
Online learning-based model predictive trajectory control for
connected and autonomous vehicles: Modeling and physical tests

Qianwen Li1, Peng Zhang2, Handong Yao1, Zhiwei Chen3, Xiaopeng Li2,✉

1School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens 30602, USA
2Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison 53706, USA
3Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia 19104, USA

Received: October 4, 2023; Revised: October 26, 2023; Accepted: November 9, 2023

© The Author(s) 2024. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

ABSTRACT: Motivated by the promising benefits of connected and autonomous vehicles (CAVs) in improving fuel
efficiency, mitigating congestion, and enhancing safety, numerous theoretical models have been proposed to plan CAV
multiple-step trajectories (time–specific speed/location trajectories) to accomplish various operations. However, limited
efforts have been made to develop proper trajectory control techniques to regulate vehicle movements to follow multiple-
step trajectories and test the performance of theoretical trajectory planning models with field experiments. Without an
effective control method, the benefits of theoretical models for CAV trajectory planning can be difficult to harvest. This study
proposes an online learning-based model predictive vehicle trajectory control structure to follow time–specific speed and
location profiles. Unlike single-step controllers that are dominantly used in the literature, a multiple-step model predictive
controller is adopted to control the vehicle’s longitudinal movements for higher accuracy. The model predictive controller
output (speed) cannot be interpreted by vehicles. A reinforcement learning agent is used to convert the speed value to the
vehicle’s direct control variable (i.e., throttle/brake). The reinforcement learning agent captures real-time changes in the
operating environment. This is valuable in saving parameter calibration resources and improving trajectory control accuracy.
A line tracking controller keeps vehicles on track. The proposed control structure is tested using reduced-scale robot cars.
The adaptivity of the proposed control structure is demonstrated by changing the vehicle load. Then, experiments on two
fundamental CAV platoon operations (i.e., platooning and split) show the effectiveness of the proposed trajectory control
structure in regulating robot movements to follow time–specific reference trajectories.

KEYWORDS: connected and autonomous vehicles (CAVs), reinforcement learning, physical tests, time–specific speed and
location, longitudinal and lateral control

1 Introduction
Connected and autonomous vehicles (CAVs) have witnessed
remarkable development, given their potential to improve fuel
efficiency, mitigate congestion, and enhance safety (Li et al., 2022;
Li and Li, 2023). Enabled by vehicle automation technology, CAVs’
trajectories can be precisely designed to accomplish various
operations (e.g., passing a signalized intersection and forming a
platoon) with specific objectives (e.g., maximizing mobility and
minimizing fuel consumption) (Li and Yao, 2022; Li et al., 2021).

In the past decades, extensive models have been proposed to
plan CAV trajectories in various application contexts, including
but not limited to signalized intersections, stop-controlled
intersections, ramp merging, platooning, and speed
harmonization (Yao et al., 2018). Existing trajectory planning
models are generally single-step or multiple-step. Single-step
trajectory planning designs vehicle movement step by step based
on a set of linear/nonlinear equations (Raboy et al., 2021). The
output is usually a single speed/acceleration value for the current
or next time step. In contrast, multiple-step trajectory planning
devises a time series of trajectories, including speed/acceleration/

location values in multiple future time steps (He et al., 2015).
Although fruitful theoretical efforts have been made on CAV

trajectory planning, physical experiments to validate the
theoretical models are relatively scarce, which are necessary for
transferring theoretical models into implementable technology in
the real world. Most of the existing trajectory planning models are
evaluated with simulations (Li and Yao, 2022; Yao and Li, 2020),
which reveal limited insights into the model performance in real-
world settings. The fundamental issue is that in simulations, CAV
motions are often assumed to be precisely controllable, i.e., a CAV
(or a group of CAVs) can exactly follow the planned trajectory
(trajectories) with zero location and speed errors. However, in
reality, precise trajectory control is almost impossible for the
following reasons. First, the mechanical control of a vehicle may
have response lag and inaccuracy depending on its electric control
and powertrain mechanisms (Su et al., 2018). Further, vehicle
operations are subject to various exogenous disturbances, e.g.,
weather, roadway condition, and vehicle load. These disturbances
cause unpredicted errors between the planned trajectories and
actual trajectories. Optimal trajectory control strategies are needed
to reduce the error between the planned and actual trajectories as
much as possible.

Controlling a vehicle to follow single-step trajectories is
relatively easy since only one specific value (e.g.,

✉ Corresponding author.
E-mail: xli2485@wisc.edu

Journal of Intelligent and Connected Vehicles
2024, 7(2): 86−96
https://doi.org/10.26599/JICV.2023.9210026 Research Article

J Intell Connect Veh 2024, 7(2): 86−96

speed/acceleration) needs to be followed. The control of multiple-
step trajectories is more challenging. Vehicles must be controlled
to follow a time series of locations, during which accumulated
errors must be considered. For example, if a vehicle misses some
distance initially, it must be controlled to catch that distance.
Otherwise, the vehicle cannot finish the operation with the
expected performance, e.g., fuel efficiency and mobility, and even
worse, consecutive vehicles may collide. Single-step controllers are
the most commonly used optimal controllers (e.g.,
proportional–integral–derivative, PID). They have been widely
used in field tests with single-step trajectory planning. The control
input and output are single values (Milanes et al., 2010). For
example, a controller can take the speed error as the input and
generate the adjusted acceleration. Given its simplicity, single-step
controllers have also been used with multiple-step trajectory
planning (Ma et al., 2019, 2020). Although trajectories are planned
for multiple future time steps, trajectory control still regulates the
vehicle’s single-step movement based on the current state. While
single-step controllers are computationally efficient, the control
performance cannot be guaranteed because it only focuses on the
current step without planning for the future.

In comparison, model predictive control (MPC) requires a time
series of the reference input and generates a time series of the
system output. MPC has been used for vehicle path tracking
(Tang et al., 2020). The objective is to ensure vehicles operate on a
designated path (usually a two-dimensional curve). Vehicle
longitudinal speed is usually not regulated/kept constant during
path tracking. As a result, no time–specific location profiles are
followed. A time–specific location profile is a time series of a
vehicle’s locations in a certain time horizon. Model predictive
control has also been used for regulating a single vehicle’s
movements to follow a time–specific speed profile, i.e., a time
series of a vehicle’s speeds in a certain time horizon. The objective
is to control the vehicle’s speed as close to the reference speed as
possible. Since no surrounding traffic is considered, vehicle
time–specific locations are not regulated. The accumulated
location error is not addressed. Specifically, a vehicle does not
need to mitigate the missed travel distance as long as the current
speed is consistent with the reference. Without proper control of
time–specific locations, existing model predictive control
techniques cannot be applied to traffic streams where vehicles
interact because consecutive vehicles may collide (Campion et al.,
2018). However, using model predictive control to regulate vehicle
movements to follow time–specific location trajectories has not
received much attention in the CAV literature, making it difficult
to harvest the promising benefits of the CAV technology.

More importantly, the existing trajectory controllers in field
experiments usually output acceleration and speed, which cannot
be interpreted by vehicles and robots (Morales and Nijmeijer,
2016). The direct control variable is throttle/brake for vehicles and
motor rotation per minute for robots. The major challenge is how
to convert the controller output into the direct control variable of
a vehicle/robot. A few existing studies have attempted to approach
this challenge. Rajamani et al. (2000) calculated the throttle/brake
angle using a sliding surface controller. Milanes et al. (2010)
calibrated a static lookup table to capture the relationship between
the gas pedal and the control error (speed and distance errors).
Recently, some studies have used PID controllers to convert
speed/acceleration instructions to throttle/brake (Raboy et al.,
2021). For accurate speed control, different model parameters
should be calibrated in different operating environments (i.e., the
combination of various factors, including but not limited to
roadway conditions, vehicle load, and weather). It is impossible to
enumerate all possible operating environments. As a result, a

specific set of parameters will be used in the environment that it is
obtained and similar environments with certain slight changes.
For example, parameters developed for vehicles operating on a flat
roadway segment can be used when vehicles are driving on
segments with a small slope. This way, the control accuracy is not
guaranteed. Intuitively, calibrating more parameters in more
environments contributes to higher control accuracy. However,
the calibration usually requires a significant amount of resources
(e.g., human, time, and equipment). An adaptive conversion from
the controller output to the vehicle/robot control variable that
captures real-time environment changes is demanded to improve
vehicle control performance and save parameter calibration
resources.

Motivated by these research gaps, this study proposes an online
learning-based model predictive trajectory control structure to
regulate vehicle movements to follow time–specific trajectories
generated by multiple-step planning models. A model predictive
controller is chosen for longitudinal speed control for higher
accuracy instead of dominantly used single-step controllers in the
literature. A reinforcement learning agent constructs and
maintains the dynamic conversion between the speed controller
output and the vehicle/robot direct control variable. In addition, a
lateral controller is used to control the vehicle’s orientation such
that it stays on track. With the proposed control structure,
accurate CAV speed and location control is feasible. As a result,
the promising benefits (e.g., fuel saving and mobility
improvement) of various CAV operations (e.g., platooning and
eco-driving) can be harvested the most. Reduced-scale robot cars
are utilized in this study because they require fewer resources and
do not impose any safety concerns.

The remainder of this paper is organized as follows. Section 2
first describes the investigated trajectory control problem and then
introduces the optimal trajectory control structure. Section 3
describes the reduced-scale platform. Section 4 presents field
experiment results and verifies the effectiveness of the proposed
control structure. Section 5 concludes this paper and points out
future research directions.

2 Optimal control
This section first introduces the investigated trajectory control
problem. Next, it proposes an online learning-based model
predictive control structure to regulate vehicle longitudinal and
lateral movements to follow time–specific speed and location
profiles. Further, a benchmark is developed for comparison.

2.1 Trajectory control problem statement
This study investigates the trajectory control problem to regulate
CAV movements to finish the intended operation (e.g., speed
harmonization and platooning) safely and achieve the expected
performance (e.g., improving mobility and fuel efficiency).

CAV control includes two components, i.e., longitudinal
control and lateral control. Longitudinal control is to regulate a
vehicle’s longitudinal movements to follow the time–specific
speed and location trajectories (i.e., references). Lateral control is
to regulate a vehicle’s lateral motions to follow the time–specific
orientation reference so that it can stay on the designated track.

t ∈ [0,T]
X̂ := {x̂ (t)}t∈[0,T]

V̂ := {v̂ (t)}t∈[0,T]

Ô := {ô (t)}t∈[0,T]

Given a period , a time–specific location reference is
the set of a vehicle’s target locations . A time–
specific speed reference is the set of a vehicle’s target speeds

. A time–specific orientation reference is the set
of a vehicle’s target orientation angles . Given

Online learning-based model predictive trajectory control for connected and autonomous vehicles: Modeling and physical tests 87

https://doi.org/10.26599/JICV.2023.9210026

X := {x (t)}t∈[0,T]
V := {v (t)}t∈[0,T]
O := {o (t)}t∈[0,T]

ex (t) := x (t)− x̂ (t)
ev (t) := v (t)− v̂ (t) eo (t) := o (t)− ô (t)

the response lag and inaccuracy of vehicle mechanical control and
the presence of various disturbances in the real world, e.g., road
conditions, weather, and vehicle load, the actual movements of
vehicles cannot be exactly like the references. A vehicle’s actual
location and speed profiles are denoted as and

. The actual orientation is denoted as
. Errors are expected between the actual

movements and the references, denoted by ,
, and . This study

proposes an effective control structure to minimize these errors
and maximize the corresponding benefits of actual CAV
operations.

n− 1
n
g (t) := xn−1 (t)− xn (t) ≥ g

Vehicles interact with each other in real-world traffic. For safe
operations (e.g., platooning), besides minimizing the individual
vehicle control errors, the inter-vehicle distance should also be
regulated so consecutive vehicles that do not collide. The gap
between the preceding vehicle and the following vehicle

 should always be no less than a safety distance,
, to ensure the operation safety.

2.2 Online learning-based model predictive control

x̂ v̂ x v
ṽ

ṽ
v

An online learning-based model predictive control (OLMPC)
structure with three feedback loops is proposed to accomplish
speed and location control while line tracking, as shown in Fig. 1.
The longitudinal control outer loop regulates the vehicle to follow
the target trajectory with a model predictive controller. The target
trajectory (and) and the vehicle’s actual trajectory (and)
are fed into the controller to generate the adjusted speed .
However, the adjusted speed cannot be interpreted by vehicles.
Vehicles’ direct control variable (DCV) is usually the
throttle/brake. Thus, the longitudinal control inner loop converts
the speed to the DCV with a reinforcement learning (RL) agent.
The inputs of the RL agent are the adjusted speed and the
vehicle’s actual speed . The output is the adjusted DCV. The RL

eo
õ

agent dynamically updates the conversion to account for the
vehicle operating environment changes. Finally, the lateral control
loop controls the vehicle to follow a designated track with a
tracking controller. The tracking error is fed into the tracking
controller to produce the adjusted orientation . Once the
adjusted DCV and orientation are applied, the vehicle’s actual
movement is measured after the vehicle dynamics and used for
the next control step.

The frequency of the longitudinal inner loop should be greater
than that of the outer loop so that the RL agent has enough time
to compensate for disturbances before they affect the outer loop.
The faster the inner loop is, the better the disturbance
compensations are (Bolton, 2015). The resulting speed control
accuracy would be higher. The remainder of this subsection
presents the details of each control loop.

xn−1 (t)− xn ≥ g

It should be noted that the proposed OLMPC is for individual
vehicle control. Regarding traffic streams including multiple
vehicles, each following vehicle should be equipped with an
additional spacing/headway controller, which regulates the safe
distance between vehicles so that no collisions happen, i.e.,

. Well-established control methods can achieve
this goal, e.g., linear–quadratic regulator, PID, and MPC.

2.2.1 Model predictive speed control

x̂ v̂

t t+ ΔT

A model predictive controller is used for the longitudinal outer
loop to control the vehicle’s longitudinal speed. It not only takes
care of the current time step but also plans for the future. Thus, it
is expected to yield better control accuracy than single-step
controllers. The goal of the model predictive controller is to
control vehicles to follow target trajectories (and) smoothly for
riding comfort and fuel efficiency. The objective function, Eq. (1),
is formulated below to achieve this goal with a control period from
 to . The first two terms in the numerator are the

trajectory control errors, and the last term regulates speed jumps.

J = min
v

w t+ΔT

t
wx × (x (t′)− x̂ (t′))2 + wv × (v (t′)− v̂ (t′))2 + wa × a(t′)2dt′

ΔT (1)

subject to Eq. (2): {
v ≤ v (t′) ≤ v
a ≤ a (t′) ≤ a

(2)

v̂ (t′) v (t′)where is the target speed; is the vehicle’s actual

x̂ (t′) =
w t+t′

t
v̂ (t∗)dt∗ x (t′) =w t+t′

t
v (t∗)dt∗ a (t′) = dv

dt
wx wv wa

v (t′)
[v, v] [a, a]

speed; is the target location;

 is the vehicle’s actual location; is the
vehicle’s actual acceleration; , , and are the weight
parameters. Control variable is bounded by speed limits, i.e.,

. The vehicle’s acceleration is also bounded, i.e., . State-

Target longitudinal
trajectory

Target
orientation

Adjusted
speed

Vehicle actual speed Longitudinal control inner loop

Longitudinal control outer loop

Adjusted
orientation

Adjusted
DCV

Vehicle
dynamics

Vehicle actual
movement

Vehicle actual orientation Lateral control loop

Line tracking
controller

Model predictive
controller

RL
agent

Vehicle actual trajectory

Fig. 1 Online learning-based model predictive control structure with three feedback loops.

88 Q W Li, P Zhang, H D Yao, et al.

J Intell Connect Veh 2024, 7(2): 86−96

Ṽ := {ṽ (τ)}τ∈[t,t+ΔT]

of-the-art solvers can quickly solve this optimization problem after
discretization with only dozens of variables. The resulting optimal
solution is the adjusted speed sequence, denoted by

, that regulates a vehicle’s longitudinal
movements to be close to the target.

2.2.2 Fuzzy Q-learning conversion

ṽ

ev (t) ε ε
eu (t)

eu (t)
eu (t) N

eu (t)

N ε N

ε N

a = 0.6 and N = 7

eu
eu < −0.4 eu ≥ −0.4

eu (t) μ
μ

M

A Q-learning agent is chosen for the longitudinal control inner
loop to convert the adjusted speed to the adjusted DCV so that
vehicles can understand the control instruction, given its
computation efficiency and satisfying performance demonstrated
in the literature (Clifton and Laber, 2020; Yang et al., 2020). It
updates the conversion online while the vehicle is running to
accommodate possible changes in the operating environment, e.g.,
test track and vehicle load changes. The state of the Q-learning
agent is defined as the longitudinal speed control error calculated
as the difference between the vehicle’s actual speed and the
adjusted speed returned by the speed controller. This state is
inherently continuous and unbounded. Consequently, the
resulting Q-table, with states as rows and actions as columns, is of
infinite size, rendering it impossible to be fully trained. Thus, the
speed control error is transformed in the range of [– ,] by
a sigmoid function and is denoted by . Instead of simply
discretizing into a limited number of states by a unit, fuzzy
logic is used to represent the continuous state space with
state membership functions defined. Fuzzy logic can depict
with countless speed error statuses, which are the weighted
summation of the states. Parameters and should be
adjusted to produce satisfying conversion accuracy within a
reasonable training time. Specifically, greater and values
depict the control error more precisely but result in a large q-table
that can be difficult to converge. An example is given in Fig. 2
when . Speed control error (or state)
membership functions include Negative Big (NB), Negative
Medium (NM), Negative Small (NS), Zero (Z), Positive Small
(PS), Positive Medium (PM), and Positive Big (PB) (Chiou et al.,
2012). Note that these functions exhibit continuity throughout the
speed control error range. For instance, NB is positive when

 and equal to zero when (which may not be
clearly discernible in Fig. 2 due to overlapping). For an error

, the firing strength of each membership function is
measured. indicates the degree to which the agent (i.e., vehicle)
is in a state (i.e., speed control error). A set is defined,
including the indexes of membership functions whose firing
strengths are greater than zero.

σ σ

Δ J
σ Δ

σ
Δ

n ∈ [1,N] J

The action in Q-learning corresponds to the rate at which the
vehicle’s DCV is adjusted, and this parameter is also continuous
and unbounded. Given that the DCV adjustment rate directly
influences the vehicle’s acceleration (with greater adjustment
leading to higher acceleration), it is constrained within the range
of [− ,] to avoid significant speed adjustment for riding
comfort and fuel efficiency. Further, the adjusting rate is
discretized by a small interval , resulting actions in total. The
values of and should be selected per application needs. A
greater leads to a faster vehicle control response with the
sacrifice of a greater speed adjustment. A greater contributes to
faster Q-learning convergence, but the speed control performance
may not be as accurate because the adjustment is not precise. For
every state , there are actions available. The Q-learning
agent, i.e, the vehicle, selects the optimal action that maximizes its

expected reward. This reward is instrumental in updating the q-
table for guiding future action selections. The q-table is iteratively
updated as the agent interacts with the environment, continuing
until convergence is reached, signified by minimal changes in the
table values.

eu (t) = 0.5
m ∈ M = {6,7}

μ6 = μ7 = 0.5

an

μn rDCVadj =
∑

n∈N an × μn = −0.10 × 0.5 +

(−0.08 × 0.5) = −0.09

An example is given as follows. Assume ,
 indicating that PM and PB are fired. The firing

strength are equal, i.e., . Next, assume that the best
action for PM is decreasing the DCV by 10%, and the best action
for PB is decreasing the DCV by 8%. The DCV adjusting rate after
fuzzy logic would be the sum of adjusting rates weighted by
firing strengths , i.e.,

. The current DCV will be decreased by
9%. Subsequently, once the adjusted DCV is implemented, the
vehicle’s updated state is observed to compute the action reward.
The specific steps of the fuzzy Q-learning algorithm are elucidated
in the following section. For more details, readers are referred to
Glorennec and Jouffe (1997).

2.2.3 Line tracking

The line tracking controller should be rather efficient and run at a
high frequency such that the vehicle can stay on track, especially
when it comes to winding tracks.

eo

õ

The most popular vehicle lateral movement controller (line
tracking controller) in the existing literature is pure pursuit
(Coulter, 1992). The input of pure pursuit is vehicle orientation
error/tracking error , which is the angle between the vehicle’s
orientation and the look-ahead line. The output is the adjusted
orientation (turning angle) , computed as Eq. (3):

õ (t) = arctan
(
2l × sin (eo (t))

d

)
(3)

l dwhere is the vehicle length and is the look-ahead distance.
Besides pure pursuit, other efficient methods can also be used

for vehicle lateral control, such as PID control (Normey-Rico et
al., 2001). The same control error as in pure pursuit or other error
measurements can be used, e.g., the distance between the
longitudinal centerline of the vehicle body and the track. The PID
lateral control output is formulated as Eq. (4):

õ (t) = kp × eo (t) + ki ×
w
eo (t)dt+ kd ×

deo
dt (4)

kp ki kd

eo (t) deo
eo (t) dt

where is the proportional gain, is the integral gain, is the
derivative gain, is the tracking error, is the change in

, and is the change in time. The lateral control output can
be applied to the vehicle’s steering system to adjust the orientation.

1.0

0.8

0.6

0.4

0.2

0

Fi
rin

g
st

re
ng

th
, μ

−0.6 −0.4 −0.2
Speed error, eu(t)

0 0.2 0.4 0.6

NB NM NS Z PS PM PB

Fig. 2 State membership function when a = 0.6 and N = 7.

Online learning-based model predictive trajectory control for connected and autonomous vehicles: Modeling and physical tests 89

https://doi.org/10.26599/JICV.2023.9210026

2.3 Benchmark
A benchmark is developed with two feedback loops for
comparison based on the literature, as shown in Fig. 3. The
longitudinal loop controls the vehicle’s speed with a single-step
controller (i.e., PID). The output is the adjusted DCV instead of
the adjusted speed as the OLMPC. Therefore, the longitudinal
control inner loop (RL agent) is no longer needed. The lateral loop

controls the vehicle to follow the designated track with a tracking
controller, like the OLMPC.

ex ev
λ (t)

In the longitudinal control loop, the PID controller inputs are
the location and speed control errors, and . The PID speed
control output is formulated as Eq. (5):

λ (t) = Kλ
p × ex (t) + Kλ

p′ × ev (t) + Kλ
i ×

w
ev (t)dt+ Kλ

d ×
dev
dt
(5)

Vehicle actual orientation

Target
orientation

Adjusted
orientation

Vehicle actual
movementAdjusted

DCV

Vehicle
dynamicsTarget longitudinal

trajectory

Vehicle actual trajectory

Line tracking
controller

PID
controller

Lateral control loop

Longitudinal control loop

Fig. 3 Benchmark control structure with two feedback loops.

90 Q W Li, P Zhang, H D Yao, et al.

J Intell Connect Veh 2024, 7(2): 86−96

Kλ
p Kλ

p′ Kλ
i

Kλ
d dev ev (t)

where and are the proportional gains, is the integral
gain, is the derivative gain, and is the change in .

3 Reduced-scale platform
Given the limited resources, this subsection constructs a reduced-
scale robot car platform to test the effectiveness of the proposed
OLMPC. Small-scale robot cars can be totally under control and
thus will not impose any safety concerns during experiments.
They are effective alternatives in testing theoretical models before
moving into full-scale vehicles. The reduced-scale platform
includes Pololu Zumo 32U4 robots, infrared sensors for distance
measurement, a PC for extensive computations (an Intel Core i5
processor, 8G RAM, and macOS), Wi-Fi chips for
communication, and a ring test track.

3.1 Robots
The Pololu Zumo 32U4 robot (75:1 HP) is used to construct the
physical testbed. It has a length of 9 cm and a width of 10 cm. The
reason for choosing this robot is 4-fold. First, it is controlled by an
Arduino microcontroller, which is convenient to program and
compatible with various accessories. Second, it is loaded with line
sensors that facilitate line tracking. Third, it features an extra serial
port that can install a communication chip for information
sharing with the computer. Fourth, two robot motors are
equipped with encoders through which we can read the real-time
position and speed of the robot.

3.2 Distance measurement
An infrared sensor (i.e., GP2Y0A51SK0F) is installed on the robot
to measure distance with almost no measurement delay. Analog
signals (i.e., the output voltage) returned by this sensor are
converted into digital signals (i.e., the measured distance). A robot
can measure the distance between itself and the preceding robot
with this sensor. With the measured distance, the robot can act
appropriately to avoid collisions with the help of a fine-tunned
proportional-derivative (PD) controller.

When vehicles/robots are distant, their movements are
regulated by the proposed OLMPC. When consecutive
vehicles/robots are close (i.e., the car-following distance is less than
a certain threshold), the PD controller of the following
vehicle/robot will be activated to guarantee safety.

3.3 Wireless communication
A Wi-Fi chip (i.e., ESP8266) is installed on the robot for
communication. The reason for choosing this chip is that it
consumes less power and supports IP/TCP protocol. With this
chip loaded, the robot can communicate with the PC via the Wi-

Fi router. The PC generates vehicle time–specific trajectories and
sends them to robots via the Wi-Fi router. On the other hand, the
robot’s real-time speed is read from encoders and sent back to the
PC.

3.4 Test track
We set up a ring track with an inner radius of 110 cm and a track
width of 5 cm, as shown in Fig. 4. Robot line sensors are activated
to track lines based on reflectivity. The reflectivity of the
whiteboard is greater than that of the black tape. Thus, robots stick
to the ring track of the black tape.

3.5 OLMPC customization for robots without steering
systems
The OLMPC proposed for full-scaled vehicles directly applies to
robots with steering systems through which we can control the
robot’s turning angle. Yet, when it comes to robots without
steering systems, e.g., Pololu Zumo 32U4 robots, the OLMPC
needs to be modified. Specifically, the lateral control loop can no
longer be independent of longitudinal loops but cascades inside, as
shown in Fig. 5.

Without a steering system, the angular movement of the robot
is accomplished by assigning different DCV values (i.e., rotation
per minute) to two motors. Specifically, a greater DCV is given to
the right motor if the robot needs to adjust to the left, and a
greater DCV is assigned to the left motor if the robot needs to
adjust to the right.

Given the limited computation capability of the Pololu Zumo
robots, a PID controller is chosen for line tracking, given its
satisfying accuracy and excellent computation efficiency. Besides,
the robot can complete the PID control without communicating
with the PC via a Wi-Fi network, so no communication lags exist.

r = 110 cm

d = 5 cm

Fig. 4 Test track.

RL
agent

Line tracking
controller

Robot
dynamics

Lateral control loop

Longitudinal control inner loop

Longitudinal control outer loop

Right motor
DCV

Vehicle actual
movement

Left
motor DCV

Target longitudinal
trajectory

Vehicle actual trajectory

Model predictive
controller

Adjusted
speed

Adjusted
DCV

Vehicle actual speed

Tracking error

Fig. 5 OLMPC for robots without steering systems.

Online learning-based model predictive trajectory control for connected and autonomous vehicles: Modeling and physical tests 91

https://doi.org/10.26599/JICV.2023.9210026

õ (t)

Thus, the PID lateral control is more efficient than other optimal
control methods that must be done by the PC. The PID lateral
control output is formulated in Section 2.2.3.

DCVR DCVLThe right motor DCV () and left motor DCV ()
are computed as Eq. (6) and Eq. (7), respectively:

DCVR = DCVadj − õ (6)

DCVL = DCVadj + õ (7)

DCVadjwhere is the PID lateral control input, i.e., the adjusted
DCV returned by the RL agent. It should be noted that if
robots/vehicles with steering systems are used, the lateral control
output can be directly used as the steering angle.

The lateral control loop runs every 0.05 s. The inner loop for
longitudinal control operates every 0.1 s, while the other loop runs
at a 0.2-s interval.

4 Experiments
This section conducts experiments to test the performance of the
OLMPC. Section 4.1 tests the adaptivity of the OLMPC by
changing the robot load. Next, Section 4.2.1 evaluates the OLMPC
in regulating robot movements to follow time–specific reference
trajectories to finish platoon formation and split operations.
Section 4.2.2 compares the OLMPC with a benchmark in
regulating robot movements.

4.1 Adaptivity tests
This study uses changes in the robot load as an example to
investigate how the proposed OLMPC adapts to changes in the
robot’s operating environment. Objects are added on top of the
robot to simulate load changes. The robot weighs about 275 g,

including batteries. However, it can carry objects weighing much
more than itself because of the great torque value, i.e., 23.3 cN·m.
Two tests using two objects of different weights are conducted,
respectively. The test results are presented in Fig. 6. The way
objects are placed on robots is shown in the left corner of Fig. 6b.

In Fig. 6a, an object weighing 180 g is added on top of the robot
at around 12 s. The robot slows down. The minimum speed is
about 0.43 m/s (i.e., the dent in Fig. 6a). In response, the
reinforcement learning agent automatically adjusts the conversion
from speed to revolutions per minute (RPM) by updating the q-
table to adapt to the new vehicle load. After 5 s of the load
changing, the robot’s speed is recovered to the target. In Fig. 6b,
an object weighing 430 g is added to the robot at around 10 s. The
robot speed drops to about 0.3 m/s. Similarly, the learning agent
adjusts the conversion from speed to RPM to accommodate the
load change. After 12 s of the load changing, the robot’s speed is
recovered to the target. More adapting time is needed than the
first test because of the more substantial load change. Adapting
time can be sped up by using more stable robots with better
motors and employing advanced reinforcement learning
techniques for more precise speed-to-RPM conversion.

In comparison, the load is also changed when the robot is
controlled by the PID-based benchmark. In Fig. 6c, when adding
the lighter object, the robot speed decreases to about 0.43 m/s. The
PID speed controller tries to mitigate the speed difference from
the target, as indicated by the slight speed increase after the dent
(the red arrow). However, given the limited capabilities of the PID
controller with fixed parameters, the robot speed is not recovered
to the target. It stays around 0.47 m/s after. In Fig. 6d, the robot
speed drops to only 0.29 m/s after adding the heavier object. The
PID controller tries to make up the speed difference yet fails. The
robot speed only recovered to about 0.32 m/s and stayed
oscillating around it. To catch up with the target speed, the
benchmark parameters (specifically, PID parameters) must be re-

Robot actual
Target

Robot actual
Target

Robot actual
Target

Robot actual
Target

(a) (b)

(c) (d)

0.7

0.6

0.5

0.4

0.3

0.2

Sp
ee

d
(m

/s
)

0 5 10
Time (s)

15 20 25

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Sp
ee

d
(m

/s
)

0 10
Time (s)

20 30 40

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Sp
ee

d
(m

/s
)

0 10
Time (s)

20 30 40

0.7

0.6

0.5

0.4

0.3

0.2

Sp
ee

d
(m

/s
)

0 10
Time (s)

20 30 40

Add an object
(180 g)

Add an object
(430 g)

Adapting Adapting

Add an object (180 g)

Fig. 6 Adaptivity test results. Add an object weighing (a) 180 g (OLMPC); (b) 430 g (OLMPC); (c) 180 g (benchmark); (d) 430 g (benchmark).

92 Q W Li, P Zhang, H D Yao, et al.

J Intell Connect Veh 2024, 7(2): 86−96

calibrated after the robot load changes. This requires additional
effort and resources.

The above results indicate that the proposed OLMPC can
automatically accommodate the changing operating environment
to ensure the trajectory control performance, which greatly saves
motor calibration resources (e.g., manually updating the speed to
RPM conversion). Vehicle load change is only one of the common
changes in the vehicle operating environment. Given the
constraints of space, it is important to note that this study does not
comprehensively test for variations in other factors like track grade
and weather, which are also anticipated to occur frequently. This
opens avenues for further research opportunities.

This subsection tests a constant target speed for illustration
because the robot speed can quickly recover (in seconds). It should
be noted that the OLMPC can also adapt to changes when the
target is varying but with a longer adapting time. To facilitate
future CAV time–specific trajectory control, state-of-the-art
reinforcement learning convergence expedition techniques should
be incorporated (Hossain et al., 2020; Majumdar et al., 2018;
Nishio and Yamane, 2018).

4.2 Platoon operations
To test the effectiveness of the OLMPC in controlling robot
motions, two fundamental platoon operations are tested,
including platooning and split. Platooning is to cluster scattered
vehicles/short platoons into long platoons such that vehicles can
pass roadway segments more efficiently. On the opposite, split is
to separate long platoons into individual vehicles/short platoons
such that vehicles can reach their destinations. Detailed trajectory
planning algorithms for the two operations can be found in Li and
Li (2022, 2023). In this study, two robots are utilized to
demonstrate the two operations. Key operation parameters follow.

0.02m/s2 −0.02 m/s2

0.02 m/s2
−0.02 m/s2

m/s
m/s

Platooning operation: maximum speed is 0.5 m/s, maximum
acceleration is , minimum acceleration is ,
initial gap (or spacing) is 1.2 m, initial speed is 0.4 m/s, platooning
gap is 0.18 m, and platooning speed is 0.5 m/s. Splitting operation:
maximum speed is 0.5 m/s, maximum acceleration is ,
minimum acceleration is , initial platooning gap is
0.18 cm, initial platooning speed is 0.4 , and ending gap is
1.2 m, and ending speed is 0.4 . The platooning operation
takes 12.4 s, and the split operation takes 10 s. Adaptivity is not
tested during these two operations because of their short
durations. The adapting time may be longer than the operation
time. Future studies should incorporate state-of-the-art RL
convergence expedition techniques to accelerate the adapting time.
This study is intended to illustrate the feasibility of using RL
methods to help control CAVs instead of proposing the perfect RL
models.

4.2.1 Online learning-based model predictive control

Test results using the OLMPC are plotted in Fig. 7. The average
root mean square error (RMSE) between the robot’s actual
trajectory and the planned reference trajectory is computed to
quantify the control accuracy. It is shown that the two robots
follow the planned trajectories to finish the platooning and split
operations safely without much error.

In the platooning operation (Fig. 7a), the preceding robot’s
location RMSE is as small as 0.039 m, and the following robot’s
location RMSE is only 0.015 m. In the split operation (Fig. 7b), the
preceding robot’s location RMSE is 0.061 m, and the following
robot’s location RMSE is only 0.023 m. The small difference
between the robot’s actual trajectory and the planned trajectory
demonstrates the effectiveness of the proposed OLMPC in
regulating robot movements.

Spacing planned
Spacing actual

Spacing planned
Spacing actual

Following robot actual
Preceding robot actual
Following robot planned
Preceding robot planned

Following robot actual
Preceding robot actual
Following robot planned
Preceding robot planned

0 5 10
Time (s)

150 5 10
Time (s)

Lo
ca

tio
n

(m
)

Lo
ca

tio
n

(m
)

15

0 5 10
Time (s)

150 5 10
Time (s)

15

8

6

4

2

0

Lo
ca

tio
n

(m
)

8

6

4

2

0

1.2

1.0

0.8

0.6

0.4

0.2

0

Lo
ca

tio
n

(m
)

1.2

1.0

0.8

0.6

0.4

0.2

0

(a)

(b)

Platooning

Split

Fig. 7 Field tests with the OLMPC: (a) platooning operation; (b) split operation.

Online learning-based model predictive trajectory control for connected and autonomous vehicles: Modeling and physical tests 93

https://doi.org/10.26599/JICV.2023.9210026

4.2.2 Comparison with a benchmark

This subsection compares the test results of the OLMPC with the
benchmark by looking into the detailed control errors of a single
vehicle.

The location and speed trajectories of the preceding vehicle
when executing the platooning operation are plotted in Fig. 8.
Fig. 8a shows the location control results of the OLMPC. The
RMSE value is as small as 0.039 m. Fig. 8b shows the location

Robot actual
Reference

Robot actual
Reference

Robot actual
Reference

Robot actual
Reference

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)(a)

(b)

(c)

(d)

15

Lo
ca

tio
n

(m
)

Lo
ca

tio
n

er
ro

r (
m

)

7

6

5

4

3

2

1

0

Lo
ca

tio
n

(m
)

Sp
ee

d
(m

/s
)

7

6

5

4

3

2

1

0

0.55

0.50

0.45

0.40

0.35

0.30

Sp
ee

d
er

ro
r (

m
/s

)

0.04

0.20

0

−0.02

−0.04

Sp
ee

d
(m

/s
)

0.55

0.50

0.45

0.40

0.35

0.30

Sp
ee

d
er

ro
r (

m
/s

)

0.04

0.20

0

−0.02

−0.04

0.08

0.06

0.04

0.02

0

−0.02

−0.04

Lo
ca

tio
n

er
ro

r (
m

)

0.20

0.15

0.10

0.05

0

Fig. 8 Control result comparison: (a) OLMPC–location; (b) benchmark–location; (c) OLMPC–speed; (d) benchmark–speed.

94 Q W Li, P Zhang, H D Yao, et al.

J Intell Connect Veh 2024, 7(2): 86−96

control results of the benchmark (i.e., PID). The RMSE value is
0.126 m. The location control accuracy is improved by 69%.
Fig. 8c shows the speed control results of the OLMPC. The RMSE
value is as small as 0.017 m/s. Fig. 8d shows the speed control
results of the benchmark (i.e., PID). The RMSE value is 0.024 m/s.
The speed control accuracy is improved by 29%. The
improvement illustrates the superiority of the proposed OLMPC
in controlling robot time–specific trajectories compared with the
benchmark.

5 Conclusions
This study proposes an online learning-based model predictive
control (OLMPC) structure to regulate vehicle movements to
follow time–specific trajectories. A model predictive controller is
chosen to control the vehicle’s longitudinal speed for higher
accuracy than single-step controllers. Since the direct control
variable of vehicles is throttle/brake (rotation per minute for
robots) rather than speed (i.e., the output of the model predictive
controller), a reinforcement learning agent is adopted to construct
and maintain the dynamic conversion from the model predictive
controller output to the vehicle/robot direct control variable.
Operating environment changes can be automatically accounted
for. This saves engine/motor parameter calibration resources and
improves the trajectory control accuracy compared to
constructing static lookup tables like the existing literature. Lateral
movements are also controlled so vehicles/robots can operate on
the designated track.

Reduced-scale robot car tests are conducted to verify the
adaptivity of the OLMPC in the presence of operating
environment changes (e.g., load change). Robot car tests are also
carried out to finish a platooning operation and a split operation,
which we propose in two previous trajectory planning studies.
Results show that, with the OLMPC structure, robots’ movements
are regulated to follow the reference time–specific trajectories to
finish the intended operations with much error. Specifically, in the
platooning operation, the robot’s location RMSE is as small as
0.039 m, and the speed RMSE is only 0.017 m/s; in the split
operation, the robot’s location RMSE is 0.061 m, and the speed
RMSE is only 0.013 m/s. Further, the superiority of the OLMPC in
regulating robot movements is demonstrated by comparing it
with a benchmark (constructed based on PID). Overall, this study
fills the void of time–specific CAV trajectory control, which is the
premise of implementing theoretical trajectory planning models in
the field and harvesting the benefits of the CAV technology. There
are several research directions along which this study can be
extended to. First, the control performance can be improved by
upgrading the hardware. Specifically, line tracking can be more
accurate using model prediction control if robots/vehicles with
better computation capabilities and motor configurations are
utilized. This will result in less disturbance on the longitudinal
speed control, and the reinforcement learning agent can construct
a more accurate speed to RPM/throttle/brake conversion.
Currently, robot localization is accomplished by referring to the
travel distance measured by the robot itself. Better localization
accuracy is expected if a camera can be set up to overlook the test
track. The same expectation applies to full-scale tests with CAVs
equipped with Lidars that can accurately localize vehicles. Second,
this study adopts a simple reinforcement learning method (i.e., Q-
learning). More advanced models can be tested for a more
accurate speed to RPM conversion. Also, expedition techniques
should be incorporated to accelerate reinforcement learning
convergence, especially when the target speed varies with time
(Hossain et al., 2020; Majumdar et al., 2018).

Replication and data sharing
Code and data are accessible at https://github.com/CATS-Lab.

Acknowledgements
This research is sponsored by the National Science Foundation
(CMMI #1558887 and CMMI #1932452).

Declaration of competing interest
The authors have no competing interests to declare that are
relevant to the content of this article.

References

Bolton, W., 2015. Instrumentation and Control Systems. Amsterdam:
Elsevier, 281–302.

Campion, M., Ranganathan, P., Faruque, S., 2018. UAV swarm commu-
nication and control architectures: A review. J Unmanned Veh Sys, 7,
93−106.

Chiou, J. S., Tsai, S. H., Liu, M. T., 2012. A PSO-based adaptive fuzzy PID-
controllers. Simul Model Pract Theory, 26, 49−59.

Clifton, J., Laber, E., 2020. Q-learning: Theory and applications. Annu
Rev Stat Appl, 7, 279−301.

Coulter, C., 1992. Implementation of the pure pursuit path tracking algo-
rithm. https://api.semanticscholar.org/CorpusID:62550799

Glorennec, P. Y., Jouffe, L., 1997. Fuzzy Q-learning. In: Proceedings of
6th International Fuzzy Systems Conference, 659–662.

He, X., Liu, H. X., Liu, X., 2015. Optimal vehicle speed trajectory on a sig-
nalized arterial with consideration of queue. Transp Res Part C
Emerg Technol, 61, 106−120.

Hossain, M. A., Noor, R. M., Azzuhri, S. R., Z’aba, M. R., Ahmedy, I.,
Anjum, S. S., et al., 2020. Faster convergence of Q-learning in cogni-
tive radio-VANET scenario. In: Advances in Electronics Engineering,
Lecture Notes in Electrical Engineering, vol 619, 171–181.

Li, Q., Chen, Z., Li, X., 2022. A review of connected and automated vehi-
cle platoon merging and splitting operations. IEEE Trans Intell
Transport Syst, 23, 22790−22806.

Li, Q., Li, X., 2023. Trajectory optimization for autonomous modular
vehicle or platooned autonomous vehicle split operations. Transp
Res Part E Logist Transp Rev, 176, 103115.

Li, Q., Li, X., 2022. Trajectory planning for autonomous modular vehicle
docking and autonomous vehicle platooning operations. Transp Res
Part E Logist Transp Rev, 166, 102886.

Li, Q., Li, X., Huang, Z., Halkias, J., McHale, G., James, R., 2021. Simula-
tion of mixed traffic with cooperative lane changes. Computer Aided
Civil Eng, 37, 1978−1996.

Li, Q., Yao, H., 2022. Individual variable speed limit trajectory planning
considering stochastic arriving patterns. Int J Coal Sci Technol, 9,
1−17.

Ma, J., Hu, J., Leslie, E., Zhou, F., Huang, P., Bared, J., 2019. An eco-drive
experiment on rolling terrains for fuel consumption optimization
with connected automated vehicles. Transp Res Part C Emerg Tech-
nol, 100, 125−141.

Ma, J., Leslie, E., Ghiasi, A., Huang, Z., Guo, Y., 2020. Empirical analysis
of a freeway bundled connected-and-automated vehicle application
using experimental data. J Transp Eng Part A Syst, 146, 4020034.

Majumdar, A., Benavidez, P., Jamshidi, M., 2018. Multi-agent explo-
ration for faster and reliable deep Q-learning convergence in rein-
forcement learning. In: 2018 World Automation Congress (WAC),
1–6.

Milanes, V., Godoy, J., Villagra, J., Perez, J., 2010. Automated on-ramp
merging system for congested traffic situations. IEEE Trans Intell
Transp Syst, 12, 500−508.

Morales, A., Nijmeijer, H., 2016. Merging strategy for vehicles by apply-
ing cooperative tracking control. IEEE Trans Intell Transport Syst, 17,
3423−3433.

Online learning-based model predictive trajectory control for connected and autonomous vehicles: Modeling and physical tests 95

https://doi.org/10.26599/JICV.2023.9210026

Nishio, D., Yamane, S., 2018. Faster deep Q-learning using neural
episodic control. In: 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), 486–491.

Normey-Rico, J. E., Alcalá, I., Gómez-Ortega, J., Camacho, E. F., 2001.
Mobile robot path tracking using a robust PID controller. Contr Eng
Pract, 9, 1209−1214.

Raboy, K., Ma, J., Leslie, E., Zhou, F., 2021. A proof-of-concept field
experiment on cooperative lane change maneuvers using a prototype
connected automated vehicle testing platform. J Intell Transp Syst, 25,
77−92.

Rajamani, R., Tan, H. S., Law, B. K., Zhang, W. B., 2000. Demonstration
of integrated longitudinal and lateral control for the operation of
automated vehicles in platoons. IEEE Trans Contr Syst Technol, 8,
695−708.

Su, J., Wu, J., Cheng, P., Chen, J., 2018. Autonomous vehicle control

through the dynamics and controller learning. IEEE Trans Veh
Technol, 67, 5650–5657.

Tang, L., Yan, F., Zou, B., Wang, K., Lv, C., 2020. An improved kine-
matic model predictive control for high-speed path tracking of
autonomous vehicles. IEEE Access, 8, 51400−51413.

Yang, X., Yang, X., Deng, X., 2020. Horizontal trajectory control of
stratospheric airships in wind field using Q-learning algorithm.
Aerosp Sci Technol, 106, 106100.

Yao, H., Cui, J., Li, X., Wang, Y., An, S., 2018. A trajectory smoothing
method at signalized intersection based on individualized variable
speed limits with location optimization. Transp Res Part D Transp
Environ, 62, 456−473.

Yao, H., Li, X., 2020. Decentralized control of connected automated vehi-
cle trajectories in mixed traffic at an isolated signalized intersection.
Transp Res Part C Emerg Technol, 121, 102846.

Qianwen Li is an Assistant Professor at the
University of Georgia. She received her Ph.D.
degree from the University of South Florida in
2022. Her research interests are traffic data analy-
tics and traffic flow modeling.

Peng Zhang is a Ph.D. student at the Univer-
sity of Wisconsin–Madison. He received his M.S.
degree from the University of South Florida in
2019. His research interest is connected
autonomous vehicle.

Handong Yao is an Assistant Professor at the
University of Georgia. He received his Ph.D.
degree from Harbin Institute of Technology in
2020. His research interests are cyber physical
systems and autonomous vehicle control.

Zhiwei Chen is an Assistant Professor at Drexel
University. He received his Ph.D. degree from
the University of South Florida in 2020. His
research interests are public transit systems and
autonomous vehicles.

Xiaopeng Li is a Professor at the University of
Wisconsin–Madison. He received his Ph.D.
degree from the University of Illinois at Urban-
Champaign in 2011. His research interests are
automated vehicle traffic control and connected &
interdependent infrastructure systems.

96 Q W Li, P Zhang, H D Yao, et al.

J Intell Connect Veh 2024, 7(2): 86−96

