
Received 28 February 2024; revised 11 July 2024; accepted 23 August 2024.
Date of publication 29 August 2024; date of current version 6 September 2024.

The associate editor coordinating the review of this article and approving it for publication was Y. Deng.

Digital Object Identifier 10.1109/TMLCN.2024.3452057

Node Cardinality Estimation in the Internet of
Things Using Privileged Feature Distillation

PRANAV S. PAGE 1,2, ANAND S. SIYOTE3, VIVEK S. BORKAR 2 (Life Fellow, IEEE), AND
GAURAV S. KASBEKAR 2 (Member, IEEE)

1Carnot Technologies, Mumbai 400059, India
2Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India

3TIH Foundation for IoT and IoE, Indian Institute of Technology (IIT) Bombay, Mumbai 400076, India

CORRESPONDING AUTHOR: G. S. KASBEKAR (gskasbekar@ee.iitb.ac.in)

The work of Vivek S. Borkar and Gaurav S. Kasbekar was supported by Grant RD/0222-EETIHBY-014.

ABSTRACT The Internet of Things (IoT) is emerging as a critical technology to connect resource-
constrained devices such as sensors and actuators as well as appliances to the Internet. In this paper, a novel
methodology for node cardinality estimation in wireless networks such as the IoT and Radio-Frequency
Identification (RFID) systems is proposed, which uses the Privileged Feature Distillation (PFD) technique
and works using a neural network with a teacher-student model. This paper is the first to use the powerful PFD
technique for node cardinality estimation in wireless networks. The teacher is trained using both privileged
and regular features, and the student is trained with predictions from the teacher and regular features.
Node cardinality estimation algorithms based on the PFD technique are proposed for homogeneous wireless
networks as well as heterogeneous wireless networks with T ≥ 2 types of nodes. Extensive simulations,
using a synthetic dataset as well as a real dataset, are used to show that the proposed PFD based algorithms
for homogeneous as well as heterogeneous networks achieve much lower mean squared errors (MSEs) in
the computed node cardinality estimates than state-of-the-art protocols proposed in prior work. In particular,
our simulation results for the real dataset show that our proposed PFD based technique for homogeneous
(respectively, heterogeneous) networks achieves a MSE that is 92.35% (respectively, 94.08%) lower on
average than that achieved by the Simple RFID Counting (SRCs) protocol (respectively, T-SRCs protocol)
proposed in prior work while taking the same number of time slots to execute.

INDEX TERMS Medium access control protocols, Internet of Things, node cardinality estimation, privi-
leged feature distillation, neural network.

I. INTRODUCTION

THE Internet of Things (IoT) is emerging as a critical
technology to connect a large number of resource-

constrained devices such as sensors and actuators as well
as appliances to the Internet [1]. Many industries, including
smart grids, healthcare, vehicular telematics, smart cities,
security and public safety, agriculture, and industrial automa-
tion, extensively use IoT networks [2]. Active research is
being conducted on designing effective networking protocols
to handle the growing number of IoT devices. The design
of Medium Access Control (MAC) protocols for IoT net-
works is particularly challenging because of their unique
characteristics [3]. For instance, (i) network access must be

provided to a large number of IoT devices, (ii) most IoT
devices are battery-powered and have limited power avail-
ability, and (iii) the Quality of Service (QoS) requirements
in IoT applications differ from those in human-to-human
(H2H) communications [3]. A key component of a MAC
protocol for IoT networks is a node cardinality estimation
protocol that rapidly estimates the number of active devices
(i.e., the devices that currently have some data that needs to be
transferred to the base station (BS)) in every time frame [3].
This is because these estimates can be used to determine
the optimal values of various MAC protocol parameters such
as contention probability, contention period duration, data
transmission period duration, etc. [4], [5], [6].

VOLUME 2, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

1229

https://orcid.org/0000-0002-8239-9670
https://orcid.org/0000-0003-0756-5402
https://orcid.org/0000-0002-9381-2803

Node cardinality estimation protocols also have a large
number of applications apart from their use in MAC protocol
design, as will now be explained. They are used in [7] to
periodically estimate the numbers of vehicles moving on
various congested routes; the estimated information can be
used to dynamically adapt the ON/ OFF periods of traffic
lights based on vehicle density. Consider a farm with sensors
installed to track a number of variables such as temperature
and soil moisture. Before gathering the actual data from the
active sensors, a Mobile BS (MBS), e.g., one mounted on an
Unmanned Aerial Vehicle (UAV), navigates over the agricul-
tural area and stops at designated locations to estimate the
number of active sensors [8]. This increases the effectiveness
of data collection because the MBS can optimally determine
the amount of time it needs to spend at each stop when it sub-
sequently returns to the same locations to collect the actual
data and because it can inform the active sensors when to be
available for sending the data based on the estimates. During
or after natural calamities such as floods and earthquakes,
MBSs hover above the affected area to estimate the number
of people who need help. These estimates are used to plan
disaster relief efforts and efficiently distribute supplies [9].
Also, numerous Radio-Frequency Identification (RFID) sys-
tems use node cardinality estimation protocols for inventory
management, tag identification, missing tag detection, etc.
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19]. Hence,
the focus of this paper is on designing effective schemes for
node cardinality estimation.

Extensive research has been conducted on the problem
of node cardinality estimation in IoT networks and RFID
systems. Most of this research is focused on node cardinality
estimation in a homogeneous network, wherein the network
consists of only one type of nodes [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41]. In addition, some
work has been carried out on node cardinality estimation
in a heterogeneous network, i.e., a network consisting of T
types of nodes, where T ≥ 2 is an integer [2], [4], [5], [42],
[43], [44], [45], [46], [47], [48]. Different types of nodes
in a heterogeneous network may have different hardware
and software capabilities such as different processor speeds,
transmission power, memory, battery life, etc.; also, different
types of nodesmay have different QoS requirements [43]. In a
heterogeneous network with T types of nodes, execution of
an estimation protocol designed for a homogeneous network
T times to obtain separate estimates of the cardinality of
each node type is inefficient and improved protocols that
rapidly obtain these estimates have been proposed in [2], [4],
[5], [42], [43], [44], [45], [46], [47], and [48]. However, all
the protocols designed so far for node cardinality estimation
in homogeneous and heterogeneous wireless networks use
simple techniques, which are sub-optimal, for computing
the node cardinality estimates. Very little research has been
conducted so far on applying machine learning based tech-
niques to compute node cardinality estimates; in particular,

to the best of our knowledge, the powerful Privileged Feature
Distillation (PFD) technique [49] has not been used in prior
work for node cardinality estimation in wireless networks.
A contribution in this space is made in this paper.

In this paper, a novel methodology for node cardinality
estimation in wireless networks such as the IoT and RFID
systems is proposed, which uses the PFD technique and
works using a neural network with a teacher-student model
[49]. The teacher is trained using both privileged and regular
features, and the student is trained using predictions from the
teacher and regular features [49].

The concept of a privileged feature [49] arises in scenarios
where a particular feature z is available during the training
phase but not during the testing or inference phase. The term
‘‘privileged’’ refers to the notion that this feature possesses
additional information during the training process that can
potentially aid in improving the prediction accuracy or perfor-
mance. By identifying privileged features and incorporating
them into the training process, it is possible to leverage the
additional information they provide to potentially improve
the model’s predictive capabilities, when those features are
not available during the testing phase. Distillation [50] refers
to the standard practice of labeling the training dataset using
teacher predictions, and using these as supervision targets
in the training of the student model. PFD has been success-
fully applied in various machine learning problems including
speech recognition [51], medical imaging [52], image super-
resolution [53], and IoT traffic classification [54]. Some
background concepts pertaining to PFD are reviewed in
Section IV-C.
Another motivation for applying the PFD technique to the

problem of node cardinality estimation is that the technique
is well-suited to this problem since there are several features
in the problem that are natural candidates for being used as
privileged features. For example, in a practical network, when
a collision occurs in a time slot, the BS does not know as
to how many nodes transmitted in the slot. So the number
of transmitting nodes in a slot in which a collision takes
place can serve as a privileged feature to train the teacher
network. Also, in a practical network, the BS does not know
the true number of active nodes in the previous time frame;
it only knows the estimated number of active nodes. So the
true value of the number of active nodes in the previous time
frame can serve as another privileged feature. The benefit of
using PFD for node cardinality estimation is that the use of
privileged information during the training phase can signifi-
cantly improve the performance of the estimation algorithm
relative to traditional techniques for estimation, as our results
in Section VI demonstrate.

In summary, the motivation behind this work is as fol-
lows. Node cardinality estimation in wireless networks is
an important problem with a large number of applications.
However, so far, only simple and sub-optimal techniques have
been designed to solve this problem. This motivates us to
apply the powerful PFD technique, which is well-suited to

1230 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

this problem as explained above, to design improved node
cardinality estimation schemes.

The main contributions of this paper are as follows. The
problem of estimating the number of active nodes in a
homogeneous wireless network while minimizing the mean
squared error (MSE) between the actual number of active
nodes and the algorithm’s estimate has been formulated and
then generalized to estimating the number of active nodes of
each type in a heterogeneouswireless networkwith T types of
nodes, where T ≥ 2 is an integer, while minimizing theMSE.
A novel algorithm using the PFD technique and a neural
network with a teacher-student model has been proposed for
node cardinality estimation in a homogeneous network and
then has been generalized to estimate the cardinality of each
node type in a heterogeneous network with T types of nodes.
This paper is the first to use the powerful PFD technique for
node cardinality estimation in wireless networks. Extensive
simulations, using a synthetic dataset [55] as well as a real
dataset [56], show that the proposed PFD-based algorithms
for homogeneous and heterogeneous networks achieve much
lower MSEs than state-of-the-art protocols, despite taking
the same number of time slots to execute. In particular, our
simulation results for the real dataset show that our pro-
posed PFD based technique for homogeneous (respectively,
heterogeneous) networks achieves a MSE that is 92.35%
(respectively, 94.08%) lower on average than that achieved
by the Simple RFID Counting (SRCs) protocol (respectively,
T-SRCs protocol) proposed in prior work while taking the
same number of time slots to execute. Also, these algorithms
are applicable to arbitrary wireless networks, including the
IoT.

The rest of this paper is organized as follows. A review of
related prior literature is provided in Section II. The system
model and problem formulation are described in Section III.
Some relevant background is given in Section IV. The pro-
posed algorithms and other algorithms for comparison are
described in Section V. Simulation results are provided in
Section VI. Finally, conclusions and directions for future
research are provided in Section VII.

II. RELATED WORK
In Section II-A (respectively, Section II-B), a review of
related prior literature on node cardinality estimation in wire-
less networks (respectively, PFD) is provided.

A. NODE CARDINALITY ESTIMATION
The estimation of active node cardinalities is considered cru-
cial in the design of a MAC protocol for IoT networks. This
importance has led to extensive research being conducted
on this topic [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35]. These studies focus not only on estimating the
number of active devices in a homogeneous IoT network,
but also on using these estimates to determine the contention
probabilities that optimize the throughput of their respective
MAC protocols for IoT networks. To estimate the number of
active nodes in the current time frame, the estimation scheme

proposed in [27] uses the estimates obtained in the previous
frame as well as the sub-optimal Dynamic Access Class
Barring (D-ACB) factors from the previous frame. In [28],
a modified Carrier Sense Multiple Access/ Collision Avoid-
ance (CSMA/CA) protocol intended for IoT networks was
introduced. The size of the backoff window for the current
time frame is chosen by this protocol by considering the size
of the previous backoff window and the previously computed
estimates of the active node cardinality. This procedure incor-
porates historical estimates to improve the effectiveness of
the backoff mechanism. Note that both [27] and [28] relied
on the estimates obtained in previous frames to compute
their estimates in the current frame. This iterative approach
allows the utilization of past information to improve the
accuracy and effectiveness of the estimation process. A new
technique for dynamic access control and resource allocation
for random-access channels based on an estimation scheme
was introduced in [29]. The only input used in the estimation
procedure in [29] for computing the estimates was the number
of open slots. The 6-Dimensional Markov Chain (6)-DMC)
estimation method was introduced in [30]. The numbers of
devices that are delay tolerant and delay sensitive are esti-
mated using this approach. The estimation methods in [30],
[31], and [32] are based on 6-DMC, Maximum Likelihood
Estimation (MLE), and IoT-OSA (an extension of the oppor-
tunistic splitting technique).

The satellite Random Access (RA) MAC protocol is pro-
vided in [57]. In this protocol, throughput is maximized
by computing an estimate of the number of Return Chan-
nel Satellite Terminals (RCSTs). The number of collisions
observed in earlier frames affects the length of the cur-
rent frame in the model described in [57]. The approach
described in [33] estimates the number of nodes that cause
collisions. In Long-Term Evolution (LTE) networks, this
estimation enables an effective partitioning of nodes into
a predetermined number of groups while minimizing intra-
group collisions. Dynamic Backoff (DB), a new method for
resolving channel contention, was first described in [34].
Based on the estimated number of competing active devices,
this approach modifies the size of the backoff window used to
manage channel contention during data transfer. The scheme
proposed in [34] also dynamically modifies each frame size
based on the projected number of devices, making it adapt-
able to shifting network circumstances and device activity.

The node cardinality estimation problem in IoT networks
is similar to the tag cardinality estimation problem in the
context of RFID technology. In the latter situation, an RFID
reader estimates the number of tags, like a BS does when
estimating the number of active nodes in an IoT network.
Schemes for estimating the number of tags in an RFID system
were proposed in [20], [21], [22], [23], [24], [25], [36], [37],
[38], [39], [40], [41], and [58].

Node cardinality estimation schemes for heterogeneous
IoT networks and RFID systems have been proposed in [2],
[4], [5], [42], [43], [44], [46], [47], [48], and [45]. A spe-
cialized MAC protocol for a heterogeneous IoT network,

VOLUME 2, 2024 1231

catering to three types of IoT devices, has been introduced
in [4] and [5]. It incorporates a rapid estimation protocol to
determine active node counts, and uses them to optimize the
contention probabilities in the MAC protocol. An efficient
node cardinality estimation solution with two components–
snapshot collection and accurate estimation– has been given
in [46]. It focuses on improving joint cardinality estimation
in distributed RFID systems, allowing queries across multiple
tag sets at different locations and times with controlled error.
It has applications in tracking product flows in logistics.
Simulations show a significant time cost reduction while
maintaining accuracy. Enhancement of RFID technology’s
cardinality estimation function in two ways– joint estimation
across tags at different locations and times and category-level
tracking– was proposed in [47]. It introduces an anony-
mous protocol that efficiently estimates joint category-level
information, preserving tag anonymity and enabling appli-
cations such as monitoring diverse products in distributed
supply chains. Multi-category RFID tag estimation has been
addressed in [48], aiming to swiftly and accurately count
tags within each category. It introduces the ‘‘Simultane-
ous Estimation for Multi-category RFID Systems’’ (SEM)
approach, leveragingManchester coding to decode combined
signals, allowing simultaneous estimation across categories
while maintaining pre-defined accuracy. SEM significantly
improves estimation speed compared to existing protocols.
Rapid estimation of the cardinalities of active nodes of differ-
ent types in heterogeneous IoT networks with T node types,
where T ≥ 2 is an arbitrary integer, has been addressed in
[42], [43], [44], and [45].

However, the PFD technique has not been applied to the
problem of node cardinality estimation in either a homoge-
neous or heterogeneous wireless network in any of the above
prior works.

B. PFD
The concept of learning with privileged features was intro-
duced in [59], and a framework called ‘‘Learning Using
Privileged Information’’ (LUPI) was proposed. Privileged
information is the primary approach used by LUPI to dis-
criminate between simple and complex cases. These methods
are closely related to Support Vector Machines (SVM); e.g.,
the ‘‘SVM+’’ algorithm, which creates slack variables from
privileged features and learns an SVM based on regular fea-
tures with those slack variables, is proposed in [59] and [60].
A pair-wise SVM algorithm for ranking that uses privileged
features to differentiate between easy and hard pairs is pro-
posed in [61]. The privileged features are employed in the
version presented in [62] to produce importance weighting
for various training samples.

A popular technique for knowledge transfer is model distil-
lation [50], often from a large model to a smaller model [63],
[64]. Recent studies [65], [66], [67], and even those where
the teacher model and student model have the same structure
[68], [69], have demonstrated remarkable empirical success
in ranking tasks.

‘‘Generalised Distillation’’ (GenD) is the term for the
method first suggested in [70] for using distillation to learn
from privileged features. This offers a comprehensive per-
spective on distillation and LUPI. GenD and its derivatives
[51], [53], [71] train an expert model using just privileged
features, after which the student model is trained to replicate
the expert’s predictions. Recently, PFDwas presented in [72],
where the teacher model accepts input from both regular
and privileged features. Due to their emphasis on privileged
feature exploitation rather than model size reduction, PFD
and GenD are different from traditional model distillation.
On a non-public data collection, the improved performance
of PFD for recommendation systems is empirically demon-
strated in [72].
Despite the aforementioned empirical accomplishment,

there remains a lack of understanding of privileged character-
istics distillation. Prior research [73] demonstrates that LUPI
speeds up convergence under the strict premise that the best
classifier can be realised using just privileged information.
GenD has a quick convergence rate, as shown by [70]. This
is different from PFD since it assumes that the function class
complexity of the student model is significantly larger than
that of the teacher model. The study by [74] on GenD under
semi-supervised learning reveals that the benefits come from
reducing the complexity of student function classes. How-
ever, it does not quantify this reduction, and the theory does
not explain why exploiting privileged traits is advantageous.

Prior proposals include other uses of privileged features.
To enhance picture classification performance, [75] learns
a more varied representation using privileged information.
Distillation strategies have been proposed by [53] and [76]
for more effective feature extraction from regular features.
A more recent study [77] examined the possibility of training
a model using both regular and privileged features to improve
the internal representation of regular features.

However, to the best of our knowledge, this paper is the
first to use the technique of PFD to address the problem of
node cardinality estimation in wireless networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In Section III-A (respectively, Section III-B), the system
model and problem formulation for the case of a homo-
geneous network (respectively, heterogeneous network) are
described.

A. HOMOGENEOUS NETWORK
1) SYSTEM MODEL
Consider a population of nodes such that each node is in
the range of a single stationary BS. A node is considered as
active when it has data to send to the BS. Time is divided
into frames of equal durations. To effectively design MAC
protocols for data upload to the BS, the number of active
nodes in a time frame must be estimated. The case, which
often arises in practice, when there exists some correlation
between the number of nodes active in a time frame and the

1232 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

number of nodes active in the next time frame, is studied. E.g.,
the number of active nodes may evolve as a Discrete-Time
Markov Chain (DTMC).

The above choice of the system model, in which there is
correlation between the numbers of active nodes in consecu-
tive time frames, is influenced by examples from practical
network deployments. For example, in a wireless sensor
network deployed as a part of a precision agriculture sys-
tem, a node equipped with a sensor may need to become
active and send an alert whenever a particular sensed physical
quantity (soil moisture, temperature, humidity, etc.) crosses
a particular threshold. E.g., water may need to be sprayed
whenever the soil moisture level goes below a threshold.
These quantities are slowly varying with time (e.g., the soil
moisture level slowly decreases due to evaporation), due to
which the numbers of active nodes in consecutive time frames
are correlated. As another example, in a wireless network,
a nodewith data packets to sendmight have to wait for several
time frames till it is allowed to transmit by theMAC protocol,
which makes it likely that the numbers of active nodes in
consecutive time frames are correlated.

2) PROBLEM FORMULATION
The aim of this work is to design algorithms that minimize
the MSE between the actual number of active nodes in a
time frame and the algorithm’s estimate of this number, while
also reducing the number of time slots needed to produce
the estimate. The objective of minimizing the MSE for a
homogeneous network of nodes is as follows:

alg′
= argminalgE

[
lim

τ→∞

1
τ

τ−1∑
t=0

(n̂algt − ntrutht)2
]

. (1)

Here, ntrutht is the true number of nodes active in time frame
t , while n̂algt is the estimate given by the algorithm alg in
time frame t . The expectation is with respect to the different
realizations of the random process (ntrutht , t = 0, 1, 2, . . .).
The objective is to find the algorithm alg′ that achieves the
minimum in the RHS of (1).

B. HETEROGENEOUS NETWORK
1) SYSTEM MODEL
In the heterogeneous case, there exist T types of nodes, where
T ≥ 2 is an integer, in the range of a BS, as shown in Figure 1
for the case T = 3. Different types of nodes (e.g., nodes
of types 1, 2, 3, etc.) in a heterogeneous wireless network
may have different hardware and software capabilities, such
as different processor speeds, transmission power, memory,
battery life, etc. [43]. Also, different types of nodes may have
different QoS requirements. E.g., one type of node may need
to transmit small bursts of data periodically or randomly,
another type may have stringent latency requirements or need
priority access to communicate alarms (e.g., in healthcare
and security applications), another type may require highly
reliable communication (e.g., in remote payment systems)

FIGURE 1. The figure shows an example heterogeneous network
with T = 3 types of nodes in the range of a BS.

or high throughput (e.g., in a video surveillance application)
[43]. As another example, nodes of different types may cor-
respond to nodes that send emergency traffic such as fire
alarms, nodes that contain moisture sensors, nodes that con-
tain temperature sensors, etc. All the results in this paper hold
regardless of how the set of all nodes is divided into nodes
of different types. The numbers of active nodes of different
types are represented by ntrutht , a 1×T vector, where ntrutht [b],
b ∈ {1, · · · ,T }, is the number of active nodes of type b in
time frame t .

2) PROBLEM FORMULATION
Similar to the homogeneous case, for the heterogeneous
case, the objective is to minimize the expected time-averaged
squared Euclidean distance between the estimates computed
by the algorithm and the time series, ntrutht , of true numbers
of active nodes:

alg′
= argminalgE

[
lim

τ→∞

1
τ

τ−1∑
t=0

∥∥∥n̂algt − ntrutht

∥∥∥2
2

]
. (2)

Here, n̂algt is a 1 × T vector, where n̂algt [b], b ∈ {1, · · · ,T },
is the estimate of the number of active nodes of type b in time
frame t found by the algorithm alg. The objective is to find the
algorithm alg′ that achieves the minimum in the RHS of (2).

IV. BACKGROUND
In this section, some concepts that are used in the rest of the
paper are reviewed.

A. SRCs PROTOCOL
SRCs is a node cardinality estimation protocol for a homoge-
neous network [58], which finds an estimate, n̂, of the number
of active nodes, n, to within given accuracy requirements ϵ

VOLUME 2, 2024 1233

FIGURE 2. The figure shows the frame structure of the SRCs
protocol.

and δ, i.e, the following relation is satisfied:

P(|n̂− n| ≤ ϵn) ≥ 1 − δ.

The SRCs protocol [58] uses the Lottery Frame (LoF) proto-
col to generate a rough estimate of the number of active nodes,
followed by a Balls and Bins (BB) trial that uses the rough
estimate given by LoF. The LoF, BB, and SRCs protocols
are described in Algorithm 1. The frame structure of SRCs
is shown in Figure 2.

The LoF protocol uses a trial length of llof = ⌈log2 nall⌉
time slots, where nall is the maximum number of active nodes
in the network. Each active node independently transmits in
a randomly chosen slot of the trial, and the rough estimate
returned by LoF is computed as a function of the slot number,
say j, of the first empty slot (slot in which no node transmits)
of the trial.

A BB trial consists of l time slots, where l is chosen
as explained in the next paragraph. Given a rough esti-
mate n′, each active node independently participates in the
trial with probability p = min(1, 1.6l/n′). Each participat-
ing node transmits in a slot chosen uniformly at random
from the l slots, and the estimate returned by BB is com-
puted as a function of the number of empty slots in the
trial.

In step 1 of the SRCs protocol given in Algorithm 1,
the protocol conducts multiple, say num_lof, LoF trials (see
Figure 2) and computes an average of the rough estimates
generated in the trials, n′. Subsequently, in step 2, the SRCs
protocol conducts a BB trial of length l (see Figure 2),
in which each node independently participates with proba-
bility p = min(1, 1.6l/n′). The choice of the length of the
BB trial, l, depends on the relative error tolerated, ϵ, and
is taken as l =

65
(1−0.04ϵ)2

[58]. The number of LoF trials,

num_lof, in SRCs is taken to be of the order O(log 1
δ
). E.g.,

for δ = 10−3, num_lof = 3 is used. At the end of the BB
trial, the final SRCs estimate, n̂, is computed as a function of
the number of empty slots in the trial.

Algorithm 1 The LoF, BB, and SRCs Protocols [58]
LoF Protocol
1: Choose trial length llof = ⌈log2 nall⌉
2: Each active node independently transmits in slot i =

1, . . . , llof − 1 with probability 2−i and in slot llof with
probability 2−(llof −1)

3: Trial ends when first empty slot (slot in which no node trans-
mits), say slot j, is seen

4: return n′
= 1.2897 × 2j

BB Protocol
1: Given rough estimate n′, each active node independently par-

ticipates in the trial of length l slots with probability p =

min(1, 1.6l/n′)
2: Each participating node transmits in a slot chosen uniformly at

random from the l slots
3: z = number of empty slots in trial
4: if z > 0 then
5: return ln (z/l)

ln (1−p/l)
6: else
7: return arbitrary number
8: end if

SRCs Protocol
1: Conduct num_lof LoF trials and compute the following rough

estimate: n′
= 1.2897 × 2

∑num_lof
m=1 (j(m)−1)/num_lof,

where j(m) is the first empty slot in the m′th LoF trial
2: Run a BB trial of length l in which each node independently

participates with probability p = min(1, 1.6l/n′)
3: Count the number of empty slots, say z, in the trial
4: if z > 0 then
5: return n̂ =

ln (z/l)
ln (1−p/l)

6: else
7: return n̂ = arbitrary number
8: end if

B. 3-STAGE SCHEME-BALLS AND BINS (3)-SS-BB)
PROTOCOL
3-SS-BB is a protocol for finding an estimate, n̂b, of the
number of active nodes, nb, of each type b ∈ {1, . . . ,T } in a
heterogeneous network with T types of nodes (see Figure 1)
[42], [43]. It is an extension of the BB trial (see Algorithm 1)
to a heterogeneous network. It assumes that rough estimates,
n′
b, b ∈ {1, . . . ,T }, of the numbers of active nodes of the
T types are initially available; e.g., these estimates may be
generated by separately conducting LoF trials for each node
type as in the first phase of SRCs. 3-SS-BB uses a trial with
l blocks; within each block, there are T − 1 slots. Each
active node of type b independently participates in the trial
of l blocks with probability pb = min(1, 1.6l/n′

b). Each
participating node of type b chooses a block out of the l
blocks uniformly at random and sends, in its chosen block,
the symbol combination of length T−1 slots given in the row
corresponding to type b in Figure 3. For example, each node
of type 1 transmits the pattern (α, α, · · · , α), while each node
of type 2 transmits (β, 0, · · · , 0), where α and β are distinct
symbols (bit patterns) and 0 indicates no transmission. If there
are two or more transmissions in a slot, the result of the slot
is c (collision). Thus, a slot can have four possible outcomes:
{0, α, β, c}. Estimates n̂b, b ∈ {1, . . . ,T }, are generated
based on the outcomes of the (T−1)l slots using the algorithm

1234 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

FIGURE 3. The figure shows the symbol combinations used by
different types of nodes under the 3-SS-BB protocol. 0 indicates
no transmission.

provided in [42] and [43]. Under this algorithm, first, the sets
of types of nodes that transmitted in each of the l blocks
are inferred based on the outcomes of the T − 1 slots in
the respective blocks. For example, if the outcomes of the
T −1 slots in a block are (c, c, α, . . . , α), then from Figure 3,
it follows that nodes of types 1, 2, and 3 transmitted and
nodes of the other types did not transmit in the block. If the
outcomes of the T − 1 slots in a block are (0, . . . , 0, β, c),
then it follows that nodes of types T − 1 and T transmitted
in the block and nodes of the other types did not transmit in
the block. Subsequently, for each node type b, the number
of blocks, say zb, in which no node of type b transmitted
is deduced. Finally, the estimates n̂b, b ∈ {1, . . . ,T }, are
computed using zb, b ∈ {1, . . . ,T }, as in steps 4 to 8 of the
BB protocol given in Algorithm 1 with z and p replaced with
zb and pb, respectively. See [42] and [43] for details of the
algorithm.

C. PFD
In some problem settings, there exist some features that are
not available during testing, but are available offline for
training. Instead of discarding these features, one approach
is to train a ‘teacher’ model on the privileged features, say
xprivileged [49]. The teacher model is then used in the training
of a different ‘student’ model [49]. The student is trained only
on the features, say xgeneral , that are available during testing,
but the loss of the student model is designed (see (5)) as a con-
vex combination of the data loss and the teacher loss, as will
now be explained. The teacher network is represented by
gTr , and the teacher’s prediction is gTr (xprivileged). In (3), LTr
refers to the teacher loss corresponding to the loss described
by the loss function L(·, ·), operating on the prediction of the
teacher and the target y. Similarly, in (4), the data lossLdata is
the loss between the student’s prediction gStu(xgeneral) on the
general features, xgeneral , and the target y. In (5), the student
loss, LStu, is the convex combination of the data loss and the
teacher loss; the mixing ratio between the data loss and the
teacher loss is α ∈ [0, 1]. The student does not interact with
the privileged features, nor with the teacher’s predictions, but

only with the loss between the teacher’s prediction and the
target.

LTr = L(gTr (xprivileged), y) (3)

Ldata = L(gStu(xgeneral), y) (4)

LStu = αLdata + (1 − α)LTr (5)

V. ALGORITHMS
In Section V-A (respectively, Section V-B), the proposed
PFD based algorithm, and other algorithms for comparison,
for homogeneous (respectively, heterogeneous) wireless net-
works are described.

A. HOMOGENEOUS NETWORK
1) PROPOSED ALGORITHM
Consider the model and problem formulation described in
Section III-A. The entire population of nodes in the range of
the BS is of a single type. Recall from Section IV-A that the
SRCs protocol consists of a LoF-based phase 1 and a BB-
based phase 2. The LoF phase obtains a rough estimate of
the number of nodes, n′, which the BB phase uses to obtain a
refined estimate.

In each time frame t = 1, 2, 3, . . ., the proposed Neural
Network (NN) based algorithm (see Algorithm 2) executes
only phase 2 (BB) and obtains the trial result. If the trial
consists of lBB slots, then a vector of size lBB is generated
via BB. This vector consists of the outcome (no transmission,
success (one transmission), or collision) in each of the lBB
slots of the BB trial. The trained model takes this vector
as input, along with the estimate of the number of active
nodes generated by the model in the previous time frame,
and estimates the value of the number of active nodes in the
current time frame. The NN is a student model trained using
PFD as explained in Section V-A.2; so henceforth, the trained
model will be represented by the notation Stu.

In time frame 0, the proposed NN method conducts a set
of LoF trials to give the initial rough estimate n̂′

0, which
is then used as the rough estimate (see step 1 in the BB
protocol given in Algorithm 1) in a BB trial. The NN then
uses the result of the BB trial, which is a vector of length
lBB, say v0, and the rough estimate n̂′

0, to generate its own
estimate in time frame 0, n̂Stu0 , using the student network gStu.
Subsequently, in each time frame t = 1, 2, . . . , num_iters,
where num_iters is the total number of time frames, a BB
trial is conducted with rough estimate n̂Stut−1 (Stu’s estimate of
the previous time frame), which generates a vector of length
lBB, say vt , as a result. The NN gStu operates on (vt , n̂Stut−1) to
produce its estimate n̂Stut in time frame t .

The motivation for using the estimate of the previous time
frame, n̂Stut−1, as the rough estimate for the BB trial of the
current time frame t arises from the fact that some correlation
exists between the nodes active in the previous time frame
and the nodes active in the current time frame as explained in
Section III-A. This fact is exploited to reduce the number of

VOLUME 2, 2024 1235

Algorithm 2 Proposed NN Method and its Training

Proposed NN Method
1: At t = 0, conduct LoF trials to give the initial rough estimate

n̂′

0; then conduct BB trial to generate v0
2: n̂Stu0 = gStu(v0, n̂′

0)
3: for t = 1, · · · , num_iters do
4: Conduct BB trial with rough estimate n̂Stut−1, giving result vt
5: n̂Stut = gStu(vt , n̂Stut−1)
6: end for

Teacher Training
1: function gen_teacher_training_data
2: Randomly initialize gTr’s weights
3: At t = 0, conduct LoF trials to give the initial rough

estimate n̂′

0; then conduct a BB trial to generate V0
4: n̂gTr0 = ggTr (V0, n̂′

0)
5: for t = 1, . . . , num_iters do
6: Run BB trial with rough estimate n′

= n̂gTrt−1 to generate
Vt

7: n̂gTrt = ggTr (Vt , ntrutht−1)
8: Save ((Vt , ntrutht−1), n

truth
t) in Tr training data

9: Fit ggTr (.) to ((Vt , ntrutht−1), n
truth
t) using loss LgTrt =

(n̂gTrt − ntrutht)2

10: end for
11: return Tr training data
12: end function
13: function train_teacher_offline(Tr training data)
14: Randomly initialize teacher Tr
15: Shuffle and split dataset into train and test
16: Train Tr with loss LTrt = (n̂Trt − ntrutht)2

17: return Tr
18: end function
Student Training
1: function gen_student_training_data(α)
2: Randomly initialize gStu’s weights
3: At t = 0, conduct LoF trials to give the initial rough

estimate n̂′

0; then conduct a BB trial to generate v0
4: n̂gStu0 = ggStu(v0, n̂′

0)
5: for t = 1, . . . , num_iters do
6: Run BB trial with rough estimate n′

= n̂gStut−1
7: n̂gStut = ggStu(vt , n̂

gStu
t−1)

8: Save the tuple ((vt , n̂
gStu
t−1), n

truth
t) in Stu training data;

also save (Vt , ntrutht−1) for Tr prediction

9: Fit ggStu(.) to ((vt , n̂
gStu
t−1), n

truth
t) with loss LgStut =

α(n̂gStut − ntrutht)2 + (1 − α)(n̂Trt − ntrutht)2

10: end for
11: return Stu training data
12: end function
13: function train_student_offline(Tr , Stu training data, α)
14: Randomly initialize Stu’s weights; load pre-trained teacher

Tr
15: Shuffle and split Stu training data into train and test
16: For a particular BB trial with results (vt ,Vt) conducted

at time t , calculate the Stu and Tr predictions n̂Stut =

gStu(vt , n̂Stut−1) and n̂
Tr
t = gTr (Vt , ntrutht−1)

17: Train Stuwith lossLStut = α(n̂Stut −ntrutht)2+(1−α)(n̂Trt −

ntrutht)2

18: return Stu
19: end function

time slots used by not executing LoF trials to obtain the rough
estimates for the BB trials of time frames t = 1, 2, 3,

FIGURE 4. Figure (a) (respectively, Figure (b)) shows the neural
network architecture of a student (Stu) model used in the case
of a homogeneous (respectively, heterogeneous) network.

The architecture of the NN used is shown in Figure 4a.
The input dense layer of length R has Rectified Linear Unit
(ReLU) activation, while the other two R/2 dense layers
(hidden layers) have sigmoid activation. The output layer of
length 1 has linear activation. A description of the activa-
tion functions is provided in [78]. The architecture has been
designed for regression specifically and for ease of training,
according to insights from [79], as will now be explained.
For regression tasks, it is desirable to have one or two hidden
layers of neurons at the most. After training with one hidden
layer, it was observed that adding an additional hidden layer
improved prediction performance; hence, two hidden layers
were used as shown in Figure 4a. Also, trying to predict the
number of active nodes from the result of a BB trial is a
non-linear problem as can be seen from the description of
the BB protocol given in Algorithm 1. In particular, if the
number of active nodes in a time frame exhibits correlation
with the number of active nodes in the previous time frame as
in the system model in Section III, this offers an opportunity
for using the estimate of the previous time frame as a rough
estimate for the BB trial of the current time frame. A multi-
layer perceptron model [79] is used, which offers itself as a
solution for modeling the non-linear relationship between the
vector of results of the BB trial, the previous estimate, and the
target current estimate of the number of active nodes.

2) TRAINING
The estimation of the number of active nodes in each time
frame is to be done by amodel that uses data recorded in a real
online scenario. This implies that each element of the results
of the trial vt would comprise of three possibilities: {no
transmission, success, collision}. This would be a difficult
problem to tackle, and would need more information than the
online model has to perform well. Thus, PFD is used, where
a teacher model is trained on privileged data not available in
the online scenario. In particular, in a practical network, when
a collision occurs in a time slot, the BS does not know as to
how many nodes transmitted in the slot. So the number of
transmitting nodes in a slot can serve as a privileged feature
to train the teacher model. Also, in a practical network, the
BS does not know the true number of active nodes in the

1236 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

previous time frame; it only knows the estimated number of
active nodes. So the true value of the number of active nodes
in the previous time frame can serve as another privileged
feature. Thus, in our proposed algorithm, a teacher model is
trained on the following privileged data: the number of nodes
transmitting in each slot of the BB trial and the true value
of the number of active nodes in the previous time frame.
A student model is trained on the actual data seen during the
online scenario.

In particular, the objective is to train a studentmodel, which
is the actual Stu NN used in the ‘‘Proposed NN Method’’
in Algorithm 2, to perform online estimation of the number
of active nodes, n̂Stut , in each time frame t using the general
feature vector vt and the previous time frame’s estimate n̂Stut−1.
The feature vector vt for a BB trial of length lBB has dimen-
sions 1 × 3lBB since the outcome of each of the lBB slots is
represented using one-hot encoding and there are 3 possibil-
ities for a slot– no transmission, success, and collision. Also,
R = 3lBB + 1 in Figure 4a since the NN takes as input the
vector vt and the estimate of the previous time frame.
In the first step, the teacher model is to be trained. The

teacher model is fed with privileged information. Let Vt be a
1×lBB vector denoting the results of the BB trial in time frame
t and containing privileged information. In particular, for i ∈
{1, . . . , lBB}, Vt [i] is the number of active nodes transmitting
in slot i of the BB trial, which is privileged information as
explained above.

Due to the nature of the algorithm, where the NN’s output
in the previous time frame is part of the input vector for the
current time frame, if a network is trained on each time frame
one-by-one, it overfits the current sample. It is thus able to
predict the next few steps accurately, but the same model
will ‘forget’ the samples seen a few time frames ago. Hence,
the procedure of getting a model to be a genie to ‘track’ the
evolution of the time series, logging the dataset, shuffling it,
and training a new model to mimic the genie is followed. The
model trained offline is able to go through the data multiple
times and out-of-order.

This calls for a step of data generation– creating a dataset
with ((Vt , ntrutht−1), n

truth
t) as the (feature, target) tuple for time

frame t . The dataset is then shuffled and a new uninitialized
teacher network is trained on this dataset.

The teacher training procedure is now explained in detail
(see the ‘‘Teacher Training’’ procedure in Algorithm 2).
A genie teacher network is used, which is represented by
gTr . In the function GEN_TEACHER_TRAINING_DATA in the
‘‘Teacher Training’’ procedure in Algorithm 2, a new network
gTr is initialized by setting its weights randomly. In time
frame 0, LoF trials are conducted to give an initial rough esti-
mate n′

0, and a BB trial is conducted with rough estimate n′

0.
The resulting privileged information V0 is used for prediction
by gTr to generate n̂gTr0 = ggTr (V0, n̂′

0), where g
gTr denotes

the genie teacher neural network. Subsequently, in each time
frame t , a BB trial is run with rough estimate n̂gTrt−1 to generate
the privileged vector Vt . The estimate by the genie teacher
for the trial at time t is n̂gTrt , and is given by the following

equation:

n̂gTrt = ggTr (Vt , ntrutht−1). (6)

The prediction n̂gTrt is used as the initial rough estimate for
the BB trial in time frame t+1. The feature vector (Vt , ntrutht−1)
and the target ntrutht are stored in the teacher Tr training data.
Then, the genie teacher gTr is trained on ((Vt , ntrutht−1), n

truth
t)

with the loss LgTrt given by:

LgTrt = (n̂gTrt − ntrutht)2. (7)

The above steps are executed in each time frame t =

1, . . . , num_iters, where num_iters is the number of time
frames (iterations).

Subsequently, in the function TRAIN_TEACHER_OFFLINE in
the ‘‘Teacher Training’’ procedure in Algorithm 2, the gen-
erated Tr training data is shuffled to avoid overfitting. The
dataset is split into train and test, and a new teacher network
Tr is trained on the dataset using the MSE loss given by:

LTrt = L(n̂Trt , ntrutht) = (n̂Trt − ntrutht)2. (8)

The teacher network Tr is trained on the train dataset and the
test dataset is used to evaluate the test error. Training is done
by making multiple passes through the dataset, i.e., by using
multiple epochs, and to prevent overfitting, the test error is
used to evaluate when to stop training. This concludes the
training of the teacher network.

Recall that the student model does not see the privileged
information (number of active nodes transmitting in each slot,
true value of the number of active nodes in the previous time
frame). It only sees the result of each slot (no transmission,
success, or collision). To train the student model, similar to
the teacher model’s training, the results of the trials executed
in different time frames are recorded offline, and a newmodel
is trained on the recorded data with random shuffling.

The student training procedure is now explained in detail
(see the ‘‘Student Training’’ procedure in Algorithm 2).
In the function GEN_STUDENT_TRAINING_DATA, similar to the
teacher training protocol, a genie student network gStu is
initialized by setting its weights randomly. In time frame
t = 0, LoF trials are conducted and the initial estimate n̂′

0 is
generated. Next, a BB trial is conducted to generate v0. Then
the estimate n̂gStu0 is computed using n̂gStu0 = ggStu(v0, n̂′

0),
where ggStu denotes the genie student neural network.
Subsequently, in each time frame t , gStu uses the result of

the BB trial of time frame t , viz., vt , and the estimate of the
previous trial n̂gStut−1 to compute n̂gStut = ggStu(vt , n̂

gStu
t−1). The

feature vector for the student (vt , n̂
gStu
t−1), the target n

truth
t , and

the feature vector for the teacher (Vt , ntrutht−1) are stored in the
Stu training data. gStu is then fit on the current sample with
the distillation loss, which is a combination of the data loss
and the teacher loss (see step 9 in the ‘‘Student Training’’
procedure in Algorithm 2). The above steps are executed in
each time frame t = 1, . . . , num_iters, where num_iters is
the number of time frames (iterations).

VOLUME 2, 2024 1237

Next, in the function TRAIN_STUDENT_OFFLINE in the ‘‘Stu-
dent Training’’ procedure in Algorithm 2, a new student
model Stu is initialized and trained on the recorded data, Stu
training data, and with the pre-trained teacher Tr’s predic-
tions as follows. Stu training data is first shuffled and split
into train and test. Then, in each time frame t , the general
information vt and the privileged information Vt are used
for Stu and Tr inference, giving n̂Stut = gStu(vt , n̂Stut−1) and
n̂Trt = gTr (Vt , ntrutht−1), respectively, as the Stu and Tr estimates.
Instead of minimizing the standard regression MSE loss,
Stu’s weights are adjusted for minimizing the distillation loss,
which includes the loss between the teacher’s prediction and
the truth, and is given by:

LStut = (1 − α)L(n̂Trt , ntrutht) + αL(n̂Stut , ntrutht), (9)

where α is the mixing ratio. Intuitively, a high α gives less
importance to the Tr loss and vice versa.
The time complexity of the above proposed algorithm is the

time complexity of the inference (forward propagation) step
of the student neural network. Recall that a fully connected
hidden layer withm inputs and n outputs can be represented as
an m × n matrix, and would thus involve O(mn) operations.
Hence, considering the architecture of the student network
(see Figure 4a), with the length of the input vector being R =

3lBB + 1, the time complexity of inference is O(3R24 +
R
2) =

O(l2BB).

3) OTHER ALGORITHMS FOR COMPARISON
As a benchmark for comparison with the student model,
in each time frame, the SRCs protocol (see Algorithm 1) is
executed, with the number of time slots used being the same
as the length of the BB trial used by the NN (student) model.
There is an inherent disadvantage to the SRCs protocol since
it does not use knowledge (e.g., estimate of the number of
active nodes) from the previous time frame, unlike the NN
method. To analyse whether the NN method estimates the
number of active nodes better than an SRCs based algorithm
that uses knowledge of an estimate of the number of active
nodes in the previous time frame, the former is compared
against the algorithm BB-Aware, which operates as follows.
BB-Aware executes SRCs in time frame t = 0 to generate
a rough estimate n̂BB−Aware

0 . In each subsequent time frame
t = 1, . . . , num_iters, BB-Aware conducts a BB trial of
length lBB−Aware and with rough estimate n̂BB−Aware

t−1 (estimate
of number of active nodes in the previous time frame) and
computes the estimate n̂BB−Aware

t as a function of the number
of empty slots in the trial (as in steps 3-8 of the BB protocol
in Algorithm 1).

For a fair comparison, it is ensured that each algorithm
takes the same number of time slots to execute in each time
frame by ensuring that the following equation holds:

lBB−Aware = lBB = (lBB−SRCs + num_lof × llof), (10)

where lBB−Aware is the length of the BB trial under BB-Aware,
lBB is the length of the BB trial under the NN method,

lBB−SRCs is the length of the BB trial under SRCs, llof is the
length of each LoF trial, and num_lof is the number of LoF
trials that are conducted as part of the execution of SRCs. For
example, if the total number of time slots in a time frame is to
be 100, then theNNmethod performs a BB trial of length 100,
the SRCs protocol performs 3 LoF trials of length 8 each, and
a BB trial of length 76, while the BB-Aware method performs
a BB trial of length 100.

B. HETEROGENEOUS NETWORK
1) PROPOSED ALGORITHM
Consider the model and problem formulation described in
Section III-B. In this case, the coverage area of a BS contains
T types of nodes. The problem is to estimate ntrutht , a 1 × T
vector.

The approach followed is largely similar to that described
in SectionV-A.1. Recall fromSectionV-A.1 that in the homo-
geneous case, a BB trial is conducted in each time frame;
instead, in the heterogeneous case, in each time frame, 3-SS-
BB (explained in Section IV-B) is conducted, and the results
of all the slots are converted into a feature vector.

The architecture of the NN used is shown in Figure 4b.
The input dense layer of length R has ReLU activation, while
the other two R/2 dense layers have sigmoid activation. The
output layer of length R has linear activation. A description
of the activation functions is provided in [78].

2) TRAINING
The teacher is trained on the feature vector V T

t , which con-
tains the number of nodes of each type participating in each
of the l blocks of 3-SS-BB, and ntrutht−1 ; note that the size of(
V T
t ,ntrutht−1

)
is (l + 1)T . The student is trained on vTt , which

contains the result of each slot (0, α, β or c (see Section IV-
B)) in each of the l blocks of 3-SS-BB in one-hot encoding
fo rmat, and n̂Stut−1, which is the vector of estimates of the
numbers of active nodes of the T types produced by the
student in time frame t − 1; note that the size of

(
vTt , n̂Stut−1

)
is

4(T−1)l+T . The training of the teacher and student proceed
as per the ‘‘Teacher Training’’ and ‘‘Student Training’’ pro-
cedures in Algorithm 2, respectively, with the feature vectors
being as in the heterogeneous case.

The time complexity of the above proposed algorithm,
which is the time complexity of the inference step of the
student neural network, will now be analyzed. Considering
the architecture of the student network (see Figure 4), with
the length of the input vector being R = 4(T − 1)l3−SS−BB +

T , the time complexity of inference is O(3R24 +
TR
2) =

O(12(T − 1)2l23−SS−BB + 10T (T − 1)l3−SS−BB + 7T 2/4),
i.e., O(T 2l23−SS−BB).

3) OTHER ALGORITHMS FOR COMPARISON
As a benchmark for comparison with the student model,
in each time frame, SRCs is independently run T times
(henceforth referred to as T-SRCs)– once for each type
of node. Similarly, the BB-Aware algorithm described in

1238 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

Section V-A.3 is adapted to the heterogeneous case to give
the algorithm T-BB-Aware, wherein in each time frame, BB-
Aware is independently run T times– once for each type of
node.

For a fair comparison, each algorithm takes the same num-
ber of time slots to execute in each time frame. In particular,
the lengths of the BB trials in 3-SS-BB and T-SRCs are related
as in the following equation:

l3−SS−BB(T − 1) = (lBB−SRCs + num_lof × llof)T , (11)

where l3−SS−BB is the length of the BB trial (number of
blocks) in 3-SS-BB, lBB−SRCs is the length of the BB trial
for each node type under T-SRCs, llof is the length of each
LoF trial and num_lof is the number of LoF trials that are
conducted as part of the execution of SRCs for each node
type under T-SRCs. The length of the BB trial in 3-SS-BB
(l3−SS−BB) is initially fixed and the length of each BB trial
under T-SRCs (lBB−SRCs) is computed using (11) and rounded
to the nearest integer. The lengths of the BB trials in 3-SS-BB
and T-BB-Aware are related as in the following equation:

l3−SS−BB(T − 1) = lBB−AwareT . (12)

The length of a BB trial, l3−SS−BB, in 3-SS-BB is fixed and the
length of the BB trials in T-BB-Aware, lBB−Aware, is computed
using (12) and rounded to the nearest integer.
Remark 1: Under our proposed neural network based

methods for node cardinality estimation in homogeneous
and heterogeneous wireless networks, training of the student
neural network is done only once– prior to its deployment
in the wireless network– and the complexity of the esti-
mation algorithms used during the testing phase is low.
Moreover, our proposed estimation algorithms are designed
for execution at a BS, gateway, etc., which has sufficient
computational resources even in environments where the
end devices are resource-constrained. Hence, our proposed
methods are suitable for implementation even in resource-
constrained environments such as IoT networks.
Remark 2: Note that energy or power detection can be

potentially used for node cardinality estimation in a wireless
network. In particular, the set of active nodes can simultane-
ously transmit signals at fixed power, and the total received
energy at the BS can be used to estimate the number of active
nodes– the higher the received energy, the larger the estimate
of the number of active nodes. However, this method of
estimating node cardinalities is prone to large errors because
the qualities of the channels from different nodes to the BS
are unknown and vary with time, in general, due to mobility
of the nodes and/ or objects in the environment. So, e.g.,
the received energy from a node that is close to the BS and
such that there are no obstacles between the node and the
BS will be large and vice versa. Also, for a given received
energy level at the BS, it is difficult to know whether the
energy was received from a small number of nodes with
good channel qualities to the BS or a large number of nodes
with poor channel qualities to the BS. Hence, the errors
in the node cardinality estimates computed using the above

energy detection based method can be large. In this paper, our
objective is to estimate node cardinalities with high accuracy.
Hence, in this paper, energy or power detection is not used to
estimate the node cardinalities. Note that there is an extensive
research literature on node cardinality estimation in wireless
networks, in which the proposed algorithms do not use energy
or power detection, e.g., [20], [21], [37], [38], [39], [43], [45],
[46], and [58], etc.

VI. PERFORMANCE EVALUATION
Simulation results for a synthetic dataset as well as for a real
dataset are provided in this section.

The simulation setup for the synthetic dataset case is
described in Section VI-A. In Section VI-B (respectively,
Section VI-C), our simulation results for the synthetic dataset
are provided for the case of a homogeneous (respectively,
heterogeneous) network. Our synthetic dataset is available for
download at [55], so that it can be used for future work by the
research community.

Our simulation results for a real dataset– the Intel Lab Data
dataset [56]– including those for homogeneous as well as
heterogeneous networks, are provided in Section VI-D.

A. SIMULATION SETUP: SYNTHETIC DATASET CASE
Since the numbers of active nodes in successive time frames
are highly correlated as explained in Section III-A, the evo-
lution of the number of active nodes of a given type over
different time frames is modeled by a DTMC with N states
{0, 1, . . . ,N−1}, with a Transition ProbabilityMatrix (TPM)
P = [pi,j], where the transition probabilities are given by the
following equation:

pi,j =



q, if i = j,
1 − q, if i = 0, j = 1,
1 − q, if i = N − 1, j = N − 2,
1 − p− q, if i ̸= 0,N − 1 and j = i− 1,
p, if i ̸= 0,N − 1 and j = i+ 1.

(13)

The case when p = (1 − q)/2, which indicates that it
is equally likely to go from a state i to states i + 1 and
i − 1, is considered. A visual representation of P is shown
in Figure 5a. In order to model more sudden changes, the k-
step TPM (Pk), which allows changes in the number of active
nodes from one time frame to the next one by more than 1,
is considered. An example is shown in Figure 5b.

In the homogeneous case, let ntrutht be the number of active
nodes in time frame t . The system evolves as in the following
equation:

P[ntrutht = j|ntrutht−1 = i] = Pk [i, j], (14)

where Pk [i, j] is the (i, j)’th element of the matrix Pk . Also,
in the heterogeneous case, the number of active nodes of each
type evolves as in (14), with the DTMCs for different types
of nodes being independent.

VOLUME 2, 2024 1239

FIGURE 5. Figures (a) and (b) show the TPMs P and P5,
respectively, for q = 0.2.

Throughout the simulations for the synthetic dataset case,
for the homogeneous case, the maximum number of active
nodes in a time frame is taken to be 64 and for the hetero-
geneous case, the maximum number of active nodes of each
type in a time frame is taken to be ⌊192/T ⌋, where T is
the number of types. Table 1 summarizes the meanings of
different simulation parameters.

B. HOMOGENEOUS NETWORK: SYNTHETIC DATASET
CASE
Throughout the paper, an ‘‘epoch’’ refers to one complete
pass through the entire training dataset during training. The
evolution of the training and test loss over 2500 epochs is
plotted, when the student is trained using the teacher. It was
observed that around 500 epochs, the test loss increases sig-
nificantly, while having insignificant variation in the training
loss. The training of the student was thus stopped at that point.
Figure 6 shows the evolution of the training and test loss of
the student gStu over 500 epochs, when the student is trained
using the teacher gTr . The mixing ratio used in the training
is α = 0.1. The training loss decreases faster than the test
loss, which stops decreasing around 500 epochs, which is
why training is stopped at that point to avoid overfitting.

FIGURE 6. The figure shows the training of the student using the
teacher over epochs with lBB = 100, α = 0.1,k = 5, a teacher
dataset of 104 time frames and a student dataset of 104 time
frames.

TABLE 1. The table summarizes the meanings of different
simulation parameters.

Figure 7 shows the normalized MSEs in the active node
cardinality estimates computed by the trained student NN,
the SRCs protocol, and the BB-Aware method, in different
time frames in a homogeneous network. The average MSEs
achieved by differentmethods are given above the plot. Recall
that the number of active nodes varies as per the DTMC
in (14), with k = 5. Thus, the number of active nodes in a
time frame is correlated with the number of active nodes in
the previous time frame. In this scenario, it is seen that the
student NN achieves much lower normalizedMSEs than both
the other methods.
Experiment 1: Changing the Length of the BB Trial: To

study the variation of the error on changing the length of

1240 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

FIGURE 7. The figure shows the normalized MSEs achieved by
the NN, SRCs, and BB-Aware methods, for a student network
with lBB = 100, α = 0.1,k = 5,num_lof = 3, llof = 8, a teacher
dataset of 104 time frames and a student dataset of 104 time
frames.

FIGURE 8. The figure shows the performance of different
methods versus the number of time slots per time frame, with
α = 0.1,k = 5,num_lof = 3, llof = 8, a teacher dataset of
104 time frames and a student dataset of 104 time frames.

the BB trial, a different student network was trained for
each length of trial. Each trained student network was then
evaluated on a scenario where the number of active nodes
evolved as per a DTMC, as in (14). The performance (i.e, the
normalised MSE) was averaged over 20 runs of 2000 time
frames each. The normalised MSE was then compared with
those of the SRCs protocol andBB-Aware protocol. SRCs and
BB-Aware were configured to make sure that each algorithm
takes the same number of time slots for generating an estimate
for a time frame as in (10). The result is shown in Figure 8.
It is seen that the errors of all the methods decrease with an
increase in the length of trial, which is to be expected because
a longer trial provides more information about the number
of active nodes than a short trial, as there are less collisions.
Also, as discussed in Section IV-A, the length of the BB trial
in SRCs is given by lBB =

65
(1−0.04ϵ)2

, where ϵ is the relative
error tolerated. Thus, increasing the number of time slots, lBB,
will lead to a lower relative error with high probability, which
explains why the error of SRCs decreases with an increase

FIGURE 9. The figure shows the performance of the student
network versus the number of jumps in the TPM, for a student
network with lBB = 100, α = 0.1, a teacher dataset of 104 time
frames and a student dataset of 104 time frames.

in the length of trial. The BB-Aware method is identical to
SRCs, except that it uses the previous time frame’s estimate
as the rough estimate in the current time frame, instead of
computing it using the results of the LoF trials. This explains
why the error of BB-Aware decreases in the length of trial.
Next, consider the performance of the NNmethod. Increasing
the trial length (number of time slots) leads to a larger input
vector and a larger NN architecture. The experimental setup
is such that the same time series of the numbers of active
nodes is used, while changing the length of the trial. This
leads to a sparser BB trial result for a higher length of trial,
thus decreasing the number of collisions in the vector. This
leads to an increase in performance of the NN, leading to
lower average normalisedMSE. The NN performs better than
SRCs and BB-Aware consistently. Hence, for achieving the
same normalized MSE, a NN can make use of a shorter trial
than the SRCs and BB-Aware protocols.
Conclusion: An increase in the length of the BB trial causes

the errors of NN, SRCs and BB-Aware to decrease, with NN
outperforming SRCs and BB-Aware for every length.
Experiment 2: Changing the Number of Jumps k: To study

how the methods perform when the system evolves faster or
slower, the DTMC according to which the number of active
nodes in a time frame evolves (see Section VI-A) is changed
by changing the number of jumps taken in one time frame.
Specifically, for a DTMC with transition probability matrix
Pk , by changing the number of jumps k , one can model
a faster or slower changing time series. For each situation,
a different student network is trained and the performance
is evaluated by averaging over 20 runs. Figure 9 shows that
the normalized MSE achieved by the NN decreases with an
increase in the number of jumps. This trend can be explained
as follows. For the same number of time frames that the
student is trained on, a DTMC with higher k offers more
variation, and thus the NN is trained better and its achieved
error decreases. That is, as the time series is fast varying,
the student network gets trained on more adverse scenarios,
which affects the performance in the same way that more

VOLUME 2, 2024 1241

FIGURE 10. The figure shows the MSEs achieved by different
algorithms versus the number of jumps with lBB = 100, α = 0.1,

num_lof = 3, llof = 8, a teacher dataset of 104 time frames and a
student dataset of 104 time frames. The same student model
trained on 5 jumps is used for the estimation for every value of
the number of jumps.

outliers in a dataset decrease the tendency of a NN to regress
to the mean. In short, training the student on faster time series
reduces overfitting.
Conclusion: As the NNmodel is trained on more ‘adverse’

scenarios when the number of jumps in the DTMC is higher
(more outliers), the error decreases with an increase in the
number of jumps.
Experiment 3: Testing the Same NN Model With Fast or

Slow Time Series: Since the student model is trained on a
synthetic time series, the performance of the algorithm with
faster and slower time series needs to be tested. If a single
trained student model is evaluated with different DTMCs
(different values of k), the error does not vary much, as seen
in Figure 10. Note that in faster varying systems (higher k),
the estimate from the previous time frame, which is used
as the rough estimate for the BB trial in the current time
frame, is more unreliable. The fact that despite this, the error
achieved by the NN does not increase much in k suggests
that the student network has learned to map the results of the
current trial to the number of active nodes well, rather than
relying heavily on the estimate of the previous time frame.
Also, to compare the behavior of NNwith the other twometh-
ods, the performance of the three methods is studied together
in Figure 10. The performance of SRCs degrades with a
faster time series as more ‘adverse’ outliers are seen with
an increase in the number of jumps. BB-Aware outperforms
SRCs, but the former also performs worse under a faster time
series (higher k), which is expected since it uses its estimate
from the previous time frame as the rough estimate for the BB
trial of the current time frame, and the correlation between the
true values of the numbers of active nodes in the previous time
frame and in the current time frame decreases as k increases.
The error in the trained student, in contrast, does not vary
significantly for faster or slower time series. This indicates
that the network is not overfit to any particular time series,

FIGURE 11. The figure shows the variation of the test loss with
the mixing ratio α for a student network with lBB = 100, k = 5,
a teacher dataset of 104 time frames and a student dataset of
104 time frames.

fast or slow. Figure 10 also shows that for all values of k ,
NN significantly outperforms BB-Aware and SRCs.
Conclusion: TheNNmodel learns the dependence between

the vt vector and the target ntrutht , and does not simply repeat
n̂Stut−1; also, for all values of k , it significantly outperforms BB-
Aware and SRCs.
Experiment 4: Varying the Mixing Ratio α: Next, the

dependence of the test loss on the mixing ratio α (see (9))
is studied. It can be seen from Figure 11 that the test loss
decreases when α is increased up to a certain point, then
increases again as α approaches 1. Figure 11 shows that
distillation offers a significant benefit over blind training the
student (α = 1). Also, the figure shows that the best result
(lowest test loss) is achieved for a value of α around 0.5.
These trends can be explained as follows. There are two con-
trasting effects at play: α = 1 corresponds to no teacher input,
which means blind training. So as α → 1, the student has a
greater tendency to ignore the teacher’s predictions, which are
made on privileged data. Thus, the student essentially tries to
predict on just the general features and no distillation benefit
can be obtained. On the other hand, as α → 0, the student
tries to mimic the teacher more. This also implies that the
student overfits to the teacher’s prediction, trying to capture
the standard deviation in the teacher’s prediction. This also
contributes to the test loss. Hence, themost benefit is obtained
at values of α around the middle of the range (0, 1).
Conclusion: Distillation offers a significant benefit over

regular NN model training.

C. HETEROGENEOUS NETWORK: SYNTHETIC DATASET
CASE
Figure 12 shows the training curves for offline training of a
teacher model. It is seen that the test loss and training loss
both decrease and settle quickly, indicating a relatively simple
function to model. In contrast, Figure 13 shows the train-
ing curves for offline training of the corresponding student
model. As the student model is larger than the teacher model,

1242 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

FIGURE 12. The figure shows the training of the teacher in the
heterogeneous network case with l3−SS−BB = 100,T = 3,k = 5,
and a teacher dataset of 104 time frames.

FIGURE 13. The figure shows the training of the student in the
heterogeneous network case, with l3−SS−BB = 100,T = 3,

α = 0.1,k = 5, a teacher dataset of 104 time frames and a
student dataset of 104 time frames.

it is slower to train. The function mapping the student input
to the target is also significantly complex. This leads to the
model overfitting to the training data, and the test loss remains
roughly constant, while the training loss decreases.

After the training is complete, the trained student model
is deployed in an online scenario. Figure 14 shows the per-
formances of the student model, T-SRCs and T-BB-Aware
methods versus the time frame number for 1000 time frames.
The average MSEs achieved by different methods are given
above the plot. It can be seen that the NN model significantly
outperforms T-SRCs as well as T-BB-Aware.
Experiment 1: Changing the Length of the Trial: The

length of the trial (l3−SS−BB) is changed, and a different
student model is trained on the generated data for each value
of l3−SS−BB. The other two methods, viz., T-SRCs and T-BB-
Aware, are also configured to use the same total number of
time slots per time frame to produce estimates as the NN
method. The results are shown in Figure 15. The trends in
this figure and the reasons for them are similar to those for
the corresponding homogeneous case– see our discussion of
Figure 8 for details. In particular, as expected, in Figure 15,

FIGURE 14. The figure shows the normalized MSEs achieved by
the NN, T-SRCs, and T-BB-Aware methods, with l3−SS−BB = 100,

T = 3, α = 0.1,k = 5,num_lof = 3, llof = 8, a teacher dataset of
104 time frames and a student dataset of 104 time frames, and
an evaluation run of 2000 time frames.

FIGURE 15. The figure shows the average MSEs achieved by
different algorithms versus the number of time slots taken by
each algorithm in a time frame, with T = 3, α = 0.1,k = 5,

num_lof = 3, llof = 8, a teacher dataset of 2 × 104 time frames
and a student dataset of 2 × 104 time frames.

the error decreases for the NN, T-SRCs, and T-BB-Aware
methods as the number of time slots increases; this is because
the number of collisions decreases under each method. The
NN method significantly outperforms both the T-SRCs and
T-BB-Aware methods, which indicates that to achieve the
same average error, the NNmethod can deliver with a shorter
trial than both T-SRCs and T-BB-Aware. T-BB-Aware outper-
forms T-SRCs, as it uses a longer trial and uses information
(estimates of numbers of active nodes of different types) from
the previous trial.
Conclusion: The NN model requires a far shorter trial than

T-SRCs and T-BB-Aware to offer a specified average MSE.
Experiment 2: Changing the Number of Types of Nodes:

Keeping the total number of nodes across all types present
in the network the same (equal to 192), the number of types
of nodes (T) is now varied. The maximum number of active
nodes of each type in a time frame is taken to be ⌊192/T ⌋. The
errors achieved by different methods are shown in Figure 16.

VOLUME 2, 2024 1243

FIGURE 16. The figure shows the average MSEs achieved by
different algorithms versus the number of types of nodes (T),
with l3−SS−BB = 75, α = 0.1,k = 5,num_lof = 3, llof = 8,
a teacher dataset of 2 × 104 time frames and a student dataset
of 2 × 104 time frames.

The trends in this figure can be explained as follows. Note
that l3−SS−BB is constant; also, in order to keep the time taken
by each method the same, for T-SRCs, the length of each
BB trial, lBB−SRCs , is governed by (11). So as T increases,
lBB−SRCs also increases. Also, the maximum number of active
nodes of each type in a time frame is ⌊

192
T ⌋. Thus, as T

increases, the length of the trial increases, and the maximum
number of active nodes of each type decreases. This leads
to smaller errors for T-SRCs and, similarly, also for T-BB-
aware, due to the fact that there are fewer collisions. The NN
architecture for higher numbers of types of nodes has a larger
number of weights due to the fully connected output layer
of size T (see Figure 4b). It is interesting to note that the NN
method consistently gives lower averageMSEs than the other
two methods, even though the complexity of the mapping
problem increases with T . Also, the figure shows that the NN
method significantly outperforms both the T-SRCs and T-BB-
Aware methods.
Conclusion: The NN method can adapt well to a higher

number of types of nodes (T) while achieving significantly
lower error than T-SRCs and T-BB-Aware for all values of T .

D. PERFORMANCE EVALUATION WITH REAL DATASET
Next, the models that are trained on synthetic data,
as explained earlier, are tested with a real dataset– the Intel
Lab Data dataset [56]. This dataset consists of measurements
from 54 sensors deployed in the Intel Berkeley Research
Lab. The time series of the number of active nodes (nodes
that transmit sensor readings) was processed and binned
into 1 minute intervals. Two kinds of experiments were
performed: (i) performance evaluation for a homogeneous
network, which is the network of all the 54 sensors, and
(ii) performance evaluation for a heterogeneous network with
T = 3 types of nodes, which is obtained by dividing the set
of 54 sensors into three subsets of 18 sensors each. Next, the
results of these experiments are described.

Figure 17 shows the performance of the student NN
method, SRCs and BB-Aware on varying the trial length with
a homogeneous population of nodes. The normalised MSE is

FIGURE 17. The figure shows the performance of different
methods versus the length of trial, with α = 0.1,k = 5,

num_lof = 3, llof = 8, a teacher dataset of 104 time frames and a
student dataset of 104 time frames, for the real dataset and a
homogeneous network.

FIGURE 18. The figure shows the performance of different
methods versus the length of trial, with T = 3, α = 0.1,k = 5,

num_lof = 3, llof = 8, a teacher dataset of 104 time frames and a
student dataset of 104 time frames, for the real dataset and a
heterogeneous network.

calculated across 20 runs of length 2000 time frames each.
The trends are similar to those in Figure 8; in particular,
the performance of all three methods improves with a longer
length of trial. The reasons for these trends are similar to those
explained for Figure 8. Also, it is seen that the student NN
consistently outperforms the other two methods for all values
of the length of trial. In particular, the student NN method
achieves a MSE that is 92.35% lower on average than that
achieved by the SRCs protocol.
Figure 18 shows the performance of the student NN

method, T-SRCs and T-BB-Aware on varying the trial length
with a heterogeneous population. Again, 20 runs of length
2000 time frames each are performed for each length of
trial. The trends, and reasons for them, are similar to those
explained for Figure 15. In particular, the student NNmethod
consistently outperforms the other two methods for all values
of the trial length: specifically, it achieves a MSE that is

1244 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

94.08% lower on average than that achieved by the T-SRCs
protocol.

VII. CONCLUSION AND FUTURE WORK
A novel methodology for node cardinality estimation in
homogeneous as well as heterogeneous wireless networks,
which uses the PFD technique and works using a neural
network with a teacher-student model, has been proposed.
Using extensive simulations conducted on a synthetic dataset
as well as on a real dataset, it has been shown that the
neural networks trained using PFD significantly outper-
form state-of-the-art node cardinality estimation algorithms.
In particular, for a fixed number of time slots per time frame,
the proposed PFD based algorithms achieve much lower
average normalised MSE than SRCs and T -SRCs. More-
over, the proposed PFD based algorithms also outperform the
SRCs based BB-Aware and T -BB-Aware methods, which use
information from the previous time frame and hence have
longer BB trials, in homogeneous and heterogeneous wireless
networks, respectively. Our work demonstrates that PFD is
a promising approach for effectively solving the problem of
node cardinality estimation in wireless networks.

In this paper, it is assumed that the BS is stationary. A direc-
tion for future research is to extend the techniques proposed
in this paper to the case where anMBSmoves around, making
multiple stops, for node cardinality estimation in a large
region in which a homogeneous or heterogeneous wireless
network is deployed.

REFERENCES
[1] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, ‘‘M2M:

From mobile to embedded Internet,’’ IEEE Commun. Mag., vol. 49, no. 4,
pp. 36–43, Apr. 2011.

[2] Y. Liu, C. Yuen, X. Cao, N. U. Hassan, and J. Chen, ‘‘Design of a scalable
hybrid MAC protocol for heterogeneous M2M networks,’’ IEEE Internet
Things J., vol. 1, no. 1, pp. 99–111, Feb. 2014.

[3] A. Rajandekar and B. Sikdar, ‘‘A survey ofMAC layer issues and protocols
for machine-to-machine communications,’’ IEEE Internet Things J., vol. 2,
no. 2, pp. 175–186, Apr. 2015.

[4] S. Kadam, C. S. Raut, and G. S. Kasbekar, ‘‘Fast node cardinal-
ity estimation and cognitive MAC protocol design for heterogeneous
M2M networks,’’ in Proc. GLOBECOM IEEE Global Commun. Conf.,
Dec. 2017, pp. 1–7.

[5] S. Kadam, C. S. Raut, A. D. Meena, and G. S. Kasbekar, ‘‘Fast node
cardinality estimation and cognitive MAC protocol design for hetero-
geneous machine-to-machine networks,’’ Wireless Netw., vol. 26, no. 6,
pp. 3929–3952, Aug. 2020.

[6] J. T. Liew, F. Hashim, A. Sali, M. F. A. Rasid, and A. Jamalipour,
‘‘Probability-based opportunity dynamic adaptation (PODA) of contention
window for home M2M networks,’’ J. Netw. Comput. Appl., vol. 144,
pp. 1–12, Oct. 2019.

[7] K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis, ‘‘A survey
of unmanned aerial vehicles (UAVs) for traffic monitoring,’’ in Proc. Int.
Conf. Unmanned Aircr. Syst. (ICUAS), May 2013, pp. 221–234.

[8] G. Giambene, E. O. Addo, and S. Kota, ‘‘5G aerial component for IoT
support in remote rural areas,’’ in Proc. IEEE 2nd 5G World Forum
(5GWF), Sep. 2019, pp. 572–577.

[9] T. D. Dinh, D. T. Le, T. T. T. Tran, and R. Kirichek, ‘‘Flying ad-hoc network
for emergency based on IEEE 802.11 p multichannel MAC protocol,’’
in Proc. Int. Conf. Distrib. Comput. Commun. Netw. Cham, Switzerland:
Springer, 2019, pp. 479–494.

[10] L. Arjona, H. Landaluce, A. Perallos, and E. Onieva, ‘‘Timing-aware RFID
anti-collision protocol to increase the tag identification rate,’’ IEEE Access,
vol. 6, pp. 33529–33541, 2018.

[11] C.-G. Liu, I.-H. Liu, C.-D. Lin, and J.-S. Li, ‘‘A novel tag searching
protocol with time efficiency and searching accuracy in RFID systems,’’
Comput. Netw., vol. 150, pp. 201–216, Feb. 2019.

[12] X. Liu, J. Yin, J. Liu, S. Zhang, and B. Xiao, ‘‘Time efficient tag searching
in large-scale RFID systems: A compact exclusive validation method,’’
IEEE Trans. Mobile Comput., vol. 21, no. 4, pp. 1476–1491, Apr. 2022.

[13] J. Yu, W. Gong, J. Liu, L. Chen, and K. Wang, ‘‘On efficient tree-based
tag search in large-scale RFID systems,’’ IEEE/ACM Trans. Netw., vol. 27,
no. 1, pp. 42–55, Feb. 2019.

[14] J. Yu, W. Gong, J. Liu, and L. Chen, ‘‘Fast and reliable tag search in large-
scale RFID systems: A probabilistic tree-based approach,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun., Apr. 2018, pp. 1133–1141.

[15] K. Liu, L. Chen, J. Huang, S. Liu, and J. Yu, ‘‘Revisiting RFID missing
tag identification,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun.,
May 2022, pp. 710–719.

[16] A. Fahim, T. Elbatt, A. Mohamed, and A. Al-Ali, ‘‘Towards extended bit
tracking for scalable and robust RFID tag identification systems,’’ IEEE
Access, vol. 6, pp. 27190–27204, 2018.

[17] W. Zhu, X. Meng, X. Peng, J. Cao, and M. Raynal, ‘‘Collisions are
preferred: RFID-based stocktaking with a high missing rate,’’ IEEE Trans.
Mobile Comput., vol. 19, no. 7, pp. 1544–1554, Jul. 2020.

[18] Y. Zhang, S. Chen, Y. Zhou, and O. Odegbile, ‘‘Missing-tag detection with
presence of unknown tags,’’ in Proc. 15th Annu. IEEE Int. Conf. Sens.,
Commun., Netw. (SECON), Jun. 2018, pp. 1–9.

[19] J. Liu, X. Chen, S. Chen, W. Wang, D. Jiang, and L. Chen, ‘‘Ret-
work: Exploring reader network with $COTS$$RFID$ systems,’’ in Proc.
USENIX Annu. Tech. Conf. (USENIX ATC), 2020, pp. 889–896.

[20] C. Qian, H. Ngan, Y. Liu, and L. M. Ni, ‘‘Cardinality estimation for large-
scale RFID systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 9,
pp. 1441–1454, Sep. 2011.

[21] L. Arjona, H. Landaluce, A. Perallos, and E. Onieva, ‘‘Scalable RFID tag
estimator with enhanced accuracy and low estimation time,’’ IEEE Signal
Process. Lett., vol. 24, no. 7, pp. 982–986, Jul. 2017.

[22] Y. Hou, J. Ou, Y. Zheng, and M. Li, ‘‘PLACE: Physical layer cardinal-
ity estimation for large-scale RFID systems,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2702–2714, Oct. 2016.

[23] J. Liu, Y. Zhang, S. Chen, M. Chen, and L. Chen, ‘‘Collision-resistant
communication model for state-free networked tags,’’ in Proc. IEEE 39th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 656–665.

[24] Q. Lin, L. Yang, C. Duan, and Z. An, ‘‘Tash: Toward selective reading as
hash primitives for Gen2 RFIDs,’’ IEEE/ACM Trans. Netw., vol. 27, no. 2,
pp. 819–834, Apr. 2019.

[25] Z. Zhou and B. Chen, ‘‘RFID counting over time-varying chan-
nels,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2018,
pp. 1142–1150.

[26] P. C. Ng, J. She, P. Spachos, and R. Ran, ‘‘A fast item identification and
counting in ultra-dense beacon networks,’’ in Proc. GLOBECOM IEEE
Global Commun. Conf., Dec. 2020, pp. 1–6.

[27] S. Duan, V. Shah-Mansouri, Z. Wang, and V. W. S. Wong, ‘‘D-ACB:
Adaptive congestion control algorithm for Bursty M2M traffic in LTE
networks,’’ IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9847–9861,
Dec. 2016.

[28] K. Ashrafuzzaman and A. O. Fapojuwo, ‘‘Efficient and agile carrier
sense multiple access in capillary Machine-to-Machine communication
networks,’’ IEEE Access, vol. 6, pp. 4916–4932, 2018.

[29] C.-Y. Oh, D. Hwang, and T.-J. Lee, ‘‘Joint access control and resource
allocation for concurrent and massive access of M2M devices,’’ IEEE
Trans. Wireless Commun., vol. 14, no. 8, pp. 4182–4192, Aug. 2015.

[30] J. Liu, W. Zhou, and L. Song, ‘‘A novel congestion reduction scheme
for massive machine-to-machine communication,’’ IEEE Access, vol. 5,
pp. 18765–18777, 2017.

[31] M. Tavana, A. Rahmati, and V. Shah-Mansouri, ‘‘Congestion control with
adaptive access class barring for LTE M2M overload using Kalman fil-
ters,’’ Comput. Netw., vol. 141, pp. 222–233, Aug. 2018.

[32] M. El Tanab and W. Hamouda, ‘‘Machine-to-machine communications
with massive access: Congestion control,’’ IEEE Internet Things J., vol. 6,
no. 2, pp. 3545–3557, Apr. 2019.

[33] A.-T.-H. Bui, C. T. Nguyen, T. C. Thang, and A. T. Pham, ‘‘A novel
effective DQ-based access protocol with load estimation for massive M2M
communications,’’ in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2017, pp. 1–7.

VOLUME 2, 2024 1245

[34] G.-Y. Lin, S.-R. Chang, and H.-Y. Wei, ‘‘Estimation and adaptation for
bursty LTE random access,’’ IEEE Trans. Veh. Technol., vol. 65, no. 4,
pp. 2560–2577, Apr. 2016.

[35] M. Shirvanimoghaddam, M. Dohler, and S. J. Johnson, ‘‘Massive multiple
access based on superposition raptor codes for cellular M2M communi-
cations,’’ IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 307–319,
Jan. 2017.

[36] M. Kodialam, T. Nandagopal, and W. C. Lau, ‘‘Anonymous tracking using
RFID tags,’’ in Proc. IEEE INFOCOM 26th IEEE Int. Conf. Comput.
Commun., May 2007, pp. 1217–1225.

[37] Y. Zheng and M. Li, ‘‘PET: Probabilistic estimating tree for large-
scale RFID estimation,’’ IEEE Trans. Mobile Comput., vol. 11, no. 11,
pp. 1763–1774, Nov. 2012.

[38] Y. Zheng and M. Li, ‘‘ZOE: Fast cardinality estimation for large-scale
RFID systems,’’ in Proc. IEEE INFOCOM, Apr. 2013, pp. 908–916.

[39] W. Gong, K. Liu, X. Miao, and H. Liu, ‘‘Arbitrarily accurate approxima-
tion scheme for large-scale RFID cardinality estimation,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun., Apr. 2014, pp. 477–485.

[40] X. Liu et al., ‘‘Fast tracking the population of key tags in large-scale
anonymous RFID systems,’’ IEEE/ACM Trans. Netw., vol. 25, no. 1,
pp. 278–291, Feb. 2017.

[41] X. Liu et al., ‘‘RFID estimation with blocker tags,’’ IEEE/ACM Trans.
Netw., vol. 25, no. 1, pp. 224–237, Feb. 2017.

[42] S. V. Y., P. H. Prasad, R. Kumar, S. Kadam, and G. S. Kasbekar, ‘‘Rapid
node cardinality estimation in heterogeneous machine-to-machine net-
works,’’ in Proc. IEEE 89th Veh. Technol. Conf. (VTC-Spring), Apr. 2019,
pp. 1–7.

[43] S. Kadam, S. V. Yenduri, P. H. Prasad, R. Kumar, and G. S. Kasbekar,
‘‘Rapid node cardinality estimation in heterogeneous machine-to-machine
networks,’’ IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1836–1850,
Feb. 2021.

[44] S. Kadam andG. S. Kasbekar, ‘‘Node cardinality estimation using amobile
base station in a heterogeneous wireless network deployed over a large
region,’’ in Proc. Int. Conf. Signal Process. Commun. (SPCOM), Jul. 2020,
pp. 1–5.

[45] S. Kadam, K. S. Bhargao, and G. S. Kasbekar, ‘‘Node cardinality esti-
mation in a heterogeneous wireless network deployed over a large region
using a mobile base station,’’ J. Netw. Comput. Appl., vol. 221, Jan. 2024,
Art. no. 103779.

[46] Q. Xiao et al., ‘‘Estimating cardinality of arbitrary expression of multiple
tag sets in a distributed RFID system,’’ IEEE/ACM Trans. Netw., vol. 27,
no. 2, pp. 748–762, Apr. 2019.

[47] Y. Zhang, S. Chen, Y. Zhou, O. O. Odegbile, andY. Fang, ‘‘Efficient anony-
mous temporal-spatial joint estimation at category level over multiple tag
sets with unreliable channels,’’ IEEE/ACM Trans. Netw., vol. 28, no. 5,
pp. 2174–2187, Oct. 2020.

[48] X. Liu et al., ‘‘Multi-category RFID estimation,’’ IEEE/ACM Trans. Netw.,
vol. 25, no. 1, pp. 264–277, Feb. 2017.

[49] S. Yang, S. Sanghavi, H. Rahmanian, J. Bakus, and S. V. N. Vishwanathan,
‘‘Toward understanding privileged features distillation in learning-
to-rank,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 26658–26670.

[50] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[51] K. Markov and T. Matsui, ‘‘Robust speech recognition using generalized
distillation framework,’’ in Proc. Interspeech, Sep. 2016, pp. 2364–2368.

[52] Z. Gao et al., ‘‘Privileged modality distillation for vessel border detec-
tion in intracoronary imaging,’’ IEEE Trans. Med. Imag., vol. 39, no. 5,
pp. 1524–1534, May 2020.

[53] W. Lee, J. Lee, D. Kim, and B. Ham, ‘‘Learning with privileged informa-
tion for efficient image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis.,
vol. 12369. Cham, Switzerland: Springer, Nov. 2020, pp. 465–482.

[54] M. Abbasi, A. Shahraki, J. Prieto, A. G. Arrieta, and J. M. Cor-
chado, ‘‘Unleashing the potential of knowledge distillation for IoT
traffic classification,’’ IEEE Trans. Mach. Learn. Commun. Netw., vol. 2,
pp. 221–239, 2024.

[55] P. Page. (2024). Simulation Datasets. [Online]. Available:
https://rb.gy/fx2lz8

[56] S. Madden. (2004). Intel Berkeley Research Lab Data. [Online]. Available:
https://db.csail.mit.edu/labdata/labdata.html

[57] M. Bacco, T. De Cola, G. Giambene, and A. Gotta, ‘‘TCP-based M2M
traffic via random-access satellite links: Throughput estimation,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 55, no. 2, pp. 846–863, Apr. 2019.

[58] Z. Zhou, B. Chen, and H. Yu, ‘‘Understanding RFID counting protocols,’’
IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 312–327, Feb. 2016.

[59] V. Vapnik and A. Vashist, ‘‘A new learning paradigm: Learning using
privileged information,’’ Neural Netw., vol. 22, nos. 5–6, pp. 544–557,
Jul. 2009.

[60] D. Pechyony, R. Izmailov, A. Vashist, and V. Vapnik, ‘‘SMO-style
algorithms for learning using privileged information,’’ Dmin, vol. 10,
pp. 235–241, Jul. 2010.

[61] V. Sharmanska, N. Quadrianto, and C. H. Lampert, ‘‘Learning to rank using
privileged information,’’ in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 825–832.

[62] M. Lapin, M. Hein, and B. Schiele, ‘‘Learning using privileged infor-
mation: SVM+ and weighted SVM,’’ Neural Netw., vol. 53, pp. 95–108,
May 2014.

[63] A. Polino, R. Pascanu, and D. Alistarh, ‘‘Model compression via distilla-
tion and quantization,’’ 2018, arXiv:1802.05668.

[64] J. Gou, B. Yu, S. J. Maybank, and D. Tao, ‘‘Knowledge distillation: A
survey,’’ Int. J. Comput. Vis., vol. 129, no. 6, pp. 1789–1819, Jun. 2021.

[65] J. Tang and K. Wang, ‘‘Ranking distillation: Learning compact ranking
models with high performance for recommender system,’’ in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 2289–2298.

[66] S. Hofstätter, S. Althammer, M. Schröder, M. Sertkan, and A. Hanbury,
‘‘Improving efficient neural rankingmodels with cross-architecture knowl-
edge distillation,’’ 2020, arXiv:2010.02666.

[67] S. Reddi, ‘‘RankDistil: Knowledge distillation for ranking,’’ in Proc. Int.
Conf. Artif. Intell. Statist., 2021, pp. 2368–2376.

[68] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar,
‘‘Born again neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1607–1616.

[69] Z. Qin et al., ‘‘Born again neural rankers,’’ in Proc. ICLR, 2021, pp. 1–13.
[70] D. Lopez-Paz, L. Bottou, B. Schölkopf, and V. Vapnik, ‘‘Unifying distilla-

tion and privileged information,’’ 2015, arXiv:1511.03643.
[71] N. C. Garcia, P. Morerio, and V. Murino, ‘‘Learning with privileged infor-

mation via adversarial discriminative modality distillation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 42, no. 10, pp. 2581–2593, Oct. 2020.

[72] C. Xu et al., ‘‘Privileged features distillation at Taobao recommendations,’’
in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020, pp. 2590–2598.

[73] D. Pechyony and V. Vapnik, ‘‘On the theory of learning with privileged
information,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 23, 2010,
pp. 1–11.

[74] C. Gong, X. Chang, M. Fang, and J. Yang, ‘‘Teaching semi-supervised
classifier via generalized distillation,’’ in Proc. 27th Int. Joint Conf. Artif.
Intell., Jul. 2018, pp. 2156–2162.

[75] Y. Chen, X. Jin, J. Feng, and S. Yan, ‘‘Training group orthogonal neural
networks with privileged information,’’ 2017, arXiv:1701.06772.

[76] S. Wang, K. Zhang, L. Wu, H. Ma, R. Hong, and M. Wang, ‘‘Privileged
graph distillation for cold start recommendation,’’ in Proc. 44th Int. ACM
SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2021, pp. 1187–1196.

[77] M. Collier, R. Jenatton, E. Kokiopoulou, and J. Berent, ‘‘Transfer and
marginalize: Explaining away label noise with privileged information,’’ in
Proc. Int. Conf. Mach. Learn., 2022, pp. 4219–4237.

[78] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, ‘‘Activation functions in
deep learning: A comprehensive survey and benchmark,’’ Neurocomput-
ing, vol. 503, pp. 92–108, Sep. 2022.

[79] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design.
Worcester, U.K.: PWS Publishing Co., 1997.

PRANAV S. PAGE received the B.Tech. and
M.Tech. degrees in electrical engineering with a
specialization in communications and signal pro-
cessing (CSP) and a minor in computer science
from IIT Bombay, in 2023. He is currently a
Data Scientist/Engineer with Carnot Technologies,
an agri-tech startup. At Carnot, he focuses on
building analytics and geospatial intelligence solu-
tions for farmers. His research interests include
wireless communication, routing protocols, the
IoT, and machine learning.

1246 VOLUME 2, 2024

Page et al.: Node Cardinality Estimation in the IoT Using PFD

ANAND S. SIYOTE received the M.Tech. degree
in industrial engineering and operations research
from IIT Bombay. He is currently a Senior
Research Engineer and a Data Scientist with
TIH IoT, where he develops artificial intelli-
gence/machine learning (AI/ML) solutions tai-
lored to industry needs. His research interests
include AI and ML, particularly in areas like com-
puter vision, large language models (LLMs), and
deep learning frameworks, such as TensorFlow

and PyTorch. He is committed to advancing these fields through continued
research and collaboration with industry experts.

VIVEK S. BORKAR (Life Fellow, IEEE)
received the B.Tech. degree in EE from IIT Bom-
bay in 1976, the M.S. degree in systems and
control from Case Western Reserve University
in 1977, and the Ph.D. degree in EECS from
the University of California at Berkeley, in 1980.
He has held regular positions with the TIFR
Centre for Applicable Mathematics and Indian
Institute of Science, Bengaluru, and Tata Institute
of Fundamental Research and Indian Institute of

Technology Bombay, Mumbai, from where he retired recently. He has held
visiting positions with the Technical University of Twente, MIT, University
of Maryland at College Park, University of California at Berkeley, and
University of Illinois at Urbana–Champaign. His research interests are in
stochastic optimization and control, theory and algorithms, and applications
thereof, mainly to communications. He is a fellow of AMS, TWAS, and
various science and engineering academies in India.

GAURAV S. KASBEKAR (Member, IEEE)
received the B.Tech. degree in electrical engineer-
ing from IIT Bombay, Mumbai, India, in 2004,
the M.Tech. degree in electronics design and tech-
nology (EDT) from Indian Institute of Science,
Bengaluru, India, in 2006, and the Ph.D. degree
from the University of Pennsylvania, Philadelphia,
PA, USA, in 2011. He is currently an Asso-
ciate Professor with the Department of Electrical
Engineering, IIT Bombay. His research interests

include communication networking and network security. He received the
CEDT Design Medal for being adjudged the best master’s student in EDT
with IISc.

VOLUME 2, 2024 1247

