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ABSTRACT: Positioning  and  mapping  technology  is  a  difficult  and  hot  topic  in  autonomous  driving  environment  sensing
systems.  In  a  complex  traffic  environment,  the  signal  of  the  Global  Navigation  Satellite  System (GNSS)  will  be  blocked,
leading to inaccurate vehicle positioning. To ensure the security of automatic electric campus vehicles, this study is based
on the Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain (LEGO-LOAM) algorithm with a
monocular  vision  system  added.  An  algorithm  framework  based  on  Lidar-IMU-Camera  (Lidar  means  light  detection  and
ranging) fusion was proposed. A lightweight monocular vision odometer model was used, and the LEGO-LOAM system was
employed  to  initialize  monocular  vision.  The  visual  odometer  information  was  taken  as  the  initial  value  of  the  laser
odometer. At the back-end opti9mization phase error state, the Kalman filtering fusion algorithm was employed to fuse the
visual  odometer  and  LEGO-LOAM system  for  positioning.  The  visual  word  bag  model  was  applied  to  perform  loopback
detection.  Taking  the  test  results  into  account,  the  laser  radar  loopback  detection  was  further  optimized,  reducing  the
accumulated positioning error. The real car experiment results showed that our algorithm could improve the mapping quality
and positioning accuracy in the campus environment. The Lidar-IMU-Camera algorithm framework was verified on the Hong
Kong city dataset UrbanNav. Compared with the LEGO-LOAM algorithm, the results show that the proposed algorithm can
effectively reduce map drift, improve map resolution, and output more accurate driving trajectory information.
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1    Introduction
In  complex  traffic  environments,  GNSS  signals  can  be  blocked,
resulting in inaccurate vehicle positioning. To ensure the safety of
unmanned  vehicles,  simultaneous  localization  and  mapping
(SLAM) can use vehicle sensors to determine the vehicle’s attitude
and  surrounding  environment.  On  the  basis  of  the  SLAM
algorithm  framework,  this  study  focuses  on  the  mapping  and
positioning  problem  of  unmanned  vehicles  with  multisensor
fusion.  On  the  basis  of  the  Lightweight  and  Ground-Optimized
Lidar  Odometry  and  Mapping  on  Variable  Terrain  (LEGO-
LOAM)  algorithm,  a  Lidar-IMU-Camera  fusion  algorithm
framework is proposed.

Lidar-based mapping and localization systems were first applied
to robotics research. Lidar acquires the distance between itself and
objects in the surrounding environment by emitting and reflecting
laser  light.  A  point  cloud  is  generated  to  describe  the  spatial
geometry  of  the  environment.  The  Rao-Blackwellization  Particle
Filter  (RBPF)  algorithm  was  developed  by Murphy  et  al.  (2001),
combining  the  particle  filter  technique  and  the  Rao-
Blackwellization  algorithm.  This  method  created  a  milestone  in
the history of mapping and positioning systems based on particle
filters.  The  fast  simultaneous  localization  and  mapping
(FastSLAM)  series  of  algorithms  employed  RBPF  and  Kalman

filter  algorithms  to  obtain  robot  attitude  information.  Map
features  were  estimated  using  the  Kalman  filter  algorithm.  The
map  and  pose  information  were  updated  via  back-end
optimization. The serious particle degradation problem was solved
by  the  Gaussian  distribution  hypothesis  of  reference  particles
(Montemerlo  and  Thrun,  2003a; Montemerlo  et  al.,  2003b).
Grisetti  et  al.  (2007) proposed  the  GMapping  algorithm  by
improving  the  RBPF  particle  filter  algorithm,  decomposing  the
mapping and positioning process into two independent modules,
integrating  the  observation  results  of  odometers  into  a  map,
adopting an adaptive resampling strategy to reduce the number of
reuses, and ensuring sustainable and reasonable particle diversity.
Furthermore,  the  risk  of  particle  degradation  decreased,  and  the
GMapping  algorithm  was  widely  used  in  two-dimensional  (2D)
raster  maps. Kohlbrecher  et  al.  (2011) proposed  HectorSLAM.
They  combined  the  matching  method  of  inertial  measurement
units  (IMUs)  and  lidar  to  ensure  that  the  matching  results  were
more  robust.  To  eliminate  gradient  ascent,  multiresolution  maps
were  adopted  to  avoid  local  optimization.  Therefore,  it  could
adapt  better  to  a  variety  of  different  environments. Zhang  and
Singh  (2014) proposed  the  Lidar  Odometry  and  Mapping
(LOAM)  algorithm.  In  this  algorithm,  edge  features  and  surface
features  were  proposed  to  replace  whole-frame  laser  point  cloud
matching.  Coarse  matching  with  high  frequency  and  fine
registration  with  low  frequency  were  proposed.  The  algorithm
without  loopback  detection  was  suitable  for  multithread  rotating
lidar  and  solid-state  lidar.  Similarly, Shan  and  Englot  (2018)
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proposed the LEGO-LOAM algorithm on the basis of the LOAM
algorithm,  which added a  loopback detection module.  When the
defined time threshold was  exceeded,  the  Euclidean distance was
used  to  assess  whether  the  position  and  attitude  of  two  frames
were  within  the  predetermined  threshold.  If  the  answer  was  yes,
loopback was detected; otherwise, no loopback was detected. This
greatly  reduced  the  pose  error  in  most  environments.  The  back-
end optimization module adopted the GTSAM (Kaess et al., 2012)
to  obtain  the  pose  information.  Cartographer  (Hess  et  al.,  2016),
an  algorithm  proposed  by  Google,  realized  mapping  and
positioning  on  2D  and  three-dimensional  (3D)  Lidar.  They
innovatively  proposed  a  fast  loopback  detection  method  called
SPA,  which  matched  the  established  mini  map  with  the  point
cloud in  real  time  and finally  eliminated  the  accumulated  errors.
To satisfy the demand of a variety of mappings, Shan et al. (2020)
proposed LIO-SAM, a mapping and positioning method based on
tightly  coupled  inertial  lidar.  This  method  integrated  multiple
relative  and  absolute  measurements  by  using  the  factor  graph
optimization  method.  It  could  complete  robot  pose  estimation
and  high-precision  maps.  In  addition,  to  improve  real-time
performance,  position  and  pose  information  was  optimized  by
marginalizing  old  laser  frames  rather  than  by  matching  laser
frames  to  the  global  map.  This  method  was  adapted  to  various
large  outdoor  environments  and  obtained  a  better  positioning
effect and clear 3D point cloud map. Chen et al. (2022) proposed a
weighted  NDT-LOAM  algorithm.  They  employed  weighted  cells
of the normal distribution transform (NDT) based on the surface
properties  of  point  clouds  and  distance  values  and  then
constructed  new  residual  functions  with  weight  values.  This
method successfully reduced the cumulative error of the lidar odds
and  mapping  in  real-time  (LOAM)  algorithm. Park  et  al.  (2020)
considered  the  intensity  information  measured  by  lidar  to
improve  the  LOAM  algorithm.  This  method  could  handle  the
ambiguity  issue  generated  by  the  planar  structure  of  buildings
more  successfully  by  considering  the  lidar  intensity  data  in  the
residual  function  of  feature  matching.  In  addition  to  point-line
matching  and  point-surface  matching  in  the  LOAM  algorithm,
intensity  information  matching  was  added,  which  effectively
helped to increase the accuracy of the LOAM algorithm.

Since  self-built  mapping  and  positioning  systems  were
proposed,  research  on  visual-based  mapping  and  positioning
systems  has  become  more  extensive  due  to  their  relatively  low
price  and  abundant  environmental  information  (Klein  and
Murray,  2007).  It  includes  various  visual  sensors,  such  as
monocular vision, binocular vision, and fisheye cameras. As early
as 2007, Andrew et al. (2007) proposed MonoSLAM, a monocular
vision-based system for  positioning and mapping.  The algorithm
estimated  the  real-time  camera  pose  by  tracking  sparse  feature
points  generated  by  front-end  odometry.  The  back-end
optimization  module  employed  the  extended  Kalman  filter
approach.  It  can  enhance  the  front-end’s  pose  data  and  create  a
sparse  map  from  the  feature  points  of  key  frames. Klein  and
Murray  (2007) adopted  the  multithreading  method  for  the  first
time  to  construct  a  mapping  and  positioning  system  named
parallel tracking and mapping (PTAM). This algorithm employs a
multithreading  method  to  simultaneously  track  feature  points,
estimate  position,  and  pose  information  and  construct  maps.  In
the  back-end  optimization  part,  the  pose  information  was
estimated  for  the  first  time  by  using  the  nonlinear  optimization
method. Taihú et al. (2017) integrated the binocular camera sensor
S-PTAM  based  on  the  PTAM.  According  to  different  image
processing  methods,  visual-based  mapping  and  positioning
algorithms  consist  of  two  parts:  direct  approaches  and  feature
point  approaches.  The  direct  approach  was  based  on  gray

information  in  the  image,  adopted  optical  flow  tracking  for
matching,  and  estimated  camera  motion  information  and  pixel
reprojection  by  minimizing  photometric  errors  (Khattak,  2017).
Engel  et  al.  (2014) proposed  large-scale  direct  monocular  SLAM
(LSD-SLAM). This method is a typical visual-based map building
and positioning system. Assuming constant luminosity, interframe
camera  motion  information  could  be  obtained  using  the  direct
method.  A  semidense  environment  map  was  constructed,  which
provided  more  abundant  environmental  information  than  a
sparse  map.  However,  the  algorithm  adopted  the  feature  point
method  to  match  the  loopback  detection  part. Mur-Artal  et  al.
(2015) proposed  the  ORB-SLAM  system,  a  typical  visual
odometer model based on feature points. There were fewer newly
added  feature  mapping  points;  however,  they  had  high  quality,
matching efficiency, and good robustness. Loopback detection was
added  to  eliminate  accumulated  errors  and  improve  positioning
accuracy.  ORB-SLAM2  (Mur-Artal  and  Tardós,  2017)  was  an
improvement  over  ORB-SLAM  in  terms  of  speeding  up  the
dictionary  method  calculation.  Since  it  applied  a  quadtree
structure  instead of  an array  to  store  feature  points,  the  selection
speed  of  feature  points  improved.  Many  mini  maps  have  been
added to ORB-SLAM3 (Campos et al.,  2021). When the tracking
thread  was  lost,  ORB-SLAM3  would  query  and  match  the
previous  mini  map.  If  the  match  was  successful,  the  tracking
thread  continued  to  work.  If  it  failed  to  open  a  mini  map again,
there  would  be  no  output  of  any  order.  Instead,  the  map  was
reconstructed  with  the  current  pose  for  positioning.  In  loopback
detection,  these  mini  maps  were  also  used  for  matching.  If
coincidence  points  were  found,  they  were  matched.  This
improved  the  speed  and  accuracy  of  loopback  detection.  Several
vision  sensors,  including  pinhole  cameras  and  fisheye  cameras,
were  supported  by  ORB-SLAM3.  A  visual  inertial  navigation
odometer (Xu et al., 2018) was built on a tightly coupled nonlinear
optimization system. It integrates the visual feature tracking of the
direct  method  with  the  preintegral  IMU  data.  The  factor  graph
optimization  method  was  used  to  compute  the  camera’s  attitude
and trajectory information and construct a sparse point cloud map
simultaneously.  Twosections  were  included  in  visual  inertial
odometry.  The  first  part  was  based  on  sparse  visual  feature
tracking to acquire depth information. The second part was based
on tightly coupled IMU preintegral information and dense visual
tracking  information  to  obtain  camera  trajectory  and  pose
information.  The  direct  method  requires  a  small  amount  of
calculations  and  has  high  real-time  performance.  However,  it  is
difficult  to  meet  the  assumption  that  the  grayscale  is  unchanged.
In this case, the feature method could be widely used. The feature
descriptor  described  the  visual  features  more  stably  and  robustly
since it is not easily affected by light.

Multisensor  information  fusion  refers  to  the  synchronous
optimization  of  multiple  sensor  information  or  data  through
filtering or optimization algorithms to obtain the required decision
and  estimation  information  (Wang  et  al.,  2020).  Similarly,  in
mapping and positioning systems, multisensor information (such
as  lidar,  IMU,  and  vision  information)  can  complement  each
other  to  obtain  highly  robust,  high-precision  map  and  trajectory
information  in  complex  traffic  environments. Feng  et  al.  (2022)
proposed  a  multimodal  key  scene  searching  method  for
autonomous  vehicle  trials. Yuan  et  al.  (2022) reported  the  safety
and  responsibility  of  autonomous  vehicles  by  analyzing  Bayesian
random  parameters  with  an  ordered  probit  model. Dong  et  al.
(2022) proposed the  creation and evaluation of  image converters
for  comprehensible  autonomous  vehicle  systems. Ding  et  al.
(2022) proposed  enhanced  eco-driving  strategies  for  connected
electric  vehicles  based  on  reinforcement  learning.  The  fusion  of
multisensor information for mapping and positioning overcomes
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the  shortcomings  of  a  single  sensor. Mourikis  and  Roumeliotis
(2007) proposed  the  multistate  constrained  Kalman  filter
(MSCKF)  algorithm,  which  innovatively  integrates  visual  sensors
and  inertial  navigation  based  on  filtering  and  applies  a  Kalman
filter  under  multistate  constraints.  Moreover,  this  algorithm  can
derive  the  geometric  constraints  of  cameras  at  multiple  locations
even if the positions of 3D road sign features are not stored in the
Kalman  filter’s  state  vector.  This  algorithm  integrates  visual
information and IMU information.  Compared  with  other  purely
visual  mapping  and  positioning  algorithms,  it  can  run  normally
under the conditions of fast motion and feature degradation with
good  robustness.  The  highly  accurate  MSCKF  algorithm  was
suitable for estimating the pose and posture in most scenarios and
was well applied in embedded platforms. Leutenegger et al. (2015)
proposed a new algorithm named Open Key-frame-based Visual-
Inertial SLAM (OKVIS). To calculate camera posture information,
this  algorithm  developed  an  optimization  technique  based  on  a
sliding window. The front-end odometer of this device employed
the BRISK algorithm. The preintegral IMU result was used as the
front-end  odometer’s  initial  value,  and  the  image’s  features  were
retrieved  and  matched  using  the  initial  value.  The  reprojection
error of visual information and the residual error of the IMU were
taken  as  optimization  variables,  and  the  pose  information  was
optimized  by  nonlinear  optimization  iteration.  However,  the
algorithm lacked a loopback detection module. Zhang and Singh
(2015) proposed  the  visual-Lidar  odds  and  mapping  (VLOAM)
algorithm. By fusing a visual odometer and a laser odometer, good
position,  pose  information,  and  maps  can  be  output  under  fast-
moving  and  poor  illumination  conditions. Qin  et  al.  (2018)
proposed  an  algorithm  named  Vins-Mono.  This  approach  was
based  on the  integration of  an  IMU with  monocular  vision.  The
Kanade–Lucas–Tomasi  (KLT)  approach  was  employed  to  track
the  visual  features. Zuo  et  al.  (2019) proposed  a  binocular  vision
inertial  navigation  model  with  efficient  multistate  constraints.
They  generated  a  navigation  map  by  applying  a  3D  laser  point
cloud  map  with  boundary  errors.  The  multistate  constrained
Kalman filter algorithm reforms the drift problem of vision-based
state  estimation. Wisth  et  al.  (2021) proposed  an  efficient
odometer model integrating vision, Lidar, and IMU sensors. This
approach  prevents  traditional  interframe  point  cloud  matching
from  obtaining  only  suboptimal  pose  information.  Pose
estimation and laser point cloud construction were completed by
optimizing  the  residual  sensor  information. Wei  et  al.  (2021)

proposed  a  mapping  and  positioning  system  integrating  vision
and  Lidar,  Direct  Visual  Lidar  Odometry,  and  Mapping  (DV-
LOAM) (Wang et al. 2021). It is composed of three modules. The
visual  odometer  was  used  to  track  visual  features  in  the  first
module  to  obtain  camera  pose  information,  and  an  improved
sliding window model was employed to further optimize the pose
information.  To  suppress  the  effects  of  dynamic  objects,  the
second  module  uses  a  laser  odometer  to  further  optimize  the
position  and  pose  information  between  visual  key  frames.  The
third  module  combined  laser  loopback  detection  with  visual
loopback detection based on the word bag model to optimize the
global pose and eliminate the accumulated pose errors.

In  this  study,  an  algorithm  framework  based  on  the  fusion  of
Lidar,  IMU,  and  monocular  vision  sensors  is  developed.  This
framework aims to further enhance the mapping and positioning
accuracy  of  the  algorithm  in  complicated  situations.  To  obtain
more  precise  pose  information,  the  error  state  Kalman  filter  is
employed  to  tightly  connect  the  data  from  the  LEGO-LOAM
odometer  and  the  data  from  the  visual  odometer.  A  lightweight
monocular  vision  odometer  model  is  adopted,  and  monocular
vision is initialized in combination with the LEGO-LOAM system.
The visual odometer information is taken as the laser odometer’s
initial  value,  and the visual  word bag model  is  used for loopback
detection.  The  initial  value  is  determined  by  the  detection  result,
and the  pose  information is  further  optimized via  lidar  loopback
detection. In this case, the overall cumulative position error could
be further reduced. The parallel  operation approach is employed.
If  the  monocular  vision  system  or  LEGO-LOAM  system  fails,
another  subsystem  can  continue  to  work  to  improve  the
robustness of sensor degradation.

2    Materials and methods
This study proposes an algorithm framework based on Lidar-IMU-
camera fusion. In Fig. 1, the algorithm framework is displayed. To
reduce  the  amount  of  calculation,  the  algorithm  uses  parallel
operations.  The  monocular  vision  system  or  LEGO-LOAM
system  is  detected.  In  the  case  of  failure,  another  subsystem  will
continue to work, improving the robustness of sensor degradation.

2.1    Feature depth correlation
To better  initialize  the  visual  odometry,  the  Lidar-IMU system is
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Fig. 1    Algorithm framework based on Lidar-IMU-Camera fusion.

Localization and mapping algorithm based on Lidar-IMU-Camera fusion 99

https://doi.org/10.26599/JICV.2023.9210027
 



Oc

employed  to  estimate  the  initial  state  value  for  monocular  visual
odometry and align the time stamps between the laser frame and
the visual frame through interpolation calculations. Since the laser
points  are  sparse,  multiple  frames  of  point  clouds  can  be
combined  into  one  dense  point  cloud  map.  The  visual  features
and  lidar  points  are  projected  onto  the  unit  circle  whose  center
coincides  on  the  place  where  the  camera’s  coordinate  system
began.  The  K-D  Tree  (KDT,  K-Dimension  Tree)  algorithm  is
applied to find the former three of  the nearest  three-dimensional
laser  points  to  each  visual  point.  Then,  the  depth  of  the  visual
point  is  derived  using  the  average  depth  distance  of  these  three
laser  points.  If  the  average  depth  exceeds  2,  the  visual  feature
association  fails.  This  approach  aims  to  prevent  the  detection  of
occlusion  points.  In Fig.  2,  is  the  origin  of  the  camera
coordinate system. The laser points are blue, and the visual points
are green.

When  the  vision  system  or  the  Lidar  system  detects  that  the
number of feature points is lower than the threshold, the system is
considered  to  be  invalid.  At  this  point,  the  pose  residual  of  its
failed  system  must  be  set  to  zero  until  the  initialization  is
successful.  The  other  system  with  no  failure  will  continue  to
calculate  the  current  pose  information  and  build  a  point  cloud
map  based  on  feature  tracking. Fig.  3 shows  the  image  data  and
laser point cloud data information based on our algorithm. Fig. 3a
shows  the  visual  image  data,  and Fig.  3b shows  the  laser  point
cloud data. In Fig. 3a, the green points indicate that they have been
associated  successfully,  while  the  red  points  indicate  that  they
failed to be successfully associated.

⊞ ⊟

In  this  study,  the  error  state  Kalman  filter  fusion  algorithm
integrates  the  residual  error  of  the  Lidar-IMU  system  with  the
reprojection  error  based  on  the  visual  odometer.  For  the  sake  of
simplified  calculation  and  deduction,  the  symbols  and 
represent  the  projection and the  magnitude  relationship  between
matrix  vectors,  respectively. M represents  the  3D rotation  space,
the  dimension of Μ is n, R refers  to  the  rotation matrix  and r is
the  rotation  vector.  The  meanings  of  the  symbols  are  shown  in
Eqs. (1) and (2):

⊞ : M × Rn → M,⊟ : M × M → Rn (1)
[

R
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]
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RT
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exp (·) log(·)As shown in Eqs. (1) and (2),  and  represent the
transformation  relationships  between  the  rotation  matrix  and
rotation vector, respectively.

2.2    Inertial measurement unit
xiLet  be the state of the IMU survey, as shown in Eq. (3):

xi =
[ GRT
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where  represents  the  rotation  of  the  IMU  to  the  global
coordinate  system  transformation  matrix,  denotes  the  IMU
position  in  the  global  coordinate  system,  is  the  rotation
transformation  matrix  from  the  IMU  to  the  camera,  is  the
position  of  the  camera  in  the  IMU  coordinate  system, 
represents  the  linear  speed  of  the  IMU  in  the  global  coordinate
system,  denotes  the  IMU  vertical  acceleration  deviation,  and

 is the acceleration deviation.
The  IMU  preintegration  model  is  adopted  to  obtain  the  error

state at t + 1, as shown in Eq. (4):

xt+1 = xi ⊞ (Δtf (xi, ui,wi)) (4)

⊞
Δt xi

ui wi

As  shown  in  Eqs.  (1)–(4),  has  the  same  meaning  as  in
Eq. (1),  is the time difference between t and t + 1,  represents
the observed data,  denotes the input data, and  indicates the
bias data.

The state estimator is shown in Eq. (5):

ˇxi+1 = x̌i ⊞ (Δtf (x̌i, ui, 0) (5)

ˇxi+1 x̌i ⊞ Δtwhere  and  are  the  estimated  data.  and  are  as
indicated in Eq. (4).

2.3    Lidar measurements
ˇxk+1 xk+1

j
Taking as  the  current  estimated  data  of  and converting
the -th  feature  point  to  a  global  coordinate  system,  the
measurement residual is shown in Eq. (6):

rl
(

ˇxk+1,
Lpj
)
= uT

j (
GpJ − qj) (6)

Lpj Gpj
qj

uT
j

where  represents the reprojection points, and  denotes the
position in the global coordinate system.  indicates the centroid,
and  indicates the normal value.

nj
Lpj

Lpj
Let  be  the  measurement  noise  of  point ,  and  by

compensating  for  the  noise  from ,  the  resulting  true  point
position is shown in Eq. (7):

Lpj = Lpgtj + nj, nj N (0,
∑

nj) (7)
Lpgtj Lpjwhere  is the location of the real point and  is the location

of the measurement point.

xk+1

The zero residual caused by the true point position and the real
state  is shown in Eq. (8):

0 = rl
(
xk+1,

Lpgtj
)
= rl

(
ˇxk+1,

Lpj
)
+Hl

jδ ˇxk+1 + αj (8)

 

Oc

Fig. 2    Feature depth association based on a spherical coordinate system.
 

(a) (b)

Fig. 3    Frame of image data and laser point cloud data information obtained via
our algorithm. (a) Visual image data; (b) laser point cloud data.
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δ ˇxk+1

xk+1 δ ˇxk+1

αj Hl
j

GŘIk+1
IRL

Fpj FT
pj

It forms a posterior distribution of . The parameterization
of  in error  is shown in Eqs. (9) and (10). It is defined
by  referring to the bias amount.  is the Jacobian matrix of the
state  residuals. represents  the  rotation  of  the  IMU  to  the
global  coordinate  system  transformation  matrix.  denotes  the
transformation  matrix  between  the  IMU  and  lidar.  and 
indicate  the  optimization  function  and  its  own  transposition,
respectively.

Hl
j =

∂rl
(

ˇxk+1 ⊞ δ ˇxk+1,
Lpj
)

∂δ ˇxk+1
|δ ˇxk+1 = 0 (9)

∑
αj
= Fpj

∑
nj
FT
pjFpj =

(
∂rl
(

ˇxk+1,
Lpj
)

∂Lpj

)
= GŘIk+1

IRL (10)

2.4    Residual model of the visual odometer

Ps = [us, vs]T
PG
s

The  visual  odometer  information  is  integrated,  and  the  PNP
reprojection error is adopted as the residual term of the error state
Kalman  filter  fusion.  For  a  certain  feature  point s,  its  pixel
coordinate  is ,  and  its  corresponding  point  in  3D
space is . Then, the residual of this point is shown in Eq. (11):

rs
(
Xk+1,Ps,PG

s
)
= Ps − π

(
PG
s
)

(11)

π(·)
π
(
PG
s
)
= KTPG

s K
T Ps PG

s

where  function in Eq. (11) represents the camera model, that
is, . Here,  is the gain factor in Kalman filtering,
and  denotes  the  transformation  matrix.  Both  and  have
certain noise, as shown in Eqs. (12) and (13), respectively:

PG
s = PGgt

s + nps, nps N(0,
∑

nps
) (12)

Ps = Pgt
s + nps, nps N(0,

∑
nps
) (13)

PGgt
s Pgt

s npswhere and  are  true  values  and  is  a  term  with  a
Gaussian distribution that represents the noise.

βs ∼ N(0,
∑

βs
)

For the residual item for the Taylor expansion in the first order,
the  error  of  the  real  value  is  0,  where  and
represents the bias amount, as shown in Eqs. (14)–(17):

0 = rs
(
Xk+1,Ps,PG

s
)
≈ rs

(
ˇXk+1,Ps,PG

s
)
+Hsδ ˇXk+1 + βs (14)

Hs =
Φrs
(

ˇXk+1 ⊞ δ ˇXk+1,Ps,PG
s
)

Φδ ˇXk+1
|δ ˇXk+1=0 (15)

∑
βs
=
∑

nps
+ FPs

∑
nps
FT
Ps (16)

FPs =
Φrs
(

ˇXk+1,Ps,PG
s
)

ΦPG
s

(17)

Fps FT
pswhere  and  indicate the optimization function and its own

transposition, respectively.

2.5    Sensor  information  fusion  and  the  error  state
Kalman filter update
Combined with prior IMU information,  the Lidar odometer and
visual  odometer  are  posterior  distribution  information,  and  the
maximum  posterior  estimation  of  the  residual  term  is  shown  in
Eq. (18):

minδ ˇXk+1

[(
∥ ˇXk+1 ⊟ X̂k+1 +Hδ ˇXk+1∥

2∑
δ ̂Xk+1

)
+

(∑m

j=1
∥rl
(

ˇXk+1,PL
j
)
+HL

j δ ˇXk+1∥
2∑

αj

)
+

(∑t

s=1
∥rc
(

ˇXk+1,Ps,PG
s
)
+Hsδ ˇXk+1∥

2∑
βs

)]
(18)

⊟As  described  in  Eq.  (18),  has  the  same  meaning  as  that  in
Eq.  (1),  and H is  the Kalman filter  observation matrix.  The IMU
motion error is the first term, followed by the laser odometer error
and the visual odometer error.

Then, the Kalman gain K can be calculated using Eq. (19):

K = (HTR−1H+ P−1)
−1HTR−1 (19)

where R denotes  the  rotation  matrix,  and P indicates  the  state
estimation covariance matrix. The status estimation is updated as
shown in Eq. (20):

ˇXk+1 = ˇXk+1 ⊞
(
−KZk+1 − (I− KH) ˇ(H)−1

(
ˇXk+1 ⊟ X̂k+1

))
(20)

X̂k+1 = ˇXk+1,
∑∧∑

δ ̂Xk+1

=

(I− KH)
∑∧∑

δXk+1
⊞ ⊟

Then, I continues  iterating,  and  let 

.  The  symbols  and  are  as  indicated  in
Eq.  (1).  They  explain  the  projection  and  the  magnitude
relationship between matrix vectors.

3    Comparative test and analysis of results
The  computer  platform  used  in  this  study  was  Lenovo  Xiaoxin
V3000,  2015  edition,  with  an  I7–4800U  CPU  and  an  integrated
graphics  card.  The  algorithm  in  this  study  was  tested  in  a  real
vehicle.  The  distribution  of  equipment  and  sensors  is  shown  in
Fig. 4. Velodyne_16–line Lidar, USB_IMU, and KONKA cameras
were  used  in  the  experiment.  Equation  (21)  shows  the  external
parameters between the IMU and camera.

 

(a) (b) (c)

Fig. 4    Unmanned vehicles and sensor equipment.
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 999.34608718980233 −1.5715484428488590 −3.2564114721728155
3.2359037356803094 −13.131917124154624 91.139003669937865
−1.6133527815482926 −92.179026615676858 −12.614792047622947

 (21)

When  there  is  no  GNSS,  GPS  or  other  high-precision
positioning sensors available to obtain real  path information,  this
study determines the odometer error by determining whether the
vehicle  returns  to  sthe  origin.  It  should  be  performed  without
loopback detection. Fig. 5 shows a comparison of the closed-loop
effect  between  the  LEGO-LOAM  system  and  the  Lidar-IMU-
Camera system. Fig. 5a shows the trajectory and closed-loop effect
based  on  the  Lidar-IMU-Camera  system, Fig.  5b shows  the

trajectory  and  closed-loop  effect  based  on  the  LEGO-LOAM
system,  and  the  three-axis  coordinate  system  is  the  endpoint
coordinate system. It can be seen from the details of Figs. 5a and
5b that the closed-loop effect of the Lidar-IMU-Camera system is
slightly better than that of the latter.

Fig.  6 is  the  trajectory  matching  effect  based  on  the  LEGO-
LOAM system and the satellite map, where Fig. 6a is the trajectory
information based on the LEGO-LOAM system, and Fig. 6b is the
trajectory  matching  result  related  to  the  satellite  map.  It  can  be
seen from the dotted box that the trajectory based on the LEGO-
LOAM system is not satisfactory n the road center, and there is a
slight deviation. Fig.  7 shows the trajectory matching effect based
on  the  Lidar-IMU-camera  system  and  the  satellite  map, Fig.  7a
shows  the  trajectory  information  from  the  Lidar-IMU-camera
system, and Fig. 7b shows the trajectory matching result related to
the  satellite  map.  It  can  be  seen in  the  white  dotted  box  that  the
trajectory  based  on  the  Lidar-IMU-Camera  system  can  well
coincide  with  the  real  road,  and  it  is  in  the  center  of  the  road
without  excessive  deviation.  Therefore,  the  Lidar-IMU-Camera
system can greatly improve the pose accuracy.

This study collected data from the Liu Changchun gymnasium
of Dalian University  of  Technology. Fig.  8 shows the 3D map of
the  Lidar-IMU  Camera  system  for  the  gymnasium,  and Fig.  9

 

(a) (b)

Fig. 5    Trajectory and closed-loop effect based on the LEGO-LOAM system and
Lidar-IMU-Camera system. (a) Trajectory and closed-loop effect based on Lidar-
IMU-Camera  system;  (b)  trajectory  and  closed-loop  effect  based  on  LEGO-
LOAM system.
 

(a) (b)

Fig. 6    Trajectory matching effect based on the LEGO-LOAM system and satellite map. (a) Trajectory information based on the LEGO-LOAM system; (b) trajectory
matching result related to the satellite map.
 

(a) (b)

Fig. 7    Trajectory  matching  effect  based  on  the  Lidar-IMU-Camera  system  and  satellite  map.  (a)  Trajectory  information  from  the  Lidar-IMU-Camera  system;
(b) trajectory matching result related to the satellite map.
 

(a) (b)

Fig. 8    3D point cloud map of DLUT gymnasium based on the Lidar-IMU Camera system.
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shows  the  3D map of  the  LEGO-LOAM system.  The  red  dotted
boxes  in Figs.  8 and 9 are  the  detailed  displays.  Comparing  the
overall  map  and  the  details  of  these  two  systems,  it  can  be  seen
that  the  overall  mapping  effect  is  slightly  different.  However,  the
Lidar-IMU-Camera system has more details and is clearer and less
noisy than the LEGO-LOAM system.

Fig. 10 shows the trajectory and closed-loop effect of the DLUT
gymnasium  based  on  the  Lidar-IMU-Camera  system. Fig.  11
shows  the  trajectory  and  closed-loop  effect  of  the  DLUT
gymnasium based on the LEGO-LOAM system. The blue dotted
frame in Fig. 10 shows the closed-loop details based on the Lidar-
IMU-Camera  system.  Here,  the  starting  point  coordinates  are  in
the  large  three-axis  coordinate  system,  while  the  ending  point
coordinates are in the tiny three-axis coordinate system. Similarly,
the  blue  dotted  frame  in Fig.  11 shows  the  closed-loop  details
based  on  the  LEGO-LOAM  system.  The  large  three-axis
coordinate  system  represents  the  starting  point  coordinates,  and
the  small  three-axis  coordinate  system  represents  the  endpoint
coordinates. It is also determined whether the closed-loop effect is
satisfactory by comparing the distances between the two three-axis
coordinate systems, as shown in the blue dotted boxes in Figs. 10
and 11.  The  starting  point  and  the  end  point  of Fig.  10 almost
coincide, and the starting point and the end point of Fig. 11 have
large  distance  differences.  In  summary,  by  comparing  the
mapping and trajectory information based on the two systems, the
Lidar-IMU-Camera  system  outperforms  the  LEGO-LOAM
system.

Fig.  12 denotes  satellite  map  of  the  Dalian  University  of
Technology  gymnasium. Fig.  13 shows  the  matching  effect
between the LEGO-LOAM system map and the real satellite map.
Fig.  13a is  the  voxelized  3D  point  cloud  map  of  the  DLUT
gymnasium  based  on  the  LEGO-LOAM  system. Fig.  13b is  the
matching  result  of  the  voxelized  map  and  the  satellite  map.  The
white  dashed  box  in Fig.  13b shows  that  there  is  a  deviation
between  the  map  and  the  real  building,  and  there  is  no  good
overlap.  This  proves  that  there  is  a  certain  drift  in  the  LEGO-
LOAM system map.

Fig. 14 shows the map matching effect based on the Lidar-IMU-
Camera system and the real satellite map. Fig. 14a is the 3D point
cloud  map  of  the  Dalian  University  of  Technology  gymnasium
based  on  the  Lidar-IMU-Camera  system. Fig.  14b shows  the
matching effect between the voxelized map and the satellite map.
It  can  be  seen  in  the  white  dashed  box  in Fig.  14b that  the  map
and  the  real  building  can  overlap  well,  and  compared  with  the
results  of  the  LEGO-LOAM  system,  the  deviation  is  small.
Therefore, it is further proven that the Lidar-IMU-Camera system
greatly improves the effect of mapping.

Fig. 15 shows the trajectory matching effect based on the LEGO-
LOAM  system  and  the  satellite  map,  and Fig.  15a shows  the
trajectory information based on the LEGO-LOAM system for the
Dalian University of  Technology gymnasium. Fig.  15b shows the
trajectory  matching  result  related  to  the  satellite  map.  Compared
to the real road, the trajectory based on the LEGO-LOAM system
obviously  deviates  from  the  road  center. Fig.  16 shows  the

 

(a) (b)

Fig. 9    3D point cloud map of DLUT gymnasium based on the Lidar-IMU system.

 

(a) (b)

Fig. 10    Trajectory information and closed-loop effect of DLUT gymnasium based on the Lidar-IMU-Camera system.
 

(a) (b)

Fig. 11    Trajectory information and closed-loop effect of DLUT gymnasium based on the LEGO-LOAM system.
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trajectory of  the Lidar-IMU-Camera system and the trajectory of
the satellite map. Fig.  16a shows the trajectory information based
on  the  Lidar-IMU-Camera  system  for  the  Dalian  University  of
Technology  Gymnasium. Fig.  16b shows  the  matching  results
with satellite maps. It can also be seen in the white dotted box in
Fig.  16b that  the  trajectory  based  on  the  Lidar-IMU-Camera
system coincides well  with the real road. It  is  in the center of the
road without much deviation.  Therefore,  the Lidar-IMU-Camera
system can  greatly  improve  the  pose  accuracy. Fig.  17 shows  the
trajectory  comparison  between  the  Lidar-IMU-Camera  and  the
LEGO-LOAM systems. The blue line is the trajectory of the Lidar-

IMU-Camera  algorithm,  and  the  red  line  is  the  LEGO-LOAM
algorithm  trajectory.  It  can  be  observed  that  the  trajectory  based
on  our  algorithm  in  this  paper  is  significantly  closer  to  the  road
center.

In this study, the Hong Kong city dataset UrbanNav is used to
verify  the  LEGO-LOAM  system  and  the  Lidar-IMU-Camera
fusion  algorithm.  The  EVO  software  is  used  to  compare  the
trajectory  obtained  by  our  algorithm  with  the  real  trajectory.
Fig. 18 shows the error comparison information from the LEGO-
LOAM system and the Lidar-IMU-Camera system. Fig. 18a shows
the  error  information  from  the  LEGO-LOAM  system.  The
maximum  error  of  the  LEGO-LOAM  system  is  1.51  m,  and  the
minimum error is 0.129 m. Fig. 18b shows the error information
from  the  Lidar-IMU-Camera  system.  The  maximum  error  is
0.213  m,  and  the  minimum  error  is  0.002  m.  In  summary,  by
analyzing  and  comparing  the  error  information  from  these  two
algorithms,  the  Lidar-IMU-Camera  fusion  algorithm  reduces  the
maximum  error  from  1.51  to  0.213  m  and  the  minimum  error
from 0.129 to 0.002 m. Therefore,  the fusion algorithm based on
Lidar-IMU-Camera  greatly  improves  the  trajectory  accuracy  of
the LEGO-LOAM system.

In  terms  of  the  mapping  effect,  as  shown  in Fig.  19,  the  red
frame shows the construction details based on the LEGO-LOAM
system,  which  is  related  to  the  largest  trajectory  error.  When the
unmanned vehicle passed through the road once more, the point
cloud maps did not coincide well, and obvious drift occurred.

The  point  cloud  map  constructed  based  on  the  Lidar-IMU-
Camera  fusion  algorithm  is  shown  in Fig.  20.  Compared  with
Fig. 19, the map is much clearer. It has fewer noise points and drift
points.  The  red  frame  in Fig.  20 shows  the  details  related  to  the

 

Fig. 12    Satellite map of the Dalian University of Technology gymnasium.

 

(a) (b)

Fig. 13    Matching  effect  between  the  LEGO-LOAM  system  map  and  the  real  satellite  map.  (a)  Voxelized  3D  point  cloud  map  from  the  LEGO-LOAM  system;
(b) matching result of the voxelized map and the satellite map.
 

(a) (b)

Fig. 14    Matching  effect  based  on  the  Lidar-IMU-Camera  system  and  the  real  satellite  map.  (a)  3D  point  cloud  map  based  on  the  Lidar-IMU-Camera  system;
(b) matching effect between the voxelized map and the satellite map.
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corresponding  part  of Fig.  19.  When  the  unmanned  vehicle
returns  to  this  section,  the  map  coincides  well  and  does  not
produce  excessive  drift.  Therefore,  the  point  cloud  map  of  the
Lidar-IMU-Camera  system  is  much  clearer  and  more  accurate
than that of the LEGO-LOAM system.

4    Conclusions
This  study  proposes  an  algorithm  based  on  Lidar-IMU-Camera
fusion,  and  more  accurate  positions  are  obtained  by  using  the

error state Kalman filter. Furthermore, the visual word bag model
is  employed,  and  the  initial  value  is  the  detection  outcome.  The
pose  information  is  further  optimized  by  Lidar  closed-loop
detection. The algorithm is verified with the LEGO-LOAM system
in  an  open-source  dataset  and  a  real  vehicle.  The  demonstration
results are satisfactory. In the open-source UrbanNav dataset and
the  Hong Kong city  dataset,  our  algorithm offers  a  much higher
mapping  accuracy  than  does  the  LEGO-LOAM  system.  The
performance  of  the  algorithm  is  demonstrated  to  be  superior  to
that  of  current  traditional  open-source  algorithms.  In  the  real
vehicle test, the mapping and trajectory information based on the
Lidar-IMU-Camera  system  and  the  LEGO-LOAM  system  are
compared  in  two  scenarios.  It  can  be  further  concluded  that  the
effect  of  the Lidar-IMU-Camera system is  better  than that  of  the
LEGO-LOAM system.

Replication and data sharing
The  program  code  within  this  research  can  be  made  accessible
upon request via email to the corresponding author.

Acknowledgements
This  work  was  supported  by  the  National  Natural  Science
Foundation of China (Grant Nos. 51 975 088 and 51 975 089).

Declaration of competing interest
The  authors  have  no  competing  interests  to  declare  that  are
relevant to the content of this article.

 

(a) (b)

Fig. 15    Matching effect of trajectory based on the Lidar-IMU system and satellite map. (a) Trajectory information based on the LEGO-LOAM system; (b) trajectory
matching result related to the satellite map.
 

  

(a)
 

(b)
 

Fig. 16    Matching effect of trajectory based on the Lidar-IMU-Camera system and satellite map. (a) Trajectory information based on the Lidar-IMU-Camera system;
(b) trajectory matching result related to the satellite map.
 

Fig. 17    Trajectory comparison between the Lidar-IMU-Camera and the LEGO-
LOAM systems.
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Fig. 18    Comparison of error information between the LEGO-LOAM system and Lidar-IMU-Camera system. (a) Error information from the LEGO-LOAM system;
(b) error information from the Lidar-IMU-Camera system.
 

(a) (b)

Fig. 19    Mapping effect based on the LEGO-LOAM system in the Hong Kong urban dataset UrbanNav.
 

(a) (b)

Fig. 20    Mapping effect based on the Lidar-IMU-Camera system in the Hong Kong Urban dataset UrbanNav.

106 Y B Zhao, Y H Liang, Z Q Ma, et al.

J Intell Connect Veh 2024, 7(2): 97−107
 



 Leutenegger,  S.,  Lynen,  S.,  Bosse,  M.,  Siegwart,  R.,  Furgale,  P., 2015.
Keyframe-based  visual-inertial odometry  using  nonlinear  optimiza-
tion. Int J Robot Res, 34, 314−334.

 Montemerlo, M.,  Thrun,  S.,  2003a.  Simultaneous  localization  and  map-
ping with unknown data association using FastSLAM. In: 2003 IEEE
International Conference on Robotics and Automation, 1985–1991.

 Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., 2003b. FastSLAM 2.
0: An improved particle filtering algorithm for simultaneous localiza-
tion  and  mapping  that  provably  converges.  In:  Proceedings  of  the
18th  international  joint  conference  on  Artificial  intelligence,
1151–1156.

 Mourikis, A. I., Roumeliotis, S. I., 2007. A multi-state constraint Kalman
filter for vision-aided inertial navigation. In: Proceedings 2007 IEEE
International Conference on Robotics and Automation, 3565–3572.

 Mur-Artal, R., Montiel, J. M. M., Tardós, J. D., 2015. ORB-SLAM: A ver-
satile and accurate monocular SLAM system. IEEE Trans Robot, 31,
1147−1163.

 Mur-Artal, R., Tardós, J.  D., 2017. ORB-SLAM2: An open-source SLAM
system  for  monocular,  stereo,  and  RGB-D  cameras. IEEE  Trans.
Robot, 33, 1255−1262.

 Murphy,  K.,  Russell,  S.,  2001.  Rao-blackwellised  particle  filtering  for
dynamic Bayesian networks. In: Sequential Monte Carlo Methods in
Practice, 499–515.

 Park, Y. S., Jang, H., Kim, A., 2020. I-LOAM: Intensity enhanced LiDAR
odometry  and  mapping.  In:  2020  17th  International  Conference  on
Ubiquitous Robots (UR), 455–458.

 Taihú, P., Thomas, F., Gastón, C., Pablo De, C., Javier, C., Julio Jacobo, B.,
2017.  S-PTAM:  Stereo  parallel  tracking  and  mapping.  Robot  Auton
Syst, 93, 27–42.

 Qin, T., Li, P., Shen, S., 2018. VINS-mono: A robust and versatile monoc-

ular visual-inertial state estimator. IEEE Trans Robot, 34, 1004−1020.
 Shan,  T.,  Englot,  B.,  2018.  Lego-loam:  Lightweight  and  ground-opti-

mized  lidar  odometry  and  mapping  on  variable  terrain.  In:  2018
IEEE/RSJ International  Conference  on  Intelligent  Robots  and  Sys-
tems (IROS), 4758–4765.

 Shan, T., Englot, B., Meyers, D., Wang, W., Ratti,  C., Rus, D., 2020. Lio-
sam:  Tightly-coupled  lidar  inertial  odometry  via  smoothing  and
mapping. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 5135–5142.

 Wang, M., He, L.,  Yu, L.,  Chao, S., 2020. Mobile robot localization algo-
rithm based on multi-sensor information fusion. J Meas Sci Instrum,
11, 152−160.

 Wei, W., Jun, L., Chenjie, W., Bin, L., Cheng, Z., 2021. DV-LOAM: Direct
visual LiDAR odometry and mapping. Remote Sens, 13, 3340.

 Wisth,  D.,  Camurri,  M.,  Das,  S.,  Fallon,  M., 2021. Unified  multi-modal
landmark tracking for tightly coupled lidar-visual-inertial odometry.
IEEE Robot Autom Lett, 6, 1004−1011.

 Xu,  W.,  Choi,  D.,  Wang,  G., 2018. Direct  visual-inertial  odometry  with
semi-dense mapping. Comput Electr Eng, 67, 761−775.

 Yuan, Q., Xu, X., Wang, T., Chen, Y., 2022. Investigating safety and liabil-
ity  of  autonomous  vehicles:  Bayesian  random  parameter  ordered
probit model analysis. J Intell Connect Veh, 5, 199−205.

 Zhang,  J.,  Singh,  S.,  2014.  LOAM:  lidar  odometry  and  mapping  in  real-
time. In: Robotics: Science and Systems Conference, 1–9.

 Zhang, J., Singh, S., 2015. Visual-lidar odometry and mapping: Low-drift,
robust, and fast. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA), 2174–2181.

 Zuo,  X.,  Geneva,  P.,  Yang,  Y.,  Ye,  W.,  Liu,  Y.,  Huang,  G., 2019. Visual-
inertial  localization  with  prior  LiDAR map constraints. IEEE Robot
Autom Lett, 4, 3394−3401.

 
 

Yibing Zhao received the B.S. and M.S. degrees
in  agriculture  bioenvironmental  and  energy
engineering  from  Jilin  Agricultural  University,
China,  in  2002  and  2005,  respectively,  and  the
Ph.D. degree in vehicle application engineering
from  Jilin  University,  China,  in  2008.  She  is
currently  an  Associate  Professor  in  the  School
of  Mechanical  Engineering,  Dalian  University
of  Technology,  Dalian.  Her  research  interests
include  field  obstacle  detection  and  tracking
and  collision  avoidance  control  of  unmanned
vehicles, intelligent vehicle environment aware-
ness and autonomous navigation.

 

Yuhe Liang received  the  B.S.  degree  in  vehicle
engineering from Hebei University of Technol-
ogy,  Tianjin,  China,  in  2021.  He  is  currently  a
M.S. student at the School of Mechanical Engi-
neering,  Dalian  University  of  Technology,
China. His  research interests  include multisen-
sor fusion localization and semantic SLAM.

 

Zhenqiang Ma received the B.S. degree in vehi-
cle  engineering  from  Shandong  University  of
Technology,  China,  in  2019,  and  the  M.S.
degree in vehicle engineering from Dalian Uni-
versity  of  Technology,  China,  in  2022.  He  is
currently a Ph.D. student at the Department of
Information Science, Wuhan University, China.
His  research  interests  include  multisensor
fusion localization and semantic SLAM.

 

Lie  Guo received  the  B.S.,  M.S.,  and  Ph.D.
degrees in  vehicle  engineering  from  Jilin  Uni-
versity, China, in 2000,, 2003, and 2007, respec-
tively.  He is  currently  an associate  professor  in
the  School  of  Mechanical  Engineering,  Dalian
University  of  Technology,  China.  His  research
interests  include  intelligent  human-computer
interaction and  collaborative  control,  intelli-
gent  networked  vehicles,  intelligent  vehicles,
and automotive safety assisted driving

 

Hexin Zhang is a  Ph.D.  candidate  of  Technol-
ogy  University  of  Eindhoven,  majoring  in
urban planning & transportation.  Her research
interests  include  travel  behavior,  emerging
transportation, and discrete choice model.

Localization and mapping algorithm based on Lidar-IMU-Camera fusion 107

https://doi.org/10.26599/JICV.2023.9210027
 


