optimization  problem,  the  binary  vari-
ables  for  UAV-HAB  association  are  first  relaxed  into
continuous variables  and  an  iterative  optimization  algo-
rithm  based  on  descent  (BCD)  is  proposed  to  realize
near-optimal solution with remarkably reduced complex-
ity.  In  particular,  all  optimization  variables  are  divided
into  two  blocks  for  UAV-HAB  association,  calculation
task splitting  and  UAV  trajectory,  respectively.  After-
wards, at each iteration, the two blocks of variables are
alternately  optimized.  Nevertheless,  even  with  fixed
UAV-HAB association and calculation task splitting, the
UAV trajectory optimization problem with the nonconvex
structure is still  difficult to solve. Therefore, the succes-
sive  convex  approximation  (SCA)  method  is  applied  to
settle this issue.

• In order to prove the feasibility and effectiveness
of the solution proposed in this paper, we provide a com-
prehensive verification work, and the results demonstrate
that the proposed method can achieve near-optimal per-
formance in reducing the energy consumption, compared
with other schemes. The impacts of different parameters
are also analyzed.

The rest  of  this  paper  is  arranged  as  follows.  Sec-
tion  II  provides  a  discussion  on  the  relevant  literature.
Section III  is  dedicated to elucidating the system model
and formulating the optimization problem. In Section IV,
we  demonstrate  a  solution  to  the  considered  problem
with SCA technique and propose a BCD-based iterative
algorithm. The  computational  complexity  and  the  con-
vergence of  the  proposed  algorithm  is  analyzed  in  Sec-
tion  V.  Section  VI  provides  detailed  numerical  results,
while Section VII presents the conclusions.

 II. Related Work
The  mainstream  studies  on  UAV-enabled  MEC  is

briefly elaborated as follows.
UAV-enabled  MEC  supplies  extensive  coverage  for

computing offloading  compared  to  terrestrial  MEC  net-
works. The work in [22] considered a UAV-enabled MEC
to supply caculation support to Internet of things (IoT)
devices with strict deadlines and maximized the number
of IoT devices served. The authors in [23] investigated a
cooperative  UAV-enabled  MEC  network  structure  in
which UAVs can aid other UAVs to carry out caculating
missions. A UAV-enabled MEC platform was investigated
in [24], where the average UAV energy consumption and
data  queue  stability  were  taken  into  account.  However,
the above existing works only state that UAV plays the
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role of aerial base station.
Due to the growing concern over UAV as aerial mo-

bile user, there exists some works related with the UAV-
based computing service. For instance, in [25], the authors
were aimed at minimizing the mission completion time of
UAV by optimizing the flight trajectory of the UAV and
calculation  offloading  scheduling.  In  [26],  based  on  the
comprehensive consideration  of  energy  and  time  con-
straints,  the  authors  chose  the  best  cooperative  object
between  the  GBSs  and  the  neighboring  UAV  to  carry
out the offloading of the computing tasks. For the UAVs
with  insufficient  endurance,  it  is  of  great  significance  in
many applications to optimize their energy consumption
and  then  prolong  the  flight  time.  In  this  regard,  the
authors  of  [27]  and  [28]  comprehensively  considered  the
UAV trajectory,  calculation  task  allocation,  and  trans-
mission power with the purpose of minimizing the over-
all  energy  consumption  in  a  cellular-connected  UAV
MEC  network.  For  the  cellular-connected  multi-UAV
MEC scenario, the work in [29] focused on optimizing the
total  energy  consumption  of  the  UAVs  by  taking  the
energy  restriction  and  resource  constraint  of  the  terres-
trial  base  stations  (TBSs)  into  account.  These  excellent
efforts  are  devoted to  the  computational  task offloading
between  single  UAV/multi-UAV and  single  GBS/multi-
GBS in the context of MEC.

Different from the aforementioned studies, we inves-
tigate the problem of multi-HAB-enabled MEC network
in this  paper to assist  multiple  UAVs to complete com-
puting tasks and minimize their energy consumption sim-
ultaneously.

 III. System Model and Problem
Formulation

k k ≥ 1 k ∈ K ≜ {1, 2, . . . ,K}
M ≜ {1, 2, . . . ,M} M ≥ 1

T

k Lk

(Lk > 0) k
ρk

(1− ρk)

0 ≤ ρk ≤ 1 ρk = 0 k
ρk = 1 k

A multi-UAV network supported by MEC is depict-
ed  in Figure  1.  In  this  network,  there  are  some  UAVs
with  cellular  connections,  each  of  them  has  a  specific
number , where  and   , while
a  set    of  HABs  with  MEC
servers.  During  a  given  period ,  multiple  UAVs  fly
from the initial location to the final location respectively,
and  meanwhile  need  to  complete  the  calculation  tasks
carried by  themselves.  The  partial  computation  offload-
ing  mode  is  studied  where  the  task  can  be  executed  by
the UAV and the served HABs collaboratively.  It  is  as-
sumed  that  the  task  quantity  carried  by  UAV  is 

,  the  UAV  computes part  of  the  tasks  by  it-
self, with the ratio , and uninstalls the remaining tasks
with the ratio of  to the MEC servers  on HABs
to  provide  remote  computing  assistance.  Obviously,

,  means that UAV  uninstalls all tasks
to  HABs,  means  that  UAV  calculates the  en-
tire tasks locally.  Because the size of  the calculation re-
sults is always much smaller than that of the task input,
we assume that the time for HABs to return the calcula-
tion results to the UAVs is negligible [25].

For a  three  dimensional  Cartesian  coordinate  sys-

H1 H1 > 0
t ∈ [0, T ]

uk = [xk(t), yk(t)]
T, k ∈ K

T N
δt

k uk[n] = uk(nδt), n ∈ N ≜
{1, 2, . . . , N}

k
vk[n] k ∈ K n ∈ N

tem,  all  UAVs  fly  at  a  fixed  altitude  ( )  and
their  horizontal  position  at  the  time  instant  is
expressed  as .  To  make  the
problem considered easier to deal with, we equally divided
the time  of the task completion into  parts, and the
size  of  each  time  slot  is .  Hence,  the  horizontal  pos-
ition of UAV  is expressed as 

. Besides, within each time slot, the speed of
the UAV remains the same, where the speed of UAV  is
expressed as , , . In addition, compared
with existing work, the advantages of the proposed multi-
UAV network are  as  follows,  on one  hand,  it  can make
up for the lack of calculation ability of the UAV. On the
other hand, it can cope well  with the situation that the
ground base station does not exist or is damaged.
 1. Channel model

m ∈ M H2 H2 H1

∆H2 m H2 +∆H2

∆H2 ∈ [−1, 1] m

wm = [xm, ym]T,m ∈M
k m

Assume  that  the  initial  hover  height  of  each  HAB
 is  ( > ), and affected by factors such as

wind  and  air  pressureand,  the  range  of  fluctuation  and
drift is . Thus, the altitude of HAB  is ( ),
where . Meanwhile, HAB  is fixed at the
horizontal  position .  Therefore,
the distance from UAV  to HAB  is expressed as
 

dk(m) =
√
∥uk[n]−wm∥2 + (H2 −H1)2 (1)

Similar  to  [30]–[32],  the  line-of-sight  (LoS) link and
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Figure 1  A  two-layer  computing  architecture  consisting  of  multi-
UAV and multi-HAB, where the tasks of multi-UAV are offloaded
to HABs during flight.
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k m
free-space  path-loss  model  are  considered.  As  such,  the
channel power gain from UAV  to HAB  can be ex-
pressed as
 

hk,m[n] =
β0

d2k,m[n]
=

β0

∥uk[n]−wm∥2 + (H2 −H1)2
(2)

β0where  stands for the channel power gain.

ak,m[n]

k m αk,m[n] = 1 m
k

αk,m[n] = 0 αk,m

In  this  system,  the  time-division-multiple-access
(TDMA) technology is  exploited  to  limit  the  computa-
tional offloading process of UAV [33], i.e., the UAV com-
municates with at most one HAB. Let  be a bina-
ry  variable  of  UAV  association  that  indicates  whether
UAV  is served by HAB . If , HAB  re-
ceives  the  computation  task  from  UAV ,  otherwise

.  Thus,  needs  to  satisfy  the  following
two constraints:
 

αk,m[n] ∈ {0, 1} (3)
 

M∑
m=1

αk,m[n] ≤ 1 (4)

uk[n] k
vk[n]

n

On the other hand, the trajectory  of UAV  is
constrained  by  velocity , and  the  collision  avoid-
ance in each time slot .  These yield the constraints  as
follows:
 

∥vk[n]∥ ≤ vmax (5)
 

uk[0] = uk,I, uk[N ] = uk,F (6)
 

uk[n+ 1] = uk[n] + vk[n]δt (7)
 

∥uk[n]− uj [n]∥2 ≥ d2min (8)

Formula  (5)  indicates  the  limit  of  UAV’s  flight  speed;
formula (6) represents the setting of initial and terminal
positions of  UAV; formula (7)  indicates  the relationship
between UAV position and speed; and formula (8) repre-
sents that  there  is  a  minimum  distance  between  differ-
ent UAVs to avoid the collision.

k
pk[n]

k
m

The transmit  power  of  UAV  for offloading is  de-
fined  as . Herein,  the  power  of  each  UAV  is  as-
sumed known. Then, the transmission rate of UAV  to
HAB  is calculated as
 

Rk,m[n] = αk,m[n]B log2

(
1 +

pk[n]hk,m[n]

σ2

)
(9)

B σ2where  is the bandwidth of the system and  signifies
the additive white Gaussian noise power [34].
 2. Energy consumption model

kThe  energy  consumption  of  UAV  contains  local-
calculation energy cost, communication energy cost, and
flight energy cost. The details of each part of energy con-
sumption are described as follows.
 1) Local-calculation energy consumption

According  to  the  relevant  settings  above,  we  can

k ρkLk

know that the task quantity that needs to be calculated
at  UAV  is , and  the  unit  is  set  as  bits.  Conse-
quently,  the  energy  consumption  of  local  calculation  is
given by
 

Eloc
k = Cu,kPu,kρkLk (10)

Cu,k

Pu,k

Du,k

Cu,kρkLk (Du,k)
−1

where  indicates  the  number  of  central  processing
unit (CPU) cycles required to compute a 1-bit size mis-
sion,  and  signifies  the  energy  consumption  of  one
CPU  cycle.  Besides,  denoting  as  the  frequency  of
CPU. Thus,  the time consumed by the local  calculation
can be expressed as .

 2) Communication energy consumption
k m

k
If UAV  offloads the mission to HAB , the com-

munication energy for  offloading of  UAV  is  expressed
as
 

Ecomm
k =

N∑
n=1

αk,m[n]pk[n]δt (11)

 3) Flight energy consumption

k
The power consumption associated with the flight of

rotary-wing UAV  is expressed as [35]
 

P [vk[n]] =P0

(
1 +

3∥vk[n]∥2

U2
tip

)
+

PiV0

∥vk[n]∥

+
1

2
d0ϵsM∥vk[n]∥3 (12)

P0 Pi

Utip

V0

d0
s ϵ

M
T

where  and  represent the profile power and induced
power of UAV in hovering state,  stands for the blade
tip speed of the rotor,  represents the average induced
rotor speed during forwarding flight,  is the fuselage re-
sistance ratio,  is the rotor compaction,  represents the
air density, and  denotes rotor disc area. Thus, during
the flight time , the energy consumed by UAV flight is
calculated as
 

Efly
k =

N∑
n=1

P [vk[n]]δt (13)

 3. Problem formulation

A = {αk,m[n], ∀k ∈ K, ∀m ∈ M,

∀n ∈ N}
U = {uk[n],vk[n], ∀k ∈ K, ∀n ∈ N}

ϱ = {ρk, ∀k ∈ K}

In  this  paper,  we  concentrate  on  the  problem  of
joint UAV-HAB association, UAV trajectory, and calcu-
lation task splitting design with the objective of minimiz-
ing the total energy cost incurred by all UAVs. For the
convenience of usage, the UAV-HAB association variable
set  can  be  modeled  as 

, the variable set of UAV trajectory is modeled
as , and the calcula-
tion  task  splitting  ratio  variable  set  can  be  modeled  as

. Under  this  circumstance,  we  formu-
late the corresponding problem as follows: 
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P1: min
A,U ,ϱ

K∑
k=1

Eloc
k +

K∑
k=1

Ecomm
k +

K∑
k=1

Efly
k (14a)

 

s.t. 0 ≤ ρk ≤ 1, (14b)
 

Cu,kρkLk

Du,k
≤ T, (14c)

 

N∑
n=1

M∑
m=1

(
αk,m[n]B log2

(
1+

pk[n]hk,m[n]

σ2

))
δt

≥ (1− ρk)Lk, (14d)
 

Eqs. (3), (4), (5), (6), (7), (8). (14e)

T

where constraint (14b) represents the feasible and bound-
ary  constraints  of  the  calculation  task  splitting  ratio;
constraint (14c) states that the task execution time cal-
culated at  the  UAV terminal  should not  exceed the de-
lay  tolerance;  constraint  (14d)  signifies  the  conditions
satisfied  by  the  total  number  of  bits  used  for  uplink
transmission  within  a  given  task  completion  time .  In
the  constraint  (14e),  formulas  (3)  and (4)  represent  the
association  limits  between  the  UAV  and  HAB;  formula
(5) represents the maximum speed limit of UAV; formu-
la (6) denotes the initial position and terminational loca-
tion of the UAV; formula (7) is the relationship between
the horizontal position and velocity of UAV in two con-
tinuous time slots; and formula (8) indicates that there is
a  minimum  distance  between  different  UAVs  to  avoid
the collision.

A

U ϱ

It can be readily observed that the UAV-HAB asso-
ciation  constraints  (3)  and  (4)  involve  integer  variables

. The objective function, the constraints (8) and (14d)
are all  nonconvex  due  to  the  highly  coupled  optimiza-
tion variables with respect to  and . As a result, the
optimization problem (P1) is a nonconvex mixed integer
non-linear programming problem, which cannot be solved
by conventional convex optimization techniques.

In the following section, the original problem (P1) is
divided into two more tractable subproblems, and an ef-
ficient alternative algorithm is proposed to attain a sub-
optimal solution that converges to the original problem.

 IV. Proposed Solution
This section  discusses  the  specific  method  for  solv-

ing problem (P1).

A

To  elaborate,  we  first  deal  with  the  binary  UAV-
HAB association  variables  where  the  processing  method
is similar to that mentioned in [13]. On this basis, the bin-
ary  variables  in  is  relaxed  into  continuous  variables
and the primal problem (P1) is reconstructed as
 

P2: min
A,U ,ϱ

K∑
k=1

Eloc
k +

K∑
k=1

Ecomm
k +

K∑
k=1

Efly
k (15a)

 

s.t. 0 ≤ ak,m[n] ≤ 1, (15b)
 

Eqs. (4), (5), (6), (7), (8), (14b), (14c), (14d). (15c)

{A,ϱ} U

{A,ϱ}
U U

{A,ϱ}

Neverthless, the  problem  (P2)  is  remain  a  noncon-
vexity structure. Even so, (P2) can be efficiently settled
by  using  the  BCD  method.  More  concretely,  we  divide
the  optimization  variables  of  (P2)  into  two  parts,  i.e.

 and . In  this  way,  the  complexity  of  the  opti-
mization  problem is  reduced  to  some  extent.  Hence,  we
then optimize the following two sub-problems iteratively
to solve (P2). We first optimize the  under a given
feasible ,  then we optimize  based on the optimized

, the iterative approach based on the BCD method
is employed to alternately solve the above two subprob-
lems.
 1. UAV-HAB association optimization

{A,ϱ}When  the  trajectory  of  UAVs  are  given,
problem (P2) is described as
 

P2.1: min
A,ϱ

K∑
k=1

Eloc
k +

K∑
k=1

Ecomm
k +

K∑
k=1

Efly
k (16a)

 

s.t. Eqs. (4), (14b), (14c), (14d), (15b) (16b)

U

Based on the problem of (P2.1), it is a standard lin-
ear  program (LP) problem when the  trajectory  of  UAV

 is  known, so we can effectively solve the problem by
utilizing the optimization tool CVX.
 2. UAV trajectory optimization

{A,ϱ}
When  the  UAV-HAB  association  and  calculation

task  splitting  ratio  are  given,  we  can  get  the
problem as follows
 

P2.2: min
U

K∑
k=1

Eloc
k +

K∑
k=1

Ecomm
k +

K∑
k=1

Efly
k (17a)

 

s.t. Eqs. (5), (6), (7), (8), (14d) (17b)

{λk,n} k

E
fly
k

It is clear that the constraints (5), (6) and (7) are all
convex except the objective function, constraints (8) and
(14d),  which  manifests  that  we  cannot  directly  apply
standard convex method. To address this, the relaxation
variable  is introduced, then UAV ’s flight energy
consumption is denoted as  and it can be represented
as
 

E
fly
k =

N∑
n=1

P0

((
1 +

3∥vk[n]∥2

U2
tip

)
+

PiV0

λk,n

+
1

2
d0ϵsM∥vk[n]∥3

)
δt (18)

with additional constraint
 

∥vk[n]∥2 ≥ λ2
k,n (19)

 

λk,n ≥ 0 (20)

vk[n] λk,nIn  terms of  the  coupled variables  and ,  it
can  be  easily  confirmed  that  the  (18)  exists  a  convex
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{vk,l[n]} l

structure. However, a new nonconvex constraint is intro-
duced to the relaxed constraint of (19). To handle it, the
SCA  technique  is  applied  [36].  More  precisely,  under  a
given local point  over -th iteration, we obtain
 

∥vk[n]∥2 ≥ ∥vk,l[n]∥2 + 2vT
k,l[n](vk[n]− vk,l[n])

= f lb(vk[n]) (21)

f lb(vk[n])

vk[n]

Formula  (21)  accords  with  the  fact  of  the  global
under-estimator  can  be  obtained  by  applying  the  first-
order  Taylor  expansion  to  the  convex  function  [37].
What  is  noteworthy  is  that  is a  linear  func-
tion in regard to . Consequently, the constraint (19)
can be rewritten as
 

f lb(vk[n]) ≥ λ2
k,n (22)

{uk,l[n]}
{uj,l[n]} ∥uk[n]− uj [n]∥2

In the  following,  we  tackle  the  nonconvex  con-
straint  (8).  Similarly,  at  a  given  point  and

 to ,  we  apply  the  first-order
Taylor expansion. Therefore, we can get
 

∥uk[n]− uj [n]∥2

≥ −∥uk[n]− uj [n]∥2

+ 2(∥uk,l[n]− uj,l[n]∥2)T(uk,l[n]− uj,l[n])

= Slb
k,j [n] (23)

{yk,m[n]}Subsequently,  we introduce slack variable 
to relax constraint (14d) in order to address the noncon-
vex constraint  (14d),  then  the  constraint  (14d)  is  refor-
mulated as
 

N∑
n=1

M∑
m=1

(
αk,m[n]B log2

(
1 +

ϕ

yk,m[n] +H

))
δt

≥ (1− ρk)Lk (24)

and
 

∥uk[n]−wm∥2 ≤ yk,m[n] (25)

ϕ = pk[n]β0/σ
2

k
H = (H2 −H1)

2

l{
yl
k,m[n]

}

where  denotes the  product  of  the  trans-
mitting  power  of  UAV  and  reference  signal-to-noise
(SNR),  represents  the  square  of  the
height difference between UAVs and HABs. In the same
way,  over -th  iteration,  under  the  given  local  point

,  we  take  the  first-order  Taylor  expansion  of
the left hand side in constraint (24), the following global
lower bound is calculated as
 

αk,m[n]B log2

(
1+

ϕ

yk,m[n] +H

)
≥ Bk,m[n]−Ck,m[n]

= Rlb
k,m[n]

(26)

where
 

Bk,m[n] =
αk,m[n]B

ln 2
[ln(yl

k,m[n]+H+ϕ)−ln(yl
k,m[n]+H)]

and
 

Ck,m[n] =
αk,m[n]Bϕ

ln 2(yl
k,m[n] +H + ϕ)(yl

k,m[n] +H)

× (yk,m[n]− yl
k,m[n])

By leveraging the lower bound on a given local point
obtained above, we make the corresponding substitution
of the nonconvex objective function and nonconvex con-
straints (8), (14d) in (P2.2), then the optimization prob-
lem after transformation is shown as
 

P2.3: min
U ,{λk,n}{yk,m[n]}

K∑
k=1

Eloc
k +

K∑
k=1

Ecomm
k +

K∑
k=1

E
fly
k

(27a)
 

s.t. Slb
k,j [n] ≥ d2min (27b)

 

N∑
n=1

M∑
m=1

Rlb
k,m[n]δt ≥ (1− ρk)Lk (27c)

 

Eqs. (5), (6), (7), (20), (22), (25) (27d)

It can be shown that the problem (P2.3) has a con-
vex structure  and  can  be  settled  efficiently  using  stan-
dard convex techniques.
 3. Joint algorithm design

{A,ϱ} U

A
ϱ U

P2.1 P2.3

In view of the results of the previous two parts, we
put forward an overall iterative algorithm by making use
of  the  BCD  method  in  terms  of  the  original  problem
(P1). In particular, the entire optimization variable is di-
vided into two blocks, i.e.,  and . Subsequently,
the UAV-HAB association , the calculation task split-
ting  ratio ,  and  the  UAV trajectory  are  alternately
optimized  by  settling  problem  ( )  and  ( ) corre-
spondingly. In addition, the input of the next iteration is
the obtained solution in each iteration. The process con-
tinues until the value of the objective function converges,
as  dipicted  in Figure  2.  The  specifics  of  this  algorithm
are outlined in Algorithm 1.
 

Problem reformulation
(A, U, ρ)

Problem P2.1
(A, ρ)

CVX tool

SCA method
Problem P2.3

(U)

Block coordinate
descent algorithm

 

Figure 2  The procedure of Algorithm 1.
 

P2
Algorithm 1   Block coordinate descent algorithm for prob-
lem {

U0, λ0
k,n, y

0
k,m[n]

}
1: Initialize , r = 0;

repeat2: 
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P2.1 {Ur}{
Ar+1,ϱr+1

}3: Solve problem  under the given , and denote the
optimal solution as ;

P2.3
{
Ar+1,ϱr+1, λr

k,n,

yr
k,m[n]

} {
Ur+1, λr+1

k,n ,

yr+1
k,m [n]

}
4: Solve  problem  under  the  given 

, and denote the optimal solution as 

;
5: r = r + 1;

until
ς > 0

6:  the incremental growth of the target value falls be-
low a specified threshold 

 V. Complexity and Convergence Analysis
In this section, we first concisely analyze the compu-

tational complexity of Algorithm 1.

O(NKM)

P2.3 O(N(K(K − 1)+KM))

E

• Complexity analysis: To solve the UAV-HAB as-
sociation of problem (16), the complexity of updating the
UAV-HAB  association  is ,  and  the  complexity
to  solve  the  problem  ( )  is ,  in
addition, the count of external iterations is . Then the
overall complexity of Algorithm 1 can be obtained as fol-
lows:
 

O[E(NKM +N(K(K − 1) +KM))] (28)

P2.2
P2.3

• Convergence  analysis:  We then  analyze  the  con-
vergence of Algorithm 1. It is noted that in the classical
BCD algorithm,  the  subproblem  of  updating  each  vari-
able  block  needs  to  be  settled  precisely  with  optimality
in each iteration to ensure the final convergence. But in
the issue we solved, the trajectory optimization problem
( ),  we can solely  achieve an optimal  solution for  its
approximate problem ( ). Therefore, it is necessary to
prove the convergence of Algorithm 1, instead of direct-
ly  applying  the  related  convergence  analysis  of  classical
BCD algorithm.

P2 Φ(A,U ,ϱ){
Ar+1,ϱr+1

}
P2.1

{Ur}

We denote the objective value of  the original  prob-
lem ( ) as . In the third step of Algorithm 1,
since  is one  subopimal  UAV-HAB  associa-
tion and calculation task splitting ratio of problem ( )
with the fixed , we have
 

Φ(Ar,Ur,ϱr) ≥ Φ(Ar+1,Ur,ϱr+1) (29)

1
{
Ar+1,ϱr+1

}
{Ur} P2.3

In  step  4  of  Algorithm ,  for  given ,
 is one subopimal UAV trajectory of problem ( ),

it follows that
 

Φ(Ar+1,Ur,ϱr+1) ≥ Φ(Ar+1,Ur+1,ϱr+1) (30)

From the analysis presented above, we can conclude
 

Φ(Ar,Ur,ϱr) ≥ Φ(Ar+1,Ur+1,ϱr+1) (31)

P2
P2

Formula (31)  shows  that  the  target  value  of  prob-
lem ( ) does  not  increase  after  each  iteration  of  Algo-
rithm 1. Given that the objective value of problem ( )
serves as  the  lower  bound of  a  finite  value,  the  conver-
gence of the proposed Algorithm 1 is guaranteed. In Sec-
tion  V,  the  numerical  results  show  that  the  proposed
BCD method converges  rapidly  for  the settings  we con-

sider. Additionally, in per iteration of Algorithm 1, it on-
ly needs to solve complex convex optimization problems
of polynomials, the algorithm proposed in this paper can
actually achieve a network with a medium number of cel-
lular-connected multi-UAV with fast convergence.

 VI. Numerical Results

H1 = 500 m
H2 = 2500 m

∆H2 ∈ [−1, 1]

n

pk[n]=2 W vmax=30 m/s

This  section  demonstrate  the  effectiveness  of  our
proposed  algorithm  through  numerical  results.  The
height of UAVs and three HABs are fixed at 
and ,  respectively.  Based  on  the  previous
statement in Section III, . The transmission
power of UAVs during any time slot  and the maximum
speed  of  UAVs  are  set  as  and ,
respectively. Some other parameters are listed in Table 1.
  
Table 1  Parameter value setting

Ω 400 radians/s N 1000
r 0.5 m β0 −30 dB

Utip Ωr σ2 −60 dBm
ϵ 1.225 kg/m3 B 50 MHz

M 0.79 m2 Cu 500 cycle/bit
Pi 79.07 W Du 2 GHz
V0 3.6 m/s d0 0.075
d0 0.075 s 0.01

λ 100 ς 10−3

P0 29.03 W Pu 9.5× 10−11 J/Cycle
 
 

L
T

L

L

It  is  imperative  to  first  ensure  the  convergence  of
the  proposed  iterative  algorithm  during  execution. Fig-
ure  3 and Figure  4 show  the  trend  of  the  total  energy
consumption of all UAVs with respect to the number of
iterations under different task quantity  and time period

, respectively.  In particular, Figure 3 depicts the total
energy consumption  of  all  UAVs  of  the  proposed  itera-
tive  algorithm  for  different  task  quantity  versus  the
number of  iterations.  It  can be seen from Figure 3 that
the larger the task quantity  is, the higher the total en-
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Figure 3  Comparison  on  the  proposed  algorithm  convergence  with
different task quantity L for time period T = 100 s.
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K

T
T

L
T

ergy  consumption  of  all  UAVs  is.  Meanwhile,  it  is  not
difficult  to  see  that  the  cumulative  energy  consumption
of all UAVs is increased as  increases. Specifically, Fig-
ure 4 shows the total energy consumption of all UAVs of
the proposed  iterative  algorithm for  different  time  peri-
od  versus the number of iterations. It can be observed
from Figure 4 that the longer the time period  is,  the
higher the total energy consumption of all UAVs is. Add-
itionally, it is worth noting that in Figure 3 and Figure 4,
after only  eight  iterations,  the  proposed  iterative  algo-
rithm achieves  convergence  for  all  considered  cases.  Be-
sides, the convergence speed of the proposed algorithm is
invariant  to  different  task  quantity  or  different  time
period , which is expected for practical system deploy-
ment.
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Figure 4  Comparison  on  the  proposed  algorithm  convergence  with
different task period  for task quantity  = 100 Mbits and  = 2.
 

T
u1,I =

[−500,−500]T u1,F = [500,−500]T

u2,I = [−500, 500]T u2,F = [500, 500]T

vk[0] = [10, 10]T,

k ∈ {1, 2}
w1 = [−300, 0]T w2 = [0, 0]T

The  optimized  two  UAVs’ trajectories  with  time
period  =  100  s  are  depicted  in Figure  5.  The  initial
position  and  final  position  of  UAV  1  are  set  as 

 and ,  respectively,  and
the initial position and end position of UAV 2 are respec-
tively  set  as  and .
Their  initial  velocity  are  both  set  as 

. Additionally, the horizontal coordinates of the
three HABs are set as , , and

w3 = [300, 0]T.  There  are  two  things  we  can  observe  in
Figure  5.  Intuitively,  the  UAVs’ trajectories  curve  will
mostly  produce  straight  flight,  which  denotes  that  the
energy  minimization  strategy  is  a  simple  straight-line
method when the UAV’s speed remains unchanged. An-
other  observation  is  that  UAVs  prefer  to  reposition
themselves to move close to HABs, which means that the
more bits will be migrated to HABs for computation and
less energy will be consumed by the UAVs for local com-
putation.

Moreover,  we  apply  the  following  two  benchmark
designs to verify the effectiveness of the proposed scheme:

Straight Flight  In this case, the UAV flies along a
straight trajectory.

Local Computation  Under this circumstance, tasks
are limited to local processing on each individual UAV.

T L
T

Figure  6 demonstrates the  overall  energy  cost  ver-
sus  the  mission  period  for  mission  quantity  = 100
Mbits.  According  to Figure  6,  as  the  time  period  in-
creases,  the  energy  consumed  by  the  local  computation
increases  rapidly.  Compared  with  the  local  calculation
design, the  other  designs  achieve  smaller  energy  con-
sumption  values.  It  can  be  explained  by  the  fact  that
HAB  as  a  helper  can  assist  task  computing.  Moreover,
we  can  see  that  the  proposed  design  exceeds  the  other
designs because of the optimization of UAV-HAB associ-
ation and calculation task splitting ratio as well as UAV
trajectory.
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Figure 6  Total  energy  consumption  of  all  UAVs vs.  task  period 
(  = 100 Mbits).
 

M

Figure 7 depicts the total  energy consumption with
the proposed design and the benchmark scheme over dif-
ferent mission quantity under different number of HABs

. We noticed that the designs we come up with always
exhibits better performance than other designs, and this
advantage become  more  and  more  obvious  as  the  mis-
sion volume of each UAV increased. This is expected in
our  proposed  design,  UAVs  can  optimize  their  trajec-
tories to  achieve  significant  reductions  in  local  comput-
ing energy consumption, communication energy consump-
tion, and  flight  energy  consumption.  Furthermore,  be-
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TFigure 5  UAVs’ trajectories  with  TDMA  scheme  for  =  100  s.
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M

cause  of  the  fixed  trajectory  pattern,  the  straight-line
flight  design  is  limited  in  maneuverability  development
relative to the proposed design and consumes more energy.
Meanwhile,  it  is  also  observed  that  the  overall  energy
consumption of all  UAVs diminishes with the growth of

,  which  is  expected  since  the  increasing  number  of
HABs  inevitably  enhanced  communication  performance
between the UAV and nearby HABs.
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Figure 7  Total energy consumption of all UAVs vs. task quantity 
(  = 100 s).
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In Figure 8, a simple comparison between the flight
energy cost and the local calculation energy cost is made.
As expected, the task period  has a significant effect on
local  calculation  energy  consumption.  With  the  increase
of ,  the  local  calculation  of  energy  consumption  of
UAVs  almost  approaches  zero.  This  can  be  explained
that UAVs have more time to offload tasks to HABs and
then reduce their calculation energy consumption. More-
over,  we can easily  notice  that  the  flight  energy cost  of
UAVs nondecreases as the task period  increases. There
is no doubt that the longer a UAV flies, the more energy
it will consume.
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Figure 8  A  comparison  between  UAV’s  flight  energy  consumption
and  calculate  energy  consumption  with  different  (  =  100
Mbits).

 VII. Conclusions

10% 20%

In this  paper,  we proposed a new MEC application
scene where multi-UAV offload their calculation tasks to
multi-HAB  during  their  flight.  The  UAVs’ trajectories
were jointly designed with the computation task splitting
to minimize the total energy cost of all UAVs, subject to
the  mission  maximum  processing  delays,  UAV’s maxi-
mum speed, and initial/termination position restrictions.
By  using  SCA  technology  and  an  alternating  iterative
approach, an effective algorithm for solving the formulat-
ed problem  was  proposed.  Numerical  results  were  con-
ducted to show that our proposed design can reduce the
UAV  energy  consumption  by  and  compared
with  the  Straight  Flight  design  and  Local  Computation
design, respectively. In future work, we will further take
into  account  the  influence  of  the  heights  of  UAVs  and
HABs on the energy consumption of all UAVs.
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