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ABSTRACT Fast and reliable wireless communication has become a critical demand in human life. In the
case of mission-critical (MC) scenarios, for instance, when natural disasters strike, providing ubiquitous
connectivity becomes challenging by using traditional wireless networks. In this context, unmanned aerial
vehicle (UAV) based aerial networks offer a promising alternative for fast, flexible, and reliable wireless
communications. Due to unique characteristics such as mobility, flexible deployment, and rapid reconfigura-
tion, drones can readily change location dynamically to provide on-demand communications to users on the
ground in emergency scenarios. As a result, the usage of UAVbase stations (UAV-BSs) has been considered an
appropriate approach for providing rapid connection in MC scenarios. In this paper, we study how to control
multiple UAV-BSs in both static and dynamic environments. We use a system-level simulator to model an
MC scenario in which a macro-BS of a cellular network is out of service and multiple UAV-BSs are deployed
using integrated access and backhaul (IAB) technology to provide coverage for users in the disaster area.With
the data collected from the system-level simulation, a deep reinforcement learning algorithm is developed to
jointly optimize the three-dimensional placement of these multiple UAV-BSs, which adapt their 3-D locations
to the on-ground user movement. The evaluation results show that the proposed algorithm can support the
autonomous navigation of the UAV-BSs to meet the MC service requirements in terms of user throughput
and drop rate.

INDEX TERMS Reinforcement learning, multi-agent, integrated access and backhaul (IAB), 5G NR,
wireless backhaul, UAV-BS.

I. INTRODUCTION

TRADITIONAL cellular infrastructure provides fast and
reliable connectivity in most use cases. However, when

a natural disaster happens, such traditional wireless base sta-
tions (BSs) can be damaged and therefore they cannot provide
mission-critical (MC) services to the users in the disaster area.
In this context, further enhancements of the cellular networks
are needed to enable temporary connectivity and on-demand
coverage for MC users in various challenging scenarios.

Vehicular networking can be enabled by various vehicle
types including not only cars but also buses, trucks and UAVs.
By equipping with a cellular tower and transceiver on a
truck or trailer, cell-on-wheels have fewer cruising duration

constraints and can transmit with a higher power to provide
a relatively large coverage area [1]. However, cell-on-wheel
placement may be less flexible for MC operations in rural
areas with complex environments, such as forest firefight-
ing, mountain search and rescue. UAV-BS (cell-on-wings)
on the other hand, can be deployed in a more flexible and
mobile manner. Specifically, UAVs can be used to carry
deployable BSs to provide additional or on-demand coverage
to users, thanks to their good mobility and higher chances
of light-of-sight (LOS) propagation. However, there are a
number of challenges when implementing UAV-BS assisted
wireless communication networks in practice [2], [3]. The
system performance and user experience are significantly
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FIGURE 1. A UAV-BS assisted wireless network design enabled by a half-duplex IAB operation.

impacted by the deployment and configuration of UAV-BSs,
including the UAV’s 3-D position, operation time, antenna
capabilities, transmit power, etc [4]. Using wireless backhaul,
UAV-BSs can connect to the on-ground BSs (e.g., cell-on-
wheels or macro BSs) and be integrated into the cellular
system. Hence, it is necessary to jointly optimize the con-
figuration parameters for the access links (between UAV-BS
and on-ground users) and the backhaul links (between UAV-
BSs and on-ground BSs), when optimizing UAV-BS based
wireless communication systems. The optimization problem
becomes even more complicated when considering different
system loads and user movement on the ground. In some
cases where multiple UAV-BSs are needed to cover a wide
area, the complexity of providing reliable and scalable back-
haul links will further increase.

Despite the fact that there are numerous applications for
UAV-based reinforcement learning algorithms, the funda-
mental drawback of classic RL is its low performance in a
changing environment. If the environment changes (the envi-
ronmental values observed by the agent change), the agent
usually has to retrain the entire algorithm to keep up with
the environmental changes [5], [6]. In our case, user mobility
would have a major impact on the system performance in
terms of MC user throughput and drop rate. As a result,
to ensure good service quality, a triggering mechanism needs
to be implemented for algorithm adaptation and analysis. The
dynamic environment, in this case, indicates that the states
(user throughout and drop rate) that the agent observed will
vary substantially due to wireless communication environ-
ment changes and user movement.

A. RELATED WORK
In recent years, UAV-BS assisted wireless communication
networks have attracted significant attention from both indus-
try and academia [7], [8], [9], [10], [11]. To guarantee a robust
wireless connection between the UAV-BSs and the core net-
work, more and more research work has started working on
improving the wireless backhaul link [12], [13], [14], [15],
[16]. Authors in [12] assume that all the UAV-BSs are flying
at a fixed height, and a robust backbone network among
UAV-BSs is guaranteed by ensuring that there is always at
least one path between any UAV-BS and a BS on the ground.
Then they investigate the rapid UAV deployment problem
by minimizing the number of UAVs to provide on-demand
coverage for as many users as possible. In [13], optimal 3-D
deployment of a UAV-BS is investigated to maximize the
number of connected users with different service require-
ments by considering the limitation of wireless backhaul
links. In [14], the limitation of backhaul and access capacities
is also considered, and a heuristic algorithm is proposed
to optimize the UAV navigation and bandwidth allocation.
Similar to [13], the authors in [16] also investigate a coverage
improvement problem enabled by UAV-BS with backhaul
limitation but with a machine learning (ML) based solution.

Enabled by 5G new radio (NR), the integrated access and
backhaul (IAB) feature can be applied to wirelessly integrate
multiple UAV-BSs to an existing cellular network seam-
lessly [17]. Figure 1 shows an example of UAV-BS assisted
network deployment using IAB technology. The macro-BSs
who have connections with the core network are serving
the normal users, and some of them can also be acting as
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donor-BSs, who can provide wireless backhaul connections
to the flying UAV-BS. Based on the wireless backhaul link,
the UAV-BS is acting as an IAB node, which can be deployed
at different locations to provide on-demand services to MC
users and/or normal users who are out of the coverage of
the existing mobile network. To evaluate the performance of
the UAV-assisted wireless system enabled by IAB, authors
in [15] propose a dedicated dynamic algorithm based on the
particle swarm optimization (PSO) method to optimize the
throughput and user fairness. By intertwining different spa-
tial configurations of the UAVs with the spatial distribution
of ground users, [18] proposes an interference management
algorithm to jointly optimize the access and backhaul trans-
missions. Their results prove that both coverage and capacity
can be improved.

Due to the characteristics of revealing implicit features in
large amounts of data, the ML methodology draws growing
attention and has been extensively applied in various fields.
As a sub-field of ML, agent-based reinforcement learning
(RL) features in interacting with the external environment
and providing an optimized action strategy. Hence, it has
been used to solve complicated optimization problems that
are difficult to be addressed by traditional methods. As two of
the promising technologies for the next-generation wireless
communication networks, it is natural to combine ML with
deployable UAV-BS to solve high complexity optimization
problems [19], [20].

Specifically, ML is frequently used to solve problems
on deployment [16], [21], [22], scheduling [23], [24], [25],
[26], trajectory [27], [28], [29], [30], [31], [32], [33], [34],
[35] and navigation [36], [37], [38], [39] in UAV assisted
network. In [21], a deep RL-based method is proposed for
UAV control to improve coverage, fairness, and energy effi-
ciency in a multi-UAV scenario. To solve the scheduling
problem in a high mobility environment, the authors in [23]
develop a dynamic time-division duplex (TDD) configuration
method to perform intelligent scheduling. Based on the expe-
rience replay mechanism of deep Q-learning, the proposed
algorithm can adaptively adjust the TDD configuration and
improve the throughput and packet loss rate. From the per-
spective of distributed learning, [24] proposes a framework
based on asynchronous federated learning in a multi-UAV
network, which enables local training without transmitting a
significant amount of data to a central server. In this frame-
work, an asynchronous algorithm is introduced to jointly
optimize UAV deployment and scheduling with enhanced
learning efficiency.

ForML-based trajectory and navigation, the authors in [27]
investigate a trajectory strategy for a UAV-BS by formulating
the uplink rate optimization problem as a Markov decision
process without user-side information. The authors in [31]
introduces a UAV-based downlink communication model that
addresses UAVs’ limited energy resources by using simulta-
neous wireless information and power transfer technology.
By optimizing UAV trajectory, power splitting ratio, and
communication scheduling through a deep reinforcement

learning framework, the approach significantly enhances
energy efficiency and communication quality, outperforming
conventional methods. Paper [32] proposes a novel adaptable
integrated sensing and communication mechanism in UAV-
enabled systems, optimizing communication and sensing
beamforming along with UAV trajectory to maximize system
throughput while ensuring quality-of-service. Authors in [33]
proposes a UAV trajectory optimization scheme based on
reinforcement learning to maximize energy efficiency and
network resource utilization through load balancing. Based
on deep reinforcement learning, authors in [34] and [35] both
propose solutions to jointly optimize the UAV trajectory and
resource scheduling in UAV-assisted network. To enable UAV
autonomous navigation in large-scale complex environments,
an online deep RL-based method is proposed in [36] by
mapping UAV’s measurement into control signals. Further-
more, to guarantee that the UAV always navigates towards
the optimal direction, authors in [37] enhance the deep RL
algorithm by introducing a sparse reward scheme and the
proposed method outperforms some existing algorithms.

Additionally, the limited battery life of a UAV restricts its
flying time, which in turn affects the service availability that
can be provided by the UAV. Therefore, many works have
been focusing on designing energy-efficient UAV deploy-
ment or configuration schemes either with non-ML [7], [40],
[41] or ML methodologies [30], [42], [43].

B. CONTRIBUTIONS
In this paper, we consider a scenario withmultiple macro-BSs
covering a large area, but due to disaster, one of the
macro-BSs is damaged, which creates a coverage hole where
the first responders execute their MC operations. The deploy-
able UAV-BSs are set up to fill the coverage hole and
provide temporary connectivity for these MC users. Com-
pared with the related works and our previous paper [44]
navigating only one single UAV-BS, we propose in this paper
a novel RL algorithm combinedwith adaptive exploration and
value-based action selection algorithms to autonomously and
efficiently deploy multiple UAV-BSs based on the require-
ments. Furthermore, to extend the algorithm in a scalable
manner, a decentralized architecture is proposed for the
collaboration of multiple UAV-BSs. More specifically, the
contributions of this paper include the following aspects:
1) We propose the framework to support applying RL

algorithm for the considered use case in an IAB network
architecture.

2) We applied two strategies, i.e., adaptive exploration con-
trol and value-based action selection for the RL algorithm
so that the algorithm itself can adapt to a dynamic envi-
ronment (e.g., MC user movement and change of channel
characteristics) in a fast and efficient way.

3) We demonstrated deployment in a decentralized method
for supporting multiple UAV-BSs deployment to respond
to varied industrial scenarios.

4) We validate the proposed RL algorithm in a continu-
ously changing environment with consecutive MC user
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FIGURE 2. System model: UAV-BSs assisted network
deployment.

movement phases. Our results show that the proposed
algorithm can create a generalized model and assist in
updating the decision-making on UAV-BSs and naviga-
tion in a dynamic environment.
The remainder of this paper is structured as follows.

Section II introduces the system model considered in this
paper. In section III, we propose a framework to enable ML
in an IAB network architecture. Section IV discusses our
proposed ML algorithm. Section V presents the system-level
simulation results and evaluates the proposed RL algorithm.
In Section VI, we summarize our findings and discuss future
works.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
For the system model, we consider a multi-cell mobile cellu-
lar network, consisting of a public network and a deployable
network, as shown in Figure 2. Initially, seven macro-BSs
are serving users uniformly distributed in the whole area.
However, one of the macro-BSs in the center of the scenario
is damaged due to, e.g., a natural disaster that creates a
coverage hole. For users in the central emergency area with a
predefined radius (marked as an orange dashed circle), they
might have very limited or no connectivity with the public
network. Hence, multiple UAV-BSs, which are integrated into
the public network using IAB technology, can be set up to
provide temporary or additional coverage to the users in this
emergency area, which is also the research target of this paper.
In this paper, the UAV-BSs are limited only to stay at the
discrete points indicated by the colored stars in Figure 2. The
total number of discrete points is selected based on the criteria
that the simulation data is large enough to train the proposed
model but not too much to spend an excessive amount of
simulation time. Hence, the navigation in the scope of this
paper refers to trajectory optimization among these discrete

location points. To avoid the UAV-BSs staying too close to
cause strong interference to each other, we split the whole
UAV-moving area (inside the black dashed circle) into three
non-overlapping areas denoted by colored discrete points.
For example, UAV-BS 1 is only allowed to move between
location points marked as red. In the considered scenario,
there are two types of users: The users located in the MC
area are marked as MC users, while the others are normal
users. User equipment (UE), either an MC user or a normal
user, can select either a macro-BS or a UAV-BS as its serving-
BS, based on the wireless link qualities between the UE and
these BSs.

For the traffic pattern design, we apply a FTP-based
dynamic traffic model, which is commonly used in the
Third Generation Partnership Project (3GPP) [45]. All the
users are randomly dropped in the scenario. For each time
slot, the users are activated with a predefined arrival rate.
Only these activated users can be scheduled and initiate
fixed-size data transmission based on the link quality (both
access and backhaul links) and system load for downlink
and uplink, respectively. When the data transmission is com-
pleted, the user will leave the system and wait to be activated
again. Then the user throughput can be calculated with
actually served traffic and consumed time to deliver the
traffic.

As mentioned before, the UAV-BSs work as the IAB nodes
in the current scenario. They will measure the wireless link
to all macro-BSs and select one with the best link quality as
their donor-BSs. Once the wireless backhaul link between the
UAV-BSs and their donor-BSs is established, the three sectors
of the UAV-BSs will share this wireless backhaul link and
provide access service to both normal users and MC users.
For the users served by the UAV-BSs, the corresponding
throughput depends not only on the access link but also on
the wireless backhaul link. While selecting the access links,
the users with too bad link quality, for instance, below a
certain threshold, will be dropped. To reduce the complexity
and the load-bearing of the UAV-BSs, it is assumed that the
same antenna configuration is applied for both access and
backhaul antennas of the UAV-BSs. The reason to make such
an assumption also includes that the positions of UAV-BSs
have more impact on the key performance metrics (e.g., user
throughput and drop rate) than varying the tilt of access and
backhaul antennas. The proposed model is also applicable in
the real world. The number of discrete points for UAV-BSs
can be selected according to the computing capability of the
target system in certain scenarios. If the UAV-BS supports
two separate antenna panels for access and backhaul links,
the antenna configuration (e.g., antenna tilt) for access and
backhaul links can be adjusted respectively to further improve
the performance when the same configuration is applied for
both access and backhaul antennas. The proposed model can
handle such cases by adding antenna tilt as a new input
feature.

The system operates under a TDD model, and the time
slot pattern consists of downlink (DL), DL, uplink (UL),
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and DL, which is repeated with a periodicity of 2 ms [46].
The system bandwidth is 100 MHz, and it is shared between
backhaul and access links. The time slots assigned for UL/DL
Access/Backhaul links are shown in Figure 1(b) and (c).
Two full TDD periods are required to cover all eight UL/DL
Access/Backhaul combinations, which lead to four interfer-
ence cases, denoted as: DL1, DL2, UL1, and UL2. As shown
in Figure 1(b), for the UAV-IAB node, DL1 and UL1 are
reserved for backhaul link transmission, while DL2 and UL2
are reserved for providing access services for users. For the
donor-BS and all other macro-BSs, all the time slots can be
used for access link transmission. In each interference case,
the interfering nodes for users are different from those in other
interference cases. For example, in the DL1 case where the
time slots are used for both backhaul and access links, the
UAVs are acting as users and the interfering nodes in this case
only include marco-BSs. While in the DL2 case where the
time slots are only used for access links, the UAVs are acting
as BSs to serve users. In this case, the interfering nodes in
DL include both macro-BSs and UAV-BSs. These features
are all captured in the proposed ML model by importing
the performance metrics(e.g., user throughput and drop rate)
in the reward function, which will be introduced in detail
in Section III.
To validate the performance of the proposed algorithm

in adapting to a dynamic environment, we established five
distinct phases in the time domain. Data traces required for
training were captured at the beginning of each phase while
the user movement (i.e. changes in user locations) was con-
sidered between phases. Upon entering a new phase, each
user moves a random distance along both the horizontal and
vertical directions in two-dimensional space, with the moving
distances uniformly selected from 0 to 10 meters. In addition
to the changes in user locations, the configuration related
to channel conditions including fading and multi-path com-
ponents are updated when switching phases. Consequently,
the state of each phase maps to a different set of feature
values across these five phases. Due to these environmental
changes, the optimal state may vary in each phase, requiring
the UAV-BS to adjust its decision-making model to adapt to
the dynamic environments.

B. TRANSMISSION MODEL
For the public network in this paper, we use an urban-macro
propagation model [47], while a refined aerial model from
3GPP standardization is used for UAV-BS [45]. It is assumed
that the network consists of D macro-BS, M UAV-BSs
and N users, denoted by D = {1, 2, . . . ,D}, M =

{1, 2, . . . ,M} and N = {1, 2, . . . ,N }. The whole avail-
able bandwidth W is divided into K sub-channels and each
one has a bandwidth denoted by Bk = W

K . Assuming that
the three dimensional coordinates of the mth UAV-BS and
the nth user are (xm, ym, hm) and (xn, yn, hn), respectively.
Based on 3GPP channel model [47], the following formula
is applied to represent the probability of LOS propagation

between UAV-BS m and user n:

Pr (m,n)
LOS =



1, d (m,n)
2D ≤ dTh2D

[
18

d (m,n)
2D

+ exp(
−d (m,n)

2D

63
)

×(1−
18

d (m,n)
2D

)]

×(1+
5
4
e−6 × C ′(hn)d

(m,n)
2D

3

exp
−d (m,n)

2D

150
) d (m,n)

2D > dTh2D

(1)

where,

C ′ (hn) =


0, hn ≤ 13(
hn − 13

10

)1.5

, 13 < hn ≤ 23
(2)

hn ∈
[
hminn , hmaxn

]
denotes the height of user n with

meter as a unit, while hminn and hmaxn denote the mini-
mal and maximal height of a user, respectively. d (m,n)

2D =√
(xm − xn)2 + (ym − yn)2 is the horizontal distance between

UAV-BS m and user n. dTh2D is a 2D distance threshold and
its value is 18 meters. The path loss between UAV-BS m and
user n in the case of LOS propagation and NLOS propagation
can also be derived based on [47]:

PL(m,n)
LOS = 28+ 22log10

(
d (m,n)
3D

)
+ 20log10(fc) (3)

PL(m,n)
NLOS = 13.54+ 39.08log10

(
d (m,n)
3D

)
+ 20log10(fc)− 0.6 (hn − 1.5) (4)

where d (m,n)
3D =

√
(xm − xn)2 + (ym − yn)2 + (hm − hn)2

denotes the distance between the antennas of UAV-BS m and
user n, while fc is the carrier frequency. Hence the average
path loss between UAV-BS m and user n can be denoted as:

PL(m,n)
MN = Pr (m,n)

LOS × PL
(m,n)
LOS

+

(
1− Pr (m,n)

LOS

)
× PL(m,n)

NLOS (5)

Similarly, PL(d,n)
DN denotes the average path loss between

macro-BS d and user n, while PL(d,m)
DM denotes the average

path loss between macro-BS d and UAV-BS m. To indicate
whether a sub-channel is occupied by a UAV-BS/macro-BS
to serve the users, an occupy indicator is defined, and
setting cki as 1 implies that the sub-channel k is occupied
by UAV-BS/macro-BS i. Meanwhile, another indicator is
defined where αnm = 1 indicating that user n is served by
UAV-BS m. Hence, the SINR between UAV-BS m and user n
on sub-channel k can be denoted as:

ϒk
(n,m) =

ckmαnm

(
Pm − PL

(m,n)
MN

)
N0Bk +

∑
i̸=m c

k
i

(
Pi − PL

(i,n)
I

) (6)

where Pm and Pi represent the transmit power of UAV-BS m
and interfering node i, respectively. N0 is the power spectral
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density of the additive Gaussian noise. When the UAV-BSs
are serving users, the interference may not only come from
the other UAV-BSs serving users but also from themacro-BSs
serving other UAV-BSs/users. Therefore, PL(i,j)I generally
denotes the path loss between user/UAV-BS j and interfering
node (UAV-BS/macro-BS) i. Based on the above-mentioned
expressions, the achieved throughput for MC user can be
obtained by:

Cn =
K∑
k

λnBk log2
(
1+ ϒk

(n,m)

)
(7)

where λn is the user drop indicator. The user n with an SINR
lower than ϒmin will be dropped and its corresponding user
drop indicator λn equals zero. For the drop rate of MC users
which will be used in the following sections, it is defined as:

βMC =

∑NMC
n λn

NMC

, λn (8)

where NMC is the number of MC users.
The intention of this paper is to generate a generic model,

which can be used to navigate the UAV-BSs to serve MC
users in typical MC scenarios. That is why the statistic model
is applied in the transmission model mentioned above to
calculate the user SINR. In comparison, the real map scenario
models the physical objects in a specific environment, which
can capture the blockage effect in the network [48]. If there is
a need to apply this generic model in a specific scenario, the
generic model can be further refined to accommodate such
scenario, which is also the next step in our future research.

C. PROBLEM FORMULATION
In a multi-network scenario consisting of both existing
BSs on the ground and temporarily deployed UAV-BS, the
deployment of the UAV-BS play a critical role in guar-
anteeing the performance of the target users/services (e.g.,
MC users/services). It can also impact the overall system
performance. As the UAV-BS is connected to the core net-
work using wireless backhaul, it is important to ensure the
good quality of both the backhaul and access links when
performing this system optimization. Furthermore, the opti-
mal solution depends on many factors like network traffic
load distribution, quality of service (QoS) requirements and
user movements on the ground. Therefore, jointly optimiz-
ing these parameters of UAV-BS is a complex system-level
optimization problem that needs to be solved in a dynamic
changing environment.

In order to best serve target users while also maintaining
a good backhaul link quality between UAV-BSs and their
donor-BSs, we aim to solve the following research prob-
lems: 1) Design an RL algorithm to jointly optimize the 3-D
locations of the UAV-BSs. 2) Find the movement strategy of
a UAV-BS to accommodate the dynamically changing user
distribution.

Based on the system model introduced in the previous sub-
section, the target problem we intend to solve is optimizing

the 3-D locations of the UAV-BSs to maximize a weighted
sum of the following system key performance metrics for the
MC users:
• Backhaul link rate for UAV-BS: On one hand, the back-
haul link rate reflects the link quality when the UAV-BS
is served as a user via its donor-BS. On the other hand,
it also affects the end-to-end throughput performance of
its associated users since the throughput of UAV-served
users is calculated by considering the quality of both the
access link and backhaul link.

• The 5-percentile and 50-percentile of the cumulative
distribution function (CDF) of MC user throughput: The
5-percentile MC user throughput represents the perfor-
mance of the cell-edgeMC users, i.e., the MC users with
the ‘‘worst’’ throughput performance, while the 50%
throughput indicates the average MC user performance
in the simulation area.

• Drop rate for MC users: The ratio of MC users that
cannot be served with the required services. This is an
important performance metric for MC scenarios, since
for MC users, keeping reliable connectivity broadly is
more important than guaranteeing high-demand services
for specific users in most MC cases.

Although the performance metrics of normal users is also
critical to evaluate the overall performance of the network
even in an MC scenario, in this paper, we only focus on
improving the performance of MC users because the per-
formance of normal users is nearly not impacted by broken
macro-BS and deployed UAV-BSs in the system model.

III. ML-BASED SOLUTION
In this section, we describe how we transform and model the
considered use case in an ML environment. Three important
components, including the state space, action space, and
reward function, are constructed in order to design an RL
algorithm to jointly optimize the 3-D position of multiple
UAV-BSs in an IAB network.

A. MODELING OF ML ENVIRONMENT
1) STATE SPACE
In our case, a UAV-BS state at a given time instance t has
three dimensions, namely a UAV-BS’s 3-D position.

We use Pt = {xt , yt , zt } to denote the 3-D position of a
UAV-BS at time t . Then, a UAV-BS’s state at a given time
instance t is denoted as st = {xt , yt , zt }. Table 1 shows the
candidate values for each UAV-BS:

It should be noted in Table 1 that the available height range
for all UAV-BSs is limited between 10m and 20m, rather than
deploying the UAV-BSs into a higher altitude. The reason is
that, in the scenario considered in this paper, the UAV-BSs
tend to stay at a lower height to maintain good backhaul links
to on-ground donor-BS and also provide better access links
to serve on-groundMC users, which makes the current height
range selection reasonable.

The candidate values of 2-D space location x and y axis
cover the disaster area shown in Figure 2. The location
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TABLE 1. Candidate values for each UAV-BS in the simulation
environment.

options are selected by three deployed UAV-BSs.
The 2-D MC area has been divided into 3 parts,
with each UAV-BS covering one part of the area. For
UAV1, x and y axis options are [85, 257, 428, 600] and
[−514,−342,−171, 0] meters. For UAV2, x and y axis
options are [−600,−428,−257,−85] and [−514,−342,
−171, 0] meters. For UAV3, x and y axis options
are [−428,−257,−85, 85, 257, 428] and [171, 342, 514]
meters. And the height options for all three UAV-BSs in the z
axis are [10, 20] meters. As a result, the total number of state
combinations in this environment is 18928. The computation
complexity will be linearly increased O(n) based on the total
number of input states combination.

2) ACTION SPACE
In order to enable a UAV-BS to control its state, for each state
dimension, we defined three potential action options and the
UAV-BSs chose an action from three candidate options. These
three alternative action options are denoted by the three digits:
−1, 0, 1, where ‘‘−1’’ indicates that a UAV-BS decreases the
status value at this state dimension by one step from its current
value; ‘‘0’’ indicates that a UAV-BS does not need to take
any action at this state dimension and keeps its current value;
‘‘1’’ indicates that a UAV-BS increases the status value at this
state dimension by one step from its current value.

For example, if the x-axis value of the UAV1 (i.e. the
value of the xt dimension) equals 257 meters, an action coded
by ‘‘−1’’ for this dimension means that the UAV-BS will
select an action to reduce the position value to 85 meters,
an action coded by ‘‘0’’ implies that the UAV-BS will hold
the current position (257 meters), and an action coded by ‘‘1’’
implies that the UAV-BS will increase the position value to
428 meters. The same policy is applied to all dimensions of
the state space.

Since there are three action alternatives for each space
state, the action pool for 3-D position space, the pool has
27 action candidates that may be programmed to an action
list P = [(−1, −1, −1), (−1, −1, 0), (−1, −1, 1), (−1, 0,
−1) . . . , (1, 1, 1)]. As a result, if we combine the action of

FIGURE 3. Example of the UAV1’s state transition from current
state {257, −342,10} meters.

the 3-D position space, at any given moment t , a UAV-BS
can thus choose an action at from these 27 alternatives.
Figure 3 depicts a state transition from the specified state
st = {257,−342, 10} meters.

3) REWARD FUNCTION DESIGN
It is more critical to serve as many MC users as possible
with appropriate service quality than to maximize the peak
rate of a subset of MC users. In the MC context, ensuring
a seamless and reliable communication service for all users
is paramount. The user experience is intricately tied to two
key performance metrics: drop rate and throughput, each
addressing distinct aspects of communication quality.
1) Drop Rate (β): The drop rate metric is a critical indicator

of connection reliability. It reflects the percentage of
users who remain connected without disruptions in both
uplink (UL) and downlink (DL) communication. In MC
scenarios, where ubiquitous connectivity is essential,
minimizing the drop rate is synonymous with ensuring
that every user remains connected to the communica-
tion network. A low drop rate implies a higher level
of reliability and availability of the communication ser-
vice. This is particularly crucial in MC scenarios where
universal access takes precedence over-optimizing the
communication quality for a specific subset of users.
By minimizing the drop rate, the model prioritizes the
requirement of connecting every user in the disaster area.

2) Throughput (α): Throughput metrics, on the other hand,
provide insights into the quality of the communica-
tion service. The 50th percentile and 5th percentile
throughput values represent the average and ‘‘worst’’
performance of MC users, respectively, in both UL and
DL. These metrics delve into the actual service qual-
ity experienced by users. In a mission-critical context,
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optimizing communication quality is crucial to meet
the diverse needs of users. Throughput metrics ensure
that not only are users connected, but the quality of
their communication experience is also considered. This
is particularly relevant when users in the disaster area
may have continuous communication demands, and the
networkmust adapt to dynamically changing conditions.

Together, drop rate and throughput metrics provide a holis-
tic view of the user experience in mission-critical scenarios.
A low drop rate ensures universal connectivity, meeting the
fundamental requirement of MC scenarios, while throughput
metrics delve into the aspects of service quality. Balancing
both aspects is essential for delivering a comprehensive and
reliable user experience that aligns with the needs of MC
users in disaster areas. It’s worth noting that there may be
trade-offs between connection reliability and service quality.
Striking the right balance ensures that the communication
network not only connects all users but also provides satis-
factory service quality, acknowledging the dynamic nature
of MC scenarios. Therefore, a reward function is constructed
for measuring the overall user experience of current service
settings.

As the reward function reflects the overall user experi-
ence of the MC users, the aggregated reward metrics are
produced for the reward function design of the reinforcement
learning algorithm to take into account both the impact of
other drones’ actions as well as the quality of services at the
local drone. The reward is calculated using the average of
the performance indicators of local and neighbouring agents.
We have selected six key performance metrics for each local
agent to highlight the local quality of service for MC users,
including:
• The drop rates of MC users for UL and DL (βul, βdl),
which reflect the percentage of unserved MC users.

• The 50% throughput values of MC users for both UL
and DL (αul−50%, αdl−50%), which represent the average
performance of the MC users, and

• The 5% throughput values of MC users for both UL
and DL (αul−5%, αdl−5%), which represent the ‘‘worst’’
performance of the MC users.

The choice of performance metrics in our study is linked to
the unique challenges and priorities inherent inMC scenarios,
where the primary objective is to establish and maintain
reliable communication services for all users within the dis-
aster area. Unlike conventional scenarios that may prioritize
maximizing the peak rate for specific users, our focus is
on universal service delivery and quality. This distinctive
prioritization is a direct response to the critical nature of MC
scenarios, where seamless communication can be a matter of
life and death. The selected metrics serve as crucial indicators
to address the specific needs of emergency situations and
ensure the effective deployment of UAV-BSs.

The reward function is built as a weighted sum of these six
feature values to balance these critical performance indica-
tors, as shown below. The reason why the backhaul link rate
is not considered here is that the values of the six features all

rely on the quality of the backhaul link between the UAV-BS
and its donor-BS. Before the model, all characteristics are
normalized using min-max normalization, thus the values are
constrained within the range [0, 1].

Rs = ω1 ×
(1−βdl)+(1−βul)

2
+ω2 ×

(αul−5% + αdl−5%)
2

+ ω3 ×
(αul−50% + αdl−50%)

2
(9)

Furthermore, we set weighting coefficients ω1 + ω2 +

ω3 = 1 to normalize the reward value such that Rs is between
[0, 1]. To emphasize the significance of supporting all MC
users, we assign higher weights to user drop rates and 5%
MC-user throughput metrics. This is because, in the MC use
cases, we must first prioritize that all users have access to the
communication service rather than focusing on optimizing
the communication quality of a small subset. In this paper,
our method uses the weight values ω1 = 0.5, ω2 = 0.3 and
ω3 = 0.2. The weighting of these metrics in the reward
function emphasizes our commitment to supporting all MC
users, as opposed to optimizing the communication quality
for a select group. This intentional emphasis aligns with the
core principle that in MC scenarios, every user’s access to
communication services is of paramount importance. This
normalization ensures that the reward values are represen-
tative and comparable across diverse scenarios. The reward
function’s formulation involves a balance of weights assigned
to key performance metrics to optimize the algorithm for
mission-critical scenarios. Drop rate (ω1) bears the highest
weight, underscoring its critical role in minimizing service
interruptions and prioritizing universal access. The weight
for 5th percentile throughput (ω2) is selected to address the
trade-off between reducing drop rates and ensuring quality
for the worst-performing users. Similarly, the weight for
50th percentile throughput (ω3) is determined to strike a
balance between providing quality for the majority and not
compromising the performance of the most disadvantaged
users. The optimal combination of these weights is iden-
tified through grid search, ensuring the reward function
aligns with the unique priorities of mission-critical scenarios
and achieves peak system performance. In order to know
the influence of each UAV-BS, the reward function will
also aggregate the reward values of the neighbour agents.
Hence, the following is the reward function applied in the
algorithm:

Rs =

∑C
c=1Mc

+M
len(C)+ 1

(10)

Assuming that C is the set of register neighbours,
M represents the current agent’s local system performance,
and the Mc indicates the local system performance of its
neighbour ID c.

B. RL ALGORITHM DESIGN
In this section, we design an RL algorithm to solve the opti-
mization problem of the considered use case. RL is distinct
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from supervised and unsupervised learning in the field of ML
in that supervised learning is performed from a training set
with annotations provided by an external supervisor (task-
driven), whereas unsupervised learning is typically a process
of discovering the implicit structure in unannotated data
(data-driven). RL is suitable for this case since the method
provides a unique feature: the trade-off between exploration
and exploitation, in which an intelligence agent must benefit
from prior experience while still subjecting itself to trial and
error, allowing for a larger action selection space in the future
(i.e., learning from mistakes).

In order to achieve better self-control decisions for our
scenario, we applied deep Q-network (DQN) as our base RL
algorithm. The algorithm was first proposed by Mnih et al.
[49], [50] by combining convolutional neural networks with
Q-learning algorithms [51] in traditional RL. The approach
has been frequently used in gaming and static environments.
However, the original approach is incapable of adapting to
our MC situation due to environmental changes. To address
these issues, we have proposed two significant schemes in
our autonomous UAV-BSs control algorithm (Algorithm 1):
adaptive exploration control and value-based action selection.

1) ADAPTIVE EXPLORATION (AE)
Because of the environmental changes, the original DQN
model needs to be updated to accommodate feature value
changes. As a result, we create a dynamic exploration prob-
ability triggered by a substantial decline in reward value.
Following the completion of each learning iteration, the final
reward value is checked and compared to the pre-defined
reward drop and upper reward thresholds. Based on the out-
come, the exploration probability ϵ will be adjusted.
Each UAV-BS initially explores the state space and then

performs Q-value iterations at each training episode. When
deciding whether to take an action that gives the max-
imum reward value or randomly explore a new state, a
ϵ-greedy exploration is used. The parameter ϵ determines
the likelihood of exploration. Each training step’s data is
saved in a replay batch D. Each row of D holds the tuple
(st , at , rt , st+1), which represents the current state, action,
reward, and next state for a training step. Samples will be
chosen at random and used to update the Q value model.

The most recent reward value is reviewed and compared
to a pre-defined reward-drop threshold and an upper reward
threshold. Then, the exploration probability is updated by
checking the following three conditions: (Algorithm 2):
• If the most recent reward value is less than the prior
reward, and the difference is greater than the reward
drop threshold, the exploration probability is increased
to 0.1.

• If the most recent reward value exceeds the higher
reward threshold, we can conclude that the algorithm
has already located the optimal zone capable of deliv-
ering a reliable connection to MC users. The likelihood
of exploration will be matched to the probability of
completion.

Algorithm 1 Deep Reinforcement Learning in Each
UAV-BSWith Adaptive Exploration and Value-Based
Action Selection

Initialize the agent’s replay memory Buffer D to capacity
M
Initialize action-value function Q with two random sets of
weights θ, θ ′

Initialize exploration probability ε to 1
Set previous reward value rp to 0
for Iteration = 1,N do
for t = 1,T do

Tt , Pt ← Action_Selection(rp, rt , ε)
at = {Tt , Pt }

Set rp = rt
Decode at to action options in four state dimensions
and execute the actions
Collect reward rt and observe the agent’s next state
Pt+1← {xt+1, yt+1, zt+1}
Set st+1 = {Tt+1,Pt+1}
Store the state transition (st , at , rt , st+1) in D
As, Ao← Action_Grouping(at )
Sample mini-batch of transitions (sj, aj, rj, sj+1)
from buffer D
if sj+1 is terminal then

Set yj = rj
else

Set yj = rj + γ maxa′ Q(sj+1, a′; θ ′)
end if
Perform a gradient descent step using targets yj with
respect to the online parameters θ

Set θ ′← θ

ε← Adaptive_Exploration(rp, rt , ε)
end for

end for

• Otherwise, the exploration probability will multiply by
an exploration decay and fall linearly after each learning
cycle.

2) VALUE-BASED ACTION SELECTION (VAS)
Although the ϵ-greedy algorithm can strike a reasonable
balance between exploration and exploitation, in some cases
the approach utilized for exploration is redundant and time-
consuming. The algorithm will choose actions at random
throughout the searching stage, which may lengthen the
search time. However, when dealing with a large action and
state space, random action selection is clearly not an effective
strategy andmay cause decision-making to be delayed, which
is unacceptable in most time-critical businesses. Therefore,
we propose a novel value-based action selection strategy
(Algorithm 3) which can lead to fast decision-making for a
UAV-BS when determining its 3-D space location.

As described in the previous section, an agent’s 3-D
position state at a given time instance t is denoted as
Pt = {xt , yt , zt }. Since each position state has three
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Algorithm 2 Adaptive Exploration Algorithm (AE)
Set restarting exploration probability εRestart
to 0.1
Set ending exploration probability εEnd to 0.0001
Set exploration decay ϱ to 0.995
Function Adaptive_Exploration(rp, rt , ε):
if rp - rt > Drop threshold then

Set ε = εRestart
else if rt > Upper reward threshold then

Set ε = εEnd
else

Set ε = ε × ϱ

end if
return ε

Algorithm 3 Value-Based Action Selection (VAS)
Set grouping threshold β to 0
Function Action_Grouping(at):
Pt ← at = Tt , Pt
for all potential next action Pt+1 do

if P⃗t · P⃗t+1 > β then
Append P⃗t+1 to As

else
Append P⃗t+1 to Ao

end if
end for
return As, Ao

Function Action_Selection(rp, rt , ε):
if rt ≥ rp then

Select a random action Pt with probability ε

from the same consequence 3-D position
action pool As

else
Select a random action Pt with probability ε

from the opposite consequence 3-D position
action pool Ao

end if
Otherwise, select at = argmaxaQ(st , a; θ)
return Tt , Pt

dimensions and each state dimension has three action
options, the action pool contains in total 27 action can-
didates that can be programmed to a list of action space
[(−1,−1,−1), (−1,−1, 0), (−1,−1, 1), . . . (1, 1, 1)]. Each
element in this list can then be regarded as an action vector.

Figure 4 depicts a probable set of next actions with the
same or opposite consequence. The consequence is defined as
the reward value (or monitored performance metrics) change
after an action has been executed. The algorithm will analyze
the outcome of past actions. If the prior action decision has
a positive outcome (the reward value increases or moni-
tored performance metrics become better) as defined above,

FIGURE 4. Diagram of a potential set of next actions with same
or opposite consequence.

the algorithm will choose actions from a pool of following
actions with the same consequence. The dot product between
two action vectors determines the result. If the dot product is
larger than 0, this action vector can be assumed to have the
same outcome as the prior action option.

If the previous action decision results in a negative
consequence (the reward value decreases or monitored per-
formance metrics become worse), the algorithm will select
actions from the pool consisting of potential next actions
with the opposite consequence. The opposite consequence
is determined by the dot product of two action vectors that
is smaller than or equal to 0. The actions in this pool will
result in an opposite consequence comparedwith the previous
action decision. Assume that the previous action vector is P⃗t
while the next potential action vector is P⃗t+1:{

P⃗t · P⃗t+1 > 0 Same consequence as previous
P⃗t · P⃗t+1 ≤ 0 Opposite consequence as previous

(11)

In Figure 4, the red vector represents the previous action
decision. The angle between the previous action vector (red
vector) and the green vectors is less than π

2 , which can be
represented by a dot product greater than zero. As a result,
the green vectors represent actions that may result in the same
consequence as the red vector. Similarly, the angle between
the previous action vector (red vector) and the brown vectors
is greater than or equal to π

2 , which is represented by a dot
product value less than 0. As a result, the brown vectors may
have the opposite consequence.

During the UAV-BSs deployment, the algorithm monitors
a set of critical system performance values (the reward value).
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FIGURE 5. Decentralized architecture for multi-UAV coordination.

Based on the current and a set of previous performance val-
ues, the algorithm will evaluate the consequences caused by
the previous action. The algorithm will thus select the action
set which will potentially result in positive consequences.

C. DECENTRALIZED REINFORCEMENT LEARNING
In some circumstances, a single UAV is not capable of being
extended to cover a larger area. As shown in Figure 1(a), mul-
tiple UAV-BSs are deployed to work together to service the
MC users. An extensible decentralized method for deploying
numerous UAV-BSs is therefore designed. The concept is
illustrated in Figure 5 where we relocate the central server
operation function from the central entity and attach it to the
edge entity on UAV, as opposed to the typical single-agent
reinforcement learning algorithms, to achieve decentralized
characteristics.

Algorithm 4 Transmission Functions of the Decen-
tralized Reinforcement Learning Algorithm (DecRL)

for Iteration = 1,N do
for t = 1,T do
After action selections:
for each client c ∈ C in parallel do
send {st+1,M};
receive {sct+1,M

c
}

end forst+1 = {(xt+1, yt+1)c for c in C}
Store the state transition (st , at , rt , st+1) in D
Learning in each UAV-BS: fAE&VAS (st , at , rt , st+1)

end for
if t mod f == 0 then
for each client c ∈ C in parallel do
send θ ′t+1;
receive θ ′t+1

c;
end for
θ ′t+1←−

∑C
c=1

1
len(C)θ

′

t+1
c
;

end if
end for
End Function

The system has two different kinds of data for exchanging
information, namely the system-related data (including loca-
tion information and system KPIs) and the model data. The
location will communicate with nearby drones regarding the
connection performance and UAV-BS system-related data.
These kinds of data can assist each drone in understanding

how their movements affect the others and in being aware of
one another’s surroundings. Following each UAV-BS deci-
sion, the information will be continuously exchanged and
used as a guide for the subsequent choice. The local model
of each UAV-BS will be shared with its neighbours via the
model data channel. Each UAV-BS has a separate procedure
to train, communicate, and receive model weights and service
metrics during the learning process. Each UAV-BS will share
its learning experiences as a result, and the others can gain
information from the experiences of the others. Information is
exchanged asynchronously through active listening to neigh-
boring UAV-BSs for receiving models and service metrics,
rather than requesting them. This push-based communication
mechanism helps avoid interruptions from malfunctioning or
slow neighbors. After multiple training epochs, the UAV-BSs
can swap their model with their neighbours under the con-
trol of a frequency parameter. The process is described in
Algorithm 1. The procedures can be summarized as follows:
Step 1: Each training episode will begin with each UAV-BS

exploring and locating its neighbours before moving
on to exploring the environment and doing Q-value
iterations. When deciding whether to choose the best
action or to randomly explore the new state, a ϵ-
greedy exploration is used. The parameter ϵ specifies
the likelihood of exploration.

Step 2: After making a choice, each UAV-BS will notify its
neighbours of the state and local performance indica-
tors. The agent will simultaneously listen to the other
neighbours, and get ready to receive their states sct+1
and local performance metricsMc. A global system
metric value that can direct each UAV-BS to take
future actions will be formed when all metrics have
been received and the reward has been calculated
based on the reward function Rs.

Step 3: A replay batch D contains the data for each training
stage. The tuple (st , at , rt , st+1), or the current state,
action, reward, and next state for a training step,
is contained in each row of D. For the purpose of
updating the Q value model, samples will be chosen
at random. The current state reward pairs will also
be distributed to the other agents after each decision
round.

Step 4: A UAV-BS will send the updated model results, θ ′,
to its registered neighbours for model aggregation
after it has reached the predetermined exchanging
iteration. Each UAV-BS will simultaneously listen to
its neighbours in order to receive models and service
metrics instead of requesting models from the others,
which results in a push-based communication mech-
anism to avoid interruptions from malfunctioning
neighbours.

Step 5: Each node executes aggregation by averaging all
updated models depending on the aggregation
function, θ ′t+1 ←−

∑C
c=1

1
len(C)θ

′

t+1
c
;, after receiv-

ing all the models from the registered neighbours.
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Step 6: The updated model is used by the edge device to
replace the outdated one and to carry out additional
local training. We’ll repeat the steps from above.

D. COMPLEXITY AND ROBUSTNESS ANALYSIS
The Adaptive Exploration algorithm takes three parameters:
rp (prior reward), rt (current reward), and ε (exploration prob-
ability). The function contains three conditional branches
based on reward comparisons. Each branch contains constant
time operations: setting ε to a constant value or updating it
using multiplication. The time complexity of this function is
constant, i.e., O(1).

The Action Selection algorithm takes three parameters: rp
(prior reward), rt (current reward), and ε (exploration prob-
ability). It performs conditional branching based on reward
comparisons and selects actions accordingly. The time com-
plexity is O(1) since the operations inside each branch are
constant.

Both AE and VAS algorithms have constant time com-
plexities for their core functions. The overall complexity is
dominated by the number of iterations in the main training
loop, which is specified as N . Therefore, the overall time
complexity of the algorithms is O(1) for each iteration, and
O(N) for the entire training process.

The overall time complexity of the DecRL algorithm is
influenced by the number of iterations N , the number of
clients C , and the frequency parameter f . The transmission
functions contribute a significant portion of the complexity,
especially when considering parallel communication with
each client. Themodel update and aggregation steps also have
a complexity that depends on the number of clients and the
frequency of model updates. The algorithm’s complexity is
not fixed and can vary based on the specific values chosen
for parameters.

Furthermore, the Decentralized Reinforcement Learning
(DecRL) algorithm’s robustness against communication fail-
ures and potential UAV-BS malfunctions is underpinned
by the push-based communication approach. This approach
ensures dynamic adaptation as UAV-BSs actively listen to
updates from the network, avoiding the situation that one
needs to wait for the response from a malfunctioning edge,
which can avoid accidental disconnections and maintain sys-
tem engagement. In the face of communication disruptions,
the push-based strategy facilitates adaptive reconfiguration,
allowing UAV-BSs to adjust positions and communication
parameters for continuous connectivity. Additionally, the
monitoring function can be enabled by the push-based model
aids in detecting UAV-BS malfunctions, prompting dynamic
decision-making to redistribute tasks or optimize resource
deployment.

IV. SIMULATION RESULTS AND ANALYSIS
In this section, the simulation configuration and scenario
deployment are introduced firstly. We then investigate the
impact of the 3-D location of multiple UAV-BSs on the
performance of MC users in terms of backhaul link rate,

throughput, and drop rate based on system-level simulations.
Finally, we present the results of proposed RL algorithms for
autonomous UAV-BS navigation.

A. SIMULATION CONFIGURATION
To evaluate the performance of the proposed RL algorithm
in solving the formulated problem, we build a multi-cell
scenario by considering the predefined system model, and a
simulation is executedwith a system-level simulator.With the
output of the simulation, the proposed RL algorithm can be
applied for UAV-BS to build a well-trained model, based on
which optimal UAV-BS position and antenna configuration
can be found rapidly.

In the simulation, we drop 500 users in the area as shown
in Figure 2. The circle area with a 350m radius around the
UAV-BS is defined as the MC area. The users located in the
MC area are marked asMC users, while the others are normal
users. All users follow an arrival model and only arrived users
can be considered as activated.

To investigate how a well-trained RL model performs in
a dynamic environment, we design a set of different user
distributions to simulate the case of slow-moving users.

The detailed simulation parameters are shown in
Table 2. Specifically, the typical inter-site-distance (ISD) is
500 meters for the mid-band urban-macro scenario in NR.
To create a coverage hole and clearly show the impact of
introducing UAV-BSs to cover bad-qualityMC users, the ISD
is set to 1000 meters and a macro-BS is removed from the
center of the map due to malfunction. For the radius of the
MC area, 350 meters is selected to create an area that is large
enough for three UAV-BSs to jointly serve but not too large to
introduce excessive candidate positions which significantly
impacts the simulation efficiency. The user arriving rate per
simulation area is used to control the system load in the net-
work, and its value is selected by keeping the drop rate of the
users in a reasonable range between 0% and 10%. The sim-
ulation time denotes the time duration between the network
beginning and stopping to serve users with one set of configu-
ration parameters, which comprises the 3D positions of three
UAV-BSs. Hence, in this paper, one epoch means running a 2-
second simulation with one specific combination of positions
of three UAV-BSs. During this time, the users are activated
based on a predefined arrival rate, as defined in the system
model. The value of other parameters is selected based on the
typical setting used in a mid-band urban-macro scenario.

B. SYSTEM-LEVEL PERFORMANCE EVALUATION
To evaluate the impact of UAV-BSs’ positions on the user
performance, Figure 6 shows the range of achieved average
backhaul link rates when the three UAV-BSs are deployed
at all possible combinations of different candidate positions.
Around the MC area denoted by orange circle, 40 candidate
2D-positions of UAV-BS (colored stars shown in Figure 2)
are selected and mapped to the centers of the colored circles
in Figure 6. Each colored UAV-BS can only be deployed
at the position marked with the same color. The radius of
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FIGURE 6. Impact of UAV-BSs’ positions on average backhaul
link rate.

TABLE 2. Simulation parameters.

each circle denotes the normalized average backhaul link rate
of three UAV-BSs who are located at current positions. For
one specific candidate position in blue where one UAV-BS
is deployed, the other two UAV-BSs can be placed at all
possible combinations of green and red candidate positions.
This explains why there are multiple circles at each candidate
position. Hence the smallest and largest circle radiuses at
one candidate position denote the lower and higher bounds
of the backhaul link rate when the UAV-BS is placed at the

current location. If connecting the centers of three circles with
the largest radiuses which represents the highest backhaul
link rate, one triangle marked with a solid purple line can
be observed. As shown in Figure 6, if three UAV-BSs are
deployed at the vertexes of the purple triangle, the average
backhaul link rate in the system is the highest. Based on
the distribution pattern of three UAV-BSs, it seems that the
optimal UAV-BSs’ positions to maximize the backhaul link
rate tend to be near the edge of the MC area. This is because
the UAV-BSs can keep good backhaul link quality when
located near the donor-BSs. Similarly, if three UAV-BSs are
deployed at the vertexes of the black triangle, the lowest
average backhaul link rate is reached.

Since the backhaul link rate decides the level of user
throughput, the users can not be served well if the backhaul
link quality is poor. Thus the UAV-BS can not only pursue a
high backhaul link rate while ignoring the user throughput,
and vice versa. By considering the weight for each metric in
the reward function, the proposed RL algorithm can provide
optimal locations of UAV-BSs to achieve the highest reward
value. For example, if the weight of 5th percentile throughput
or drop rate of MC users is high, the UAV-BSs navigated by
the proposed RL algorithm tend to move to locations where
the performance of low-quality users can be improved as
much as possible.

Based on the above observation, the optimal UAV-BSs’
positions are different if different performance metrics are
considered with different weights in the reward function.
Hence, optimizing the performance metrics in the reward
function to achieve global optimization by adjusting UAV-
BSs’ positions is a complicated problem, for whichML-based
solutions can be applied to find the implicit structure from the
collected data.

C. MACHINE LEARNING PERFORMANCE EVALUATION
In this section, we present the experimental results of
Decentralized Reinforcement Learning with Adaptive Explo-
ration and Value-based Action Selection (DecRL-AE&VAS)
for autonomously controlling multiple UAV-BSs. For the
UAV-BSs deployment, different from the single UAV case
introduced in the previous section, more candidate positions
are allocated around the MC area for the multi-UAV case.
As shown in Figure 2, the available positions for each UAV-
BS don’t overlap with others, which means each UAV-BS
covers a certain geographical area with a total of 18928 com-
binations. The result is evaluated using two criteria: (1)
six features (specified in Section IV - Modeling of ML
Environment) that demonstrate link service quality, and (2)
model learning quality in each phase as demonstrated by
system reward value. The results are compared to several
baselinemodels. Aswe described before, the experiment con-
tains five validation phases incorporating MC user mobility.
When entering a new phase, the algorithms will use the data
collected during the new phase to learn and update them-
selves. During the simulation, the DecRL-AE&VAS method
trains the model from scratch in the training phase and then
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FIGURE 7. Reward value with the number of learning iterations in five consecutive validation phases.

continuously improves itself in the succeeding validation
phases. The previously learned experience will not be
removed from the subsequent sessions. During the model
learning, for each agent, the test bed provides an 8-core
Intel Xeon Processor with 8 GB memory. The average CPU
consumption is lower than ∼ 1% while the memory usage is
about 300 MB. The communication overhead of one agent
within one epoch is ∼ 410 KB while the learning time
of each epoch takes ∼ 0.3 second, which is suitable for
quick response to real-time user movement and can be easily
implemented on resource-constraint devices.

There are two baseline methods used to compare the
performance of DecRL-AE&VAS and demonstrate the effec-
tiveness of the decentralized architecture and the convergent
efficiency in the training phase, namely, baseline CRL and
baseline IRL method. For the baseline IRL algorithm, these
baseline models are explicitly trained using each edge UAV-
BS. There will not be any model or information exchange
between the edge and central nodes during training, in con-
trast to decentralized reinforcement learning. The service
quality performance can be compared to the decentralized
reinforcement Learning model to demonstrate how it can
outperform those locally trained individual models. For the
baseline CRL, this baseline model is trained using the central-
ized learning strategy. Prior to model training, all data from
the edge are collected into a single server, and learn the action
strategy step by step.

In the validation phase, in order to prove the performance
in a dynamic environment, two baselines are utilized, namely,
the retrained DecRL and baseline CRL. The retrained DecRL
algorithm removes the past information and randomizes the
ML model parameters but with the same decentralized setup.
When entering a new phase, the algorithm will retrain the
model from scratch. The difference between retrained DecRL
and DecRL-AE&VAS is the utilization of AE and VAS
strategies. These strategies have been proven to be useful
when deploying UAV-BSs into dynamic environments. Last
but not least, the baseline CRL algorithm in the validation
phases will constantly learn and employ the new data when
entering the new phase but with a centralized algorithm

that controls all deployed UAV-BSs but without improved
strategies.

For the learning hyper-parameters of our method,
we explored various sets of combinations using random
search in order to achieve the best results. Random search
efficiently explores a wide range of hyper-parameter com-
binations, making it more likely to discover effective
configurations compared to a more constrained grid search.
During the training, the network architecture for a DQN is
set to [4 − 16 − 16 − 81]. The architecture choice balances
the complexity of the model with the capacity to represent
the relationship between state and action. The exploration
probability decay is set to 0.995. The exploration probability
decay determines how fast the exploration probability ϵ

decreases over time. A high decay rate is selected in our
case to allow the agent to explore more in the early stages of
training and gradually shift towards exploitation as training
progresses. The learning rate is set to 5× 10−5. The learning
rate determines the step size during the weight updates in the
training process. The selected learning rate strikes a balance
between convergence speed and stability. Lastly, the number
of learning iterations at the training phase and validation
phases equals 1500 and 500, respectively. The number of
iterations determines how much exposure the algorithm has
to the training data. The values are selected to balance the
learning time and the model quality.

We first analyze the algorithm’s convergence performance
during the model training phase. Figure 8 depicts the reward
value as a function of the number of learning iterations.
Compared to the baseline CRL algorithm, we can see that
the VAS method can help the UAV-BS quickly discover
the near-optimal position and converge at a high-quality
level.

Training the algorithm in a decentralized way can also be
converged and reach a high reward value before 400 training
rounds. The convergent reward value of theDecRL-AE&VAS
is approximately 5% higher than that of the centralized train-
ing method in the initial learning iterations which results in
higher training efficiency. When compared to the indepen-
dent learning method, the algorithm does not converge after

1122 VOLUME 2, 2024



Zhang et al.: 5G Network on Wings: A Deep RL Approach to the UAV-Based IAB

FIGURE 8. Reward value with the number of learning iterations in
the training phase.

1500 learning iterations. It is difficult for agents to share
knowledge and collaborate since the algorithm stops them
from exchanging information. Throughout the training pro-
cedure, the Baseline IRL algorithm performs poorly. Because
the reward value represents the overall system performance
of the three UAV-BSs, we can conclude that the DecRL-
AE&VAS algorithm enables the UAV-BSs to provide the best
wireless connection service when compared to the other two
frequently utilized baseline approaches in the training phase.

When entering the validation phases (Figure 7 Phase I - V),
the proposed algorithm can learn from the past and finally
reach the optimal state that provides the highest reward value
in the validation scenarios using the AE method. Even if
the environment has changed and the quality has dropped
dramatically, the algorithm can assist the UAV-BS in quickly
adjusting and returning to ideal performance. When we look
at the baseline CRL approach, the method failed to respond to
environmental changes in a short period due to the slow-paced
state exploration. When we compared the baseline results
to the retrained DecRL and DecRL-AE&VAS, the results
showed that our suggested VAS-AE approach can enable
UAV-BS to quickly converge in most of the validation phases.
However, with the retrained DecRL, a significant impact
may occur on the algorithm and service stability if not using
previous existing knowledge. When we integrated RL with
adaptive exploration and the value-based action selection
strategy, the algorithm showed the best performance in terms
of convergence speed, the ability to adapt to environmen-
tal changes, and stable service quality of our suggested
DecRL-AE&VAS method.

The average reward value changes during the validation
phases are depicted in Figure 9. Because the reward value
encompasses all of the essential criteria that must be evalu-
ated during the deployment of the UAV-BS, the value clearly
demonstrates the model’s quality at each stage. As shown in
the figure, our proposed DecRL-AE&VAS method can assist
the UAV-BS in maintaining the ideal service quality, but the
baseline model failed to discover a state that can give reliable

FIGURE 9. Average reward value in each validation phase.

and satisfactory service to MC users. The suggested DecRL-
AE&VAS algorithm gives a reward value (a weighted sum of
the six assessed performance measures) of only about 5% to
6% less than the global best solution in each validation phase.

V. DISCUSSION
In summary, in this paper, we show that when compared
to the baseline RL approaches, the DecRL-AE&VAS model
can efficiently assist the UAV-BS in finding the near-optimal
location and converging at a high-quality level. Utilizing
the model-sharing and information-exchange technique, the
proposed algorithm can learn from the past and eventually
arrive at the optimal state that provides the best reward value,
the proposed DecRL-AE&VASmethod can achieve the same
or even higher levels of system quality than the Baseline CRL
approach in both training and validation phases. Because the
reward value shows the system’s performance, we may con-
clude that the DecRL-AE&VAS can help UAV-BS provide
better service than the other baseline models. Our findings
show that the algorithm has the capacity to link MC users
swiftly and adequately, allowing drone systems to self-learn
without centralized interaction. In Figure 10, we also demon-
strate the effectiveness after deploying multiple UAV-BSs
in the MC use case. The ‘‘7 Macro-BSs’’ denotes the sce-
nario where 7 marco-BSs are serving the whole scenario,
while the ‘‘6 Macro-BSs without UAV-BS’’ denotes the sce-
nario where one macro-BS is broken and no UAV-BS is
deployed. The case ‘‘6 Macro-BSs with 3 UAV-BSs RL’’
describes the situation which three UAV-BSs are deployed to
fill the coverage hole created in case ‘‘6 Macro-BSs without
UAV-BS’’. The results in case ‘‘6 Macro-BSs with 3 UAV-
BSs Opt’’ is derived based on grid search to be compared
with the RL case. It can be observed that when one
macro-BS breaks down, the MC users experience severe
performance degradation. Compared with the ‘‘6 Macro-BSs
without UAV-BS’’ case, deploying 3 UAV-BSs as in the case
‘‘6 Macro-BSs with 3 UAV-BSs RL’’ can improve about
80% system performance (including 5%, 50% throughput
and drop rate) for MC users in both DL and UL. Fur-
thermore, the suggested DecRL-AE&VAS algorithm gives
a throughput of 10 Mbps and a drop rate of only about 2%
to 3% less than the global best solution indicated in the
‘‘6 Macro-BSs with 3 UAV-BSs Opt’’ case. In conclusion,
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FIGURE 10. DL & UL performance comparison with/without UAV-BSs in the mission-critical use case.

deploying UAV-BS can greatly improve the performance of
MC users who are experiencing coverage loss. However,
due to the BS capability difference, deploying 3 UAV-BS,
in this case, can not guarantee that the MC users have sim-
ilar performance in the case when no emergency happens.
The only exception is that the UL 5% throughput perfor-
mance of MC users served by 3 UAV-BSs is better than
that served by one macro-BS before the disaster happens.
This is because three UAV-BSs can be deployed in dis-
persed locations which increases the probability for an MC
user to be close to its serving BS and the UL 5% through-
put performance of MC users is improved accordingly. The
5th percentile, 50th percentile, and drop rate of normal users
are also investigated, but they are nearly not impacted by
broken macro-BS and newly deployed UAV-BSs. That is
because most normal users are not served by the broken
macro-BS before the malfunction. In some cases, deploying
UAV-BSs even leads to lower 5th or 50th percentile through-
put of normal users compared to the case where there are no
UAV-BSs, due to the introduced interference from UAV-BSs.

The proposed model, initially designed for UAV-based
communication in mission-critical scenarios, holds promise

for adaptation and scalability across diverse disaster types and
alternative use cases. Examining these dimensions is pivotal
for the model’s real-world applicability beyond the specific
disaster context considered in this study. When considering
different disaster types, such as natural disasters, man-made
incidents, and public health emergencies, it is imperative to
assess the adaptability of the model. Varied communication
needs and environmental challenges associated with each
type of disaster may require nuanced adjustments to the
model’s parameters and strategies. By understanding how the
model can flexibly adapt to a range of disaster scenarios, its
practical utility can be enhanced.

VI. LIMITATIONS
While our proposed deep reinforcement learning algorithm
for the three-dimensional placement of UAV-BSs in MC
scenarios demonstrates promising results, it is crucial to
acknowledge several limitations and challenges associated
with the decentralized nature of the approach. The utilization
of decentralized architecture and model delivery mecha-
nism introduces unique considerations that require further
research.
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CommunicationOverhead: The independence of edge enti-
ties in completing tasks introduces communication overhead
among the UAV-BSs. As each UAV-BS makes decisions
based on local observations and interacts with others, the
need for frequent information exchange arises. This can lead
to increased communication latency and potential congestion
in scenarios with a large number of UAV-BSs. The need for
frequent information exchange arises and follows equation
n2 + n where n equals the number of participated edge
entities. This can lead to increased communication latency
and potential congestion in scenarios with a large number of
UAV-BSs. In our paper, we have parameters to control the
number of UAV-BSs communicated in each learning iteration
and the frequency of model exchange. However, the trade-off
between the control parameter and the quality of the model
requires further research.

Coordination Complexity: The decentralized approach
requires efficient coordination mechanisms among UAV-BSs
to avoid conflicts and optimize their collective behavior, espe-
cially when the number of participated UAV-BSs is largely
scaled up. Ensuring seamless interaction without a central
orchestrator poses challenges, particularly in dynamic envi-
ronments where the on-ground user movement and network
conditions may change rapidly.

In conclusion, while our approach showcases the benefits
of decentralized control in UAV-BS placement, the outlined
limitations underscore the need for further research and
development. Addressing these challenges will be crucial for
the practical implementation of our proposed solution in real-
world scenarios, particularly in dynamic environments that
require a large number of UAV-BSs deployed.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented a data collection system and
machine learning applications for an MC use case, a novel
RL algorithm, as well as a decentralized architecture to
autonomously pilot multiple UAV-BS in order to offer users
temporary wireless access. Two novel strategies, i.e., adaptive
exploration and value-based action selection, are developed
to help the proposed RL algorithms work efficiently in a
dynamic real-world context, incorporating MC user move-
ments and a decentralized architecture to support multi
UAV-BSs deployment. Note that the number of participated
UAV-BSs can be further extended based on the industrial
requirements due to the characteristics of the decentralized
architecture. We show that the proposed RL algorithm can
monitor the MC service performance and quickly respond to
environmental changes via self-adapting exploration proba-
bility. In addition, it requires far fewer model training iter-
ations by reusing previous experiences and the value-based
action selection strategy. Therefore, the proposed method can
well serve theMCusers by autonomously navigatingmultiple
UAV-BSs despite environmental changes.

In the future, we will consider separating the configuration
for access and backhaul antennas of the UAV-BS, as well
as modelling drone rotation in the horizontal domain as an

additional parameter for the UAV-BS configuration. We also
intend to examine other hyper-parameters and reward func-
tion combinations based on different service requirements
and further refine the model to accommodate specific real-
map scenarios. Last but not least, we will also investigate the
energy efficiency problem for deploying UAVs with machine
learning components in the real-world context.

REFERENCES
[1] H. Shakhatreh, K. Hayajneh, K. Bani-Hani, A. Sawalmeh, and M. Anan,

‘‘Cell on wheels-unmanned aerial vehicle system for providing wireless
coverage in emergency situations,’’Complexity, vol. 2021, no. 1, Jan. 2021,
Art. no. 8669824.

[2] Y. Zeng, R. Zhang, and T. J. Lim, ‘‘Wireless communications with
unmanned aerial vehicles: Opportunities and challenges,’’ IEEE Commun.
Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[3] J. Li et al., ‘‘Towards providing connectivity when and where it counts: An
overview of deployable 5G networks,’’ 2021, arXiv:2110.05360.

[4] Z. Qi, A. Lahuerta-Lavieja, J. Li, and K. K. Nagalapur, ‘‘Deployable
networks for public safety in 5G and beyond: A coverage and interfer-
ence study,’’ in Proc. IEEE 4th 5G World Forum (5GWF), Oct. 2021,
pp. 346–351.

[5] G. Dulac-Arnold, D. Mankowitz, and T. Hester, ‘‘Challenges of real-world
reinforcement learning,’’ 2019, arXiv:1904.12901.

[6] Z. Ding and H. Dong, ‘‘Challenges of reinforcement learning,’’ in
Deep Reinforcement Learning: Fundamentals, Research and Applications.
Springer, 2020, pp. 249–272.

[7] J. Li et al., ‘‘5G new radio for public safety mission critical commu-
nications,’’ IEEE Commun. Standards Mag., vol. 6, no. 4, pp. 48–55,
Dec. 2022.

[8] S. A. R. Naqvi, S. A. Hassan, H. Pervaiz, and Q. Ni, ‘‘Drone-aided com-
munication as a key enabler for 5G and resilient public safety networks,’’
IEEE Commun. Mag., vol. 56, no. 1, pp. 36–42, Jan. 2018.

[9] K. P. Morison and J. Calahorrano. (2020). FirstNet Case Study: How
FirstNet Deployables Are Supporting Public Safety. [Online]. Available:
https://www.policeforum.org/assets/FirstNetDeployables.pdf

[10] A.Merwaday, A. Tuncer, A. Kumbhar, and I. Guvenc, ‘‘Improved through-
put coverage in natural disasters: Unmanned aerial base stations for
public-safety communications,’’ IEEE Veh. Technol. Mag., vol. 11, no. 4,
pp. 53–60, Dec. 2016.

[11] L. Ferranti, L. Bonati, S. D’Oro, and T. Melodia, ‘‘SkyCell: A prototyping
platform for 5G aerial base stations,’’ in Proc. IEEE 21st Int. Symp. World
Wireless, Mobile Multimedia Netw. (WoWMoM), Aug. 2020, pp. 329–334.

[12] H. Wang, H. Zhao, W. Wu, J. Xiong, D. Ma, and J. Wei, ‘‘Deployment
algorithms of flying base stations: 5G and beyond with UAVs,’’ IEEE
Internet Things J., vol. 6, no. 6, pp. 10009–10027, Dec. 2019.

[13] E. Kalantari, M. Z. Shakir, H. Yanikomeroglu, and A. Yongacoglu,
‘‘Backhaul-aware robust 3D drone placement in 5G+ wireless net-
works,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops),
May 2017, pp. 109–114.

[14] C. T. Cicek, H. Gultekin, B. Tavli, and H. Yanikomeroglu, ‘‘Backhaul-
aware optimization of UAV base station location and bandwidth allocation
for profit maximization,’’ IEEE Access, vol. 8, pp. 154573–154588, 2020.

[15] N. Tafintsev et al., ‘‘Aerial access and backhaul in mmWave B5G systems:
Performance dynamics and optimization,’’ IEEE Commun. Mag., vol. 58,
no. 2, pp. 93–99, Feb. 2020.

[16] S. A. Al-Ahmed, M. Z. Shakir, and S. A. R. Zaidi, ‘‘Optimal 3D UAV base
station placement by considering autonomous coverage hole detection,
wireless backhaul and user demand,’’ J. Commun. Netw., vol. 22, no. 6,
pp. 467–475, Dec. 2020.

[17] C. Madapatha et al., ‘‘On integrated access and backhaul networks:
Current status and potentials,’’ IEEE Open J. Commun. Soc., vol. 1,
pp. 1374–1389, 2020.

[18] A. Fouda, A. S. Ibrahim, Ì. Güvenç, and M. Ghosh, ‘‘Interference manage-
ment in UAV-assisted integrated access and backhaul cellular networks,’’
IEEE Access, vol. 7, pp. 104553–104566, 2019.

[19] M.-A. Lahmeri, M. A. Kishk, and M.-S. Alouini, ‘‘Artificial intelligence
for UAV-enabled wireless networks: A survey,’’ IEEE Open J. Commun.
Soc., vol. 2, pp. 1015–1040, 2021.

[20] A. Ly and Y.-D. Yao, ‘‘A review of deep learning in 5G research: Channel
coding, massive MIMO, multiple access, resource allocation, and network
security,’’ IEEE Open J. Commun. Soc., vol. 2, pp. 396–408, 2021.

VOLUME 2, 2024 1125



[21] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, ‘‘Energy-efficient UAV
control for effective and fair communication coverage: A deep reinforce-
ment learning approach,’’ IEEE J. Sel. Areas Commun., vol. 36, no. 9,
pp. 2059–2070, Sep. 2018.

[22] C. Madapatha, B. Makki, A. Muhammad, E. Dahlman, M.-S. Alouini, and
T. Svensson, ‘‘On topology optimization and routing in integrated access
and backhaul networks: A genetic algorithm-based approach,’’ IEEE Open
J. Commun. Soc., vol. 2, pp. 2273–2291, 2021.

[23] F. Tang, Y. Zhou, and N. Kato, ‘‘Deep reinforcement learning for dynamic
uplink/downlink resource allocation in high mobility 5G HetNet,’’ IEEE J.
Sel. Areas Commun., vol. 38, no. 12, pp. 2773–2782, Dec. 2020.

[24] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, and L. Xiao, ‘‘Privacy-
preserving federated learning for UAV-enabled networks: Learning-based
joint scheduling and resource management,’’ IEEE J. Sel. Areas Commun.,
vol. 39, no. 10, pp. 3144–3159, Oct. 2021.

[25] C. Zhou et al., ‘‘Deep reinforcement learning for delay-oriented IoT task
scheduling in SAGIN,’’ IEEE Trans. Wireless Commun., vol. 20, no. 2,
pp. 911–925, Feb. 2021.

[26] S. Tan, C. Dun, F. Jin, and K. Xu, ‘‘UAV control in smart city based on
space-air-ground integrated network,’’ in Proc. Int. Conf. Internet, Educ.
Inf. Technol. (IEIT), Apr. 2021, pp. 324–328.

[27] L. Zhang, A. Celik, S. Dang, and B. Shihada, ‘‘Energy-efficient trajectory
optimization for UAV-assisted IoT networks,’’ IEEE Trans. Mobile Com-
put., vol. 21, no. 12, pp. 4323–4337, Dec. 2022.

[28] S. Yin, S. Zhao, Y. Zhao, and F. R. Yu, ‘‘Intelligent trajectory design in
UAV-aided communications with reinforcement learning,’’ IEEE Trans.
Veh. Technol., vol. 68, no. 8, pp. 8227–8231, Aug. 2019.

[29] S. Yin and F. R. Yu, ‘‘Resource allocation and trajectory design
in UAV-aided cellular networks based on multiagent reinforcement
learning,’’ IEEE Internet Things J., vol. 9, no. 4, pp. 2933–2943,
Feb. 2022.

[30] H. Wu, F. Lyu, C. Zhou, J. Chen, L. Wang, and X. Shen, ‘‘Optimal
UAV caching and trajectory in aerial-assisted vehicular networks: A
learning-based approach,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 12,
pp. 2783–2797, Dec. 2020.

[31] Y. Yang and X. Liu, ‘‘Deep reinforcement learning based trajectory opti-
mization for UAV-enabled IoT with SWIPT,’’ Ad Hoc Netw., vol. 159,
Jun. 2024, Art. no. 103488.

[32] C. Deng, X. Fang, and X. Wang, ‘‘Beamforming design and tra-
jectory optimization for UAV-empowered adaptable integrated sensing
and communication,’’ IEEE Trans. Wireless Commun., vol. 22, no. 11,
pp. 8512–8526, Nov. 2023.

[33] S. M. M. Abohashish, R. Y. Rizk, and E. I. Elsedimy, ‘‘Trajectory opti-
mization for UAV-assisted relay over 5G networks based on reinforcement
learning framework,’’ EURASIP J. Wireless Commun. Netw., vol. 2023,
no. 1, p. 55, Jul. 2023.

[34] W. Liu, D. Li, T. Liang, T. Zhang, Z. Lin, and N. Al-Dhahir, ‘‘Joint trajec-
tory and scheduling optimization for age of synchronization minimization
in UAV-assisted networks with random updates,’’ IEEE Trans. Commun.,
vol. 71, no. 11, pp. 6633–6646, Nov. 2023.

[35] C. Zhang, Z. Li, C. He, K. Wang, and C. Pan, ‘‘Deep reinforcement
learning based trajectory design and resource allocation for UAV-assisted
communications,’’ IEEE Commun. Lett., vol. 27, no. 9, pp. 2398–2402,
Sep. 2023.

[36] C. Wang, J. Wang, Y. Shen, and X. Zhang, ‘‘Autonomous navigation of
UAVs in large-scale complex environments: A deep reinforcement learning
approach,’’ IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2124–2136,
Mar. 2019.

[37] C. Wang, J. Wang, J. Wang, and X. Zhang, ‘‘Deep-reinforcement-learning-
based autonomous UAV navigation with sparse rewards,’’ IEEE Internet
Things J., vol. 7, no. 7, pp. 6180–6190, Jul. 2020.

[38] H. Huang, Y. Yang, H. Wang, Z. Ding, H. Sari, and F. Adachi, ‘‘Deep
reinforcement learning for UAV navigation through massive MIMO
technique,’’ IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1117–1121,
Jan. 2020.

[39] Y. Zeng, X. Xu, S. Jin, and R. Zhang, ‘‘Simultaneous navigation and
radio mapping for cellular-connected UAV with deep reinforcement learn-
ing,’’ IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4205–4220,
Jul. 2021.

[40] Y. Zeng and R. Zhang, ‘‘Energy-efficient UAV communication with tra-
jectory optimization,’’ IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[41] S. Ahmed, M. Z. Chowdhury, and Y. M. Jang, ‘‘Energy-efficient UAV
relaying communications to serve ground nodes,’’ IEEE Commun. Lett.,
vol. 24, no. 4, pp. 849–852, Apr. 2020.

[42] C. Zhao, J. Liu, M. Sheng, W. Teng, Y. Zheng, and J. Li, ‘‘Multi-UAV
trajectory planning for energy-efficient content coverage: A decentralized
learning-based approach,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 10,
pp. 3193–3207, Oct. 2021.

[43] B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, ‘‘UAV trajectory
planning inwireless sensor networks for energy consumptionminimization
by deep reinforcement learning,’’ IEEE Trans. Veh. Technol., vol. 70, no. 9,
pp. 9540–9554, Sep. 2021.

[44] H. Zhang et al., ‘‘Autonomous navigation and configuration of integrated
access backhauling for UAV base station using reinforcement learning,’’
2021, arXiv:2112.07313.

[45] Study on Enhanced LTE Support for Aerial Vehicles,
document TR 36.777, Version 15.0.0, 3rd Generation Partnership
Project (3GPP), Dec. 2017. [Online]. Available: https://www.3gpp.org/
ftp/Specs/archive/36_series/36.777/36777-f00.zip

[46] Radio Resource Control (RRC) Protocol Specification, document
TR 38.331, Version 16.8.0, 3rd Generation Partnership Project
(3GPP), Mar. 2022. [Online]. Available: https://www.3gpp.org/ftp/
Specs/archive/38_series/38.331/38331-g80.zip

[47] Study on Channel Model for Frequencies From 0.5 to 100 GHz,
document 38.901, Version 16.1.0, 3rd Generation Partnership
Project (3GPP), 2020. [Online]. Available: https://www.3gpp.org/ftp/
Specs/archive/38_series/38.901/38901-g10.zip

[48] B. Galkin, E. Fonseca, R. Amer, L. A. DaSilva, and I. Dusparic, ‘‘REQIBA:
Regression and deep Q-learning for intelligent UAV cellular user to base
station association,’’ IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 5–20,
Jan. 2022.

[49] V. Mnih et al., ‘‘Playing Atari with deep reinforcement learning,’’ 2013,
arXiv:1312.5602.

[50] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-
ing,’’ Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[51] C. J. C. H.Watkins, ‘‘Learning from delayed rewards,’’ Ph.D. thesis, King’s
College, Cambridge, U.K., 1989.

1126 VOLUME 2, 2024


