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ABSTRACT Deep learning (DL) methods have been shown to improve the performance of several use cases
for the fifth-generation (5G) New radio (NR) air interface. In this paper we investigate user equipment (UE)
positioning using the channel state information (CSI) fingerprints between a UE and multiple base stations
(BSs). In such a setup, we consider two different fusion techniques: early and late fusion. With early fusion,
a single DL model can be trained for UE positioning by combining the CSI fingerprints of the multiple
BSs as input. With late fusion, a separate DL model is trained at each BS using the CSI specific to that BS
and the outputs of these individual models are then combined to determine the UE’s position. In this work
we compare these different fusion techniques and show that fusing the outputs of separate models achieves
higher positioning accuracy, especially in a dynamic scenario. We also show that the combination of multiple
outputs further benefits from considering the uncertainty of the output of the DL model at each BS. For
a more efficient training of the DL model across BSs, we additionally propose a multi-task learning (MTL)
scheme by sharing some parameters across themodels while jointly training all models. This method, not only
improves the accuracy of the individual models, but also of the final combined estimate. Lastly, we evaluate
the reliability of the uncertainty estimation to determine which of the fusion methods provides the highest
quality of uncertainty estimates.

INDEX TERMS Deep learning, wireless positioning, late fusion, early fusion, multi-task learning, uncer-
tainty estimation.

I. INTRODUCTION

ACCURATE user positioning is an enablers of several
future services and technologies [1], [2], [3], [4] such as

location-aware communication, vehicle to everything (V2X)
applications, industrial internet of things (IIOT), cooperat-
ing robots, commercial applications, etc. For this purpose,
radio-based positioning of user equipment (UE) in wireless
communication networks can be considered [5]. Multiple
base stations (BSs) deployed in such networks allow the
collection of channel state information (CSI) over distributed
links, which can be exploited for positioning of a UE. The
CSI consists of the channel across the spatial and frequency
domain, where the large number of antennas and large

available bandwidth of current and future communication
networks [4], e.g., fifth generation (5G) or upcoming sixth
generation (6G), can provide a high angular and temporal
resolution to enable high accuracy positioning.

Conventional radio-based positioning methods are gener-
ally model-based and usually follow a two-step approach.
With CSI estimated at one BS [6] or at multiple BSs [7],
relevant parameters or measurements e.g., path delay, angle
of arrival (AoA), reference signal receive power (RSRP),
time difference of arrival (TDoA), etc, are first determined
to subsequently compute the UE’s position in a second
step. Recently, machine learning (ML) and artificial intel-
ligence (AI)-based techniques have also been proposed for
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radio-based UE positioning [8], [9], [10], [11], [12] which
are primarily data-driven and not model-based. In particular,
deep learning (DL) methods, particularly convolutional neu-
ral networks (CNNs) have shown promising results [13], [14],
[15], [16], being able to achieve sub-meter accuracy. In such
data-driven models, the CSI over subcarriers and antennas
of a UE at a given position is considered as a fingerprint
associated with the UE’s position. By leveraging the ability of
wireless networks to collect large amounts of data, a database
of CSI fingerprints associated with different UE’s positions
along with the respective UE’s position label can be con-
structed. With the DL-based positioning methods, a neural
network (NN) can be trained on a given database, such that
afterwards the NN can be employed for estimating a UE’s
position by providing the CSI of the UE as its input. Different
types of fingerprints have been considered in the literature,
including the received signal strength (RSS), the magnitude
and/or phase of the CSI over subcarriers in the frequency
domain and across antennas in the spatial domain [15], [16],
[17], [18], [19].

With the CSI of a UE available across multiple BSs, early
fusion or late fusion can be considered for the DL-based
positioning methods [20], [21]. In early fusion, the CSI
fingerprints from multiple BSs are collected and bundled
together to constitute a single CSI fingerprint associated with
the UE’s position. Thus with early fusion, only one NN needs
to be trained with a database comprising with fingerprints of
the CSI across multiple BSs [20]. On the other hand, with
late fusion, one NN is assumed at each BS where the CSI
is considered as a fingerprint of the UE’s location associated
only with the given BS [21]. The NN associated with that
BS is trained with a database of CSI fingerprints from that
BS, enabling the NN to determine the UE’s position based
only on the CSI estimated by that BS. Afterwards, a final
UE’s position estimate is obtained by combining the position
estimates obtained by the NNs across the multiple BSs [21],
[22], e.g., with a weighted average.

The choice between early or late fusion generally depends
on the application [23]. However, when considering changes
in the UE-BS channel between the training phase and deploy-
ment phase, e.g., due to a blockage of the line of sight (LOS)
between a UE and a BS, late fusion can benefit from uncer-
tainty estimation [21]. In particular, the NN at each BS can be
trained to estimate the uncertainty in the UE’s position deter-
mined by each NN. This enables the late fusion approach,
to determine the final position estimate for the UE consider-
ing the uncertainty of themultiple position estimates obtained
across multiple BSs. In practice the most reliable position
estimates have a larger impact in determining the final UE’s
position. Uncertainty estimation can be computed based on
simple approaches likeMonte CarloDropout (MCD) [24] and
Deep Ensembles (DEs) [25], which characterize the uncer-
tainty based on the variance of the positioning error obtained
with multiple NNs, i.e., similar position estimates across the
different NNs indicates lower uncertainty estimation. Uncer-

tainty estimation methods have also been proposed in [26]
and [27] to detect corrupted fingerprints.

Most conventional approaches to positioning require a
strong line-of-sight (LOS) path and may be impaired in non-
LOS (NLOS) conditions or when there is a strong multipath.
Recent works such as [6] and [28] have shown how to take
advantage of the multipath information for single anchor UE
positioning but are limited to multiple-input multiple-output
(MIMO) systems and require prior knowledge of the nature
of the incoming paths (i.e., LOS or NLOS). On the other hand
DL-based methods can still be employed in strong multipath
scenarios and don’t require multiple antennas at both receiver
and transmitter. Despite this fact, with the multipath profile
being susceptible to environmental changes, a DL model
trained with CSI fingerprints from one environment may
achieve a poor performance for the UE positioning in another
environment [21], [29].

The lack of direct transferability of the knowledge acquired
in one environment to other environments is one of the
challenges of DL-based positioning [30]. The most straight-
forward way to address this is to retrain the NN from scratch
with CSI fingerprints from the new environment, which may
however be resource expensive and may not always be feasi-
ble.The resource intensive nature of position labeling that is
required can be reduced by employing channel charting [31]
and by considering distance metrics between CSI fingerprints
to create a map of the deployment scenario [32], [33] using
no or very few position labels. On the other hand, several
approaches can be considered for improving the generaliz-
ability of a trainedmodel to adapt it to environmental changes
or to a new environment including transfer learning, domain
generalization, multi-task learning and meta learning. With
transfer learning, a previously trained model is used as an
initial model that is fine-tuned with reduced training data
from a new environment [19], [29], which allows to speed
up the training and to improve the performance compared to
training from scratch.

Furthermore, with multi-task learning (MTL) the aim is
to jointly learn multiple models by training them while also
sharing some or all of their parameters, thereby benefit-
ing from regularization [34]. Consequently, by considering
positioning in different environments as different tasks, the
positioning across multiple environments can be improved.
When training a MTL scheme the choice of the relative
importance of each task has to be considered. The hardest
to learn tasks should be weighted less, so that the model
focuses more on tasks that are easier to learn. Based on the
uncertainty of each task, a method was proposed in [35] that
takes into account the importance of each task. This method,
not only provides a way to tune the importance of different
tasks but also simultaneously learns the uncertainty for each
task, which as shown in [21] is beneficial for the DL-based
position using CSI fingerprints.

Another approach aiming at improving the generalizability
of NN models is meta-learning. With meta-learning, a model
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is trained on multiple tasks or environments such that the
minimization of the loss function in an unseen task is done
more efficiently. Training is done by considering a meta-level
objective such as the average positioning error across themul-
tiple environments [30], [36]. Meta-learning aims at having
a trained model that generalizes better not only across the
trained tasks but also facilitates learning an unseen task with a
lower number of training samples, in contrast to MTL which
only aims at learning better the trained tasks.

Motivated by the two-step approach of conventional posi-
tioning methods, i.e., with parameter extraction from the
CSI in a first step and a position determination in a second
step, a two-part model trained with multi-task learning and
a meta-level objective has been recently proposed in [37].
For UE positioning in different environments, i.e., different
training tasks, different models are assumed with the first part
of the models being common across all task and trained with
CSI samples from all tasks (multi-task learning) aiming at
minimizing the sum positioning error across all tasks (meta-
level objective). The second part of the model of each task
is trained to be environment specific by using only training
data from each environment. The proposed approach in [37]
is able to improve the positioning accuracy of the trained
environments, as well as achieve a better generalizability
when transferring the first part of the model and fine tuning
the two-part model with CSI samples of a new environment.

A. CONTRIBUTIONS
As proposed in [35], MTL benefits from uncertainty estima-
tion. The training in MTL can be improved by determining
the relative weighting of the losses of each task based on the
associated uncertainty estimate [35]. For this reason, in this
paper we combine the results from [21] and [37] to benefit
from the MTL of different positioning tasks and from late
fusion using uncertainty estimation. For a setup with multiple
BSs and considering the positioning of a UE using each BS as
a separate task, we show that employing a MTL scheme with
uncertainty estimation and late fusion achieves high position-
ing accuracy. Additionally, even though this is outside the
scope of the current paper, it was shown in [37] that a model
trained with the MTL scheme can be further used for transfer
learning in a new environment, reducing the time and amount
of data that needs to be gathered.

Moreover, we extend the work in [21] by employing a
method described in [38] for sensor fusion that takes into
account the possibility that one or more sensors may be
spurious. In the case of DL-based positioning, a model esti-
mate could be spurious if the purported uncertainty is low
but the real error is high. We employ this method in a late
fusion scheme and show that it is beneficial in improving the
positioning accuracy especially in dynamic environments.

Lastly, we aim not only to minimize the positioning error,
but also evaluate the reliability of the uncertainty estima-
tion. It would be beneficial if the estimated uncertainty
truly reflects the model’s uncertainty about the current mea-

surement, such that a high uncertainty should indicate high
positioning error and vice-versa. To evaluate the quality of
uncertainty estimates we consider the area under sparsifica-
tion error (AUSE) metric [27], [39]. In addition to the AUSE
metric, we evaluate the integrity of the positioning results
with respect to the integrity risk (IR) which is used in global
navigation satellite system (GNSS) applications and has been
recently proposed in the Third Generation Partnership Project
(3GPP) as a positioning key performance indicator (KPI) for
5G positioning [40].

The paper is structured as follows. In Section II the consid-
ered system model is described along with the different types
of fusion and the MTL scheme is introduced. In Section III
the simulation setup is described and the DL-model structure.
The results and conclusion are then presented in sections IV
and V respectively.

II. SYSTEM MODEL
We consider an uplink setup with NB BSs each with NR
receive antennas and a single transmit antenna at the UE. The
UE transmits a reference signal on NC subcarriers within an
orthogonal frequency divisionmultiplexing (OFDM) symbol.
The received uplink signal is used to estimate the CSI matrix
between UE and each BS. The estimated channel at the n-th
BS over the NC subcarriers is described as:

H̃n = [h̃
n
0, h̃

n
1, . . . , h̃

n
NC−1] ∈ CNR×NC , (1)

where h̃
n
l ∈ CNR×1 is a column vector that describes the esti-

mated uplink channel between the UE and the NR antennas of
the n-th BS at the l-th subcarrier. The estimated channels can
be considered as a unique fingerprint of the position of the UE
and depend on the multipath between the UE and each BS.
To transform the raw complex CSI data to meaningful inputs
for the NN, we stack the matrices ℜ ˜{Hn} and ℑ ˜{Hn} in the
third dimension to obtain a new real-valued 3D matrix Hn ∈

RNR×NC×2. The symbols ℜ{·} and ℑ{·} denote the real and
imaginary values of each of the matrix elements respectively.
The values of each matrix are then normalized in the range
[0, 1]. This transformation is a widely adopted practice in the
literature for AI positioning using fingerprints as it allows
the network to learn from both the magnitude and phase
information, which are crucial for exploiting the multipath
propagation effects captured by CSI [16], [19], [41].We input
the matrix Hn to the DL-model without applying manual
feature engineering and we leverage the model’s ability to
autonomously learn relevant features from the data [42].

A. DL BASED POSITIONING WITH FINGERPRINTS
Deep learning based localization using CSI fingerprints as
inputs consists of two phases, namely the training and the
deployment phase, which are often alternatively termed as
offline and online phases, respectively. During the training
phase, CSI fingerprints are collected throughout the area of
interest along with a label corresponding to the UE posi-
tion associated with each CSI fingerprint. In order to collect
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FIGURE 1. Early fusion.

FIGURE 2. Late fusion.

fingerprints along with their labels, the use of positioning
reference units (PRUs) can be employed, which consist of
a device with known position, i.e., obtained with another
positioning method or with sensors [43]. Without loss of
generality, we assume that the UEs lie on a two dimensional
plane. Subsequently, the CSI fingerprints and the position
labels p = [x, y] ∈ R2 are used to train the parameters ϵ of a
neural network (NN) fϵ(.). Training is accomplished by min-
imizing the mean squared error between the position labels
and the output of the NN with the labeled CSI fingerprints
as input. Eventually, the trained NN is then used during the
deployment phase to estimate the position p̃ of a UE based on
the estimated CSI fingerprint, where p̃ = [x̃, ỹ] ∈ R2 is the
position estimate for the UE.

The key idea behind positioning with CSI fingerprints is
that the CSI for each position is considered unique for that
specific position. This stems from the fact that the channel
between UE and BS is a rich source of information since it
is influenced by various environmental factors such as walls
objects or other obstacles. All this information is indirectly
incorporated into the multipath propagation of the channel,

which includes direct paths (LOS) and indirect paths (NLOS),
and is extracted during the training phase of the NN. Con-
sequently, positioning using fingerprints is part of modern
positioning techniques such as [28], which leverages both
LOS and NLOS paths. Additionally, as shown in [44], there is
not necessarily a need for a LOS path at all since NLOS paths
already contain information that can make the fingerprints
unique and useful for positioning. The basic assumption is
that the propagation environment should not significantly
change between the training and deployment phases since that
would degrade the performance of the NN.

Two different approaches for positioning using CSI finger-
prints from multiple NB BSs can be considered [21], namely
early and late fusion.

1) EARLY FUSION
In early fusion, a single DL-model is trained for the UE
positioning, having as input the concatenation of the CSI
fingerprints from all BSs, i.e., the single NNmodel fϵ(H) = p̃
where H = [H1,H2, . . . ,HNB ] ∈ R(NB·NR)×NC×2. Although
this is a straightforward way to combine the information from
all BSs and perform localization using a DL-model, it has
some disadvantages. Firstly, a large signaling overhead is
required in order to transmit the relevant CSI data to a central
server which has the single NNmodel and second, if the setup
changes (e.g. a BS is removed), then a new NN model has to
be trained from scratch. A block diagram of early fusion is
shown on Fig. 1.

2) LATE FUSION
With late fusion, a UE’s position estimate is determined based
on the CSI fingerprint at each BS. For this purpose, a separate
NNmodel is trained at eachBS based on the CSI at eachBS as
input. The parameters ϵn of the model fϵn (Hn) = p̃n of the n-
th BS are trained, with the CSI measurements Hn of that BS.
During deployment, the position estimates obtained across
all the BSs are appropriately combined to produce a single
position estimate. This type of fusion is shown in Fig. 2.
We refer to this type of late fusion as, single task learning
(STL) late fusion, since each DL-model is trained on a single
specific task, namely the task of positioning based on CSI
data from a specific BS.

Compared to early fusion, this method necessitates much
less traffic for the network. The reason for that is that only
the output of each of the models needs to be collected instead
of the whole CSI fingerprints as in the case of early fusion.
On the other hand, an appropriate model for the combination
of the multiple estimates has to be developed. In this paper we
built upon the work in [21] and propose and comparemethods
to appropriately combine the position estimates considering
the uncertainty.

B. UNCERTAINTY ESTIMATION
Normally, for DL based positioning with CSI fingerprints, the
parameters ϵ of theNN are optimizedwith respect to themean
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squared error (MSE) loss:

L(fϵ) = Lx + Ly, (2)

where Lx = E[|x̃ − x|2], Ly = E[|ỹ− y|2] and E[.] denotes
the mean value over the samples in the training set.

The drawback of using such a loss function is that the
model does not acquire any knowledge about the uncertainty
that is present in the measurements. In the following, we dis-
cuss different types of uncertainties.

1) ALEATORIC UNCERTAINTY
The data dependent uncertainty is called aleatoric uncer-
tainty and it reflects the uncertainty that a measurement
has about the specific task. In a case of positioning using
CSI fingerprints, a particular CSI measurement would have
high uncertainty if it has low receive SNR for example.
This type of aleatoric uncertainty, i.e. instance-dependent
uncertainty, is called heteroscedastic uncertainty. Since the
aleatoric uncertainty in positioning using fingerprints is data-
dependent, it can also be learned from the data. In [45] a
modification to the MSE loss was proposed in order to train
a model to simultaneously calculate the position and the
aleatoric uncertainty of the current position estimate. The loss
function which shall be minimized with respect to the model
parameters ϵ is the negative log-likelihood (NLL) function:

L′(fϵ) =
1

2(σα
x )

2Lx +
1

2(σα
y )

2Ly + log(σα
x σα

y ), (3)

where σα
x and σα

y are the aleatoric uncertainties for the out-
puts x and y respectively.

Subsequently, the output of the model has to be modified
to include the learned aleatoric uncertainty σα

= [σα
x , σα

y ]
of p̃ = [x̃, ỹ], i.e., f ′

ϵ (H) = [x̃, ỹ, σα
x , σα

y ]. The modified
loss function L′(fϵ) consists firstly of two regression terms
that describe the inverse relationship between the MSE loss
of each estimated coordinate and its corresponding aleatoric
uncertainty. When the MSE loss for a particular coordinate
cannot be minimized further, the model increases the respec-
tive aleatoric uncertainty to compensate. On the other hand
the aleatoric uncertainty remains low for instances where the
MSE loss is low. The last term is a regularization term that is
used to limit the infinite increase of the outputs σα

x and σα
y .

2) EPISTEMIC UNCERTAINTY
Aleatoric uncertainty is not the only type of uncertainty
present in a DL model. The other type is called epsitemic
uncertainty and it accounts for uncertainty in the model’s
parameters [45]. Estimates with high epistemic uncertainty
indicate that the input comes from a distribution that was
not learned by the model. In a DL localization model with
fingerprints, the epistemic uncertainty would be high for a
region in space where no data were collected or when a CSI
measurement was corrupted.

In [24], an approach for capturing a model’s epistemic
uncertainty called Monte Carlo dropout (MCD) was intro-
duced. When employing dropout, random neurons in every

weight layer of the deep learning model are deactivated with
a predefined probability. Typically, dropout is utilized solely
for training purposes as a regularization technique [42], but
with MCD, this same dropout probability is retained even
during the deployment phase. Each successive forward pass
through the deep DL model with MCD generates a unique
configuration, and conductingmultiple forward passes is akin
to sampling from an approximate posterior distribution of the
model’s parameters given the dataset [24]. The variance of
the estimates from the different model configurations during
these forward passes serves as an indicator of the model’s
epistemic uncertainty.

After T forward passes, the combined aleatoric and epis-
temic uncertainty of the coordinate x is [45]:

σx =
1
T

T∑
t=1

x̃2t −

( 1
T

T∑
t=1

x̃t
)2

+ σα
x , (4)

where t indicates the current forward pass and x̃t indi-
cates the estimate of the coordinate x at the t-th
forward pass. The combined aleatoric and epistemic
uncertainty for the y position coordinate is calculated
similarly.

Even though the epistemic uncertainty estimation is an
efficient way for theDLmodel to report on its own knowledge
about the current measurement, it is not always accurate.
There are cases where the epistemic uncertainty is low but
the mapping to the position is highly inaccurate. In those
instances the model would provide a spurious estimate
which has to be identified and eliminated from the fusion
scheme. For the late fusion in [21], the method employed
to combine the results from the different estimates is based
on the assumption that each estimate follows a known
Gaussian distribution, whose variance corresponds to the esti-
mated combined aleatoric and epistemic uncertainty. As this
assumptions does not always hold, we take into account such
model inconsistencies by incorporating a method described
in [38] to fuse measurement from multiple sensors. The basic
idea of this method is to weigh less the estimate that is most
inconsistent with the other estimates. We should note that this
method leverages multiple position and uncertainty estimates
from different BSs, and therefore can only be employed in a
late fusion scheme as described next.

In our setup we consider NB different models, correspond-
ing to the models trained at each of the NB BSs. The authors
of [38] assume that the probability that a measurement from
the n-th sensor n ∈ [1, . . . ,NB], is not spurious with proba-
bility

pn = exp(
−(x − x̃n)2

αn
) (5)

where x is the true state, x̃n is the estimate of the n-th sensor
and αn is a parameter that depends on the variances of each
separate model and the difference between the output of the
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n-th model with respect to other sensors:

αn =
bn∏NB

l=1,l ̸=n(x̃n − x̃l)2
(6)

where bn is a hyperparameter.
From αn we see that when the estimate of the n-th model

is very different from the estimates of the other models, i.e.,∏NB
l=1,l ̸=n(x̃n − x̃l)2 → ∞, then αn → 0 and subsequently

pn = 0, meaning that the n-th estimate is definitely spurious.
On the other hand when the n-th estimate largely agrees with
the other estimates, i.e.,

∏NB
l=1,l ̸=n(x̃n − x̃l)2 ≈ 0 then it

follows that pn ≈ 1, which means that the n-th estimate is
not spurious. To reflect this intuition he authors of [38] show
that the variance of the n-th model can be modified from σx,n
to:

σ ′2
x,n =

σx,n
2b2n

b2n − 2σ 2
x,n

∏NB
l=1,l ̸=n(x̃n − x̃l)2

(7)

where it must hold that b2n > 2σ 2
x,n

∏NB
l=1,l ̸=n(x̃n− x̃l)2, so that

σ ′
n > 0. In our model we choose:

b2n = 2σ 2
x,n

NB∏
l=1,l ̸=n

(x̃n − x̃l + λ)2 (8)

where λ is a small valued hyperparameter.
By choosing the parameter bn as such, we make sure that

when
∏NB

l=1,l ̸=n(x̃n − x̃l)2 → ∞, then σ ′
n → ∞, reflecting

very high uncertainty. On the other hand, when
∏NB

l=1,l ̸=n(x̃n−
x̃l)2 ≈ 0, then σ ′

n ≈ σn.

C. MULTI TASK LEARNING
When considering the late fusion approach, i.e. a separate
NN for each of the BSs, we propose sharing some param-
eters across models of different BSs as described in [37].
The n-th model which corresponds to the n-th BS fθ,ϵn (Hn)
is parametrized by the common parameters θ and the BS
specific parameters ϵn. By defining fθ,ϵn (Hn) = gϵn (φθ (Hn))
and training the parameters θ only on data from multiple
BS we are forcing θ to be the same, regardless of the input
data. This means that we can deal with the training of the
different models as a MTL scheme and jointly minimize the
loss for the positioning with the model at each BS. MTL with
parameter sharing allows for information flow between tasks
which eventually may help each individual task [46]. The
block diagram of a the MTL scheme considered in this work
is shown in Fig. 3.

This method of training is not possible when considering
early fusion, since there is only one available model. Further-
more, when comparing STL late fusion toMTL late fusionwe
see that MTL requires the data from all BSs to be collected
in order to train the models since the models share some
parameters. For STL late fusion each BS trains its own model
and then only shares the result of the model so there is no
need to share input data between them. However, the fact that
the models in MTL late fusion share parameters can enable

training bymeans of federated learning [47]. Federated learn-
ing refers to the technique whereby multiple nodes can train
a model by partially training it locally and then sharing the
model’s parameters instead of sharing the data. This method
can reduce data transfer requirements between nodes and also
preserve privacy. Federated learning is also not applicable in
the early fusion case since no single BS is able to do partial
training on the model (see Fig. 1) as the it needs CSI data
from all BSs on its input to predict a single UE position.

The naive approach of optimizing a MTL scheme is to
minimize a linear sum of the loss for each individual task, i.e.
for the positioning at each BS. Thus, the loss for the training
of the models in the MTL scheme would be would be:

LMTL(fθ,ϵ1 , fθ,ϵ2 , . . . , fθ,ϵNB
) =

NB∑
n=1

Ln(fθ,ϵn ), (9)

whereLn(fθ,ϵn ) is theMSE loss of the n-th model as described
in eq. (2). The authors of [35] observed that by weighting
each task appropriately the performance of each task can be
greatly improved and proposed to set the weighting based on
the aleatoric uncertainty [45] of each task.
In the context of DL based localization using fingerprints

each model is generates a 2-dimensional position estimate.
By assuming that each output of the n-th DL model follows
a Gaussian distribution N (x̃n, σx,n2), and similarly for the y
variable, the authors of [45] derive the minimization objective
for the multi task learning as follows:

L′

MTL(fθ,ϵ1 , fθ,ϵ2 , . . . , fθ,ϵNB
)

=

NB∑
n=1

L′
n(fθ,ϵn )

=

NB∑
n=1

[
1

2(σα
x,n)

2Lx,n +
1

2(σα
y,n)

2Ly,n + log(σα
x,nσ

α
y,n)

]
(10)

where L′
n(fθ,ϵn ) is the NLL loss of the n-th model as defined

in (3) and it includes each model’s aleatoric uncertainty σα
x,n

and σα
y,n which is implicitly weighing the losses for each task.

D. LATE FUSION WITH UNCERTAINTY ESTIMATION
The assumption that the outputs follow a Gaussian distri-
bution, for which we have estimates of the mean value and
variance, can be leveraged during the data fusion process.
The NB estimates all refer to a single UE’s position in a 2-
dimensional plane and the fused probability distribution can
be calculated using Bayesian inference [48]. The resulting
maximum likelihood (ML) fused estimate p̃ = [x̃, ỹ] ∼

N ([x̃ML, ỹML],
[
σ 2
x , 0

0, σ 2
y

]
) has a variance of:

σ 2
x =

1∑NB
n=1 1/σ

2
x,n

, σ 2
y =

1∑NB
n=1 1/σ

2
y,n

(11)
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FIGURE 3. Two-part models with multi-task learning. Models’
output comprise the UE’s position estimate and the aleatoric
uncertainy (when considered).

and a mean value:

x̃ML =

∑NB
n=1 x̃n/σ

2
x,n

1/σ 2
x

,

ỹML =

∑NB
n=1 ỹn/σ

2
y,n

1/σ 2
y

(12)

and similarly for ỹ. This type of estimate weighting is called
inverse variance weighting. The value of σx,n is given by (4)
in the case of MCD uncertainty estimation, or (7) when
considering spurious estimates (SP). Additionally, if we don’t
take into account the uncertainty of each estimate we can
consider σx,n = σy,n = 1 which this results to a simple
averaging of the position estimates.

E. QUALITY OF UNCERTAINTY ESTIMATION
After presenting different ways to calculate the uncertainty
for each estimate, we now discuss how to assess the quality
of these uncertainty estimates. As shown in the previous
section, instead of providing a single position estimate, each
model provides a different probability distribution for each
individual input, for which the variance corresponds to the
uncertainty. Normally to assess whether the output of the
model indeed conforms to a probability distributionwewould
repeatedly produce samples from themodel for a single input,
calculate the empirical mean and variance and determine how
close they are to the estimated model’s distribution. However,
in the context of localization using CSI fingerprints we have
at most a couple of CSI samples for a given location, therefore
any empirical calculation would be unreliable. Instead we use
a method to determine the reliability of the uncertainty esti-
mation process which is called the area under sparsification
error curve (AUSE).

1) AREA UNDER SPARSIFICATION ERROR CURVE
The idea behind this metric is to use the so-called sparsifica-
tion plots as a quality metric and the sparsification error [39].

Before defining the sparsification error we first need to define
the oracle error. We define an array of the errors of each
position sample as:

e =
[
||x̃0 − x0||2, ||x̃1 − x1||2, . . . , ||x̃Ntest−1 − xNtest−1 ||2

]
(13)

where x̃i is the estimated value of the i-th sample and xi is
the real value and Ntest is the number of samples in the test
set. We also define the function sort(.) which is used to sort
the elements of an array in descending order, such that e′ =

sort(e). With that, the oracle error can be defined as:

ON =

√∑
e′N :Ntest−1

Ntest − N
, (14)

where e′N :Ntest−1 = [e′N , e′N+1, . . . , e
′

Ntest−1] and 1 ≤ N ≤

Ntest. The valueON is decreasing monotonically withN since
the errors are removed from the array e′ in decreasing order.
To define the sparsification error, we first define an uncer-

tainty vector s = [σ0, σ1, . . . , σNtest−1] and also, the function
argsorts(.) which sorts the elements of an array with respect
to the descending order of the elements of the array s, and
eS = argsorts(e). With that, the sparsification error is defined
as:

SN =

√∑
eSN :Ntest−1

Ntest − N
, (15)

The sparsification error shows how much the estimated
uncertainty coincides with the true errors on the test set.
By removing gradually from the test set the estimates with the
highest uncertainty and if the estimated uncertainty is of high
quality the mean error SN should decrease monotonically
when increasing N . We compare SN to ON , by calculating
the curve under the function SN −ON for N ∈ [1,Ntest − 1].
The value AUSE is calculated as:

AUSE =

∑Ntest−1
N=1 SN − ON
Ntest−1

. (16)

A small value indicates that the sparsification error is close to
the oracle error, meaning that the uncertainty estimation is a
good indicator for the actual error in the test set.

2) INTEGRITY RISK
We additionally use the integrity risk (IR) metric which was
recently proposed by 3GPP as a key performance indicator for
positioning integrity [40]. Normally, if the uncertainty is high,
the system should give a warning that the respective error is
also high. The integrity risk is defined as the probability that
the unknown positioning error exceeds an application specific
alert limit (AL) without warning. The available information
from each user is the position and the uncertainty estimate,
therefore we define an indicator function 1AL[||σ i||2] which
gives the aforementioned warning when the euclidean norm
of the uncertainty ||σ i||2 vector of the i-th measurement is
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larger than some threshold γ which corresponds to an posi-
tion error equal to the AL:

1AL[||σ i||2] =

{
1 for ||σ i||2 ≤ γ

0 for ||σ i||2 > γ
. (17)

The IR is then defined as:

IR =

∑
{i|1AL(||σ i||2)} 1AL[ei]

Ntest
, (18)

In words, the IR is calculated as the ratio of samples that
exceeded the AL but no warning was given, to the total
number of test samples.

F. DATABASE DESCRIPTION
To evaluate our proposals we use the Dichasus channel
measurements described in [49], that were collected at four
antenna arrays distributed on the corners of an industrial area
shown in Fig. 4. Each of the antenna arrays consists of a
4 × 2 uniform rectangular array (URA) with vertical and
horizontal antenna spacing of half a wavelength. The mea-
surements in [49] were collected with a single-antenna UE
transmitting an OFDM signal in the uplink with a bandwidth
of 50 MHz and with a pilot sent at every tenth subcarrier out
of 1024 subcarriers, i.e., Nc = 103. The carrier frequency is
fC = 1.272 GHz. The ground truth positions are measured
with a tachymeter robotic total station, a very precise instru-
ment that tracks the robot’s antenna with a laser with at least
centimeter-level accuracy. This method aligns with the 3GPP
work item [50], where position labels for a PRU are available
using a different positioning sensor.

In a real deployment of a positioning system using fin-
gerprints, the CSI fingerprints are influenced by variations
in the environment such as movement of objects or people
throughout the area of interest. To model a change in the
environment for a UE at a given position, i.e., between the
training and deployment phase, we consider the attenuation of
the strongest path from the UE to a BS, i.e., due to blocking
by a nearby person or object. Please note that the strongest
path to a BS may correspond to a NLOS path, as some areas
do not have a LOS to a BS.

III. SIMULATION SETUP
A. DYNAMIC SCENARIO
Weassume that thewireless signal propagates along a number
of different paths to the BSs. Each path is associated with
a complex gain, time-of-arrival and an angle-of-arrival. The
totality of the paths and their parameters can fully describe the
channel between a UE and a BS. In order to model the attenu-
ation of the strongest path we first transform the channel from
the antenna-subcarrier domain to the angle-delay domain by
means of the discrete Fourier transform (DFT) as described
in [51].

After the matrix transformation to the angle-delay domain
we identify the strongest path as the largest element of the
matrix and we attenuate it by 20dB which corresponds to the
attenuation effect caused by a human body at similar carrier

FIGURE 4. Layout of considered industrial environment in
Dichasus [49].

FIGURE 5. Static and dynamic scenarios example (strongest
paths of 2 BSs attenuated). The UE is depicted as red dot inside
the area of interest and the arrows indicate the strongest paths
between UE and BSs.

frequency [43]. For a real system as the one considered, there
is power leakage of each path to the neighboring elements
although the matrix still remains mostly sparse. To take into
account the power leakage we attenuate by the same amount a
grid of 3 × 3 elements around the strongest path. The matrix
is then transformed back to the antenna-subcarrier domain,
resulting in a modified CSI fingerprint due to the attenuation.
Although a realistic blockage of the strongest path may not
actually result in the same modified CSI fingerprint, our aim
is to evaluate the performance of the considered approaches
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FIGURE 6. Overview of different fusion methods and training
schemes.

considered a change in the environment. This is regardless
whether the change is realistic or not, as the point is that the
CSI fingerprint learned for a given position has changed.

Consequently, we consider scenarios with or without the
above mentioned human body attenuation. When no atten-
uation is present we assume that there is no change in the
environment between training and deployment phases, i.e.
the environment is static as shown in Fig. 5. Additionally
we consider scenarios where attenuation affects the signal
between UE and each of the BSs, but only in the deployment
phase. This implies a change in the environment between
the training and the deployment phases which we define as
a dynamic scenario. We consider 4 different cases for the
dynamic case considering a path attenuation from the UE
to one, two, three or to all BSs. In the dynamic scenario
example in Fig. 5 the strongest paths of BSs C and D are
attenuated.

Lastly, we compare all the different fusion approaches.
An overview of all the considered approaches is shown in
Fig. 6 considering different types of training loss, i.e., MSE
or NLL loss, and different fusion methods, i.e., early or late
fusion. For the late fusion specifically we have different types
of model training. Firstly, the STL late fusion which is the
samemethod as described in [21] where each BS corresponds
to a single DL-model and each model is trained only on data
from that BS. We also consider the MTL late fusion which
assumes that the models of each BS share the parameters
of their initial layers and are trained using the MTL scheme
described in Section II-C. Finally we also consider different
types of combining of the estimates from themultiplemodels,
namely averaging, MCD or SP. With early fusion only one
model is trained, with either MSE or NLL loss.

B. NEURAL NETWORK CONFIGURATION
The considered neural network is shown in Fig. 7. In theMTL
late fusion we consider that the models across BSs share the
parameters of the first four blocks. Both early and late fusion

FIGURE 7. Complete DL model.

FIGURE 8. Pooling block.

use the same overall structure but with different input size,
depending on the considered fingerprint.

The basis of the considered neural network is the convolu-
tional layer as it has shown promising results for positioning
using CSI fingerprints [8], [11], [13], [14], [16], [21], [37].
In general, the convolutional layer is followed by a pool-
ing layer whose purpose is to downsample its input but
recently [52] it has been shown that using strided convolution
instead of a pooling layer may improve the model’s perfor-
mance. Therefore, for the DL-model in this work we only use
strided convolution and no pooling layers. A strided convo-
lution can be thought of as a learned pooling layer, where
the input is downsampled but the method of downsampling is
learned during training [42, chapter 9.5].

Additionally, to further reduce information loss during
downsampling, we implement the method of pooling blocks
introduced in [53] which was also used for CSI based posi-
tioning in [41]. In a pooling block, a convolutional layer
doubles the number of learned convolutional filters before
downsampling and then the spatial size is reduced by a strided
convolution. A final convolutional layer is used to reduce
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TABLE 1. Fusion schemes.

again the number of learned convolutional filters to the origi-
nal size. In this way, it is expected that the pooling block will
learn to transfer the important information from the spatial
dimension to the convolutional filters and preserve it.

Lastly, in order to avoid any problems with vanishing
gradients we employ skip connections [54]. By combining all
the aforementioned methods we create a pooling block which
is shown in Fig. 8. Two pooling blocks are placed one after
the other and are followed by 3 dense layers with 128 neurons
each and finally with a dense layer with 2 neurons that outputs
the estimated 2-dimensional position. When considering the
aleatoric uncertainty the last dense layer has 4 neurons which
correspond to the 2-dimensional position plus the NLL loss
for the x and y position coordinates. Each convolutional layer
has 32 filters with a 3×3 kernel. The models are trained using
the Adam optimizer with a batch size of 64 for 1000 epochs in
total. The initial learning rate is 10−3 and is reduced to 10−4

after 100 epochs of no improvement of the validation loss.
Depending on the method used, i.e., early fusion, STL

late fusion or MTL late fusion, the total number of model
parameters are different. For the early fusion method, the
input’s dimension is 32 × 103 × 2 which results from the
CSI over all 32 antennas, i.e. 4 BSs with 8 antennas each, and
103 subcarriers. Therefore the total number of parameters in
the early fusion case is 357 954 parameters. When using STL
late fusion, the CSI over the 8 antennas of a BS is used as input
to eachmodel. As the input dimensionality is then 8×103×2,
the number of parameters per model is reduced to 185 922.
Since we have 4 models the total number of parameters is
743 688. Lastly when jointly training the multiple models
in a MTL scheme some parameters are shared so in this
case the total number of parameters is 285 768. The different
configurations are summarized in Table 1.

IV. SIMULATION RESULTS
We test the different proposed schemes using the Dichasus
database [49] in the deployment area shown in Fig. 4 by incre-
mentally increasing the number of training samples Ntrain
from Ntrain = 10 000 to Ntrain = 60 000. The validation
set is 10% of the training set i.e. Nval ∈ [1000, 6000]. The
hyperparameter λ in Eq. (8) is chosen as 0.01. We compare
the different schemes with respect to the mean error (ME),
which is given by the mean euclidean distance between the
estimated position and the true position in the test set. The
number of test samples is Ntest = 59 137, regardless of
the number of training and validation samples. Furthermore
we compare the quality of the uncertainty estimation of the
different schemes by the AUSE metric and the IR.

FIGURE 9. Comparison of ME of each BS in a static scenario
when using STL or MTL scheme and MSE loss.

A. STATIC SCENARIO
Initially we compare the different results for a static envi-
ronment, i.e., when there is no change between training and
deployment phases. Before comparing the different fusion
approaches listed in Table 1, we first show the gain of the
training performed with the MTL training on the late fusion
approach. For both the STL and MTL late fusion approaches,
one model is trained at each BS by using the MSE loss
in Eq. (2) as the objective function. However, for the STL
late fusion the model at each BS is trained only with data
from that BS, while for MTL late fusion the first part of the
model at each BS is trained with data from all 4 BSs. In the
following, when mentioning MTL late fusion, we refer to
joint training of the first common part of the models. Fig. 9
shows the performance of the models at each BS with the
STL and MTL. The gain of joint training can clearly be seen
across the models at each BS. By training the models jointly,
their common part incorporates information from multiple
BSs effectively increasing its training size. Thus, for a late
fusion scheme, joint training the models at each BS (using
MTL), instead of separately (STL), leads to a decreased ME
at each BS.

Next, we compare the different fusion schemes with
respect to the ME in the test set. Specifically for both STL
and MTL late fusion we consider three different methods of
combining the estimates of the multiple models as described
in section II-D. The first combining method is averaging
where a simple average of all the model outputs is performed
to calculate the overall estimate. The second combining
method uses MCD-based combining where the variance of
each estimate is estimated using the MCD method shown
in eq. (4). Lastly, we also consider the SP-based combining
where the variance, shown in Eq (7), of the different estimates
is modified by taking into account spurious measurements.
The fused estimate for both MCD and SP is calculated using
eq. (12). From Fig. 10 we can observe that using early fusion
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FIGURE 10. Comparison of ME for different fusion methods in a
static scenario when training using STL or MTL scheme and
MSE loss.

FIGURE 11. Comparison of ME of each BS in a static scenario
when using STL or MTL scheme and NLL loss.

outperforms all late fusion methods in a static environment,
i.e., when there are no changes in the environment between
the training and the deployment phase. This is in contrast
to the result from [21], where it was shown that late fusion
outperformed early fusion in the static case. The difference
in the conclusion of the results of [21] and the ones shown
in Fig. 10 can be explained due to the different considered
environments.Whereas in [21] there is always a LOS between
the UE and each BS, in this work the link between the UE and
each BS can either be LOS or NLOS.

We consider the performance of the different fusion
approaches when the models are trained using the NLL loss
function shown in Eq. (3). Fig. 11 shows the comparison
of the models at each BS with separate and joint learning
when using the NLL loss function. Similar to the MSE loss
function case, there is an improvement in the performance
for each model when training them jointly in a MTL scheme.
As explained in [35], using a MTL scheme which enables

FIGURE 12. Comparison of ME for different fusion methods in a
static scenario when using STL or MTL scheme and NLL loss.

FIGURE 13. Comparison of ME for different fusion methods in a
static scenario when training jointly with MSE or aleatoric loss.

joint late fusion, the aleatoric uncertainty is implicitly used
as a learned weighting parameter between the losses corre-
sponding to each task, i.e. the positioning at each BS, which
can increase the performance for each task.

We further compare the STL and MTL late fusion and the
early fusionmethods when training themodels using the NLL
loss. The results are shown in Fig. 12. Similar to the results
in Fig. 11 when considering the MSE loss for the training,
jointly training the models shows a significant improvement
in performance compared to when training each model sep-
arately. This effect is particularly strong for a small number
of training samples. We also see that even though the early
fusion still outperforms the late fusion approaches for a
small number of training samples, this is no longer the case
when the number of training samples increases, i.e. the late
fusion methods perform similar or better than the early fusion
method. Similar to when training with the MSE loss, the late
fusion with averaging is the worst performing option.
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TABLE 2. AUSE in static scenario.

TABLE 3. AUSE in dynamic scenario.

Additionally, we compare the different fusion methods
when training the models using the MSE (2) or the NLL (3)
loss functions.We see in Fig. 13 that every late fusion scheme
benefits when training the models based on the NLL function
regardless of the number of training samples. Essentially, the
inclusion of the aleatoric uncertainty improves the MTL late
fusion schemes with MCD or SP-based combining, such that
they are able to come close to the performance of the early
fusion scheme, assuming an adequate number of training
samples. For the early fusion scheme we see the opposite
effect, namely that the inclusion of the aleatoric uncertainty
during training impairs the performance, albeit slightly. The
reason for this different behavior between late and early
fusion may come from the fact the early fusion measurements
always have some BSs having a LOS to the UE. This fact
limits the usefulness of the aleatoric uncertainty since in a
LOSmeasurement the uncertainty is anyway low. For the late
fusion this is not the case since every BS may experience
NLOS conditions which have high aleatoric uncertainty and
positioning is then more challenging than the LOS case.
As explained in section II-B.1, the model prioritizes cases
where the aleatoric uncertainty is low, i.e. LOS cases.

Furthermore, we compare the quality of the uncertainty
estimation in the different fusion methods in Table 2. During
our evaluations, we noticed that the AUSE value remains
mostly constant over training samples and therefore, we show
the average over the training samples in Table 2. The aver-
aging late fusion method it is not included in the table as it
does not have uncertainty information. A lower AUSE value
means that the sorting of the positioning errors across each
measurement more closely corresponds with the sorting of
the uncertainty, making the uncertainty a good indicator for
the actual positioning error. We see from the table that for
every fusion method, training using the NLL loss function
improves the quality of the uncertainty estimates according
to AUSE. This makes sense since there is no aleatoric uncer-
tainty information when training MSE loss function, and
instead only the epistemic uncertainty is used.

FIGURE 14. Uncertainty of model of BS A in a static scenario
over all positions.

FIGURE 15. Uncertainty of model of BS A when it experiences a
change.

B. DYNAMIC SCENARIO
Next we explore the positioning in a dynamic scenario, where
the channel between the UE and one or more BSs experiences
a change between the training and deployment phase, i.e.,
a 20 dB attenuation of the strongest path as described in
Sec. III-A. In the following, we refer to this attenuation of
the strongest path to a given BS as a change. The effect of
this change on the uncertainty of the estimates can be seen
in Fig. 15, which depicts the aleatoric uncertainty at BS A
when the strongest path to BS is attenuated compared to
the aleatoric uncertainty when no attenuation is considered
shown in Fig. 14. While the uncertainty in the static case
remains more or less low throughout the area, i.e., around
0.25, when there is a change the uncertainty can be up to
8 times larger. We see that the most affected regions are the
ones that there is a LOS path to the BS. This path includes
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most of the energy of the CSI thereby by reducing it the
CSI is hugely affected. In the NLOS region we see that the
uncertainty remains low since the position information is
included in multiple paths, i.e., no single path contains most
of the energy in the CSI fingerprint.

Fig. 16 depicts the mean error of different fusion schemes
when the channel between the UE and the BS A experiences
the described change above in the deployment phase. Com-
pared to the static case (see Fig. 13), we observe a huge
degradation in performance for the late fusionwith averaging,
as well as a large degradation in performance for the early
fusion case. As expected the late fusion schemes with MCD
and SP combining perform much better than the other fusion
methods. Specifically the SP-based late fusion method is
able to outperform all others since it is able to most reliably
disregard the spurious measurements due to the change in the
channel to BS A.

Furthermore, we now consider a change in the channels
between the UE and multiple BSs. In Fig. 17, we depict the
performance of early fusion and SP-based MTL late fusion
when training with the MSE and NLL loss function as a
function of the number of BSs with the attenuation of the
strongest path, considering 40 000 training samples. The solid
lines show the error over all positions in the test set. As the
uncertainty at different positions varies, we also propose to
consider the performance for the positions when the uncer-
tainty is below a threshold. By using logistic regression in the
static scenario we determine an uncertainty threshold for each
method over which the positioning error is over 1m. Then for
each method we exclude the measurements with uncertainty
over this method-specific uncertainty threshold, and we see
that the error decreases, depicted by the dashed lines in
Fig. 17. The difference is more pronounced for the larger
number of BSs with a change and similarly in those cases
more measurements are over the uncertainty threshold and
therefore excluded. Interestingly, even though the difference
between using the MSE loss or the NLL loss is relatively
high for a small number of blocked BSs, with NLL loss
training performing better, the difference becomes smaller
when blocking more BSs. The reason for that is that when
more BSs experience a change then the epistemic uncertainty
dominates, since the measurements differ more from the
static scenario.

Next, we investigate the reliability of the uncertainty esti-
mates in a dynamic scenario with respect to the AUSE as
shown in Table 3. As in the static case, we provide the average
over all training samples since similarly to the static case we
noticed that the AUSE value remains mostly constant over
the number of training samples. First we see that for almost
every late fusion approach, training with NLL loss and MTL
late fusion approach results in the most reliable uncertainty
estimates.

Lastly, we depict in Fig. 18 the integrity risk for
40 000 training samples considering a channel change to one
or more BSs. The integrity risk is described in equation (18)
and we consider AL = 1m and the threshold γ is calculated

FIGURE 16. Comparison of ME for different fusion methods in a
dynamic scenario when using MTL with MSE or NLL loss.

FIGURE 17. Comparison of the error of different error fusion for
different number of blocked BSs, considering 40 000 training
samples.

using logistic regression in the static scenario for each fusion
method. A low integrity risk shows that the uncertainty esti-
mation can be used to identify estimates that exceed the alert
limit. We see in Fig. 18 that the SPmethod is the most reliable
in this regard achieving an IR less than 7% over all cases.
On the other hand the early fusion methods exhibit a quite
high integrity risk. The high integrity risk of those methods
combined with the relative low AUSE shows that the early
fusion methods exhibit overconfidence in their estimates.
In other words, they are able to sort their errors based on
their uncertainty, as indicated by the low AUSE, but the error
corresponding to each uncertainty estimate is underestimated.
This implies that with early fusion, it is assumed that some
estimates are under the alert limit even though this is not the
case.
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FIGURE 18. Integrity risk.

We note that here we provide only a simple method to
calculate the uncertainty threshold based on the uncertainty
vector l2-norm and provide an IR value to show the effective-
ness of the uncertainty estimation. Other methods to better
calculate the threshold can be developed using both uncer-
tainty vector elements and using other classification methods
such as support vector machines (SVMs). Moreover, the
considered metric does not indicate how many estimates are
over the uncertainty threshold for each method which may be
something that needs to be considered in some use cases.

V. CONCLUSION
In this paper, we examined different fusion methods for
positioning using deep learning and CSI fingerprints from
multiple BSs. For early fusion, only one model is used for
estimating the UE’s position based on the CSI fingerprint
across multiple base stations. For late fusion, one model per
BS is employed and the overall UE’s position is determined
by combining the output of the models across the BSs. The
performance of the trained models was evaluated considering
a static scenario, where the channel between the training
phase and the deployment phase remains the same, as well
as in a dynamic scenario, where the channel between the UE
and one or more BSs experience a change (attenuation of
strongest path) in the deployment phase. While early fusion
schemes may normally perform better in static scenarios,
changes in the environment lead to a decrease positioning
performance with early fusion, as the model is not able
to adapt in a dynamic scenario. On the other hand, our
results indicate that late fusion approaches are more robust to
changes in the environment, which is an important aspect to
be addressed for AI-based localization with CSI fingerprints
in real deployments. Among the different considered late
fusion approaches, we have shown the advantage of multi-
task learning, by jointly training shared parameters of the
models across the base stations, where the common part of
the models benefits from a larger number of training samples.

For the late fusion approaches, different methods for com-
bining the positioning estimates from the BS models have
also been investigated. In particular, we have considered
simple averaging as well as combining based on consider-
ing uncertainty estimation, namely MCD and SP, where the
output of the different models are weighted based on the
learned aleatoric uncertainty. We show that fusing the mul-
tiple estimates based on their uncertainty not only improves
the positioning accuracy in both a static and dynamic scenario
but also ultimately gives more reliable uncertainty estimates.
The reliability of the uncertainty estimates is determined in
terms of AUSE, which considers whether the uncertainty
corresponds to the real positioning error, and in terms of the
IR, which demonstrates amodel’s ability to discard unreliable
estimates. Additionally we consider that some of the esti-
mates may be spurious, i.e., falsely indicate low uncertainty
but with an actual large positioning error, and we employ a
technique to identify and disregard such estimates.

Overall, we show that late fusion scheme with multi task
learning and uncertainty estimation is the most accurate
and reliable in the considered scenarios. This holds also for
the dynamic scenario, which is one of the main challenges
limiting the deployment of AI-based localization with CSI
fingerprints.
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