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ABSTRACT: Motivated  by  the  promising  benefits  of  connected  and  autonomous  vehicles  (CAVs)  in  improving  fuel
efficiency,  mitigating  congestion,  and  enhancing  safety,  numerous  theoretical  models  have  been  proposed  to  plan  CAV
multiple-step  trajectories  (time–specific  speed/location  trajectories)  to  accomplish  various  operations.  However,  limited
efforts have been made to develop proper trajectory control  techniques to regulate vehicle movements to follow multiple-
step  trajectories  and  test  the  performance  of  theoretical  trajectory  planning  models  with  field  experiments.  Without  an
effective control method, the benefits of theoretical models for CAV trajectory planning can be difficult to harvest. This study
proposes  an  online  learning-based model  predictive  vehicle  trajectory  control  structure  to  follow time–specific  speed and
location  profiles.  Unlike  single-step controllers  that  are  dominantly  used in  the  literature,  a  multiple-step model  predictive
controller  is  adopted  to  control  the  vehicle’s  longitudinal  movements  for  higher  accuracy.  The model  predictive  controller
output (speed) cannot be interpreted by vehicles. A reinforcement learning agent is used to convert the speed value to the
vehicle’s  direct  control  variable  (i.e.,  throttle/brake).  The  reinforcement  learning  agent  captures  real-time  changes  in  the
operating environment. This is valuable in saving parameter calibration resources and improving trajectory control accuracy.
A line tracking controller keeps vehicles on track. The proposed control structure is tested using reduced-scale robot cars.
The adaptivity of the proposed control structure is demonstrated by changing the vehicle load. Then, experiments on two
fundamental  CAV platoon operations (i.e.,  platooning and split)  show the effectiveness of  the proposed trajectory  control
structure in regulating robot movements to follow time–specific reference trajectories.
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1    Introduction
Connected  and  autonomous  vehicles  (CAVs)  have  witnessed
remarkable  development,  given  their  potential  to  improve  fuel
efficiency, mitigate congestion, and enhance safety (Li et al., 2022;
Li and Li, 2023). Enabled by vehicle automation technology, CAVs’
trajectories  can  be  precisely  designed  to  accomplish  various
operations  (e.g.,  passing  a  signalized  intersection  and  forming  a
platoon)  with  specific  objectives  (e.g.,  maximizing  mobility  and
minimizing fuel consumption) (Li and Yao, 2022; Li et al., 2021).

In  the  past  decades,  extensive  models  have  been  proposed  to
plan  CAV  trajectories  in  various  application  contexts,  including
but  not  limited  to  signalized  intersections,  stop-controlled
intersections,  ramp  merging,  platooning,  and  speed
harmonization  (Yao  et  al.,  2018).  Existing  trajectory  planning
models  are  generally  single-step  or  multiple-step.  Single-step
trajectory  planning  designs  vehicle  movement  step  by  step  based
on  a  set  of  linear/nonlinear  equations  (Raboy  et  al.,  2021).  The
output is  usually  a  single  speed/acceleration value for  the current
or  next  time  step.  In  contrast,  multiple-step  trajectory  planning
devises  a  time  series  of  trajectories,  including  speed/acceleration/

location values in multiple future time steps (He et al., 2015).
Although  fruitful  theoretical  efforts  have  been  made  on  CAV

trajectory  planning,  physical  experiments  to  validate  the
theoretical  models  are  relatively  scarce,  which  are  necessary  for
transferring theoretical  models  into implementable  technology in
the real world. Most of the existing trajectory planning models are
evaluated with simulations (Li and Yao, 2022; Yao and Li,  2020),
which reveal limited insights into the model performance in real-
world settings. The fundamental issue is that in simulations, CAV
motions are often assumed to be precisely controllable, i.e., a CAV
(or  a  group  of  CAVs)  can  exactly  follow  the  planned  trajectory
(trajectories)  with  zero  location  and  speed  errors.  However,  in
reality,  precise  trajectory  control  is  almost  impossible  for  the
following  reasons.  First,  the  mechanical  control  of  a  vehicle  may
have response lag and inaccuracy depending on its electric control
and  powertrain  mechanisms  (Su  et  al.,  2018).  Further,  vehicle
operations  are  subject  to  various  exogenous  disturbances,  e.g.,
weather, roadway condition, and vehicle load. These disturbances
cause  unpredicted  errors  between  the  planned  trajectories  and
actual trajectories. Optimal trajectory control strategies are needed
to reduce the error between the planned and actual trajectories as
much as possible.

Controlling  a  vehicle  to  follow  single-step  trajectories  is
relatively  easy  since  only  one  specific  value  (e.g.,
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speed/acceleration) needs to be followed. The control of multiple-
step trajectories  is  more challenging.  Vehicles  must  be  controlled
to  follow  a  time  series  of  locations,  during  which  accumulated
errors must be considered. For example,  if  a  vehicle misses some
distance  initially,  it  must  be  controlled  to  catch  that  distance.
Otherwise,  the  vehicle  cannot  finish  the  operation  with  the
expected performance, e.g.,  fuel efficiency and mobility, and even
worse, consecutive vehicles may collide. Single-step controllers are
the  most  commonly  used  optimal  controllers  (e.g.,
proportional–integral–derivative,  PID).  They  have  been  widely
used in field tests with single-step trajectory planning. The control
input  and  output  are  single  values  (Milanes  et  al.,  2010).  For
example,  a  controller  can  take  the  speed  error  as  the  input  and
generate the adjusted acceleration. Given its simplicity, single-step
controllers  have  also  been  used  with  multiple-step  trajectory
planning (Ma et al., 2019, 2020). Although trajectories are planned
for multiple future time steps, trajectory control still  regulates the
vehicle’s  single-step movement  based on the current  state.  While
single-step  controllers  are  computationally  efficient,  the  control
performance cannot be guaranteed because it only focuses on the
current step without planning for the future.

In comparison, model predictive control (MPC) requires a time
series  of  the  reference  input  and  generates  a  time  series  of  the
system  output.  MPC  has  been  used  for  vehicle  path  tracking
(Tang et al., 2020). The objective is to ensure vehicles operate on a
designated  path  (usually  a  two-dimensional  curve).  Vehicle
longitudinal  speed  is  usually  not  regulated/kept  constant  during
path  tracking.  As  a  result,  no  time–specific  location  profiles  are
followed.  A  time–specific  location  profile  is  a  time  series  of  a
vehicle’s  locations  in  a  certain  time  horizon.  Model  predictive
control  has  also  been  used  for  regulating  a  single  vehicle’s
movements  to  follow  a  time–specific  speed  profile,  i.e.,  a  time
series of a vehicle’s speeds in a certain time horizon. The objective
is to control the vehicle’s  speed as close to the reference speed as
possible.  Since  no  surrounding  traffic  is  considered,  vehicle
time–specific  locations  are  not  regulated.  The  accumulated
location  error  is  not  addressed.  Specifically,  a  vehicle  does  not
need to mitigate the missed travel distance as long as the current
speed is  consistent  with the reference.  Without proper control  of
time–specific  locations,  existing  model  predictive  control
techniques  cannot  be  applied  to  traffic  streams  where  vehicles
interact because consecutive vehicles may collide (Campion et al.,
2018). However, using model predictive control to regulate vehicle
movements  to  follow  time–specific  location  trajectories  has  not
received much attention in the CAV literature, making it difficult
to harvest the promising benefits of the CAV technology.

More  importantly,  the  existing  trajectory  controllers  in  field
experiments usually output acceleration and speed, which cannot
be  interpreted  by  vehicles  and  robots  (Morales  and  Nijmeijer,
2016). The direct control variable is throttle/brake for vehicles and
motor rotation per minute for robots. The major challenge is how
to convert the controller output into the direct control variable of
a vehicle/robot. A few existing studies have attempted to approach
this challenge. Rajamani et al.  (2000) calculated the throttle/brake
angle  using  a  sliding  surface  controller. Milanes  et  al.  (2010)
calibrated a static lookup table to capture the relationship between
the  gas  pedal  and  the  control  error  (speed  and  distance  errors).
Recently,  some  studies  have  used  PID  controllers  to  convert
speed/acceleration  instructions  to  throttle/brake  (Raboy  et  al.,
2021).  For  accurate  speed  control,  different  model  parameters
should be calibrated in different operating environments (i.e.,  the
combination  of  various  factors,  including  but  not  limited  to
roadway conditions, vehicle load, and weather). It is impossible to
enumerate  all  possible  operating  environments.  As  a  result,  a

specific set of parameters will be used in the environment that it is
obtained  and  similar  environments  with  certain  slight  changes.
For example, parameters developed for vehicles operating on a flat
roadway  segment  can  be  used  when  vehicles  are  driving  on
segments with a small slope. This way, the control accuracy is not
guaranteed.  Intuitively,  calibrating  more  parameters  in  more
environments  contributes  to  higher  control  accuracy.  However,
the  calibration  usually  requires  a  significant  amount  of  resources
(e.g., human, time, and equipment). An adaptive conversion from
the  controller  output  to  the  vehicle/robot  control  variable  that
captures real-time environment changes is demanded to improve
vehicle  control  performance  and  save  parameter  calibration
resources.

Motivated by these research gaps, this study proposes an online
learning-based  model  predictive  trajectory  control  structure  to
regulate  vehicle  movements  to  follow  time–specific  trajectories
generated  by  multiple-step  planning  models.  A  model  predictive
controller  is  chosen  for  longitudinal  speed  control  for  higher
accuracy instead of dominantly used single-step controllers in the
literature.  A  reinforcement  learning  agent  constructs  and
maintains  the  dynamic  conversion  between  the  speed  controller
output and the vehicle/robot direct control variable. In addition, a
lateral  controller  is  used  to  control  the  vehicle’s  orientation  such
that  it  stays  on  track.  With  the  proposed  control  structure,
accurate  CAV  speed  and  location  control  is  feasible.  As  a  result,
the  promising  benefits  (e.g.,  fuel  saving  and  mobility
improvement)  of  various  CAV  operations  (e.g.,  platooning  and
eco-driving) can be harvested the most.  Reduced-scale robot cars
are utilized in this study because they require fewer resources and
do not impose any safety concerns.

The remainder  of  this  paper  is  organized as  follows.  Section 2
first describes the investigated trajectory control problem and then
introduces  the  optimal  trajectory  control  structure.  Section  3
describes  the  reduced-scale  platform.  Section  4  presents  field
experiment  results  and  verifies  the  effectiveness  of  the  proposed
control  structure.  Section  5  concludes  this  paper  and  points  out
future research directions.

2    Optimal control
This  section  first  introduces  the  investigated  trajectory  control
problem.  Next,  it  proposes  an  online  learning-based  model
predictive  control  structure  to  regulate  vehicle  longitudinal  and
lateral  movements  to  follow  time–specific  speed  and  location
profiles. Further, a benchmark is developed for comparison.

2.1    Trajectory control problem statement
This  study  investigates  the  trajectory  control  problem to  regulate
CAV  movements  to  finish  the  intended  operation  (e.g.,  speed
harmonization  and  platooning)  safely  and  achieve  the  expected
performance (e.g., improving mobility and fuel efficiency).

CAV  control  includes  two  components,  i.e.,  longitudinal
control  and  lateral  control.  Longitudinal  control  is  to  regulate  a
vehicle’s  longitudinal  movements  to  follow  the  time–specific
speed  and  location  trajectories  (i.e.,  references).  Lateral  control  is
to  regulate  a  vehicle’s  lateral  motions  to  follow  the  time–specific
orientation reference so that it can stay on the designated track.

t ∈ [0,T]
X̂ := {x̂ (t)}t∈[0,T]

V̂ := {v̂ (t)}t∈[0,T]

Ô := {ô (t)}t∈[0,T]

Given a  period ,  a  time–specific  location reference  is
the set of a vehicle’s target locations .  A time–
specific  speed  reference  is  the  set  of  a  vehicle’s  target  speeds

. A time–specific orientation reference is the set
of  a  vehicle’s  target  orientation  angles .  Given
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X := {x (t)}t∈[0,T]
V := {v (t)}t∈[0,T]
O := {o (t)}t∈[0,T]

ex (t) := x (t)− x̂ (t)
ev (t) := v (t)− v̂ (t) eo (t) := o (t)− ô (t)

the response lag and inaccuracy of vehicle mechanical control and
the  presence  of  various  disturbances  in  the  real  world,  e.g.,  road
conditions,  weather,  and  vehicle  load,  the  actual  movements  of
vehicles  cannot  be  exactly  like  the  references.  A  vehicle’s  actual
location and speed profiles are denoted as  and

.  The  actual  orientation  is  denoted  as
.  Errors  are  expected  between  the  actual

movements and the references, denoted by ,
,  and .  This  study

proposes  an  effective  control  structure  to  minimize  these  errors
and  maximize  the  corresponding  benefits  of  actual  CAV
operations.

n− 1
n
g (t) := xn−1 (t)− xn (t) ≥ g

Vehicles  interact  with each other  in real-world traffic.  For safe
operations  (e.g.,  platooning),  besides  minimizing  the  individual
vehicle  control  errors,  the  inter-vehicle  distance  should  also  be
regulated  so  consecutive  vehicles  that  do  not  collide.  The  gap
between  the  preceding  vehicle  and  the  following  vehicle

 should  always  be  no  less  than  a  safety  distance,
, to ensure the operation safety.

2.2    Online learning-based model predictive control

x̂ v̂ x v
ṽ

ṽ
v

An  online  learning-based  model  predictive  control  (OLMPC)
structure  with  three  feedback  loops  is  proposed  to  accomplish
speed and location control while line tracking, as shown in Fig. 1.
The longitudinal control outer loop regulates the vehicle to follow
the target trajectory with a model predictive controller. The target
trajectory (  and )  and the vehicle’s  actual  trajectory (  and )
are  fed  into  the  controller  to  generate  the  adjusted  speed .
However,  the  adjusted  speed  cannot  be  interpreted  by  vehicles.
Vehicles’ direct  control  variable  (DCV)  is  usually  the
throttle/brake.  Thus,  the longitudinal  control  inner loop converts
the  speed to  the  DCV with  a  reinforcement  learning  (RL)  agent.
The  inputs  of  the  RL  agent  are  the  adjusted  speed  and  the
vehicle’s actual speed . The output is the adjusted DCV. The RL

eo
õ

agent  dynamically  updates  the  conversion  to  account  for  the
vehicle operating environment changes. Finally, the lateral control
loop  controls  the  vehicle  to  follow  a  designated  track  with  a
tracking controller.  The  tracking error  is  fed  into  the  tracking
controller  to  produce  the  adjusted  orientation .  Once  the
adjusted  DCV  and  orientation  are  applied,  the  vehicle’s  actual
movement  is  measured  after  the  vehicle  dynamics  and  used  for
the next control step.

The frequency of the longitudinal inner loop should be greater
than that of the outer loop so that the RL agent has enough time
to  compensate  for  disturbances  before  they  affect  the  outer  loop.
The  faster  the  inner  loop  is,  the  better  the  disturbance
compensations  are  (Bolton,  2015).  The  resulting  speed  control
accuracy  would  be  higher.  The  remainder  of  this  subsection
presents the details of each control loop.

xn−1 (t)− xn ≥ g

It should be noted that the proposed OLMPC is for individual
vehicle  control.  Regarding  traffic  streams  including  multiple
vehicles,  each  following  vehicle  should  be  equipped  with  an
additional  spacing/headway  controller,  which  regulates  the  safe
distance  between  vehicles  so  that  no  collisions  happen,  i.e.,

.  Well-established  control  methods  can  achieve
this goal, e.g., linear–quadratic regulator, PID, and MPC.

2.2.1    Model predictive speed control

x̂ v̂

t t+ ΔT

A  model  predictive  controller  is  used  for  the  longitudinal  outer
loop to  control  the  vehicle’s  longitudinal  speed.  It  not  only  takes
care of the current time step but also plans for the future. Thus, it
is  expected  to  yield  better  control  accuracy  than  single-step
controllers.  The  goal  of  the  model  predictive  controller  is  to
control vehicles to follow target trajectories (  and ) smoothly for
riding comfort and fuel efficiency. The objective function, Eq. (1),
is formulated below to achieve this goal with a control period from
 to .  The  first  two  terms  in  the  numerator  are  the

trajectory control errors, and the last term regulates speed jumps.

J = min
v

w t+ΔT

t
wx × (x (t′)− x̂ (t′))2 + wv × (v (t′)− v̂ (t′))2 + wa × a(t′)2dt′

ΔT (1)

subject to Eq. (2): {
v ≤ v (t′) ≤ v
a ≤ a (t′) ≤ a

(2)

v̂ (t′) v (t′)where  is  the  target  speed;  is  the  vehicle’s  actual

x̂ (t′) =
w t+t′

t
v̂ (t∗)dt∗ x (t′) =w t+t′

t
v (t∗)dt∗ a (t′) = dv

dt
wx wv wa

v (t′)
[v, v] [a, a]

speed;  is  the  target  location; 

 is  the  vehicle’s  actual  location;  is  the
vehicle’s  actual  acceleration; , ,  and  are  the  weight
parameters. Control variable  is bounded by speed limits, i.e.,

. The vehicle’s acceleration is also bounded, i.e., . State-
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Fig. 1    Online learning-based model predictive control structure with three feedback loops.
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Ṽ := {ṽ (τ)}τ∈[t,t+ΔT]

of-the-art solvers can quickly solve this optimization problem after
discretization with only dozens of variables. The resulting optimal
solution  is  the  adjusted  speed  sequence,  denoted  by

,  that  regulates  a  vehicle’s  longitudinal
movements to be close to the target.

2.2.2    Fuzzy Q-learning conversion

ṽ

ev (t) ε ε
eu (t)

eu (t)
eu (t) N

eu (t)

N ε N

ε N

a = 0.6 and N = 7

eu
eu < −0.4 eu ≥ −0.4

eu (t) μ
μ

M

A Q-learning  agent  is  chosen  for  the  longitudinal  control  inner
loop to convert the adjusted speed  to the adjusted DCV so that
vehicles  can  understand  the  control  instruction,  given  its
computation  efficiency  and  satisfying  performance  demonstrated
in  the  literature  (Clifton  and  Laber,  2020; Yang  et  al.,  2020).  It
updates  the  conversion  online  while  the  vehicle  is  running  to
accommodate possible changes in the operating environment, e.g.,
test  track  and  vehicle  load  changes.  The  state  of  the Q-learning
agent is defined as the longitudinal speed control error calculated
as  the  difference  between  the  vehicle’s  actual  speed  and  the
adjusted  speed  returned  by  the  speed  controller.  This  state  is
inherently  continuous  and  unbounded.  Consequently,  the
resulting Q-table, with states as rows and actions as columns, is of
infinite size,  rendering it  impossible to be fully trained.  Thus,  the
speed control error  is transformed in the range of [– , ] by
a  sigmoid  function  and  is  denoted  by .  Instead  of  simply
discretizing  into a limited number of states by a unit, fuzzy
logic is used to represent the continuous state space  with 
state membership functions defined. Fuzzy logic can depict 
with  countless  speed  error  statuses,  which  are  the  weighted
summation  of  the  states.  Parameters  and  should  be
adjusted  to  produce  satisfying  conversion  accuracy  within  a
reasonable  training  time.  Specifically,  greater  and  values
depict the control error more precisely but result in a large q-table
that  can  be  difficult  to  converge.  An  example  is  given  in Fig.  2
when .  Speed  control  error  (or  state)
membership  functions  include  Negative  Big  (NB),  Negative
Medium  (NM),  Negative  Small  (NS),  Zero  (Z),  Positive  Small
(PS),  Positive Medium (PM), and Positive Big (PB) (Chiou et al.,
2012). Note that these functions exhibit continuity throughout the
speed  control  error  range.  For  instance,  NB  is  positive  when

 and equal to zero when  (which may not be
clearly  discernible  in Fig.  2 due  to  overlapping).  For  an  error

,  the  firing  strength  of  each  membership  function  is
measured.  indicates the degree to which the agent (i.e., vehicle)
is  in  a  state  (i.e.,  speed  control  error).  A  set  is  defined,
including  the  indexes  of  membership  functions  whose  firing
strengths are greater than zero.

σ σ

Δ J
σ Δ

σ
Δ

n ∈ [1,N] J

The action in Q-learning corresponds to  the  rate  at  which the
vehicle’s  DCV  is  adjusted,  and  this  parameter  is  also  continuous
and  unbounded.  Given  that  the  DCV  adjustment  rate  directly
influences  the  vehicle’s  acceleration  (with  greater  adjustment
leading to  higher  acceleration),  it  is  constrained within  the  range
of  [− , ]  to  avoid  significant  speed  adjustment  for  riding
comfort  and  fuel  efficiency.  Further,  the  adjusting  rate  is
discretized by a small  interval ,  resulting  actions in total.  The
values  of  and  should  be  selected  per  application  needs.  A
greater  leads  to  a  faster  vehicle  control  response  with  the
sacrifice of a greater speed adjustment. A greater  contributes to
faster Q-learning convergence, but the speed control performance
may not be as accurate because the adjustment is not precise. For
every state , there are  actions available. The Q-learning
agent, i.e, the vehicle, selects the optimal action that maximizes its

expected  reward.  This  reward  is  instrumental  in  updating  the q-
table for guiding future action selections. The q-table is iteratively
updated  as  the  agent  interacts  with  the  environment,  continuing
until convergence is reached, signified by minimal changes in the
table values.

eu (t) = 0.5
m ∈ M = {6,7}

μ6 = μ7 = 0.5

an

μn rDCVadj =
∑

n∈N an × μn = −0.10 × 0.5 +

(−0.08 × 0.5) = −0.09

An  example  is  given  as  follows.  Assume ,
 indicating that PM and PB are fired. The firing

strength are equal, i.e., . Next, assume that the best
action for PM is decreasing the DCV by 10%, and the best action
for PB is decreasing the DCV by 8%. The DCV adjusting rate after
fuzzy  logic  would  be  the  sum  of  adjusting  rates  weighted  by
firing strengths , i.e., 

.  The current  DCV will  be decreased by
9%.  Subsequently,  once  the  adjusted  DCV  is  implemented,  the
vehicle’s updated state is observed to compute the action reward.
The specific steps of the fuzzy Q-learning algorithm are elucidated
in the  following section.  For  more details,  readers  are  referred to
Glorennec and Jouffe (1997).

2.2.3    Line tracking

The line tracking controller should be rather efficient and run at a
high frequency such that  the  vehicle  can stay  on track,  especially
when it comes to winding tracks.

eo

õ

The  most  popular  vehicle  lateral  movement  controller  (line
tracking  controller)  in  the  existing  literature  is  pure  pursuit
(Coulter,  1992).  The  input  of  pure  pursuit  is  vehicle  orientation
error/tracking  error ,  which  is  the  angle  between  the  vehicle’s
orientation  and  the  look-ahead  line.  The  output  is  the  adjusted
orientation (turning angle) , computed as Eq. (3):

õ (t) = arctan
(
2l × sin (eo (t))

d

)
(3)

l dwhere  is the vehicle length and  is the look-ahead distance.
Besides  pure  pursuit,  other  efficient  methods  can  also  be  used

for  vehicle  lateral  control,  such  as  PID  control  (Normey-Rico  et
al., 2001). The same control error as in pure pursuit or other error
measurements  can  be  used,  e.g.,  the  distance  between  the
longitudinal centerline of the vehicle body and the track. The PID
lateral control output is formulated as Eq. (4):

õ (t) = kp × eo (t) + ki ×
w
eo (t)dt+ kd ×

deo
dt (4)

kp ki kd

eo (t) deo
eo (t) dt

where  is the proportional gain,  is the integral gain,  is the
derivative  gain,  is  the  tracking  error,  is  the  change  in

, and  is the change in time. The lateral control output can
be applied to the vehicle’s steering system to adjust the orientation.
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2.3    Benchmark
A  benchmark  is  developed  with  two  feedback  loops  for
comparison  based  on  the  literature,  as  shown  in Fig.  3.  The
longitudinal  loop  controls  the  vehicle’s  speed  with  a  single-step
controller  (i.e.,  PID).  The  output  is  the  adjusted  DCV  instead  of
the  adjusted  speed  as  the  OLMPC.  Therefore,  the  longitudinal
control inner loop (RL agent) is no longer needed. The lateral loop

controls the vehicle to follow the designated track with a tracking
controller, like the OLMPC.

ex ev
λ (t)

In  the  longitudinal  control  loop,  the  PID controller  inputs  are
the  location  and  speed  control  errors,  and .  The  PID speed
control output  is formulated as Eq. (5):

λ (t) = Kλ
p × ex (t) + Kλ

p′ × ev (t) + Kλ
i ×

w
ev (t)dt+ Kλ

d ×
dev
dt
(5)
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Kλ
p Kλ

p′ Kλ
i

Kλ
d dev ev (t)

where  and  are  the  proportional  gains,  is  the  integral
gain,  is the derivative gain, and  is the change in .

3    Reduced-scale platform
Given the limited resources, this subsection constructs a reduced-
scale  robot  car  platform  to  test  the  effectiveness  of  the  proposed
OLMPC.  Small-scale  robot  cars  can be  totally  under  control  and
thus  will  not  impose  any  safety  concerns  during  experiments.
They are effective alternatives in testing theoretical models before
moving  into  full-scale  vehicles.  The  reduced-scale  platform
includes  Pololu Zumo 32U4 robots,  infrared sensors  for  distance
measurement,  a  PC for  extensive computations (an Intel  Core i5
processor,  8G  RAM,  and  macOS),  Wi-Fi  chips  for
communication, and a ring test track.

3.1    Robots
The Pololu Zumo 32U4 robot (75:1 HP) is  used to construct the
physical testbed. It has a length of 9 cm and a width of 10 cm. The
reason for choosing this robot is 4-fold. First, it is controlled by an
Arduino  microcontroller,  which  is  convenient  to  program  and
compatible with various accessories. Second, it is loaded with line
sensors that facilitate line tracking. Third, it features an extra serial
port  that  can  install  a  communication  chip  for  information
sharing  with  the  computer.  Fourth,  two  robot  motors  are
equipped with encoders through which we can read the real-time
position and speed of the robot.

3.2    Distance measurement
An infrared sensor (i.e., GP2Y0A51SK0F) is installed on the robot
to  measure  distance  with  almost  no  measurement  delay.  Analog
signals  (i.e.,  the  output  voltage)  returned  by  this  sensor  are
converted into digital signals (i.e., the measured distance). A robot
can  measure  the  distance  between  itself  and  the  preceding  robot
with  this  sensor.  With  the  measured  distance,  the  robot  can  act
appropriately  to  avoid  collisions  with  the  help  of  a  fine-tunned
proportional-derivative (PD) controller.

When  vehicles/robots  are  distant,  their  movements  are
regulated  by  the  proposed  OLMPC.  When  consecutive
vehicles/robots are close (i.e., the car-following distance is less than
a  certain  threshold),  the  PD  controller  of  the  following
vehicle/robot will be activated to guarantee safety.

3.3    Wireless communication
A  Wi-Fi  chip  (i.e.,  ESP8266)  is  installed  on  the  robot  for
communication.  The  reason  for  choosing  this  chip  is  that  it
consumes  less  power  and  supports  IP/TCP  protocol.  With  this
chip loaded, the robot can communicate with the PC via the Wi-

Fi router.  The PC generates vehicle time–specific  trajectories and
sends them to robots via the Wi-Fi router. On the other hand, the
robot’s real-time speed is read from encoders and sent back to the
PC.

3.4    Test track
We set up a ring track with an inner radius of 110 cm and a track
width of 5 cm, as shown in Fig. 4. Robot line sensors are activated
to  track  lines  based  on  reflectivity.  The  reflectivity  of  the
whiteboard is greater than that of the black tape. Thus, robots stick
to the ring track of the black tape.

3.5    OLMPC  customization  for  robots  without  steering
systems
The  OLMPC  proposed  for  full-scaled  vehicles  directly  applies  to
robots  with  steering  systems  through  which  we  can  control  the
robot’s  turning  angle.  Yet,  when  it  comes  to  robots  without
steering  systems,  e.g.,  Pololu  Zumo  32U4  robots,  the  OLMPC
needs to be modified.  Specifically,  the lateral  control  loop can no
longer be independent of longitudinal loops but cascades inside, as
shown in Fig. 5.

Without a steering system, the angular movement of the robot
is  accomplished  by  assigning  different  DCV  values  (i.e.,  rotation
per minute) to two motors. Specifically, a greater DCV is given to
the  right  motor  if  the  robot  needs  to  adjust  to  the  left,  and  a
greater  DCV  is  assigned  to  the  left  motor  if  the  robot  needs  to
adjust to the right.

Given  the  limited  computation  capability  of  the  Pololu  Zumo
robots,  a  PID  controller  is  chosen  for  line  tracking,  given  its
satisfying  accuracy  and  excellent  computation  efficiency.  Besides,
the  robot  can  complete  the  PID control  without  communicating
with the PC via a Wi-Fi network, so no communication lags exist.
 

r = 110 cm

d = 5 cm

Fig. 4    Test track.
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õ (t)

Thus, the PID lateral control is more efficient than other optimal
control  methods  that  must  be  done  by  the  PC.  The  PID  lateral
control output  is formulated in Section 2.2.3.

DCVR DCVLThe right motor DCV ( ) and left motor DCV ( )
are computed as Eq. (6) and Eq. (7), respectively:

DCVR = DCVadj − õ (6)

DCVL = DCVadj + õ (7)

DCVadjwhere  is  the  PID  lateral  control  input,  i.e.,  the  adjusted
DCV  returned  by  the  RL  agent.  It  should  be  noted  that  if
robots/vehicles  with  steering  systems  are  used,  the  lateral  control
output can be directly used as the steering angle.

The  lateral  control  loop  runs  every  0.05  s.  The  inner  loop  for
longitudinal control operates every 0.1 s, while the other loop runs
at a 0.2-s interval.

4    Experiments
This section conducts experiments to test the performance of the
OLMPC.  Section  4.1  tests  the  adaptivity  of  the  OLMPC  by
changing the robot load. Next, Section 4.2.1 evaluates the OLMPC
in  regulating  robot  movements  to  follow  time–specific  reference
trajectories  to  finish  platoon  formation  and  split  operations.
Section  4.2.2  compares  the  OLMPC  with  a  benchmark  in
regulating robot movements.

4.1    Adaptivity tests
This  study  uses  changes  in  the  robot  load  as  an  example  to
investigate  how  the  proposed  OLMPC  adapts  to  changes  in  the
robot’s  operating  environment.  Objects  are  added  on  top  of  the
robot  to  simulate  load  changes.  The  robot  weighs  about  275  g,

including batteries.  However,  it  can carry objects  weighing much
more than itself because of the great torque value, i.e., 23.3 cN·m.
Two  tests  using  two  objects  of  different  weights  are  conducted,
respectively.  The  test  results  are  presented  in Fig.  6.  The  way
objects are placed on robots is shown in the left corner of Fig. 6b.

In Fig. 6a, an object weighing 180 g is added on top of the robot
at  around  12  s.  The  robot  slows  down.  The  minimum  speed  is
about  0.43  m/s  (i.e.,  the  dent  in Fig.  6a).  In  response,  the
reinforcement learning agent automatically adjusts the conversion
from speed to revolutions per  minute (RPM) by updating the q-
table  to  adapt  to  the  new  vehicle  load.  After  5  s  of  the  load
changing,  the  robot’s  speed is  recovered to  the  target.  In Fig.  6b,
an object weighing 430 g is added to the robot at around 10 s. The
robot  speed drops  to  about  0.3  m/s.  Similarly,  the  learning agent
adjusts  the  conversion  from  speed  to  RPM  to  accommodate  the
load change. After 12 s of the load changing, the robot’s speed is
recovered  to  the  target.  More  adapting  time  is  needed  than  the
first  test  because  of  the  more  substantial  load  change.  Adapting
time  can  be  sped  up  by  using  more  stable  robots  with  better
motors  and  employing  advanced  reinforcement  learning
techniques for more precise speed-to-RPM conversion.

In  comparison,  the  load  is  also  changed  when  the  robot  is
controlled by the PID-based benchmark. In Fig. 6c, when adding
the lighter object, the robot speed decreases to about 0.43 m/s. The
PID  speed  controller  tries  to  mitigate  the  speed  difference  from
the target,  as  indicated by the slight  speed increase after  the dent
(the red arrow). However, given the limited capabilities of the PID
controller with fixed parameters, the robot speed is not recovered
to the target.  It  stays  around 0.47 m/s  after.  In Fig.  6d,  the  robot
speed drops to only 0.29 m/s after adding the heavier object. The
PID controller tries to make up the speed difference yet fails. The
robot  speed  only  recovered  to  about  0.32  m/s  and  stayed
oscillating  around  it.  To  catch  up  with  the  target  speed,  the
benchmark parameters (specifically, PID parameters) must be re-
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calibrated  after  the  robot  load  changes.  This  requires  additional
effort and resources.

The  above  results  indicate  that  the  proposed  OLMPC  can
automatically accommodate the changing operating environment
to ensure  the  trajectory  control  performance,  which greatly  saves
motor calibration resources (e.g.,  manually updating the speed to
RPM conversion). Vehicle load change is only one of the common
changes  in  the  vehicle  operating  environment.  Given  the
constraints of space, it is important to note that this study does not
comprehensively test for variations in other factors like track grade
and weather,  which are also anticipated to occur frequently.  This
opens avenues for further research opportunities.

This  subsection  tests  a  constant  target  speed  for  illustration
because the robot speed can quickly recover (in seconds). It should
be  noted  that  the  OLMPC  can  also  adapt  to  changes  when  the
target  is  varying  but  with  a  longer  adapting  time.  To  facilitate
future  CAV  time–specific  trajectory  control,  state-of-the-art
reinforcement learning convergence expedition techniques should
be  incorporated  (Hossain  et  al.,  2020; Majumdar  et  al.,  2018;
Nishio and Yamane, 2018).

4.2    Platoon operations
To  test  the  effectiveness  of  the  OLMPC  in  controlling  robot
motions,  two  fundamental  platoon  operations  are  tested,
including  platooning  and  split.  Platooning  is  to  cluster  scattered
vehicles/short  platoons  into  long  platoons  such  that  vehicles  can
pass  roadway segments  more  efficiently.  On the  opposite,  split  is
to  separate  long  platoons  into  individual  vehicles/short  platoons
such that vehicles can reach their destinations. Detailed trajectory
planning algorithms for the two operations can be found in Li and
Li  (2022, 2023).  In  this  study,  two  robots  are  utilized  to
demonstrate the two operations. Key operation parameters follow.

0.02m/s2 −0.02 m/s2

0.02 m/s2
−0.02 m/s2

m/s
m/s

Platooning  operation:  maximum  speed  is  0.5  m/s,  maximum
acceleration is , minimum acceleration is ,
initial gap (or spacing) is 1.2 m, initial speed is 0.4 m/s, platooning
gap is 0.18 m, and platooning speed is 0.5 m/s. Splitting operation:
maximum speed is 0.5 m/s, maximum acceleration is ,
minimum  acceleration  is ,  initial  platooning  gap  is
0.18  cm,  initial  platooning  speed  is  0.4 ,  and  ending  gap  is
1.2  m,  and  ending  speed  is  0.4 .  The  platooning  operation
takes  12.4  s,  and  the  split  operation  takes  10  s.  Adaptivity  is  not
tested  during  these  two  operations  because  of  their  short
durations.  The  adapting  time  may  be  longer  than  the  operation
time.  Future  studies  should  incorporate  state-of-the-art  RL
convergence expedition techniques to accelerate the adapting time.
This  study  is  intended  to  illustrate  the  feasibility  of  using  RL
methods to help control CAVs instead of proposing the perfect RL
models.

4.2.1    Online learning-based model predictive control

Test  results  using  the  OLMPC are  plotted  in Fig.  7.  The  average
root  mean  square  error  (RMSE)  between  the  robot’s  actual
trajectory  and  the  planned  reference  trajectory  is  computed  to
quantify  the  control  accuracy.  It  is  shown  that  the  two  robots
follow  the  planned  trajectories  to  finish  the  platooning  and  split
operations safely without much error.

In  the  platooning  operation  (Fig.  7a),  the  preceding  robot’s
location  RMSE  is  as  small  as  0.039  m,  and  the  following  robot’s
location RMSE is only 0.015 m. In the split operation (Fig. 7b), the
preceding  robot’s  location  RMSE  is  0.061  m,  and  the  following
robot’s  location  RMSE  is  only  0.023  m.  The  small  difference
between  the  robot’s  actual  trajectory  and  the  planned  trajectory
demonstrates  the  effectiveness  of  the  proposed  OLMPC  in
regulating robot movements.

 

Spacing planned
Spacing actual

Spacing planned
Spacing actual

Following robot actual
Preceding robot actual
Following robot planned
Preceding robot planned

Following robot actual
Preceding robot actual
Following robot planned
Preceding robot planned

0 5 10
Time (s)

150 5 10
Time (s)

Lo
ca

tio
n 

(m
)

Lo
ca

tio
n 

(m
)

15

0 5 10
Time (s)

150 5 10
Time (s)

15

8

6

4

2

0

Lo
ca

tio
n 

(m
)

8

6

4

2

0

1.2

1.0

0.8

0.6

0.4

0.2

0

Lo
ca

tio
n 

(m
)

1.2

1.0

0.8

0.6

0.4

0.2

0

(a)

(b)

Platooning

Split

Fig. 7    Field tests with the OLMPC: (a) platooning operation; (b) split operation.

Online learning-based model predictive trajectory control for connected and autonomous vehicles: Modeling and physical tests 93

https://doi.org/10.26599/JICV.2023.9210026
 



4.2.2    Comparison with a benchmark

This subsection compares the test results of the OLMPC with the
benchmark by looking into the detailed control errors of a single
vehicle.

The  location  and  speed  trajectories  of  the  preceding  vehicle
when  executing  the  platooning  operation  are  plotted  in Fig.  8.
Fig.  8a shows  the  location  control  results  of  the  OLMPC.  The
RMSE  value  is  as  small  as  0.039  m. Fig.  8b shows  the  location

 

Robot actual
Reference

Robot actual
Reference

Robot actual
Reference

Robot actual
Reference

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)

15

0 5 10
Time (s)(a)

(b)

(c)

(d)

15

Lo
ca

tio
n 

(m
)

Lo
ca

tio
n 

er
ro

r (
m

)

7

6

5

4

3

2

1

0

Lo
ca

tio
n 

(m
)

Sp
ee

d 
(m

/s
)

7

6

5

4

3

2

1

0

0.55

0.50

0.45

0.40

0.35

0.30

Sp
ee

d 
er

ro
r (

m
/s

)

0.04

0.20

0

−0.02

−0.04

Sp
ee

d 
(m

/s
)

0.55

0.50

0.45

0.40

0.35

0.30

Sp
ee

d 
er

ro
r (

m
/s

)

0.04

0.20

0

−0.02

−0.04

0.08

0.06

0.04

0.02

0

−0.02

−0.04

Lo
ca

tio
n 

er
ro

r (
m

)

0.20

0.15

0.10

0.05

0

Fig. 8    Control result comparison: (a) OLMPC–location; (b) benchmark–location; (c) OLMPC–speed; (d) benchmark–speed.

94 Q W Li, P Zhang, H D Yao, et al.

J Intell Connect Veh 2024, 7(2): 86−96
 



control  results  of  the  benchmark  (i.e.,  PID).  The  RMSE  value  is
0.126  m.  The  location  control  accuracy  is  improved  by  69%.
Fig. 8c shows the speed control results of the OLMPC. The RMSE
value  is  as  small  as  0.017  m/s. Fig.  8d shows  the  speed  control
results of the benchmark (i.e., PID). The RMSE value is 0.024 m/s.
The  speed  control  accuracy  is  improved  by  29%.  The
improvement  illustrates  the  superiority  of  the  proposed  OLMPC
in  controlling  robot  time–specific  trajectories  compared  with  the
benchmark.

5    Conclusions
This  study  proposes  an  online  learning-based  model  predictive
control  (OLMPC)  structure  to  regulate  vehicle  movements  to
follow  time–specific  trajectories.  A  model  predictive  controller  is
chosen  to  control  the  vehicle’s  longitudinal  speed  for  higher
accuracy  than  single-step  controllers.  Since  the  direct  control
variable  of  vehicles  is  throttle/brake  (rotation  per  minute  for
robots) rather than speed (i.e., the output of the model predictive
controller), a reinforcement learning agent is adopted to construct
and maintain the dynamic conversion from the model predictive
controller  output  to  the  vehicle/robot  direct  control  variable.
Operating  environment  changes  can  be  automatically  accounted
for.  This saves engine/motor parameter calibration resources and
improves  the  trajectory  control  accuracy  compared  to
constructing static lookup tables like the existing literature. Lateral
movements  are  also  controlled  so  vehicles/robots  can  operate  on
the designated track.

Reduced-scale  robot  car  tests  are  conducted  to  verify  the
adaptivity  of  the  OLMPC  in  the  presence  of  operating
environment  changes  (e.g.,  load change).  Robot  car  tests  are  also
carried out to finish a platooning operation and a split operation,
which  we  propose  in  two  previous  trajectory  planning  studies.
Results show that, with the OLMPC structure, robots’ movements
are  regulated  to  follow  the  reference  time–specific  trajectories  to
finish the intended operations with much error. Specifically, in the
platooning  operation,  the  robot’s  location  RMSE  is  as  small  as
0.039  m,  and  the  speed  RMSE  is  only  0.017  m/s;  in  the  split
operation,  the  robot’s  location  RMSE  is  0.061  m,  and  the  speed
RMSE is only 0.013 m/s. Further, the superiority of the OLMPC in
regulating  robot  movements  is  demonstrated  by  comparing  it
with a benchmark (constructed based on PID). Overall, this study
fills the void of time–specific CAV trajectory control, which is the
premise of implementing theoretical trajectory planning models in
the field and harvesting the benefits of the CAV technology. There
are  several  research  directions  along  which  this  study  can  be
extended  to.  First,  the  control  performance  can  be  improved  by
upgrading  the  hardware.  Specifically,  line  tracking  can  be  more
accurate  using  model  prediction  control  if  robots/vehicles  with
better  computation  capabilities  and  motor  configurations  are
utilized.  This  will  result  in  less  disturbance  on  the  longitudinal
speed control, and the reinforcement learning agent can construct
a  more  accurate  speed  to  RPM/throttle/brake  conversion.
Currently,  robot  localization  is  accomplished  by  referring  to  the
travel  distance  measured  by  the  robot  itself.  Better  localization
accuracy is expected if a camera can be set up to overlook the test
track.  The  same expectation applies  to  full-scale  tests  with  CAVs
equipped with Lidars that can accurately localize vehicles. Second,
this study adopts a simple reinforcement learning method (i.e., Q-
learning).  More  advanced  models  can  be  tested  for  a  more
accurate  speed  to  RPM  conversion.  Also,  expedition  techniques
should  be  incorporated  to  accelerate  reinforcement  learning
convergence,  especially  when  the  target  speed  varies  with  time
(Hossain et al., 2020; Majumdar et al., 2018).
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