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Estimating Multipath Component Delays With
Transformer Models

Jonathan Ott , Maximilian Stahlke , Tobias Feigl , Member, IEEE, and Christopher Mutschler

Abstract—Multipath in radio propagation provides essential environmental information that is exploited for positioning
or channel-simultaneous localization and mapping. This enables accurate and robust localization that requires less
infrastructure than traditional methods. A key factor is the reliable and accurate extraction of multipath components
(MPCs). However, limited bandwidth and signal fading make it difficult to detect and determine the parameters of the
individual signal components. In this article, we propose multipath delay estimation based on a transformer neural
network. In contrast to the state of the art, we implicitly estimate the number of MPCs and achieve subsample accuracy
without using computationally intensive super-resolution techniques. Our approach outperforms known methods in
detection performance and accuracy at different bandwidths. Our ablation study shows exceptional results on simulated
and real datasets and generalizes to unknown radio environments.

Index Terms—5G, attention, multipath (MP), radio localization, transformer (TF), ultrawideband (UWB), wireless channel
estimation.

I. INTRODUCTION

INDOOR positioning is a key enabler for many applications,
such as emergency services [1], elderly care [2], and smart lo-

gistics [3]. Radio frequency (RF)-based systems are commonly
utilized in this context. Conventional RF-based positioning
systems exploit signal properties, such as the received signal
strength [4], the time of arrival [5], [6], or the angle of arrival
(AoA) [7], which are directly related to the geometry between
the transmitter and the receiver. However, these systems neglect
the spatial information that is associated with interactions
of the electromagnetic waves with obstacles in the environment.
Reflection, diffraction, and scattering cause multiple
propagation paths that arrive with different delays at the receiver.
These signal components inherently contain information
about the geometry of the environment. Modern approaches,
such as multipath (MP)-assisted positioning [8], [9] and
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channel-simultaneous localization and mapping (CSLAM) [10],
[11], exploit these signal components to increase the robustness
as well as the accuracy of the position estimates, and reduce the
amount of anchors. Limited bandwidth and dense MP introduce
fading to the signal [12]. Accordingly, the extraction of spatial
information from complex channel states is challenging.

Renowned analytical MP component (MPC) estimators are
computationally intensive and at the same time limited by strong
assumptions (thresholds or expected number of MPCs) [13],
[14], [15], [16], [17], [18] and deep learning (DL)-based meth-
ods [19] recently outperformed them in terms of accuracy and
computational efficiency. However, the DL methods also use a
threshold value that requires experimental adjustments. To the
best of the authors’ knowledge, all methods are limited in their
resolution due to discretization. Super-resolution techniques,
such as multiple signal classification (MUSIC), increase res-
olution but are limited by the density of the steering vectors [13]
and the DL method only estimates MPCs as accurately as the
sampling resolution of the underlying channel impulse response
(CIR). To address these weaknesses, in our previous work [20],
we introduced a novel MPC delay estimation pipeline based
on the transformer (TF) architecture [21]. Unlike analytical
methods that require additional preprocessing mechanics, or DL
that uses segmentation [19], our TF implicitly learns from the
dataset to estimate the number of MPCs, i.e., the model order.
In addition, our TF analyzes not only local patterns, but also
dependencies between time steps (samples) in a (CIR) signal,
and our TF exploits optimal (subsample) resolutions of the CIR
signal when it uses spatially consistent measurements from a
specific environment as it learns the relationships of MPCs
directly from the signals. Through these properties, our TF [20]
estimates MPC delays on complex-valued CIRs more accurately
and robustly, reduces methodological and computational com-
plexity, and outperforms existing MPC estimators.

In this article, we complement our previous work [20] with
additional experiments on input data, generalization, further
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comparison methods, and uncertainty estimation. We show how
to adapt our TF on power delay profile (PDP) input signals to (at
least) halve the effort of our previous (CIR) data processing
without significant performance loss. We show that our TF
generalizes to non-line-of-sight (NLOS) ultrawideband (UWB)
data. We extend our computational effort analysis to include
training time and compare with MUSIC. We are also the first to
analyze the uncertainty of learning-based MPC delay estimation
to provide a detailed insight.

The rest of this article is organized as follows. Section II re-
views related work. Section III describes the problem. Section IV
introduces our method. Section V describes our experiments.
Section VI presents the results. Section VII discusses the limita-
tions of our pipeline. Finally, Section VIII concludes this article.

II. RELATED WORK

Positioning that benefits from accurate MPC-delays includes
methods that leverage environmental knowledge to enhance the
position estimates [9], [22] and CSLAM-based methods [10],
[11]. Also, channel charting algorithms [23] benefit from MP
information, such as multipoint channel charting [24] or time–
distance-based approaches [25], [26]. This section discusses
analytical and data-driven approaches that extract MPCs from
channel measurements.

The most prominent analytical techniques are MUSIC [17]
and Esprit [15]. These subspace-based approaches exploit the
orthogonality of the signal and noise subspaces. Under the as-
sumption of nonoverlapping MPCs, these algorithms potentially
extract MPCs at high accuracy. Maximum likelihood (ML)-
based methods estimate in an iterative manner. These include
the expectation maximization (EM) [14] and space-alternating
generalized expectation-maximization (SAGE) [13] algorithms.
RiMAX [16] extends their idea by incorporating diffuse MP.
Kulmer et al. [18] introduced a optimization criterion that detects
partly overlapping MPCs. However, both the subspace- and ML-
based approaches are computationally intensive due to complex
or sequential operations and limited by strong assumptions, e.g.,
preknown number of MPCs. Inherently, they only search for
local occurrences of the (input) signal and are, therefore, unable
to extract and describe significant correlations between (global)
MPCs that represent the environment. These significantly lower
positioning performance. They also rely on an a priori estimation
of the number of MPCs, i.e., model order. Typically, criteria,
such as the Akaike information criterion [27], the Bayesian
information criterion [28], or minimum description length [17],
estimate the model order. However, it is well known that the
correct number of MPCs (model order) is difficult to obtain at
low signal-to-noise ratio (SNR) [29].

Recently, data-driven techniques have compensated for the
weaknesses of analytical methods. Yang et al. [30] estimated
the model order using DL. However, to eliminate their need,
Kram et al. [19] introduced an MPC delay estimation pipeline
based on the U-Net architecture [31]. They formulate MPC
estimation as a time series segmentation task that determines
the probability of whether an MPC occurs in a predefined time
interval, e.g., a sampling time step, or not. Kram et al. [19] also

introduced a detection threshold that tunes a tradeoff between
the detection rate and wrong detections. They outperform the
state of the art w.r.t. computational cost, detection rate, and
accuracy. However, their method’s accuracy is limited by the
temporal resolution of the CIR. So, their method cannot resolve
multiple MPCs that occur in the same time interval. Wang
and Wu [32] showed that U-Net has an inductive bias toward
locality as it is based on convolutional layers. Thus, U-Net only
recognizes temporally adjacent and limited patterns in the input
signal. Hence, U-Net only searches for local occurrences of the
waveform, and does not capture correlations between MPCs,
which reduces the positioning accuracy.

To address these weaknesses, we formulate the problem as
an autoregressive task that learns to estimate MPC delays for
each CIR. Due to the low temporal resolution of a CIR, a
time step may incorrectly describe MPCs that are actually
different in time. As the temporal resolution of our TF is
not limited, it may capture these deficiencies. And, in con-
trast to the state of the art, our TF captures MPCs dependen-
cies in the entire input signal, i.e., dataset. So, our TF learns
environment-specific interactions between MPCs, is not limited
by a single CIR’s temporal resolution, and increases the per-
formance of the MPC estimation and positioning. In addition,
our method saves time as it does not require handcrafted tuning
parameters.

III. PROBLEM DESCRIPTION

We characterize the complex-valued baseband signal r(t) as
the outcome of transmitting a pulse s(t) through the channel
h(t) [33] such that the following holds:

r(t) = s(t) ∗ h(t) + w(t) (1)

where the CIR h(t) describes the radio channel

h(t) =
M∑

m=1

αmδ(t− τm) + ν(t) (2)

as a linear combination of M deterministic signal components
with complex amplitude αm, delay τm, and diffuse nonde-
terministic MP ν(t), which are characterized by a stochastic
process [33]. To take nonspatial signal components into account,
noise w(t) is added. Limited signal bandwidth and complex
MP-rich environments cause distortions and overlaps of MPCs
in the CIR measurement. Hence, detecting the MPCs, which
significantly vary in number depending on the environment,
and correctly estimating τm are challenging tasks. Moreover,
MPC parameter estimation algorithms must handle low resolu-
tions due to a low sampling rate of CIR measurements. These
challenges are even more complicated in realistic applications
when only PDP measurements are available. In contrast to CIR
measurements, PDPs

p(t) = |r(t)|2 (3)

describe the signal in terms of power and path delays, but
neglect phase information. However, processing PDP is less
computationally expensive compared with complex-valued CIR.
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Fig. 1. Overview of the proposed method. Grey blocks denote the orig-
inal TF [21]. Red blocks mark our adaptations. We visualize the channel
measurement by its real (cyan) and imaginary parts (purple) and PDP
thereof (black). We show the encoder input (green) and corresponding
references (blue). The red dotted arrow indicates the autoregressive
property of the decoder during inference.

IV. MP DELAY ESTIMATION USING TF

This section introduces our novel TF architecture (see
Section IV-A), data preprocessing and postprocessing (see
Section IV-B), and training and inference phases (see
Section IV-D).

A. TF Architecture

Our TF architecture [21] is structured as encoder–decoder (see
Fig. 1 left-hand side: encoder, right-hand side: decoder). Func-
tional entities consist of a series of Nb blocks with identical sub-
layers. The encoder maps an input sequence to a representation,
which is provided to each block of the autoregressive decoder as
a context vector. The key feature of the TF is its exclusive use of
multihead attention layers to express correlations between the
indices or positions in a given sequence. The attention layers
compare the entire sequence of inputs (i.e., CIR) in terms of their
correlations. Based on that, weights are calculated that determine
how much each position contributes to the current representation
calculation step. The idea is that the mechanism “attends” to

different positions at each additional layer and attention head.
A major benefit in using attention layers lies in the capturing of
long-term dependencies between elements in the sequence [34].
Note that these mechanisms are key to learning subsamples
and accurately extracting MPCs. Each encoder block comprises
multihead self-attention stage with Nh heads, followed by a
positionwise feed-forward network (FPN). The Feed-forward
network (FFN) implements two consecutive convolutional lay-
ers with a kernel size of 1 × 1. The positionwise FFN applies the
same weights to each position of a given sequence. The visible
layers of each FFN have a dimension of dm and the hidden
layers have a dimension of dff . In this context, dm refers to the
size of the input embeddings. Considering the decoder block,
an encoder–decoder multihead attention layer with Nh heads is
incorporated between the self-attention layer and the FFN. So,
the decoder attends to the context vector provided by the encoder.
Both, the attention layer and the FFNs, are bypassed by a residual
connection. We employ LayerNorm and Dropout for regular-
ization. Inspired by Devlin et al. [35] and Radford et al. [36],
we replace the rectified linear unit (ReLU) with the Gaussian
error linear unit (GeLU) activation function throughout the ar-
chitecture, as GeLU approximates complex functions more effi-
ciently than ReLU due to its nonconvexity and nonmonotonicity
[37].

B. Preprocessing and Postprocessing

Fig. 1 shows our extensions together with the TF. We prepro-
cess the Tr samples of long sequences of complex raw channel
measurements r and feed them to TF. 1© The channel measure-
ments values are normalized such that the largest magnitude of
each channel measurement corresponds to 1. We consider two
variants of the input: first the complex channel measurement
that includes information about the magnitude and phase of the
CIR signal, and second, the PDP that drops the signal phase
information to halve the input size. 2© We interpret the real
and imaginary parts of the complex channel measurement as
two channels [Re(r), Im(r)] and the PDP as a single channel
|r|2. 3© Subsequently, we apply a convolutional layer with
kernel size 1 × 1 (denoted in Fig. 1 as Conv). This maps the
low-dimensional input to a high-dimensional latent-space with
dm dimensions. 4© Similarly, the decoder input is mapped to a
latent-space with a dimensionality of dm. Note that the multi-
head attention layer splits the input vectors into multiple slices
along the embedding dimensions. Given the high-dimensional
embedding, we apply a positional encoding [21]. This induces
a notion of sequence to the data that the TF cannot inherently
express.

Although working in a sequential manner when generating
estimates, TF is trained in parallel. Thus, we provide all MPC
delays to the decoder at once 5© and apply a mask to the
attention scores to prevent invalid information flow. 6© During
inference, we feed back the generated estimates to the decoder in
an autoregressive way. 7© The decoder output has a dimension
of dm. To obtain a 1-D sequence of estimates, we apply a
1 × 1 convolutional layer to map the representation back to
the “MPC delay space.” 8© Note that we normalize the delay
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Fig. 2. Normalized magnitude of an input signal r(t). The signal covers
a direct path and three specular reflections. Dashed lines show true
MPC delays τm. Red lines show estimated MPC delays τ̂µ.

estimates w.r.t. the delay window. Hence, a sigmoid function
constrains the value range between 0 and 1. Consequently, we
scale the values by Tr · ts, where ts is the sampling period, to
obtain the actual delays.

C. Training and Inference

To supervise the training, we employ a sequence that includes
M normalized MPC real delays as decoder input 5© and refer-
ences 9©. The decoder input in 5© is augmented with a leading
0 and the labels with a trailing 1 in 9© to indicate the start and
end points, see Fig. 1. The attention layers of the decoder in
4©– 7© use masking to prevent information flow that contradicts

the autoregressive property [21].
For inference, we initially feed a single 0 to the decoder that

indicates the start of the sequence. Thereupon, the M ′ delay
estimates are created one after the other, in ascending order of the
delay, and include all previous estimates. Therefore, TF gener-
ates the next estimate based on the information from the previous
ones, thus it learns dependencies between MPCs, especially in
environments with spatially coherent channel measurements.
When an estimate is close to 1 (the Sigmoid function never
reaches 1), we stop the decoding procedure. The first value above
a preexamined constant threshold of 0.95 excludes estimates
in the last 5% of the time window. As most different MPCs
arrive early (below the threshold), no important information
is lost. Note that this threshold is not a hyperparameter but a
preexamined implementation detail. Vaswani et al. [21] claimed
that the results of a TF improve as the number of trainable
parameters increases. Therefore, we maximize the number of
trainable parameters so that TF can be trained in a reasonable
time with limited computational resources (see Section IV-D
for details). All experiments use the hyperparameters: Nb = 4,
Nh = 4, dm = 64, and dff = 128, and learning rate of the
training process = 0.01.

D. MPC Extraction and Mapping

In general, to determine whether an MPC is classified as
detected, we fit M ′ MPC delay estimates to M reference MPC
delays using the Hungarian method [38]. We then apply a
maximum allowable error threshold to MPC pairs (estimate
and reference) that are too far apart, to remove them from the
dataset. Fig. 2 shows correctly detected true positives (TPs)
MPCs (τ0, τ̂0), (τ1, τ̂2), (τ2, τ̂3). τ̂1 is a false positive (FP) and
τ3 is a false negative (FN).

V. EXPERIMENTAL SETUP

This section installs benchmark datasets (see Section V-A),
baseline methods (see Section V-B), and evaluation metrics (see
Section V-C).

A. Datasets

Our evaluations employ two synthetic datasets that mimic
5G and UWB systems and a real-world dataset of an UWB
system. Note that we explicitly employ synthetic datasets to
control effects in data and to apply the TF architecture in the
first place, as TF is known to only work when there is a lot of
training data, which is difficult to acquire in the real world [39].
Section V-A1 describes our synthetic 5G dataset that mimics an
empty hall with fixed objects and includes stochastic alterations,
our synthetic UWB dataset that mimics a random environment
with varying noise characteristics and signal obstructions, and
our real-world dataset of a static environment.

1) Synthetic 5G Dataset: The key idea of this large synthetic
dataset is to investigate the ability of MPC estimators to exploit
characteristic patterns of dynamic environments. To do this,
we generated the dataset with our simulation setup, which is
based on the stochastic channel model QuaDRiGa [40]. We
model the channel as a set of reflectors and clusters. A sin-
gle reflection point describes the reflectors. Clusters combine
multiple subpaths caused by reflections in close proximity.
These paths overlap in the delay domain as they arrive at the
receiver in a short temporal span. The simulation distinguishes
between random cluster (RC) and complementary semideter-
ministic cluster (SDC) [41]. We determine RC locations purely
stochastic. We use SDCs to model reflections at fixed positions.
The data represent a dynamic environment and include charac-
teristic static signal interactions, such as wall reflections. The
setup mimics an empty hall of size 45 m × 30 m. All channel
measurements contain a direct path MPC, i.e., all signals have
line-of-sight (LOS). We mounted six evenly spaced receivers on
the walls of the hall. They provide six channel measurements
for each signal burst. The recorded CIRs are aligned with the
shortest delay of each burst. As in real-world deployments, the
true time of flight (TOF) is unavailable. Note that we recorded
the signals simultaneously at the receivers, but we employ them
as independent channel measurements. The dataset incorporates
seven SDCs that represent the walls, floor, ceiling, and a rack
as well as 23 RCs. We generate 958 320 channel measurements
each sampled at 122.88 MHz with a delay window of 1.4μs
that results in a length of 167 samples. The signal is generated
with a carrier frequency of 4 GHz and 100 MHz bandwidth. We
split this dataset explicitly into 70% training, 10% validation,
and 20% test data. This split ensures generalizability as the
subsets cover different independent channel measurements, e.g.,
different people walking on different trajectories.

2) Synthetic UWB Dataset: The key idea of this large syn-
thetic dataset is to distinguish between deterministic and diffuse
signal components, see (2). To achieve this, we employed Kram
et al. [19]’s simulation setup, which generates realistic UWB
data. In contrast to our environment-specific 5G dataset, the
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generated reflection points of the UWB data are spatially ran-
domly distributed. Consequently, there is no spatial correlation
between the data points. This experiment therefore provides
information about the generalizability of the methods. The setup
mimics an industrial environment of size 15 m× 15 m. We
placed the transmitter, receiver, and all reflection points in it. To
mimic a typical complicated industrial environment, only 50%
of the signals are LOS and the remaining signals are NLOS.
To cover real-world signal characteristics, we parameterized
the SNR (SNR ∈ {20, 30, 40, 50} dB) of all signals, i.e., the
power ratio of uniformly distributed nonspatial noise, and the
signal-to-interference ratio (SIR ∈ {20, 30, 40, 50} dB), i.e.,
the performance ratio between deterministic and diffuse signal
components. We generated 1 000 000 channel measurements,
each with Tr = 128 samples at a sampling rate of fs = 1 GHz.
We generated the signals with a bandwidth of 500 MHz and a
carrier frequency of 4 GHz. We split this dataset in the same
way as the 5G dataset to ensure generalizability.

3) Real-World UWB Dataset: The key idea of this small real-
world dataset is to explore the exploitability of environment-
specific features and to verify the performance of the methods
on real data. In general, complex (NLOS) real-world propagation
scenarios consist of many untraceable signal paths. Obtaining
reference MPCs is of course impossible there. Therefore, we
selected the public deterministic real-world dataset from Kulmer
et al. [42]. The scenario includes a single receiver and single
transmitter, which are synchronized. The dataset contains UWB
channel measurements, corresponding reference positions, and
a map of the environment. The channel measurements cover
an area of 1.25 m × 1.7 m in the center of a furnished lab-
oratory room. The path delays are less variable than those
of the synthetic datasets. Hence, it can be considered as less
complex. We considered specular reflections on flat surfaces
to be deterministic MPC, i.e., reflections on the walls of the
room. Consequently, we treat all other signal components as
diffuse MP signals. We manually annotate four MPC delays
(i.e., wall reflections), through the geometrical relationships of
the specular reflections. The dataset incorporates 420 channel
measurements, each sampled at 6.95 GHz with a delay window
of ≈ 216 ns, resulting in a length of 501 samples. The signal is
generated with a carrier frequency of 4 GHz and a bandwidth of
416.7 MHz. We subsampled the CIRs by a factor of 3, resulting in
CIRs with a sampling frequency of approximately fs = 2.3 GHz
and a delay window length of 167 samples. This ensures a fair
comparison and reduces the computational effort. We explicitly
split this dataset into 200 training, 50 validation, and 170 test
data points.

B. Baseline Methods

We compare our TF with two conventional MPC-delay esti-
mators [17], [18] and the latest DL method [19].

1) MUSIC: We implemented the renowned subspace-based
spectral-MUSIC algorithm [43]. It offers a pseudospectrum that
exhibits peaks at contained signal components. To estimate the
number of MPCs, we apply the minimum description length
criterion. We employ a peak-finding algorithm to determine the

final delay estimates. A threshold parameterizes the peak-finding
process. We adapt the threshold experimentally for each dataset
to obtain an optimal tradeoff between sensitivity and precision.

2) Kulmer et al. [18]: We also implemented the renowned
iterative algorithm (search and subtract) of Kulmer et al. [18]. As
MUSIC, it relies on the a priori estimated number of MPCs. We
parameterized it manually to prevent errors caused by upstream
source number estimators. In line with Kram et al. [19], we set
a higher than necessary fixed number of estimates to increase
the detection rate. As the number of MPCs differs significantly
for each dataset, for the best results, we adjust it individually.
Again, we adapt all parameters for each dataset experimentally.

3) U-Net: We also implemented the state-of-the-art DL algo-
rithm of Kram et al. [19]. It exploits U-Net convolutional neural
network (CNN) [31] to provide probabilities of the presence
of MPCs per input sample. We applied a threshold to adjust a
tradeoff between detection sensitivity and precision. Again, we
adapt it for each dataset experimentally.

C. Metrics

To comprehensively evaluate the performance of the MPC
estimators, we employ the following three metrics.

1) Sensitivity and Precision: To evaluate the detection per-
formance, we define the sensitivity such that

sensitivity = TP/(TP + FN) (4)

and the precision such that

precision = TP/(TP + FP). (5)

Sensitivity describes how many reference MPCs were detected,
and precision describes the certainty of whether an estimate is
assigned to a correct reference MPC.

2) Absolute Distance Error (ADE): To measure the estima-
tion error between an estimated τ̂µ and a reference delay τm, we
use the ADE of Kram et al. [44]

dµ,m = c|τ̂µ − τm|. (6)

We scale the temporal distance by the speed of light c to obtain
distances in m. We set the error threshold of the upper limit
to ADE = 3 m to correspond to an error of ≈ 10 ns in the
time domain. We use the ADE metric in two ways. First, we
consider the average ADE of the assigned delay pairs per channel
measurement, denoted as mean absolute distance error (MADE).
Second, to benchmark the MPC estimation w.r.t. path delays, we
consider ADE as a function of path delays.

VI. EVALUATION

This section discusses the results of all methods along the
two synthetic datasets 5G (see Section VI-A) and UWB (see
Section VI-B) as well as the real UWB dataset (see Section VI-C)
and the computational effort (see Section VI-D). We employ the
metrics MADE, sensitivity, precision, and the ADE distributions
w.r.t. path delay. Table I summarizes all results. KU represents
Kulmer et al. [18]’s algorithm, TF processes complex channel
measurements, and TF-PDP processes PDP measurements. Note
that we compare our dataset-specific findings in Section VII.
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TABLE I
RESULTS PER METHOD AND TEST DATASET

Fig. 3. MPC detection performance results: distribution of precision (orange) and sensitivity (teal) metrics of all methods on our datasets. A black
diamond represents the mean and a black horizontal line represents the median. We do not show outliers.

Fig. 4. MPC estimation performance results: Cumulative density function of the MADE per CIR w.r.t. the method and datasets.

A. Results: Synthetic 5G Dataset

First, we discuss the overall performance of the methods w.r.t.
their detection performance (see Fig. 3, left-hand side) and their
estimation accuracy (see Fig. 4, left-hand side). Then, we discuss
their performance w.r.t. path delays (see Fig. 5).

Fig. 3 shows that TF and TF-PDP result in a combination of
high precision and sensitivity (>70%). TF significantly (>20%)
outperforms the baselines KU and U-Net that yield a low pre-
cision and sensitivity (<50% on average). We assume that TF
achieves high precision as it implicitly estimates the number
of MPCs as it learns to estimate delays. Its autoregression
ensures that the number of MPCs depends on the input signal
and on previous delay estimates. This may result in few FPs
and increases precision. In contrast to KU and U-Net, TF’s
attention mechanism captures dependencies across all input
signals (dataset). In this way, TF captures global long-term

dependency patterns characteristic of each environment, thus
providing more accurate and reliable MPC estimates. MU-
SIC is an exception. Compared to all other methods, MUSIC
achieves the highest accuracy (78% on average), but also the
lowest sensitivity (20% on average). Hence, MUSIC does not
identify (map) the correct MPCs in most (80%) cases. MUSIC
therefore provides significantly less spatial information (MPCs)
and, therefore, provides less accurate positions than all other
methods.

Fig. 4 (left-hand side) supports these findings. MUSIC (black
line), and TF and TF-PDP (dashed lines) provide the most
accurate delays and outperform KU and U-Net (blue and green
lines). However, MUSIC, KU, and U-Net do not recognize most
MPCs, so their sensitivity (blue–green boxplots in Fig. 3) is
significantly lower than that of TF and TF-PDP. We think that TF
offers significantly higher sensitivity as it takes into account long
time and environmental dependencies when all other methods
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Fig. 5. Performance w.r.t. path delays: ADE distributions w.r.t. path delays for the synthetic 5G dataset. We bin the ADE values w.r.t. delays with
a bin size of 10 m. We do not consider late delay bins > 200 m as the number of MPCs is not significant. The delays depend on the first arriving
path of the respective burst (see Section V-A1).

Fig. 6. Performance w.r.t. path delays: ADE distributions w.r.t. path delays for the synthetic UWB dataset. We bin the ADE values w.r.t. delays with
a bin size of 2 m. We do not consider late delay bins > 32 m as the number of MPCs is not significant. The delays correspond to the true TOF.

only consider local signal patterns. So TF recognizes global
patterns in the input signal as it captures signal patterns of the
environment (of a dataset).

Let us now discuss the results of the ADE distributions w.r.t.
path delays in a signal. Fig. 5 shows the estimation accuracy (of
all methods) of the delays along a signal. For simplicity, we only
show results of TF (that are on par with TF-PDP). As the dataset
does not provide true TOF, we normalize the delays to the first
incoming path per signal/position. KU, U-Net, and TF show a
significant increase in ADE with late arriving MPCs (compare
the delays at 10 and 200 m). KU, U-Net, and TF achieve
inaccurate results for late MPCs. Instead, our TF estimates early
MPCs (see delay at 10 and 20 m) much more accurately (95% of
ADE below 2 m at a distance of less than 10 m). MUSIC is again
an exception. MUSIC (black boxplot) achieves the lowest ADE
(below 1 m in most cases) over the entire distance (see delay at
10 and 200 m). However, its sensitivity is the lowest (blue–green
boxplots in Fig. 3), so it misses most MPCs, thus loses valuable
spatial information and drops positioning accuracy drastically.

B. Results: Synthethic UWB Dataset

Again, we first discuss the overall performance of the methods
w.r.t. their detection performance (see Fig. 3, middle) and their
estimation accuracy (see Fig. 4, middle). Then, we discuss their
performance w.r.t. path delays (see Fig. 6).

The overall performance of all methods along all metrics on
the synthetic UWB dataset is similar to that on the synthetic
5G dataset. However, Fig. 3 clearly shows that in general the
variance of all methods along both metrics is higher than for
the 5G dataset. We think this is due to the high variance of
the SNR and SIR as well as the 50% NLOS data points (see

Section V-A2). MPC estimation on UWB data is therefore
significantly more challenging. Again, MUSIC is an exception
as it returns the highest precision (72%) but the lowest sensi-
tivity (21%). Instead, TF and TF-PDP result in slightly lower
but balanced precision and sensitivity (average of 58 %), and
guarantee high detection reliability and accuracy. Interestingly,
TF-PDP provides higher precision (30%) than MUSIC (27%)
for the 90% percentile. As the results of KU and U-Net on the
5G dataset, they again perform worst.

Fig. 4 shows interesting results. The estimation accuracy of
MUSIC lowers significantly from the 50% percentile onward
(MADE > 0.2 m). We think this is because MUSIC accurately
estimates MPCs on the 50% LOS signals of the dataset, but on
the remaining signals with indirect paths, MUSIC fails due to its
low sensitivity or low ADE. In contrast, all other methods return
larger but consistent errors regardless of the signals. Again, TF
and TFT-PDP estimate MPCs more accurately than KU and
U-Net. This time MUSIC yields the highest precision (82%)
but the MPC estimation accuracy drops drastically at over 55%
of the data points, and at over 90% of the data points, our TF
and TF-PDP outperform the rest (MADE < 1.33 m). TF-PDP
is therefore over 41 cm more accurate than the next best, U-Net
(MADE > 1.74 m).

Fig. 6 shows the ADE distributions of the path delay in a
signal. This time the path delay in a signal represents the true
TOF. Interestingly, this time the ADE of all methods increases
with later arriving MPCs. TF achieves exceptionally low ADE
with over 75% of values below 1 m in the early time window
up to a path delay of 10 m, which are comparable to MUSIC
for TOF < 7 m. In contrast to the ADE distributions on the 5G
dataset, the median values (white lines in Fig. 6) on the UWB
dataset decrease significantly, especially for TOF < 12 m. ADE
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Fig. 7. Performance w.r.t. path delays: ADE distributions w.r.t. path delays for the real-world UWB dataset. We bin the ADE values w.r.t. delays
with a bin size of 0.5 m. For readability, we crop high ADE values from the image. The delays correspond to the true TOF.

Fig. 8. Example channel measurement of the real UWB dataset. Black
solid line shows the bandwidth-limited CIR. Vertical dashed lines show
the MPC delays.

of all methods for TOF > 12 m increases, with MUSIC be-
ing particularly noticeable, whose ADE increases dramatically
compared with the 5G dataset. The ADEs of TF and TF-PDP
remain comparably low, even at very late path delays. We think
that this is because TF regresses the delays directly, so that the
accuracy of the estimate is not (categorically) limited and can
be (numerically) higher, whereas all other methods can only
consider MPCs in local, short time intervals, and are therefore
less accurate. The MUSIC algorithm yields the highest accuracy,
but is again severely limited in its sensitivity. For signal path
lengths below 12 m, TF and TF-PDP yield similar results to
MUSIC and outperform KU and U-Net. While KU’s ADE
increases significantly, the ADEs of DL-based approaches TF,
TF-PDP, and U-Net become similar. MUSIC consistently results
in the lowest median values < 0.5 m) up to TOF < 22 m and
also increases significantly beyond that. U-Net provides lower
ADE than TF and TF-PDP for path lengths larger than 12 m,
but the precision of MUSIC and U-Net is lower, rendering
them impractical for positioning. Even on this dataset with 50%
N/LOS, TF and TF-PDP perform significantly better than all
other methods.

C. Results: Real-World UWB Dataset

Again, we first discuss the overall performance of the methods
w.r.t. their detection performance (see Fig. 3, right-hand side)
and their estimation accuracy (see Fig. 4, right-hand side). Then,
we discuss their performance w.r.t. path delays (see Fig. 7).

Fig. 8 shows an exemplary real channel measurement, anno-
tated with path delays, that we also see in Fig. 7. It visu-
alizes two MPCs that arrive close behind the LOS compo-
nent at 5 m and significantly interfere with each other. Two
more MPCs arrive later at 10 m and are more clearly sepa-
rated from each other. However, the signal disrupts the diffuse
MP transmission and causes destructive interference. So, no
peaks are visible. Fig. 8 helps to reason why TF and TF-PDP
perform best.

Fig. 3 shows an exceptional success rate (100%) of TF and
TF-PDP in detecting (precision and sensitivity) MPCs. We think
that TF and TF-PDP perform best because the real data combine
all possible effects that can only be exploited by TF’s attention
mechanism, resulting in higher success rates. Similar to the
other datasets, MUSIC also yields high precision (100%) but
lower significantly average sensitivity (69%). Interestingly, this
time MUSIC provides significantly higher sensitivities on this
real dataset than the other two. We believe this is because the
MPCs in this dataset are clearly separable and recognizable.
Unexpectedly, KU and U-Net also show high sensitivity (up to
100%) but significantly lower precision (up to 27%) as they may
incorrectly estimate too many MPCs.

Even the MPC estimation performance (MADE) is best com-
pared with the other datasets for all methods, see Fig. 4. This time
the MPC estimation performance (MADE) of TF and TF-PDP
is in line with their detection performance (100%). For all
methods, they provide the lowest MADE (7 and 11 cm) even
for the 90% percentile. Interestingly, MUSIC falls significantly
behind this time. It yields similar results as U-Net up to the
75% percentile (MADE < 0.5 m). But KU and U-Net (MADE
< 0.6 m) outperform MUSIC (MADE> 0.8 m) beyond the 80%
percentile. We believe this is because, unlike on simulated data
on real data, MUSIC’s assumptions are too limiting and lower
its performance.

The results of the ADE distributions of the path delay for
the real UWB dataset are particularly remarkable, see Fig. 7.
Compared to the synthetic UWB dataset (ADE > 0.5 m), all
methods result in much lower ADE for early (ADE < 0.25 m)
and late (ADE < 0.45 m) MPCs on real data. We attribute this
to the simplicity of the environment (and high sampling rate).
TF, TF-PDP, and U-Net provide the smallest errors with the
lowest variance (ADE < 0.2 m) for early MPCs (TOF < 6 m)
immediately after the LOS peak (<0.2 m). As with the synthetic
5G and UWB datasets, we assume that TF estimates excep-
tionally accurate early (overlapping) MPCs due to the unique
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Fig. 9. Average inference time versus number of delay estimates. Note
that MUSIC and U-Net do not depend on the number of estimates.

combination of global signal patterns in the dataset and the
direct regression of the delays. Instead, MUSIC and KU yield
significantly worse results with high variance at TOF < 6 m.
We think this is because they cannot estimate the immediate
overlapping MPCs after the LOS peak. Note that due to the
propagation environment, we do not measure MPCs in the
range 6 m < TOF < 8.5 m, so there is a gap. Interestingly, this
time for all methods MUSIC yields significantly worse results
(ADE > 0.5 m) for late delay estimates (TOF > 9 m). Here,
TF, KU, and U-Net provide much more consistent estimates
(ADE < 0.4 m). We think that this increase is caused by the
attenuation of the signal paths due to the free space path loss
that makes them less robust against diffuse MP.

D. Training and Inference Time

In this ablation study, we examine the inference and training
times of all methods. As localization is done in real time, fast
inference of the MPC estimators is crucial, and to conserve
computing resources, short/low training effort is crucial.

For a fair inference time comparison, we run each method
on a single AMD Ryzen 9 7900X CPU at 3.0 GHz and each
input time series consists of 176 samples. Fig. 9 shows the
average inference time of each method versus the number of
estimates. TF and KU generate the estimates iteratively. There-
fore, the inference time increases with the number of estimates.
The inference times of U-Net and MUSIC are independent
of the number of estimates. KU is slowest, e.g., on average
nine times slower than TF. U-Net offers the fastest inference
of all methods (1 ms). Instead, MUSIC is significantly slower
than TF (up to 25 estimates). We think that the PDP data in
memory management (mini-batches) are first converted into
a high-dimensional embedding (similar to the CIRs) and thus
requires comparable computing capacities (see Section IV-B).
Fig. 9 shows an average inference time of TF below 10 ms for
ten or fewer estimates. So, in an environment not exceeding ten
MPCs, TF processes channel measurements at 100 Hz. Although
attention increases quadratically with longer input sequences,
inference time increases linearly with more estimates. This is
because the length of the output sequence is comparatively short.
We assume that the inference time of the TF can be reduced if
explicitly optimized for this.

We cannot directly compare the training effort of the methods,
as we had to train them on different hardware platforms: U-Net
on a GTX 3070 graphics card (20 TeraFLOPS), and TF and
TF-PDP on 4 Tesla V100 graphics cards (989 TeraFLOPS).
U-Net reaches its best performance after a few epochs (<1 h). TF
achieves high performance after 5000 epochs, that continuously
improves as training progresses. Due to time and effort con-
straints, we stopped its training after 23 000 epochs (27 days).
In essence, DL-based methods require most time to train but
provide fastest inference.

VII. DISCUSSION

This section discusses our findings along input variants, sen-
sitivity, generalization, and environment-specific features.

Our experiments on different input data (CIR and PDP) show
no significant performance difference between TF on CIR and
TF on PDP input data on all three datasets (sensitivity: −4%,
precision:−3%, MADE:−5 cm). This clarifies that PDP signals
contain similarly valuable information as CIR signals. However,
PDP signals halve the data management effort and are, therefore,
the first choice.

All methods accurately estimate delays of the MPCs at high
signal power. But delays of late arriving, attenuated or over-
lapping MPCs are often estimated inaccurately. Ignoring them,
leads to high precision and low MADE, but at the same time low
sensitivity. In consequence, essential spatial information is lost
and the positioning accuracy worsens. The best example of this
is MUSIC. It estimates MPCs, such as the direct path very ac-
curately, but fails to detect most (remaining) MPCs in a channel
measurement. Instead, our TF detects most MPCs (synthetic 5G:
72.0% and UWB: 57.8%, real-world UWB: 100%) with delay
accuracy as MUSIC.

Our experiments show that TF extracts delays of MPCs accu-
rately and robustly. However, DL-based approaches, such as TF
and U-Net, are not limited to this task. For example, TF could
estimate additional parameters, such as AoA, in multiple input
multiple output setups.

Our experiments show that TF generalizes to unknown envi-
ronments and exploits environment-specific features best. The
synthetic UWB dataset does not represent a specific environ-
ment. Each data point is assigned a stochastic (unknown) envi-
ronmental interaction. Therefore, the real-world UWB dataset
only contains information that is independent of the environ-
ment. Here, although TF cannot exploit spatial and tempo-
ral (environmental) dependencies in the entire signal, TF still
outperforms all other methods because, unlike all other meth-
ods, TF potentially captures the (physical) channel properties
of the system. Based on this valuable additional knowledge
about the system characteristics, TF estimates significantly more
accurately and reliably than all other methods. As TF is the
only method to capture dependencies across the entire input
signal (and dataset), it also captures environment-specific pat-
terns within it. Based on this valuable additional spatial and
temporal knowledge, TF estimates significantly more accurately
and reliably than all other methods. For example, the real UWB
dataset represents a static environment. Alike, the synthetic 5G
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dataset represents static elements in a dynamic environment. TF
yields the best results of all methods here as TF directly learns
the hidden environment-specific patterns in the signal (dataset).
It is possible that TF also learns additional environmentally
independent information when it is trained on input signals
from different environments. In essence, environment indepen-
dence reduces deployment effort and exploiting environment-
specific patterns improves accuracy and reliability. This renders
TF a realistic and practical method beyond the state of the
art.

VIII. CONCLUSION

In this article, we showed that our MPC delay estimation based
on a TF neural network achieves more accurate, precise, and
sensitive results than the state of the art. We demonstrated this
for three radio systems with different bandwidth limitations and
sampling rates. The key features of our method are the implicit
estimation of the number of MPCs and the ability to resolve
dependencies throughout the input signal (and beyond). The lat-
ter provide TF with additional spatial and temporal information
about the environment that is hidden from other methods, and
result in outstanding positioning performance. Our experiments
show that the spatially consistent channels of environments with
certain characteristic interactions, e.g., wall reflections, improve
the overall performance of TF. As TF (regresses) estimates the
MPC delays directly and attends all signal characteristics, it can
achieve subsample accuracy. Our experiments also show that TF
estimates early arriving MPCs with exceptional accuracy and
particularly low uncertainty. Although our TF’s inference time
increases with more estimates, it is shorter than that of most
other methods. In addition, less complex PDP input data do not
affect TF, as TF still extracts important information from the
signal. However, PDP significantly reduces the effort involved
in data processing and storage as it halves the input. In future
work, we will increase the amount of environmental information
extracted from the channel and comprehensively evaluate TF in
real-world scenarios to better understand its limitations.
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