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Abstract—Radio fingerprinting (FP) technologies improve localization performance in challenging non-line-of-sight
environments. However, FP is expensive as its life cycle management requires recording reference signals for initial
training and when the environment changes. Instead, novel channel charting technologies are significantly cheaper.
Because they implicitly assign relative coordinates to radio signals, they require few reference coordinates for localization.
However, even channel charting still requires data acquisition and reference signals, and its localization is slightly less
accurate than FP. In this article, we propose a novel channel charting framework that does not require references and
dramatically reduces life-cycle management. With velocity information, e.g., pedestrian dead reckoning or odometry,
we model relative charts. And with topological map information, e.g., building floor plans, we transform them into real
coordinates. In a large-scale study, we acquired two realistic datasets using 5G and single-input and multiple-output
distributed radio systems with noisy velocities and coarse map information. Our experiments show that we achieve the
localization accuracy of FP but without reference information.

Index Terms—Channel charting, fingerprinting (FP), machine learning, radio localization.

I. INTRODUCTION

INDOOR localization serves as a key enabler for various
downstream tasks in industrial production, health care, or

networking [1]. Radio-based localization methods [2] are, be-
side other technologies such as camera [3], one of the most
promising technologies for indoor localization [2]. If there are
line-of-sight (LoS) conditions, systems based on time-of-arrival
measurements [4] achieve subdecimeter localization accuracies.
However, in realistic indoor environments, non-line-of-sight
(NLoS) signals and multipath propagation degrade localiza-
tion accuracy. In such environments, error mitigation meth-
ods such as NLoS identification [5] or error correction [6]
enable robust localization only when redundant base stations
(BSs) are available. Instead, fingerprinting (FP) also works in
NLoS-dominated areas with few BSs [7], [8], [9]. However,
FP is site-specific and its life-cycle management is expensive.
Initial (supervised) training requires channel state information
(CSI) measurements and corresponding reference positions.
And as environmental changes alter fingerprints, updates are
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needed [8], [10]. Instead, channel charting on CSI implicitly
models a manifold that represents the (local, relative) geometry
of the environment [11]. The idea is that CSI are unique to a
position in the environment and change smooth within it [12],
[13]. And manifold learning projects these high-dimensional
CSI onto 2-D coordinates that preserve the relative geometry.
The most renowned approaches explicitly define the manifold
using a distance matrix to model the radio geometry either
through the CSI itself [12], [14], [15], [16], [17] or through
physical motion models such as constant velocity [14]. Com-
pared to FP, channel charting localizes less accurately [12] or
requires unrealistic motion models [14]. Finally, for localization
in real coordinates, it still requires few references and updates
when the environment changes, so its life cycle management is
expensive.

In this article, we address these weaknesses. Our key idea is
that trajectory estimation on velocities is approximately error-
free over short time horizons, allowing a Siamese neural network
to derive a short-distance matrix and learn the global structure
of the radio environment. We show how (noisy) velocity in-
formation, e.g., pedestrian dead reckoning (PDR) or odometry
systems, improve the modeling of a channel chart. We also
exploit topological map information to learn a transformation
into real coordinates. This matching algorithm learns the spatial
distribution of the map along with the transformation to adjust
the orientation of the channel chart. So, for robust radio-based
localization in the real world, we only need CSI, (noisy) velocity
information, and a rough map representation of the area, e.g., a
floor plan. We evaluate our framework on two radio systems,
a 5G-based radio system and a distributed single-input and
multiple-output (SIMO) system, and on erroneous velocities and
map information. We show that our framework is independent
of radio topologies and architectures and robust to noisy veloc-
ities and results in charts with the accuracy of FP but without
expensive reference systems.
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The rest of this article is organized as follows. Section II
discusses related work. Section III introduces our framework.
Section IV describes our experimental setup. Section V presents
numerical results. Section VI discusses limitations, and finally,
Section VII concludes this article.

II. RELATED WORK

This section discusses related work on applications, distance
metrics, dimensionality reduction, and coordinate system trans-
formation for channel charting.

Channel charting [11] learns the geometry of the radio en-
vironment and supports tasks such as user grouping [18], ra-
dio resource management [19], beamforming [20], or localiza-
tion [12], [14], [21], [22], [23], [24], [25]. It typically runs
in two phases. First, it estimates the distances between CSI
that are proportional to the physical distance and models the
manifold of the CSI. Second, it reduces high-dimensional CSI
to a 2-D representation that reflects the coordinates of the radio
environment.

Channel charting employs distance metrics that are based on
the free-space path loss of radio signals [11], with extensions
to make it insensitive to fast-fading effects [15]. Advanced ap-
proaches extract multipath components (MPCs) and exploit the
path-loss for every MPC [26]. To utilize environmental informa-
tion, Stahlke et al. [12] exploited MPCs from power-delay pro-
file (PDP)s for time-synchronized high-bandwidth single-input
and single-output radio systems. Stephan et al. [14] extended
their metric for multiple-input and multiple-output (MIMO)
radio systems to exploit phase information. However, distance
estimates of radio signals are noisy due to limitations such
as collinearity and bandwidth. Other approaches assume that
channel measurements close in time are also close in space [23],
[27], [28], [29]. However, this only holds for constant velocity
models [14], [17].

Channel charting learns the 2-D manifold on high-
dimensional channel measurements, where effective dimension-
ality reduction is crucial. There are nonparametric approaches
such as principal component analysis [11], Laplacian eigen-
maps [30], or Isomap [15]. However, they model nonlinearities
inaccurately or not at all and do not generalize on unknown
data. Therefore, channel charting typically employs parametric
neural networks such as autoencoders [31], [32], Siamese net-
works [12], [14], [22], or triplet-based models [17], [23], [27],
[28], [33] that generalize well and their nonlinearity reduces
dimensionality effectively.

Channel charting only models the radio environment isomet-
rically. For localization, a transformation from local geometry
to global geometry and alignment to the coordinates of the real
world is, therefore, necessary [22], [23], [24], [25]. This trans-
formation is done with a few reference samples from the target
coordinate system. And if the channel chart already represents
a global geometry, a linear transformation is sufficient [12],
[14]. However, to locate accurately, even channel charting re-
quires updates as the environment changes [8]. Therefore, its
life-cycle management effort is lower than with classic FP, but
it is still not free. To completely avoid acquisition of reference
measurements, Ghazvinian et al. [29] exploited additional map

information. Their map information helps to align the channel
chart coordinates with the environment. They define a map as a
discrete probability density function (PDF) that represents the
distribution of the recorded data to match the data distribution
of the channel chart with the defined map through optimal trans-
port. Ghazvinian et al. [29] inspire the map-matching component
of our framework.

III. METHOD

This section introduces our novel channel charting frame-
work. Section III-A introduces manifold learning of CSI.
Section III-B describes how we exploit velocities to create
a (relative, local) channel chart. Section III-C describes how
coarse map information transforms the channel chart from local
to global (real-world) coordinates. Section III-D describes our
localization pipeline.

A. CSI on a Manifold

Radio systems measure the sum of all impinging signals from
any direct link between transmitter and receiver and on multiple
paths, e.g., from reflections in the environment. With the radio
channel modeled as

h(t) =

Np−1∑
n=0

anδ(t− Tn) (1)

we can estimate the channel impulse response (CIR), i.e., CSI
in time domain, by correlating a known bandwidth-limited mea-
surement signal s(t) with the (noise-free) received signal

h̃(τ) =

∫ ∞
−∞

y(t)s∗(t− τ) dt (2)

where

y(t) = h(t) ∗ s(t) (3)

where Np is the total number of signal paths, n is the index of
the current path, an is the complex gain of the nth MPC, δ(·) is
the Dirac delta function, Tn is the delay of the component, and
∗ is the convolution operator. As the MPC delays depend on the
position in space, the CIR can be defined as a smooth function
of space. Thus, the CIR changes gradually in space and we can
obtain a smooth transition function from the high dimensional
manifold, defined by the CIR, onto the 2-D space.

B. Velocity-Assisted Channel Charting

The manifold is typically modeled by a distance matrix,
i.e., a square matrix that contains all pairwise distances of
CSI measurements. Modern techniques [8], [14] showed that
we can obtain a globally valid distance matrix using CIRs
and geodetic distances. However, they are inaccurate due to
the nonconvexity of datasets and bandwidth limitations. Thus,
we determine a sparse, but more accurate, distance matrix on
additional velocity information to estimate distances between
channel measurements. We can obtain velocity information from
various sources. Especially in indoor environments such as auto-
mobile production lines or warehouse centers, robotic platforms
or industrial vehicles often use wheel-based odometry [34], or
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Fig. 1. Trajectory (gray line) with consecutive CSI measurements (red
dots). The (blue) distances dn,n+1, . . . , dn,n+3 are calculated within a
window (green segment) for the positions pn, . . . , pn+3.

pedestrians often use smartphones with inertial measurement
units for velocity estimation [35]. Velocity information is prone
to errors. Spinning wheels and fluctuating tire pressure worsen
the odometry and incorrect step length estimation or drifting
IMU signals worsen the velocity estimation of PDR algorithms.
Therefore, integrating velocity to determine relative locations is
error-prone and only practical for very short time. We exploit
this fact to create a sparse low-distance matrix, which is then
used by a Siamese network for channel charting.

1) Sparse Distance Matrix: As a tracking object moves along
a trajectory in a given environment, its velocity and a radio sys-
tem’s CSI are periodically recorded. Velocity is integrated over
a time window w, to estimate distances between the consecutive
CSI. The distances of w are defined as

dn,k = ‖pn − pk‖2 (4)

=

∥∥∥∥
∫ tk

t=tn

v(t) dt

∥∥∥∥
2

(5)

where tn and tk are the time of the first and next measurement
within w and dn,k is the Euclidean distance between the posi-
tions pn and pk estimated by the velocity v(t). As the estimated
trajectory drifts over time, we constrain the distance estimation
so that tk − tn < w, while we calculate all distances from the
first measurement at pn to all consecutive measurements until
the end of the window. Fig. 1 visualizes the distance estimation
process. A tracking object, e.g., robot or pedestrian, equipped
with an odometry or PDR, moves along a trajectory (gray line)
within a radio environment and regularly records CSI (red).
Within a certain time window (green segment) the (blue) dis-
tances between the position pn and the consecutive positions
pn+1, . . . , pn+3, estimated by the velocity, are calculated. We
slide w to the next position. The stride length s defines the
number of measurements we skip. We use it to lower the amount
of data for radio systems with high update rates.

2) Channel Charting: Both the CSI and the distance matrix
are employed in channel charting to map the high-dimensional
CSI of radio signals into a 2-D space that reflects the coordinates
of the radio environment. Here, Siamese neural networks [36]
are ideal to learn a transfer function from CSI to 2-D coordinates
and generalize well on unknown CSI [12], [14], [22]. They lower
the dimensionality of input data pairs and preserve a distance
defined by a metric. And we use them as they also model the
manifold of the underlying CSI data on a sparse-distance matrix.
They minimizes the distance relation (4) by using the following

loss function:

Ld = β
∣∣dn,k − ‖zn − zk‖2

∣∣ (6)

where zn and zk are the 2-D outputs of the neural network,
i.e., the 2-D coordinates, given the CSI measurements of the
radio system, | · | is the norm, and ‖ · ‖2 the Euclidean distance.
As the error increases with time within a window, distances
to measurements farther from the start of the window are less
reliable. Our weighting parameter β, therefore, changes linearly
within the window in the range [1, 0) so that samples that are
closer in time to the start of the window have a greater influence
on the final result. Convolutional neural networks (CNNs) are
known to efficiently extract the temporal and spatial correlations
of the CSI and exploit them for robust localization, and therefore,
dominate the state-of-the-art for (supervised) CSI FP [7], [12],
[37], [38]. Thus, we design our Siamese network similarly [12].
It consists of four convolutional (conv.) layers for feature ex-
traction, followed by two dense layers for discrimination. The
kernel sizes are increasing [3, 5, 7, 10] with eight channels for
every conv. layer. We apply batch normalization for the conv.
layers followed by rectified linear unit activation functions to
introduce nonlinearity. To reduce the dimensionality, we apply
global average pooling after the last conv. layer. We employ the
identity function as activation function for the last layer.

C. Adaptive Map Matching

Our velocity-assisted channel charts only represent the ra-
dio environment up to isometries. To exploit channel charting
for localization, we must transform the local channel charts
to the real-world coordinates. This transformation is typically
performed with reference positions [12] or with map information
of the environment [29]. The latter does not require any reference
positions, but does require the exact spatial distribution of the
channel chart. Instead, our adaptive approach learns the spatial
distribution along with the transformation.

1) Optimal Transport: Ghazvinian et al. [29] derive a discrete
PDF from map information, e.g., a floor plan, and match the
channel chart coordinates to this distribution by optimal trans-
port. They estimate a transportation matrix T ∈ Rs×t

+ , which
satisfies the regularized optimal-transport function

Λ(C,p, q) = argmin
T∈γ(p,q)

〈T ,C〉 − 1
λ
H(T ) (7)

where 〈·, ·〉 is the Frobenius inner product, p and q are probabil-
ity distributions of samples from the source domain Ωs (in our
case the distribution of the channel chart) and the target domain
Ωt (the distribution of the topological map). Their joint probabil-
ity is γ and C ∈ Rs×t

+ is a distance matrix, calculated using the
Euclidean distance, between the channel chart coordinates and
the map samples. It describes the cost to transport probability
mass between the channel chart and map domain. The solution
for (7) is

T = diag(a)Kdiag(b) (8)

where the Sinkhorn–Knopp algorithm [39] calculates
K = [e−λCi,j ], i = 1, . . . , s, j = 1, . . . , t, a ∈ Rs

+ and b ∈ Rt
+

a← p	Kb and b← q 	K
a (9)
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Fig. 2. Two stages of our localization pipeline. Stage 1 (left) generates a channel chart based on velocities and CSI. Such a chart only represents
the radio geometry up to isometries. Stage 2 (right) learns a linear transformation to the real world coordinates on map information for localization.

where ·
 is the transpose of the matrix and	 is the element-wise
division operation. The algorithm iteratively estimates (7), while
λ regularizes the stability of the convergence by controlling
the entropy H(T ). The higher the entropy H(T ), the faster
the convergence but also the less optimal the transport between
the probability distributions p and q is. As the algorithm only
consists of linear operations, it can be differentiated and we can
formulate it as loss function

Lm = 〈T ,C〉 (10)

to minimize the difference of the distribution of the channel chart
coordinates and the distribution of the topological map.

2) Adaptive Map Distribution: Ghazvinian et al. [29] assume
that they know the distribution of the source domain p or assume
a uniform distribution within the map. These assumptions only
apply to situations in which a locatable object moves in straight
lines at a constant speed. However, these (uniform distribu-
tion) assumptions are not realistic in indoor environments with
(un)intentionally (temporarily) inaccessible areas where no CSI
measurement exists and their map matching fails. In contrast to
Ghazvinian et al. [29], we employ learnable probabilities within
the discrete map distribution.

3) Map Matching: Inspired by Ghazvinian et al. [29], who
learn manifold and map matching simultaneously, we formulate
a two-stage optimization approach to decouple the channel
charting from the map matching. This lowers the complexity
in the optimization process, and the nonideal map does not
influence the distribution of the channel chart.

In the first stage, we estimate the channel chart that only
represents the geometry of the environment. In the second stage,
we learn a linear transformation to match the channel chart to the
map. Algorithm 1 shows the pseudocode of our map-matching
algorithm. We feed the channel chart coordinates of the training
data Xs of size Ns, the samples of the topological map Yt of
size Nt, and the initial rotation φi to the algorithm. We select
2-D coordinates within the map area, e.g., from a floor plan,
to obtain the map samples Yt; see Section IV-E. We assign a
probability to each coordinate. qζ represents the PDF of the
map coordinates. The probabilities are initialized uniformly for
all samples. Similar to the channel chart coordinates Xs, each
sample is assigned a uniform probability, resulting in the channel
chart PDF p. Algorithm 1 (line 1) shows the translation between
the channel chartXs and the mapYt, which is initialized to match
their centers of mass. Then (line 3), we run our optimization for

Algorithm 1: Map Matching.

Iiter epochs on the channel chart coordinates, which are split into
B batches due to memory limitations. The translation tθ and the
rotation φκ are applied to the coordinates of the channel chart
(line 5) and the Sinkhorn distance is estimated (line 6). Next (line
7), we first minimize the Sinkhorn distance w.r.t. the translation
tθ for Iwt periods to ensure the translation tθ converges before
we start to optimize the rotation φκ. Once, the parameters of
the linear transformation are estimated using the static map, i.e.,
Iwl, Iwl > Iwt periods, the probabilities of the map distribution qζ
are also optimized to adapt the map to the data distribution. Our
(trained) channel chart represents the actual data distribution of
the real environment. Instead, the coarse map only represents
a high-level perspective of this environment. Thus, our goal
is for the map to adapt to the channel chart through our map
matching algorithm. Therefore, there is no benefit in learning
the probabilities of the channel chart p. Our experiments showed
that convergence is very sensitive to the initial rotations φi

and often ends in local minima or the channel chart confuses
the x- and y-axes. To circumvent these weaknesses, we repeat
our map matching algorithm several times to select the (error-
free) transformation parameters with the smallest Sinkhorn
distance.
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Fig. 3. Schematic top view (left) of the environment (right) of our 5G
dataset with reflective walls (red rectangles), BSs (green dots), small
shelves (blue rectangle), large shelves (purple rectangles), and the
(blue) recording area (20 m× 10 m).

D. Localization Pipeline

Fig. 2 shows our localization pipeline, which we split into two
phases: 1) the channel charting phase [see Fig. 2(a)] and 2) the
transformation phase [see Fig. 2(b)].

1) In the channel charting phase, one or more locatable
objects move within the same environment. They are
equipped with an odometry or PDR system to determine
their velocities. The locatable objects also communicate
with a radio system (red) to determine location-specific
CSI (red dots). In a postprocessing step, we generate a
sparse distance matrix between the CSI measurements
from the velocity information; see Section III-B2. By
learning the distances for given measurements, the para-
metric Siamese network learns the manifold of radio
signals, i.e., the relative 2-D coordinates of CSI.

2) In the transformation phase [see Fig. 2(b)], we transform
these relative 2-D coordinates into the real coordinates
to enable localization with channel charts. Our map
matching algorithm requires a floor plan of the area as
a discrete PDF (blue dots). The map also covers areas
where measurements are impossible, e.g., outside the
range of the radio system or blockage due to objects. Our
map-matching algorithm learns a linear transformation
that fits both distributions and at the same time learns the
probabilities of the map [heatmap in the bottom right of
Fig. 2(b)] to fit the data distribution of the training data.

IV. EXPERIMENTAL SETUP

This section presents our 5G and SIMO data collection setup,
preprocessing of the datasets, and generation of corresponding
velocities and topological maps. The 5G and SIMO datasets
differ in the type of radio signals and the type of movement.

A. 5G Radio System

To record our 5G dataset, we use an experimental 5G uplink
time-difference-of-arrival (TDoA) setup with eight commercial
off-the-shelf software-defined-radio BSs. The radio system has a
center frequency of 3.75 GHz with a bandwidth of 100 MHz. The
BSs are synchronized by a signal generator. We record the time-
domain CIR data at a frequency of 100 Hz. In parallel, we record
synchronized reference positions with millimeter accuracy using
an optical Nikon iGPS reference system. Fig. 3 (left) shows
the schematic top view of the environment of the real-world

Fig. 4. Topological maps of the 5G (left) and the SIMO (right) datasets
(blue: discrete coordinates; orange: real training trajectories).

setup (right). The BSs (green dots) are placed at the edges of
the environment. The environment emulates a small industrial
setup with large shelves (purple rectangles), a working desk
(blue rectangle), large reflective walls (red rectangles), and a
forklift (gray rectangle). The reflective walls block the signals
that impinge on their backside. Near the walls, most BSs are
in NLoS to the transmitter. We use a commercial mobile phone
with a directional antenna as a transmitter. In the study, a person
carries the phone in their hand directly in front of them to imitate
a pedestrian using the mobile phone while walking. Note that
this person may shadow the 5G signals w.r.t. their view point.
The training dataset consists of 150 849 samples; see Fig. 4
(left, orange). The natural movement of the person with different
standstill moments leads to a mean velocities of 0.94 m/s and
a standard deviation (std. dev.) of 0.46 m/s. We record 18 256
test data on separate, independent trajectories, e.g., from another
pedestrian; see Fig. 8 top left.

B. SIMO Dataset

To study the impact of distributed SIMO radio systems [40] on
channel charting performance, we use a public dataset [41]. The
orthogonal frequency-domain modulation radio system consists
of four BSs with 2× 4 antenna arrays each. The center frequency
is 1.272 GHz with a bandwidth of 50 MHz. All antennas are
over-the-air synchronized in frequency, time, and phase. The
transmitter is equipped with an omnidirectional antenna. We
study the industrial dataset [41] that places the antenna arrays in
pairs close to each other at the edges of an L-shaped recording
area in the surroundings of a research factory campus. The
recording area has a size of 11 m× 13 m, with a metal container
that causes NLoS and multipath propagation. Data recording
was done by a robotic platform and the reference positions
were estimated by an accurate tachymeter. The training (see
Fig. 4 right, orange) and test (see Fig. 9 top left) datasets have
59 137 and 23 478 samples. The CSI data are in the frequency
domain (frequency responses). The robot moves slower and
more smoothly than pedestrians, 0.28 m/s in the training data
and 0.25 m/s in the test data on average, with a standard deviation
of only 0.10 m/s.

C. Preprocessing

As input to our framework, we exploit the CSI in the time
domain, i.e., CIRs. For a measurement snapshot i at BS k, the
CIR of length T is given in vector form as

h̃
(k)

i
def
=

[
h̃
(k)
i (0), . . . , h̃(k)

i (T − 1)
]
. (11)
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TABLE I
PARAMETERS OF OUR NOISE LEVELS: BIAS IN THE ANGULAR VELOCITY

(ANG. BIAS), BIAS IN THE MAGNITUDE OF THE VELOCITY (MAG. BIAS), AND
HEADING JUMPS (HEAD. JUMP)

As the SIMO dataset contains CSI in the frequency domain,
we apply the inverse Fourier transform to obtain time-domain
equivalent CIRs

h̃
(k)

i
def
= F−1

{
h̃

(k)

i

}
(12)

where F{·} is the Fourier transform operator and h̃
(k)

i the CSI
in the frequency domain. Given the CSI in the time domain, we
use the preprocessing scheme of Stahlke et al. [12]. Since our
approach does not rely on phase synchronization, employ the
PDP of the CIR. We generate a 2-D input tensor of dimensions
NBS × Lw, with the number NBS of BSs and Lw samples of the
PDPs. For the 5G system, we pad the PDPs by the TDoA of the
first arriving path to compensate the relative time alignment of
the impinging signals. As the PDPs data of the SIMO system
are already synchronized in time, we do not pad them.

D. Velocity Simulation

Velocity estimation based on signals from odometry or PDR
systems is prone to errors due to spinning wheels, varying tire
pressure, incorrect step length estimation, and drifting IMU
sensors. For practical reasons, we focus on PDR error sources.
Inspired by the findings of Jimenez et al. [42], we focus on the
most serious sources of error, heading drift, absolute heading
error, and incorrect step length estimation. We simulate three
different sources of error using the (derived) reference veloci-
ties from recorded reference positions. Table I summarizes the
sources of error as follows:

1) bias of the angular velocity (ang. bias) of the heading,
e.g., due to a drifting gyroscope;

2) bias of the magnitude of the velocity (mag. bias), e.g., due
to incorrect step length estimation;

3) heading jumps (head. jump), e.g., by exceeding the sen-
sitivity limits of a gyroscope.

We divide the sources of error into different noise levels with
increasing levels of error. Fig. 5 shows exemplary effects of
noise levels. For clarity, we demonstrate the influence of noise
levels on trajectory estimation on the 5G dataset. Fig. 5 shows the
complete trajectory (blue), a reference segment of 60 s (orange),
and estimated trajectory based on the noisy velocities (green).
Level (0) is noise-free, i.e., the velocity estimates are error-free
(orange segment). Level (1) contains different jumps in the
heading and does not distort the angular velocity. Level (2) again

Fig. 5. Examples of velocity-assisted trajectories at four different noise
levels (from lowest to highest). (Bue: Full reference trajectory; orange:
60 s segment of it; and Green: Estimated trajectory based on noisy
velocities).

contains different jumps in the heading and slightly distorts
the angular velocity. Level (3) doubles the angular velocity
deviation. Level (4) contains various heading jumps, slightly
distorts the angular velocity and distorts the magnitude.

E. Maps

To learn a transformation from the local channel chart to
the real world-coordinates, we exploit map information; see
Section III-C. The map information consists of discrete locations
within a topological map, and there must be a clear match of the
shape of the channel chart with the shape of the area of the map;
compare Fig. 4, which shows the 5G (left) and SIMO (right)
datasets, the map coordinates (blue), and trajectories (orange).
We found that 5000 samples provide accurate localization in
both environments. For each position, there is a probability
that we may map channel chart coordinates there. We assign
a uniform probability to all map coordinates as the spatial
density of our channel charts is unknown. The probability that
a trackable object is located at a certain coordinate is the same
for all map coordinates. The 5G map is limited to the recording
area (blue); see Fig. 3. Our mapping considers all static objects
in the area and excludes the dynamic forklift. We derive the
SIMO map from reference coordinates. For a fair comparison,
we simulated the additional unknown area (bottom left) with no
(orange) reference trajectories.

V. EVALUATION

In the following, we evaluate our framework (see Sec-
tion V-B), followed by an ablation study on the effects of varying
window sizes and velocity noise levels (see Section V-C) and the
influence of the numbers of BSs (see Section V-D). We train all
methods for 10 000 epochs to ensure their convergence. Step
lengths of s = 10 for the 5G dataset and s = 2 for the SIMO
dataset enable fair comparison. The training data generates
and optimizes the FP baseline and variants of channel charting
frameworks. We evaluate all methods on an unknown separate
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Fig. 6. Results of various map matching algorithms on the 5G (top row) and SIMO (bottom row) datasets, from left to right: The least-squares
approach, Our approach, map matching with a static map, and the combined approach. Blue points show the map distribution and the gradient
points show the channel chart, w.r.t. the reference. Compare upper left corner in Figs. 8 and 9 for the ground-truth trajectories.

test dataset. As an error metric, we use the 90th percentile
of circular Error (CE90), i.e., the Euclidean distance from the
estimated position to the reference position.

A. Baselines

For a fair evaluation, we compare our novel channel charting
framework (Ours) to various baseline methods. We directly com-
pare our velocity-assisted channel charting to an FP baseline.
Based on Stahlke et al. [8], FP employs the same model as
the Siamese network and optimizes the output directly on the
reference coordinates of the CSI values using the Euclidean-
distance loss. Inspired by Stahlke et al. [12], the (Least sq.)
baseline transforms our velocity-assisted channel chart to real-
world coordinates using least-squares optimization on the ref-
erences of the training data. Two additional baselines leverage
our velocity-assisted channel charting, but use different map
matching algorithms. The baseline (static map) is similar to our
map matching algorithm but learns the map’s probabilities along
with the linear transformation. Instead, Ghazvinian et al.s’ [29]
baseline (Comb.) learns the manifold simultaneously with the
map matching algorithm. For all baselines we employ the same
Siamese network, see Section III-B2. To optimize it, we apply
the combined loss Lcomb = Lm + Ld.

B. Velocity-Assisted Channel Charting With Map
Matching

This evaluation examines velocity-assisted channel charting
under realistic conditions (velocity noise level 3) together with
our map matching algorithm using topological map information.
To do this, we use a window size of 15 s for the 5G dataset and
a window size of 30 s for the SIMO dataset. We use Iiter = 150
iterations for training, with Iwt = 50 and Iwl = 100 for the
warm-up periods and λ = 30. We found that a batch size of
3000 samples is large enough to represent the data distribution.

TABLE II
LOCALIZATION ERRORS (CE90) ON THE 5G AND SIMO DATASET OF OUR
ADAPTIVE APPROACH (OURS), STATIC MAP MATCHING (STATIC MAP), THE

LEAST-SQUARES LINEAR TRANSFORMATION (LEAST SQ.), AND THE
COMBINED APPROACH (COMB.)

The map matching algorithm is repeated for 60 times, with 20
different equidistant starting rotations in the range [0.2π) and
inversions of the x and y axes. We selected the transformation
with smallest Sinkhorn distance for the final result. Table II lists
the results. Our approach (Ours) yields similar results as the
FP baseline: CE90 of 1.16 m for the 5G and 0.90 m for the
SIMO dataset. The error increases primarily due to the linear
transformation to the coordinates of the real world. Similar to
FP, the least-squares transformation achieves a CE90 of 0.92 m
for the 5G and 0.71 m for the SIMO dataset. Fig. 6, top row
from left to right, shows the map matching of the 5G dataset
for the least-squares approach, our approach, the static map
approach, and the combined approach. The gradient shows the
channel chart coordinates w.r.t. the position of the reference
coordinates; see Fig. 8 in the upper left corner. Compared to
FP (CE90 = 0.26 m), our approach yields a higher CE90 of
1.16 m due to rotation errors of the map matching. The static
map yields a rightward shift error, a CE90 of 1.71 m, as the
(simplified) assumption that the data is uniformly distributed
within the map is incorrect. The combined approach suffers
from similar problems and results in an even higher CE90 of
3.43 m. While the coordinates of the channel chart closely
match the area of the map, the Siamese network matches the
distribution of the map. Therefore, points on the left side are
moved to the right to match the map distribution. Instead, our
approach learns the distribution of probability mass within the
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Fig. 7. Distribution of the 5G dataset within the environment (left) and
the learned low (blue) and high (red) map probabilities (right).

TABLE III
LOCALIZATION RESULTS (CE90) OF CHANNEL CHARTING W.R.T. NOISE

LEVELS AND WINDOW SIZES ON THE 5G AND SIMO DATASETS

map; see Fig. 7 on the right (blue: low probability; and red: high
probability). Fig. 7 on the left shows the data distribution of
the channel chart. We can clearly see that the probability mass
fits well to the distribution of the data. All areas outside the
training area are assigned a low probability in the map. The area
on the left has a higher probability as in the data distribution.
The bottom row in Fig. 6 shows similar behavior in the SIMO
evaluation. Our method yields smaller rotation errors compared
to the least-squares approach, while the static map method fails
completely. The combined approach achieves poor localization
performance (CE90 = 11.08 m) as it tries to uniformly adjust
the channel chart coordinates within the map. Our approach
mitigates this by learning that the area does not contain any
data points.

C. Effects of Noise Level and Window Size

This ablation study investigates the effects of erroneous ve-
locity estimates and different window sizes on the performance
of velocity-assisted channel charting. To do so, this time, we
evaluate channel charting isolated from map matching and use
the references of the training data for the linear transformation
into the real coordinates. Our framework is evaluated on our
five different noise levels and four different window sizes for
5, 15, 30, and 60 s. For training, we use eight BSs of the
5G setup and three BSs of the SIMO setup. The results (see
Table III) show that the window size significantly influences
the modeling of the manifold of the CSI data. Velocity-assisted
channel charting fails for both datasets with a window size of
5 s. The 5G dataset achieves higher accuracies with window
sizes about 15 s. The SIMO dataset requires at least a window
of 30 s to achieve an adequate localization. This indicates that
window size correlates with movement speed. As the average

Fig. 8. Channel charts generated on different time windows of the 5G
dataset (top left corner: Reference trajectory of the test dataset; top
right: channel chart for 5 s; bottom left: 15 s; bottom right: 60 s).

velocity of the SIMO dataset (0.28 m/s) is significantly lower
than that of the 5G dataset (0.95 m/s), the estimated distances of
the SIMO dataset are significantly smaller. Thus, the Siamese
network cannot model a globally valid channel chart based on
local distances. Fig. 8 shows the reference of the test trajectory
for the 5G test dataset (top left corner) and the channel charts for
5 s (top right), 15 s (bottom left), and 60 s (bottom right) window
sizes. All channel charts reveal good spatial consistency, except
5 s that do not represent the global geometry of the test data.
Channel charting achieves the best results with a window size
of 15 s, (CE90 of 0.85 m to 0.94 m for the noise levels) on par
with the FP results (CE90= 0.90 m). The results deteriorate with
a window size of 60 s as the noise level increases from CE90 =
0.87 m (noise level 1) to 1.11 m (noise level 3). We think that
this is caused by the accumulation of errors of the noisy velocity
information. The larger the window, the greater the errors in the
distance estimates and the worse the performance of channel
charting. However, the window size must be sufficiently large to
restore the global structure of the environment. We see similar
results in the SIMO evaluation in Fig. 9. The reference trajectory
is shown top left in Fig. 9 is well represented by the channel chart
for a window size of 30 s (bottom left), while the chart fails on a
5 s window (top right). At noise level 1 and a window size of 60 s,
a CE90 of 0.56 m corresponds to the accuracy of FP (0.56 m).
Accuracy decreases with higher noise levels up to 0.94 m.

D. Effects of Varying Numbers of BSs

This ablation study assesses the effects of different numbers
of BSs on the performance of channel charting. We use a
15 s time window for the 5G and a 30 s time window for the
SIMO dataset with noise level 0. Again, we use the references
of the training data for the linear transformation into the real
coordinates. Table IV lists the results. We use the TDoA values
from at least two BSs of the 5G radio system to create the input
tensors for the Siamese network. The SIMO setup consists of up
to four BSs. The results show that our velocity-assisted channel
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Fig. 9. Channel charts generated on different time windows of the
SIMO dataset (top left corner: Reference trajectory of the test dataset;
top right: Channel chart for 15 s; bottom left: 30 s; bottom right: 60 s).

TABLE IV
LOCALIZATION RESULTS FOR THE CHANNEL CHARTING (CC) COMPARED TO

FP FOR DIFFERENT NUMBERS OF BSS

charting achieves similar results to FP. In the 5G setup with
two BSs, the localization accuracy of FP is higher than that of
channel charting, as the Siamese network may not have enough
information to model the manifold. However, for more BSs,
channel charting works similarly to FP. On the SIMO dataset, the
performance of channel charting is similar to fingerprint except
for four BSs. Fig. 10 shows the reference locations (left) and the
channel chart (right). The chart shows good spatial consistency
as the gradient is well recovered. However, in the region where
x < −5, the channel chart appears to be skewed about thex-axis.
We determine the average of the Pearson correlation coefficients
(PCCs) of the CSI for all BS combinations including all antennas
of each BS. We found that there are strong correlations between
the neighboring BS pairs, with a PCC of 0.86 and 0.73. While
the BSs are very similar in the signal space, they are placed in
different locations in the environment. Due to this redundancy,
we suspect that the manifold is ambiguous and has multiple
representations in 2-D space. When comparing the FP results
for three and four BSs, we also cannot see any significant im-
provement. By removing a BS, our Siamese network converges
reliably as it breaks the symmetry and redundancy of the data.

VI. LIMITATIONS

Our experiments show that our velocity-assisted channel
charting algorithm achieves similar accuracies to FP, although it
is independent of radio topologies and architectures and does not

Fig. 10. Channel charts with four BSs of the evaluated MIMO radio
systems. The estimated channel chart is displayed on the right. The
color gradient shows the spatial consistency of the positions.

require expensive reference positions. However, we believe that
the independent velocity estimation trajectories must cover a sig-
nificant portion of the environment to achieve global consistency
of the channel chart. This also means that the time windows have
to be longer at low velocities. Consequently, for the 5G dataset,
time windows of 15 s are sufficient due to the high velocities,
while for the SIMO dataset, at least 30 s are required due to low
velocities.

To transfer the local channel charting coordinates to the real
environment, we use map information that reflects the rough
geometry of the environment. Although we achieve higher lo-
calization accuracy compared to the state-of-the-art, we require
a clear match of the shape of the channel chart within the map.
This limits map matching to rotation-invariant and translational
map information and, does not work for, e.g., (rotation-variant)
rectangular or circular areas without unique features such as
shelves or worktables. However, as we only use channel charting
in NLoS-dominated areas, we can assume enough structure due
to signal blocking by obstacles.

Our map matching algorithm is limited to linear transforma-
tion with rotation and translation. However, we cannot learn
scaling errors due to incorrect step estimation (noise level 4)
along with the map’s probabilities. The map matching algorithm
shrinks the channel chart and assigns it to an arbitrary area while
it learns that the surrounding areas have no data assigned to
them. Therefore, the scale of the channel chart must be estimated
before map matching.

VII. CONCLUSION

To compensate for the overhead of managing the life cycle
of state-of-the-art FP and channel charting technologies in real-
istic applications, we propose a framework that enables quasi-
unsupervised indoor localization using (5G) radio systems with-
out reference positions. Our velocity-assisted channel charting
approach with adaptive map matching achieves accuracies of up
to CE90= 1.16 m for a 5G and 0.90 m for an SIMO radio system,
similar to supervised FP, even with noisy velocities and coarse
map information. Therefore, our approach is applicable to low-
cost sensor systems such as smartphone-based PDR or odometry
of robotic platforms in combination with CSI recordings. Our
adaptive map matching employs topological map information
such as floor plans to learn a transformation of the local channel
chart coordinates to the real environment. In contrast to the
state-of-the-art, our map matching algorithm does not require
reference coordinates but only a coarse representation of the
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environment, as it learns to adjust the map while aligning the
channel chart to the real coordinates.
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