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Abstract—This article investigates the use of ultrawideband (UWB) ranging residuals for coordinate integrity estimation
and their use in a filtering scheme. Typically, UWB system accuracy is improved using channel statistics (CSs) to detect
and mitigate non-line-of-sight effects between UWB sensors and the object to be located, potentially improving the end
coordinate solution. However, in practice, when considering UWB system with a high positioning update rate, this is not
a feasible approach, as gathering and processing CS data takes too much time. In contrast to this approach, this article
proposes a set of features based on UWB ranging residuals that could be used as an alternative in integrity assessment.
By using machine learning (ML), the most important features were extracted from the initial set, and then, used to train
and validate a model for UWB coordinate error prediction. Finally, the prediction was applied in an adaptive Kalman
filtering scheme as an input for measurement uncertainty. Model testing was done using UWB measurement test dataset
gathered at an industrial site. The overall results showed significant improvement in 2-D and 3-D positioning metrics of
ML-augmented filtering when compared to non-ML filtering. On average, the end coordinates in the test set had ca. 10 cm
smaller mean location error and ca. 40 cm smaller dispersion in 2-D positioning. In addition, the presence of outliers
was reduced significantly as the maximum error offset decreased by several meters. Although ML augmented filtering
is computationally slower than non-ML filtering (e.g., ordinary and extended Kalman filter), it is still faster than using
CS for UWB integrity estimation. The results show that using the proposed residual features in an ML model provides
a feasible approach to predict UWB positioning integrity and use it as a measure of uncertainty in a coordinate filtering
scheme.

Index Terms—End coordinate correction and filtering, machine learning (ML), ranging residuals, ultrawideband (UWB)

positioning.

[. INTRODUCTION

REATING an ultrawideband (UWB) positioning solution
C that provides reliable location information in a difficult in-
dustrial environment is a challenging task. For example, storage
areas, whether indoor or outdoor, are usually littered with ob-
jects that obstruct radio frequency (RF) signal propagation, thus
affecting the estimated coordinate of an object to be positioned.
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UWB-based systems are considered more robust in the presence
of multipath effects and are less susceptible to interference as
compared to other RF-signal-based positioning systems [1], [2],
[3]. UWB system employs RF signals with a large bandwidth to
be used in a wireless positioning scheme [4]. By using a two-
way-ranging (TWR) approach, distances between fixed UWB
nodes (anchors) and a mobile UWB node (tag) are measured
and the final position of the tag is estimated based on these
distances [2], [5]. Although a robust positioning solution, the
ranging still relies on wireless RF signals. Thus, the accuracy
and precision (i.e., integrity) of the end coordinate is affected but
not limited by factors such as the number of servicing anchors,
their vicinity to the tag, impairments caused by non-line-of-sight
(NLOS) and suitable anchor layout geometry [1], [6], [7].
Problems related to NLOS detection and mitigation are an ex-
tensively researched topic in UWB-based positioning [5]. While
the number of anchors and their spatial geometry can be adjusted
according to the operating area, NLOS appears dynamically
with constantly changing obstructions between the anchors and
a moving tag. According to the works published by various
authors, it can be seen that detection of NLOS and combating
multipath effects is usually done by analyzing the characteristics
of the RF propagation channel [i.e., channel state information
(CSD] [8], [9], [10], [11]. For example, channel impulse re-
sponse (CIR), which describes the propagation path of a signal,
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can be used to assess the amplitude and phase of a particular mul-
tipath component [12]. Although this information is effective for
NLOS detection, then CIR entails also some constraints. Certain
authors have noted that gathering CIR information requires a
significant amount of data, hence causing a latency of approxi-
mately one second just to transfer the measurements [13]. Taking
into account UWB positioning solution with a high position
update rate, the transfer and processing of CIR information
becomes unpractical. In addition, it is stated that CSI has to
be collected for different types of environments, as a dataset
describing a residential environment might not be suitable for a
harsh industrial environment [5]. Finally, considering machine
learning (ML)-based positioning algorithms that must be trained
on real ranging or positioning data, using such an approach in
conjunction with CSI increases computational complexity even
further [2].

In essence, this article proposes positioning integrity assess-
ment without the knowledge of CSI. In the literature, alternative
methods have been used before. Barral et al. [13], [14] used
received signal strength and range information for ML-based
LOS/NLOS detection and classification. Liu et al. [15] inves-
tigated NLOS detection and mitigation using sum of squares
(SSQ) of distance residuals. A large SSQ compared to a certain
threshold would indicate inconsistency in localization. Simi-
larly, Silva and Hancke [5] used SSQ of distance residuals for
NLOS identification. A residual test was proposed by Chan
et al. [16] in order to determine and identify the number of
LOS base stations. However, this article expands on the analysis
of ranging residuals further by adding features that describe
their statistical and quantitative properties. In addition, aspects
related to end coordinate calculations and geometrical dilution
of precision (DOP) were also included. The goal was to in-
clude characteristics that describe UWB positioning integrity
whether affected by LOS/NLOS or varying anchor geometry.
Therefore, this article considers real-life measurement data that
already contains both LOS and NLOS ranging measurements
and it is assumed that end coordinate error is predicted regard-
less of tag’s LOS/NLOS conditions or its position relative to
anchors.

In contrast to most related works being done with simulated
data, this article considers real-life measurements gathered from
three different indoor environments. The calculated features
from raw ranging data were then used in three distinct ML algo-
rithms: regression tree (RT), random forest (RF), and XGBoost
(XGB) [17], [18], [19]. These methods were used to produce
three different models, which could estimate the offset from the
true coordinate. An additional objective was to evaluate whether
there was any significant gain to be had from using a more com-
plex ML algorithm. Finally, the three different predictions were
used as a measure of uncertainty in a coordinate filtering scheme
in an adaptive Kalman filter (AKF), which was compared with
the nonadaptive Kalman filter (KF) and extended Kalman filter
(EKF).

The rest of this article is organized as follows. Section II de-
scribes the theory behind end coordinate estimation and ranging
residuals. In addition, it is explained how residuals and their

Fig. 1. Example of a 2-D trilateration scheme in UWB-based position-
ing with inaccurate range measurements. The difference between the

distance to the estimated position d; and the actual measured range
d; results in a residual Ad; that can be used in estimating positioning
integrity.

features are calculated. Section III gives an overview of data
collection and processing with different ML algorithms along
with coordinate filtering schemes. Section IV contains results
by comparing the presented coordinate calculation methods.
Finally, Section V concludes this article.

Il. COORDINATE ESTIMATION METHODS AND FEATURES
A. End Coordinate Estimation

Estimating the coordinates of the tag with regard to surround-
ing anchors presents a problem of multilateration. In Fig. 1,
it can be seen how an object on coordinates (Z,¢) is located
at certain distances from all surrounding anchors denoted with
(24,y;). By using known distance measurements d; from each
individual anchor, the tag’s position can be estimated. Usually,
for a single solution in 2-D space, at least three, and in 3-D space,
four anchors are required [20]. It should also be considered that
the anchors in Fig. 1 should not be positioned in a straight line
as this may result in a flip ambiguity with possible solutions on
either side of the line [21]. Under ideal conditions, without any
measurement errors, d; = di and the least-squares (LS) model
provides a solution at the intersection of the three circles [22].
However, in real-life applications, ranging measurements con-
tain errors caused by NLOS propagation and ranging noise, thus
producing varying position estimates [2], [5].

B. End Coordinate Calculation

In this article, the end coordinate calculation of the tag is
considered as a two-step process. First, estimating the initial
position of the tag, and then, optimizing the solution with a
nonlinear least-squares (NLS) approach. Both involve solving
the multilateration problem using ranging measurements dis-
cussed in the previous section. In addition, this article considers
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positioning in 3-D space. In step 1, a set of circle (1) is used to
find the initial estimate of the tag’s position (Z, g, 2) as follows:

(i — 22+ (i — 9+ (z — 22 =d?, i=12,...,N
(D

where (z;,y;, z;) is the known coordinate of the ith anchor and
d; is the measured distance between the tag and the ith anchor.
The initial guess of the tag (&, §, £) can be found by performing
linearization on (1) and applying the LS method. First, an anchor
(2, yr, zr) with the shortest measured distance to the tag d,. is
taken as a reference point [23]. Next, the nonlinear expressions
in all available circle equations IV are expanded as

xF — 22 % + & 4yl — 2y + O

+ 22— 2z54+ 2 =d2, i=12,...,N )
and the reference anchor (z,, y,, z,) equation
@y = 2,8 + &y~ 29,0+
+ 22 =225+ 2% =d> 3)

is subtracted from the rest of the expressions. The goal is to
rearrange the terms with regards to unknowns Z, g, and 2 in a
way that satisfies the following linear model (4) as demonstrated
by Guvenc, Chong, and Watanabe [24]:

A6 =10 4)
where
Ty — Tp Y1 — Yr Z1 — Zp
Xrp — T Y — Yy Z) — Z
A=—2| 77 o e
IN-1 — Ly YN-1—Yr ZN-1—"2Z2r
T
0= 19 (6)
Z
and
di —d} —xi+ap —yi +yp 2+ 2
R R R R R AR

dy_ | —dr—ay_ + o —yn_ +yi— 2 + 2
(7

Finally, the estimated tag’s position # has the following LS
solution:

0= (ATA)'ATp, 8)

As shown in an example in Fig. 1, it can be seen that the tag
is estimated somewhere within the area overlapped by three
circles. The sum of the squares of distance errors can further

be minimized using the NLS approach [25]. As a step 2 of
position estimation, the Gauss—Newton optimization algorithm
was applied. The LS solution provides an initial estimate, along
with previously measured anchor coordinates and individual
distances measured between anchors and tag. The estimated
position is found by minimizing the objective function

N

I . 2
#,9,Z = argmin,, , E ((33z —x)

i=1

©)

where x, y, and z represent the coordinates that provide the
smallest error. Since there are various methods to solve this non-
linear multilateration problem, this article applies linearization
using Taylor series with the Gauss—Newton iteration procedure.
Renaming the initial guess from the LS solution (8) as (z¢,
Ya, 2a), the measured distances d; are approximated through
first-order Taylor series expansion as demonstrated by Guillory,
Truong, and Wallerand [20] as follows:

di(j;a gv 2)
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where Az, Ay, and Az are equal to & — z¢g, ¥ — yg, and
Z — zg, respectively. Considering that Az, Ay, and Az are
multiplied to first-order derivatives when

TG T
di(zc,ya,2G)

YG—Yi
di(zc,yc,2G)

2G—Zq
di(zc,ya,26)

J; =

Y
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then (10) can be rearranged into matrix form as

Az
AdNLS = J Ay
Az

12)

with Adyys representing the difference between measured and
estimated distances. The error corrections Az, Ay, and Az can
be found by solving the normal equation as shown in (8) and
substituting values accordingly

Azx
Ayl = (JTD) ' JT Adns.
Az

13)

Using the error correction vector, the initial guess coordinates
xa, Ya, and zg are updated with Gauss—Newton iteration until
a convergence criterion has been reached (e.g., until the error
correction vector is sufficiently small [20]). After reaching a
predetermined threshold, the final position estimation results as

ro + Ax T
Yo +Ay| = |9 (14)
za + Az z

Similarly to Fig. 1, it can be seen that the difference between
an individual measured distance d;, and distance d; calculated
from the estimated coordinate (Z, ¢, 2), results in a residual Ad;
as

s5)

C. Features

This paragraph describes features used in the ML model
training. As stated in the introduction, this article considers both
previously used features in the literature as well as several novel
ones. As ranging residuals could indirectly reflect the end co-
ordinate integrity, several statistical metrics such as the residual
mean or sample variance have been added. Additional features
have also been included regarding end coordinate calculations
and positioning geometry.

1) Residual Statistics: Depending on the location of the
estimated solution, d; may be longer or shorter compared to
the individual measured distance d; resulting in a positive or
negative residual. A significant change in the magnitude of a
residual may indicate that UWB propagation path is affected
by an obstruction. Therefore, residual statistics were calculated
for three different sets: positive, negative, and overall residuals.
In addition, statistical equations were averaged to remove the
dependence on the size of available residuals. The following
statistics were calculated:

average SSQ

n 2
SSQ = 7Zi:;LAdi (16)

root mean square (RMS)

SS
RMS = —Q 17)
mean
m o Ad;
7= iz B (18)
n
mean absolute deviation (MAD)
" A — 7
MAD = M (19)
n
standard deviation
" (Ad; — )2
s = \/Zz_l( d’t l‘) (20)
n
and variance
v =5 (21)

where n represents the number of residuals in a corresponding
positive, negative, or overall set (also used as a feature).

2) LS and NLS Metrics: These values are associated with
position calculation as discussed in Section II-B. The chosen
parameters include Euclidean distance A D between LS (8) and
NLS (14) solutions and the number of Gauss—Newton iterations
to convergence ngy. For the latter, there is no implicit equation as
the iteration counter is initialized at each coordinate optimization
process

AD = \/(zc — )+ (yo — §)* + (26 — 2)*.

3) Geometrical Integrity of Positioning: In an indoor posi-
tioning system, DOP indicates geometric location distribution.
It contains the knowledge of positioning accuracy under spe-
cific base station network and scene characteristics [6]. Using
the estimated coordinates of the tag, the DOP parameter in-
directly shows the level of geometrical uncertainty in an area
relative to the anchors. In this article, the position dilution
of precision (PDOP) was used as it depends on z-, y-, and
z-coordinates. To calculate PDOP, the set of ranging (1) can
be implemented with precalculated end coordinates from (14).
By finding partial derivatives with respect to each coordinate
similarly as was shown in (10), the result is formulated in matrix
form as

(22)

T - yi—9 zi=2
dl dl N dl
To—% yi—9 z1—% 1
ds ds d,
A, = . (23)
TN—Z YN—9Y zN—Z 1
dn dn dn

Next, the covariance matrix () is calculated from the LS normal
matrix

2
02 Oy Ous
_ T -1 _ 2
Q=(A,4)" = |0y 0, o0y (24
Osx Oy O
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Fig. 2. Industrial site at Krah Pipes OU, which manufactures thermo-
plastic pipes in a complex industrial environment. The site contained a
network of eight UWB anchors (layout in Fig. 19).

Finally, PDOP is calculated from trace of matrix Q as

PDOP = /02 + 07 + 2.

[1l. DATA PROCESSING, MODEL TRAINING, AND FILTERING
A. Data Collection

(25)

UWB measurement data were collected at three different sites:
Krah Pipes OU factory, Eliko office, and Auroom Kastre factory,
which all contained a set network of UWB sensors. Data from
the first two sites were used to cross validate and train the ML
model, while data from the third site were used for testing.
Krah Pipes OU (see Fig. 2) is a company that manufactures
thermoplastic pipes and in terms of RF propagation, presents
a complex environment with constantly moving objects [26].
The Eliko real-time locating system (RTLS) was installed inside
the manufacturing facility by placing UWB anchors at fixed
locations while the tag was sequentially placed at different
locations on the factory floor during the measurements. Based
on the Qorvo’s DW1000 chip, the RTLS was set to operate on
UWB channel 4 [27]. Eliko RTLS also uses active—passive TWR
protocol with clock offset error mitigation [28]. Ground-truth
coordinates were measured in a local frame of reference with
the Leica DISTO S910 measurement tool and assigned to eight
UWRB anchors, as well as 30 different tag locations around the
facility. The measurement tool has an accuracy of =1 mm [29].

The measurement tool was positioned on a mezzanine floor
in order to have LOS with all measurement points. By using
an update rate of 10 Hz, each location was measured for 30 s,
resulting in approximately 300 ranging sequences per location.
A similar measurement procedure was performed at the Eliko
office (30 measurement points) and Auroom Kastre factory (40
measurement points) using UWB positioning network of 17
and 15 anchors, respectively. The office environment provided
additional training data in terms of poor PDOP conditions, i.e.,
measurements that were taken outside of the convex hull of the
UWRB anchor layout as can be seen in Fig. 18 (e.g., points 13,
14, and 15).

B. Data Processing and Model Training

Raw ranging data, collected during the measurements, was
assembled into training-validation (Krah factory and Eliko of-
fice) and testing (Auroom factory) datasets containing end
coordinates, true distances (dependent), and features (indepen-
dent) described in Section II-C. It should be noted that data from
the Auroom factory were not used in training in order to have
a stand-alone dataset to test the general model. The purpose of
the model was to predict end-coordinate error or offset based
on precalculated independent features. After data cleaning and
shuffling, the datasets were changed into the appropriate for-
mat for cross validation and training. Three ML methods were
chosen: extreme gradient boosting, RT, and RF. The idea was
to compare the prediction performance of a simple ML method
(i.e., a single RT) against more complex ones.

The aforementioned ML algorithms and datasets were used
in the R Studio environment [30]. For each ML method, tenfold
cross validation was carried out to select hyperparameters that
provide the smallest prediction error against the validation set.
Essentially, the training dataset was separated into ten segments
with one segment being the validation set. Such an approach
helps to generalize the model and mitigate overfitting. Next,
using chosen hyperparameters in an initial model, combination
of most important features were selected for the final model.

R Studio provides appropriate cross-validation train and
trainControl functions through the caret library [31]. The
main hyperparameters used were: tree depth and number of
boosting iterations for XGB; tree depth and complexity param-
eter (CP) for RT and tree depth for RF.

It should be noted that no prior feature selection before model
cross validation was done. Rather RT, RF, and XGB libraries in
R Studio already contain built-in functions to output features
that contribute the most in making the prediction.

1) RT Feature Selection and Training: In contrast to using
a decision tree for classification task, end-coordinate offset is
considered as a continuous target variable that is predicted using
an RT. It is generated using a set of training samples with the
corresponding response variables. A trained tree structure is then
used to predict the value of an unknown test sample. It consists of
root, branches, nodes, and leaves. Each internal node represents
a feature, branches represent the feature values and leaf nodes
represent the outcome of prediction [32].

Cross validation compared sets of training data using different
RT depths in terms of prediction error. As can be seen in Fig. 3, a
tree with a depth of 7 is sufficient for providing the least amount
of error as choosing a deeper tree results in no further error
mitigation. In addition, the tree can be pruned or optimized using
a CP, which is the minimum improvement in the model needed
at each node. CP is used to select the optimal size for the tree.
As can be seen in Fig. 4, a tree size of 7 has a CP of 0.025, which
outputs a tree shown in Fig. 5.

It should be noted that the rpart library also removes sur-
rogate features, i.e., features that provide the same goodness
of split. Therefore, the final tree may have a different depth
compared to cross-validated trees. Features were extracted by
using a built-in rpart.plot function and feature importance was
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based on the goodness of split [17]. Features for the final model
can be seen in Fig. 6.

2) RF Feature Selection and Training: In ensemble learning,
bagging and boosting are two main approaches. RF can be
viewed as an evolution of bagging methodology and can be
used in classification and regression problems. It is defined as an
ensemble of decision trees that implements randomness in the
model-building process of each decision tree [33]. It can process
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Sum of squares of residuals
Residual variance
LS/NLS difference [m]

Number of iterations
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Fig. 6. Features used in the final RT model, which are ordered based
on the goodness of split in an RT.
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Fig. 7. Finding the optimal number of randomly selected RF predictors
using cross validation with 100 random trees. It can be seen that using
more than eight features results in no significant increase in cross-
validation error.

high-dimensional data effectively, so it is different from neural
networks. In RF, each tree acts as an independent regression
function, and RTs are trained using different bootstrap samples
of the training data. The average prediction of each individual
tree is used as the final output [34].

RF training, validation, and testing were done using the
ranger package, which is a fast implementation of RF suited
for high-dimensional data [18]. Cross validation on training data
showed how different number of RF predictors compare in terms
of prediction error. As shown in Fig. 7, using 100 random trees
with eight predictors provides a sufficient amount of error as
using more than eight might lead to model overfitting and results
in no significant reduction in RMSE. Next, feature selection was
done for the initial RF model, with eight random predictors.
By comparing different combinations of features, those with the
least amount of error in predicting validation set response values
were selected. As can be seen in Fig. 8, choosing more than
seven features results in no significant decrease in prediction
error. These features are presented in Fig. 9.

3) XGB Feature Selection and Training: On the other hand,
XGB represents the approach of boosted ensemble learning. It
is a large-scale general-purpose gradient boosting library, which
has been seen to dominate structured and tabular datasets on clas-
sification, regression, and predictive modeling problems [19],
[35]. The algorithm creates a sequential ensemble of tree models,
all of which work to improve each other. The final prediction
results in a summation of the predictions of multiple RTs. The
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XGB algorithm comprises a series of base classifiers such as
decision tree, k-nearest neighbors, support vector machine, and
logistic regression. These are linearly superimposed so that they
work together to optimize the algorithm [36].

Using cross validation with xgboost library, different sets of
XGB parameters were compared in terms of prediction error
as shown in Fig. 10. It can be seen that a model with a tree
depth of 5 and 150 boosting iterations is sufficient as choosing
more than 150 iterations would present no significant increase in
prediction performance. In addition, feature selection was done
using the initial model with aforementioned hyperparameters.
By comparing different combinations of features, those with
the least amount of error in predicting validation set response
values were selected. As can be seen in Fig. 11, more than eight
features provide only a marginal increase in predicting validation
set response values. List of features used in the final XGB model
is presented in Fig. 12.

C. Coordinate Filtering

As a final step, the end coordinate is estimated using a
KF. In the current context, the filter averages end coordinates,
while considering the uncertainty of measurements (prediction)
and previously filtered coordinates. While in a traditional KF,
the process and measurement noise have fixed values, then in
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iterations using cross validation. Tree depth 5 and 150 boosting itera-
tions are chosen parameters for the model. Choosing a higher number
of iterations results in no significant decrease in RMSE and might lead
to overfitting.
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XGB prediction accuracy.

real-life applications, it can be seen that measurement uncer-
tainty is a dynamic value, which in turn is affected by external
factors such as NLOS. Therefore, it is preferable to know
the measurement uncertainty at every ranging calculation in
order to estimate whether the current coordinate can be trusted
or not.

In this article, the ML model predicts end coordinate offset
from true value, based on features used in the ML model. Since,
the direction of the error with regards to z-, y-, and z-axes is
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Fig. 12.  Features used in the final XGB model.

Algorithm 1: Kalman Filter.

Input: Xo,Z;, Py, Q, R
Output: Xy
Initialize A, Py, H, I
Prediction step
fork=1,...,00
1: State prediction X,; = AX,
2: Covariance prediction P, = AP, AT +Q
Correction step
3: Kalman gain K, = P, HY (H,P, HY + Ry)™!
4: State correction X, = X,; + Ki(Zy — ka(;)
5: Covariance correction Pj, = P, (I — K Hy)
return Xk, Py
end for

not known, this prediction can be considered as a measure of
uncertainty in all three axes. By implementing the prediction
as a dynamic measurement uncertainty in an AKF, positioning
accuracy can be improved further.

1) KF and AKF Filtering: In this work, the main difference
between a KF and AKF is in the application of the R matrix,
which represents positioning measurement uncertainty. In KF,
the diagonal elements of R in (26) were chosen as fixed values
diag(0.01, 0.01, 0.01) corresponding to the precision of the
DW1000 device [37] with

2 0 0 001 0 0
Ree= |0 o2 0|=|0 001 0 (26)
0 0 o2 0 0 001

z

However, AKF measurement uncertainty in (27) is updated
at each iteration as the end coordinate is calculated and ML
prediction is added to the variance of diagonal elements as

0.01 + Dy 0 0
Raxp = 0 0.01 + Dy 0 . @27
0 0 0.01 + Dy

In essence, the ML prediction drives the filtering process by
dynamically changing measurement uncertainty, i.e., whether to
trust measurement or process. In KF, EKF, and AKF, the process

noise matrix @ has constant values diag(0.01, 0.01, 0.01). As
shown at the beginning of Algorithm 1, the state transition matrix
A, state covariance Py, and observation matrix H are initialized
as 3-by-3 identity matrices. Xo represents the first converged
NLS solution from (14), Zj, is the measurement vector, and [ is
a 3-by-3 identity matrix.

2) EKF Filtering: Finally, ML-driven AKF is compared with
the EKF, which is capable of dealing with nonlinear problems
such as multilateration described in Section II-A. In contrast to
KF and AKF, which predict and correct coordinates, EKF makes
state corrections using residuals between measured distances Zj,
and distances to the last estimated coordinates. In Algorithm 1,
state correction step Hj, X, is replaced with Dy, where

V@ = o) + (g 3 + (3 — 21
_ \/(932 —22)? + (Y, —12)* + (2, — 22)?
D, = )

(28)

V@ = o)+ W = a) + (2 — 20)°

withx;_, vy, , and 2z, representing coordinates from last iteration.
Measurement vector Zj represents current iteration distance
equations with added measurement noise

Ve —21)2+ (e — )2+ (2 — 21)2 + v
Ve =222+ (Yo —12)2 + (26 — 2)2 + 02

Zy =

V @k —20)2 + (Yk — yn)? + (21 — 20)2 + 0y
(29)

where vy, represents measurement noise vector, which has co-
variance matrix Ry as diag(0.01, 0.01, 0.01). Process noise
matrix Q is also set as diag(0.01, 0.01, 0.01).

With EKF, the entire NLS approximation process discussed in
Section II-B may be bypassed and do linearization through the
observation matrix H, which is comprised of first-order partial
derivatives as demonstrated by Kim et al. [37]

Adi (zk,yk,2k)  Odi(Zk Yk 2zk)  Odi(Th,Yk,2k)

Bmk 6yk, sz
Odar(zk,Yk,2k)  Odo(Th,Yk,2k)  Oda(Th Yk 2k)

Oz, Y1 e

H, - (30)
adn(osk.,yk,Zk) 8dn($k.;yk;zk) Bdn(wk.7yk,2k)
Oxy OyYr R
where derivatives correspond to
0d;(Tk, Yr, 21) _ Tp — T
Oy, V(@ =)+ (ye — 1:)* + (21 — 2i)?
(3D
Odi(xk, yr, 2k) _ Yk — Yi
WYk V(@ =)+ (e — 1:)* + (21 — 2i)?
(32)
Odi(Tk, Yk 2k) _ 2k — %
Oz, \/(Ik —z)> + (yp — vi)* + (2 — 2)?
(33)
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Fig. 13.  Manufacturing area inside Auroom Kastre factory. Red circles
highlight visible UWB anchors. Anchor layout can be seen on Fig. 17.
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Fig. 14. Comparison of confidence ellipses for pt. 20 with respect to

z- and y-axes. Each ellipse contains samples within one standard devi-
ation (68% confidence). For the sake of clarity, only two point clouds are
shown (EKF and AKF + XGB). It can be seen how prediction keeps the
point cloud more tightly together, whereas the EKF relies only on noisy
ranging data that produce much more sparsely distributed samples. Due
to outliers, the figure has been zoomed in on the largest ellipse.

In the context of coordinate calculation, skipping the NLS
coordinate calculations makes EKF computationally less de-
manding. On the other hand, a poor LS coordinate in the state
vector can affect the filtering process and result in an inaccurate
coordinate. Therefore, in this work for comparison purposes,
an EKF was provided with a converged NLS coordinate as the
initial state vector.
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Fig. 15.  Comparison of confidence ellipses for pt. 20 with respect to

z- and z-axes. For the sake of clarity, only two point clouds are shown
(EKF and AKF+XGB). In addition, due to outliers, the figure has been
zoomed in on the largest ellipse.
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Fig. 16.  Cumulative distribution of prediction errors. It can be seen that

an RT provides more robust prediction levels according to leaf nodes
from a single tree as shown in Fig. 5. RF and XGB predictions are
smoother at the cost of more complex models.

IV. RESULTS

Test data were measured in an industrial site at Auroom Kastre
factory, which manufactures sauna modules as shown in Fig. 13.
The measurement setup was similar to the Eliko office and Krah
Pipes factory with 40 different measurement points scattered
over the factory area as can be seen in Fig. 17.



214 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION, VOL. 2, 2024
A4
+ o
P24
40
NLS solution
+ True Coordinate A13 PgS
©
® Anchor
30 Pl
+ + 4 A3
PS A1817 o
. P33 Pee
Al2
& ple °
o o P37
20 A2
+
- pls P28 ©
E s P11 @ -
= P/ P25
- P18 ) .
A10
+ AS +
o m 3 P¥ P34 o P30
& P} * Al
P12 P PR 8 + P33 J
P21
- * +
P1 & P40 P20 o5
+
A7 P32
. /‘f + . AA6 +
T P4 +* P19
+ P13
P2
A8
“10 ) ’
-10 0 10 20 30 40 50 60 70
x [m]
Fig. 17.  Overview of measurement campaign in Auroom factory. Measurements were done at 40 separate points around the factory’s indoor area.

True coordinates were measured with the Disto S910 mea-
surement device and ranging data were collected using UWB tag
with a 10-Hz update rate. The goal was to test the performance
of different end coordinate calculation methods, specifically
comparing regular filtering methods to those augmented with
ML prediction. In addition, no data gathered from the test site
was included in ML model training to have unbiased verification
of the model.

Considering true coordinates (zr, yr, 21 ), the following met-
rics were used to evaluate positioning accuracy and precision:
mean location error (MLE), root mean square error (RMSE),
distance root mean square error (DRMS), mean radial spherical
error (MRSE) and maximum error [38], [39].

1) 2-D metrics

iV (@r — i) + (yr — :)°

MLE,p = i "
RMSE;p = \/E?—l [(zp — i?iT)LZ + (yr — 5:)?] )
DRMS = \/m 6
MAXop = max(y/(er — 2:)* + (yr —9:)?)- (37

2) 3-D metrics

SV (@r — &)+ (yr — 9:)* + (20 — 2:)?

MLEsp =
(38)

TABLE |
OVERALL METRICS FOR 2-D POSITIONING
MLE RMSE DRMS Max. error

2-D[m] | 2-D[m] [m] 2-D [m]

NLS 0.46 0.95 0.85 11.16
KF 0.43 0.72 0.57 7.01
AKF + XGB 0.28 0.29 0.11 0.62
AKF + RF 0.28 0.29 0.1 0.55
AKF + RT 0.27 0.28 0.11 0.63
EKF 0.62 0.96 0.78 6.28

" — 7.)2 a2 2
RMSE3D = \/Zi:l [(:I:T xl) + (yT yl) + (ZT Zz) ]
n
(39
MRSE = \/m “0)

MAXs3p = Tglglx(\/(xT —2:)%+ (yr — 9:)? + (210 — 2)?).
(41)

Overall statistics summarizing all 40 measurement points can
be seen in Tables I and II.

In general, it was challenging to achieve good vertical preci-
sion and accuracy in most of the measurement locations. This
can be attributed to UWB anchor layout geometry, with anchors
located approximately on the same height level, resulting in a
poor DOP. Additional difficulties arose from occasional NLOS
conditions between anchors and the tag. However, as shown
in Table II, the overall vertical position error of approximately
0.5 m is at a similar level as in a previously published work by
Laadung et al. [40].
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TABLE VI

SINGLE ITERATION TIME FOR FILTERING AND PREDICTION

Min. time

Mean time

Max.

TABLE Il
OVERALL METRICS FOR 3-D POSITIONING
MLE RMSE DRMS Max. error
3-D[m] | 3-D[m] [m] 3-D [m]
NLS 0.8 1.36 1.17 14.04
KF 0.74 1.05 0.8 8.78
AKF + XGB 0.48 0.5 0.18 0.94
AKF + RF 0.48 0.5 0.18 0.9
AKF +RT 0.51 0.53 0.2 1.07
EKF 2.86 3.26 1.94 11.73
TABLE Il

COMPARISON OF END COORDINATE PERFORMANCE METRICS IN 2D
POSITIONING FOR PT. 20

MLE RMSE DRMS Max. error
2D [m] 2D [m] [m] 2D [m]
NLS 0.2 0.24 0.22 1.42
KF 0.16 0.19 0.15 0.85
AKF + XGB 0.14 0.14 0.07 0.24
AKF + RF 0.13 0.14 0.07 0.25
AKF + RT 0.15 0.15 0.06 0.24
EKF 0.25 0.52 0.51 3.22
TABLE IV

COMPARISON OF END COORDINATE PERFORMANCE METRICS IN 3-D
POSITIONING FOR PT. 20

MLE RMSE DRMS Max. error
3-D [m] 3-D [m] [m] 3-D [m]
NLS 0.57 0.65 0.43 2.7
KF 0.53 0.58 0.31 1.9
AKF + XGB 0.41 0.42 0.14 0.67
AKF + RF 0.44 0.45 0.15 0.69
AKF +RT 0.46 0.47 0.12 0.68
EKF 0.65 0.87 0.74 5.74
TABLE V
PERFORMANCE METRICS OF ML MODELS ON THE TEST SET
RMSE | MSE | MAE
XGB 1.28 1.64 0.36
RF 1.37 1.87 0.46
RT 1.18 1.4 0.33

An example of superimposed end coordinate results can be
seen in Figs. 14 and 15 along with respective performance
metrics in Tables IIT and IV. The general location of the point
can be seen on overall the map in Fig. 17. It can be seen both vi-
sually and statistically that the EKF had the worst performance,
especially in 3-D positioning. With many visible outliers, the
EKF relies on coordinates calculated straight from noisy ranging
data. Furthermore, the EKF does not have any convergence
process (i.e., Gauss—Newton iterations), thus relying only on
the first calculated end coordinate solution. On the other hand,
filtering with ML prediction outperforms non-ML approach in
all metrics.

Regarding three different ML algorithms it can be seen that
even by applying a simple RT, the overall metrics are better com-
pared to non-ML filtering. ML performance was summarized
with the cumulative error distribution in Fig. 16 and metrics
for model prediction performance in Table V. The latter in-
cludes commonly used regression performance indicators such
as RMSE, mean square error (MSE), and mean absolute error
(MAE) [41].

[ms] [ms] time [ms] Ratio
KF 0.04 0.04 0.06 1
AKF + XGB 0.68 0.71 0.72 17.75
AKF + RF 14.77 15.49 16.74 387.25
AKF +RT 0.68 0.72 0.9 18
EKF 0.12 0.14 0.21 3.5

Finally, filtering and ML methods were compared in terms
of elapsed time with results shown in Table VI. Benchmarking
was done in the R Studio environment using built-in ML libraries
xgboost, ranger, rpart, and microbenchmark. The hardware
specification of the computer was Intel(R) Core(TM) i15-7300 U
CPU at 2.60 GHz with 16-GB RAM. It can be seen the amount of
delay ML adds to the filtering scheme. An ordinary KF performs
the fastest, while the EKF being 3.5 times slower. However, ML
prediction adds computational delay, with XGB and RT being
approximately 18 times slower than the KF, and RF being the
slowest. Finally, the XGB model was also applied in the Eliko
RTLS UWB positioning solution using the XGB C Package [42].
The system hardware consisted of Intel(R) Xeon(R) W-2123
CPU at 3.60 GHz with 16-GB RAM. The prediction time delay
was approximately 1 ms.

V. CONCLUSION

In this article, it was investigated how different features of
ranging residuals and coordinate calculation can be used in
UWB-based positioning integrity estimation. These features
were described through statistical metrics like those used in
literature as well as several novel ones. The goal was to use
different ML methods to select features with the biggest infor-
mational gain, and based on these selected features, predict the
end coordinate offset from the true value. Finally, this error was
used as a measure of uncertainty in a coordinate filtering scheme
and compared with non-ML-driven filters. It was shown that ML
models provide significant improvement in terms of accuracy
and precision in both 2-D and 3-D positioning. Overall statistics
show that ML-driven filtering has approximately 0.1 m less MLE
and 0.3 m smaller DRMS than compared to ordinary KF in
2-D positioning. All of the tested methods were also compared
in terms of processing time. ML-driven methods presented a
significant delay when compared to ordinary coordinate filtering
due to added model-based prediction. However, the processing
time was adequate to be used in a high update rate (e.g., 10 Hz)
positioning system. In addition, it was seen how the RT algorithm
has approximately the same amount of delay as a much more
complex XGB, which consists of 150 consecutive boosting
trees. Algorithm runtime may be related to the ML library’s
implementation, hardware specification, and efficiency of the
code. Therefore, the actual implementation in a dedicated RTLS
system might result in an even smaller processing delay.
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