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ABSTRACT In-network cache architectures, such as Information-centric networks (ICNs), have proven to
be an efficient alternative to deal with the growing content consumption on networks. In caching networks,
any device can potentially act as a caching node. In practice, real cache networks may employ different
caching replacement policies by a node. The reason is that the policies may vary in efficiency according to
unbounded context factors, such as cache size, content request pattern, content distribution popularity, and
the relative cache location. The lack of suitable policies for all nodes and scenarios undermines the efficient
use of available cache resources. Therefore, a new model for choosing caching policies appropriately to
cache contexts on-demand and over time becomes necessary. In this direction, we propose a new caching
meta-policy strategy capable of learning the most appropriate policy for cache online and dynamically
adapting to context variations that leads to changes in which policy is best. The meta-policy decouples the
eviction strategy frommanaging the context information used by the policy, and models the choice of suitable
policies as online learning with a bandit feedback problem. The meta-policy supports deploying a diverse
set of self-contained caching policies in different scenarios, including adaptive policies. Experimental results
with single andmultiple caches have shown themeta-policy effectiveness and adaptability to different content
request models in synthetic and trace-driven simulations. Moreover, we compared the meta-policy adaptive
behavior with the Adaptive Replacement Policy (ARC) behavior.

INDEX TERMS In-network caching, cache replacement policy, online learning, multi-armed bandits,
adaptive system.

I. INTRODUCTION

IN recent years, the proliferation of bandwidth-needed
applications and the increased capacity of modern com-

munication devices (e.g., smartphones, network-equipped
vehicles, wearables) have led to a bloom of multimedia
content consumed at the network. Due to this emerging
scenario, the host-centric Internet model has experienced
significant challenges in meeting the current and future
users’ and applications’ requirements. One of the strategies
to make the Internet feasible in such high content distri-
bution scenarios relies on networking caching approaches,
which use cache-equipped devices closer to users to provide
the most frequently requested content locally. Information-
centric Networking (ICN) [1] is a promising initiative that

implements in-networking caching, replicating content in a
distributed way in cache-enable routers (CRs) over the net-
work. It benefits users through better quality of service levels
and operators by saving network resources.

Caching on the network leverages the content delivery
process and improves network performance. However, the
caching benefits will be efficiently achieved only by deploy-
ing caching policies suitable to the network context in which
the cache operates. The attention to the caching policies is
of paramount importance, especially in modern networks
with the recent advances in 5th generation (5G) technology,
Mobile Edge Computing (MEC), and network virtualization.
Such technologies are revolutionizing the edge, allowing
the emergence of new content-demanding applications for
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the Internet of Things (IoT), Vehicular Ad Hoc Networks
(VANETs), and new network types. The ICN model natively
supports those new environments’ mobility, scalability, and
security requirements. In this way, there is an increasing ten-
dency to deploy ICN-enable edge networks in 5G-ICN virtual
network slices [2], [3]. That scenario allows the dynamic
creation/relocation of virtual cache nodes according to the
demand for content consumption and customized for the
cache operation context.

One relevant challenge in creating customized cache
instances is choosing which cache replacement policy should
be instantiated to achieve optimal caching performances.
Traditionally, the choice of caching policies requires some
empirical knowledge associating context characteristics of
the cache production environment with the policy type
that should be adopted. For example, some works point
to recency-based policies as more suitable for traffic with
strong temporal correlation, such as video streaming [4],
or frequency-based policies for more stationary traffic pat-
terns [5]. Other works point to random policies as an efficient
choice to handle filtered traffic from a hierarchical caching
structure [6]. However, it is not always possible to know the
workload scenario’s characteristics. Besides, traffic charac-
teristics can change over time, leading to changes in which
caching policy would better fit the cache. Changes in the
number of users, predominant user habits, and application
type (among other contexts) can dynamically change the
characteristics of the network at different times. Also, user
mobility imposes a challenge leading to on-demand changes
in the network topology, node connectivity, and workload
aspects. Variations in context aspects may affect policies’
performance over time, and the cache must adapt to those
changes to ensure optimal performance.

The ICN literature presents a variety of caching policies
types [7], [8] exploring different aspects, such as content
frequency, recency, size, age, network delay, or energy cost
to store the content. Most are static policies and cannot deal
with dynamic changes affecting the cache efficiency. Some
initiates, such as the Adaptive Replacement Policy (ARC)
[9], attempt to tackle that limitation by proposing adaptive
policies capable of adjusting the policy’s behavior. However,
there is no explicit pattern defining which policy is most
suitable for a given environment since several factors can
influence network traffic and, consequently, the policies’
performance. As the current literature has shown, there is
no single caching policy to suit the needs of all operation
contexts since the policies’ performance may vary according
to unbounded aspects. Even adaptive policies, like ARC, may
not suit appropriately in all scenarios [7]. ICNs can have
improved performance by creating customized caches con-
cerning the context. Still, we currently lack mechanisms to
help choose suitable caching policies according to the cache
operation context in a customized way. That is our focus.

We introduce a caching meta-policy strategy that enhances
the cache with the ability to learn the suitable policy among a
fixed set of candidate policies without prior knowledge about

the cache production environment [10]. The strategy benefits
from the diversity of existing caching policies and models
the choosing process as an online learning with a partial
feedback problem. The meta-policy decouples the replace-
ment decision reasoning from the context information used
by the policies to enable learning with multiple policies. The
meta-policy is a generic and modular strategy, allowing the
cache to learn according to the operational environment. The
central point is to enable learning at an upper abstraction level
instead of directly making content replacement decisions. It’s
not how the cache learns since the learning profile is to be
carried by a particular learning agent instance. Also, it is not
the delimitation of the candidate policies, as it depends on the
degree of diversity required in a particular implementation.

As a proof-of-concept evaluation, we have implemented
the strategy in Named-data networking (NDN) [11] caching
nodes, with a sample set of standard caching policies and
variations of non-stationary stochastic bandits playing the
learning agent. Then, we conducted simulation-based exper-
iments through multiple scenarios with synthetic and real
web traces. The results show that the cache node enhanced
with the meta-policy strategy approximates the best heuristic
replacement policy’s performance according to each scenario
without prior knowledge about the production environments.
The strategy allowed the cache to work as an adaptive system,
learning the suitable policies for different network situa-
tions. To further assess the adaptive behavior, we have also
implemented the ARC policy to compare the ARC adaptive
behavior to the behavior of our strategy. The adaptive behav-
ior achieved by the meta-policy relies on the diversity of the
caching policy set. The advantage is that adaptability can be
comprehensively customized. One can explore a broad and
unbounded scope of context information by adding policies
in the set, including adaptive policies. Therefore, the adapt-
ability achieved by the meta-policy has a broader range of
applications by encompassing adaptive policies.

The main contributions of this paper are:

• Modeling the choice of optimal caching policies as
online learning with partial feedback problems, in which
cache-enabled routers can employ different cache
replacements policies over time. The model can be
applied in single and multi-cache networks.

• Providing a modular meta-policy approach to assist the
choosing process of suitable caching policies according
to the current context, and further, to cope with the
natural dynamism of context variations in networks. The
meta-policy strategy is generic regarding the network
type in which the cache operates.

• Experimentally evaluating the meta-policy in NDN sce-
narios relying on simulations using both synthetic and
real traces.

• Comparing the adaptive behavior of the meta-policy
with the ARC policy. Our method works as an adaptive
system by adjusting its choice of the best policy for a
cache in operation. The choice is among a finite set of
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existing caching policies. Although the adaptation pro-
cess differs, one adaptive policy has the closest expected
results. Therefore, we have performed experiments
to compare our method with ARC. The experiments
include using ARC as one of the candidate policies
employed by the learning agent.

• Discussing the applicability of ourmeta-policy approach
to other caching systems and the impact on implement-
ing caching policies.

The remainder of the paper is organized as follows:
Section II presents background and discusses related work.
Section III presents our system model, and section IV details
the caching meta-policy strategy. Section V contains the eval-
uation methodology, and section VI presents the results along
with remaining remark discussions. Section VII concludes
the paper and discusses future work.

II. BACKGROUND AND RELATED WORK
A. CACHING IN ICNs
In-network caching is a core feature of ICN models. It refers
to the mechanisms by which content is cached and managed
within the network infrastructure itself, typically in the CRs.
The content’s name is an essential element for network rout-
ing in ICNs. The content requests are forwarded based on
the name of the content, not its location, which enables the
decoupling of content location from the content delivery pro-
cess. To this end, ICN replicates content in a distributed way
in the CRs. One approach to disseminating content in ICNs
is called the on-path approach. As content flows through the
network from source to destination, routers along the content
delivery path can cache copies of the content they encounter.
The on-path in-network caching is an opportunistic manner
to distribute content over the network.

The CRs can operate with different policies to tackle cache
management. The policies can be classified as content place-
ment and replacement policies. Placement policies focus on
deciding whether passing content should be stored locally.
They can operate isolated or in a cooperative way. Exam-
ples of placement policies include Leave Copy Everywhere
(LCE), Probabilistic caching (Prob), and Leave Copy Down
(LCD) [12]. Meanwhile, content replacement policies define
the logic used to choose which content to evict from the cache
when there is the need for storing new content and no more
space is available in the cache. This work focuses on the
replacement policies.

Caches in ICNs can work with traditional replacement
policies, such as Least Recently Used (LRU), Least Fre-
quently Used (LFU), First-In-First-Out (FIFO) and Random,
or newly proposed context-specific policies that explore a
diversity of context information in their eviction logic [8].
Each policy uses a different logic to elect which content is
less likely to be accessed in the near future. For example,
LRU removes the content with the oldest access date; LFU
elects to remove the content with the least amount of access;
FIFO selects the content stored for longer in the cache; and

TABLE 1. Basic cache replacement policies and the context
information used in their eviction logic.

Random removes any content randomly. Table 1 summarizes
the context information used by these basic policies.

Other replacement policies explore a variety of context
aspects involving not just content-related information but
also cache node and network-related data. For instance,
the replacement policy proposed in [13] is content and
node-based, using in its eviction logic the content producer
identification, the content creation time on the producer,
and the total number of chunks/content by producers in
the cache. Reference [8] contains a comprehensive list of
different context information used by replacement policies
in ICNs.

B. ONLINE LEARNING FOR CACHING SYSTEMS
Online learning models represent a subset of machine learn-
ing techniques to tackle online prediction problems. An agent
interacts with the environment in successive online rounds by
taking one action at each round over a range of possibilities.
Different actions cause different impacts on the environment
measured by corresponding reward values. Each iteration is
a new decision instance, and the problem is to predict which
action to execute, aiming tomaximize the cumulative rewards
in a time horizon (or reduce the regret when not choosing the
best action). Themodel of choosing over a finite set of actions
is known as learning from expert advice, as each action plays
as an expert by returning numerical feedback information
used to improve future predictions. Two usual feedback mod-
els are the full information, in which the agent has access
to the feedback of all actions, and the partial information,
in which only the played action yields its feedback value. This
partial feedback setting is also known as bandit feedback.

Bandit models are widely explored to solve resource allo-
cation problems in caching systems [14], [15], [16], [17],
[18], [19]. In particular, the content allocation problem in
cache-enabled cellular infrastructures can be modeled as ban-
dit applications. For instance, [14] proposed a bandit model
for content placement in wireless small base stations (sBS).
The model places an agent as the manager of an sBS and the
contents present in a connected macro base station (mBS) as
the actions. The bandit problem is to select a subset of popular
contents to cache at the sBS by accounting for the popularity
of the contents present in the sBS only. The agent has no
information about the popularity of all contents placed at the
mBS. This way, the strategy must explore to choose the best
subsets of popular content.
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Moreover, the authors in [20] employ an online gradient
ascent method as caching policy to address the content allo-
cation problem. Gradient ascent is a type of optimization
algorithm also used to solve resource allocation problems.
Following the content allocation problem’s general goal, the
strategy chooses a smaller subset of potential popular con-
tents to store at the cache given a content set. Each arriving
content request triggers the proposed algorithm to adapt the
cached subset based only on the current cache composition
and the most recent request.

Another study in [21] models cache content configura-
tions as cache states and transition states as Markov. The
work shapes caching policies as online distribution learning
algorithms, in which each caching policy can be associated
with a distinct popularity distribution of the cached contents.
The authors also propose an adaptive policy directed to the
learning process under non-stationary request models based
on the study.

The employment of online learning techniques as a con-
tent replacement policy can be computationally costly since
the cache has to trigger the learning agent at each content
request arriving at the cache. Besides, the commonality of
those and most proposed cache-related solutions is the focus
on the content choice. Naturally, that is the central objec-
tive of the caching policies. We, instead, model the online
caching problem with an upper abstraction level. We propose
employing online learning to enhance the cache with the
meta capacity to choose among an available set of potentially
suitable policies. Ourmodel overcomes the intensive iteration
of learning agents as the agent needs to interact with the
cache in predefined time intervals, instead of at each arriving
content request. This setting is particularly conducive for
in-network caching architectures with no restrictions on the
content set.

In machine learning language, a sequence of actions cho-
sen according to some learning algorithm is called policy.
This work applies the term policy only to refer to the caching
replacement strategies to avoid misunderstanding.

III. SYSTEM MODEL
Consider a cache-enabled router CR with fixed capacity for
n contents from a content library set L of unknown size,
but it is known that |L| ≫ n. The router responds to
the content requests passing the network when the content
is stored locally, thus counting a cache hit. Otherwise, the
router forwards the request to another node on the network
and counts a cache miss. Content packets passing through
the cache can be opportunistically stored locally, but the
cache space is always fully occupied in the steady-state.
Therefore, the cache works with a cache replacement policy
ω to keep the contents most likely to be reaccessed. That
model represents the on-path in-network caching approach
of ICNs.

Given a discrete-time setting, we slotted the time into fixed
intervals I . The cache efficiency of CR inside the interval

I can be defined as:

CE(ω)I =
HI

MI + HI
(1)

in which HI is the number of content interests satisfied by
the cache in I and MI is the number of missed requests in
the same interval. The cache efficiency relies on the policy ω

since different policies perform differently according to their
eviction logic.

Consider a finite set � = (ω1, ω2, ω3, . . . , ωm) of m
content replacement policies feasible to the CR, for m ∈

N. Without loss of generality, we assume that CE(ω1)I >

CE(ω2)I > CE(ω3)I > . . . > CE(ωm)I . Eachω ∈ � can use
a different set of contextual information for the eviction logic.
Examples of context information includes content access
frequency, content last access time, content type, priority or
monetary cost, node’s connectivity, hop count from the cache
node to the content producer, or network delay for retrieving
the content [8].

We denote the best policy choice for CR in time interval I
as

ω∗
I = ωi | CE(ωi)I ≥ CE(ωj)I , ∀j ≤ m. (2)

Network environments are dynamic, and variations in the
content request pattern can lead to variations in policies’
performances. Therefore, the best policy may unpredictably
vary over time. The problem is choosing which policy should
be executed by the CR at each interval I to maximize cache
efficiency over a time horizon T .
Since we have continuous decision tasks during caching

operations, the problem can be represented as an online learn-
ing problem. The cache has to learn which policy is more
suitable to execute at each iteration. In our model, the cache
operates only with one cache replacement policy at a time.
Thus, the cache can measure the CE associated only with the
running policy.

IV. A CACHING META-POLICY STRATEGY
Caching replacement policies behave differently according to
their heuristic, but regardless of the policy, sequential CE(ωi)
measures could be seen as a sequence of random variables
shaped by the running caching policy ωi. CE measures are
expected to be random since the sequence of future content
requests is unknown. Also, the calculation of cache efficiency
over a current interval does not consider efficiency values
calculated over past intervals. This way, the measures are
distributed random variables in the range [0,1].

Notice the CE(ωi) measures of each policy may follow
distinct and truncated Gaussian distributions since each pol-
icy implements particular eviction decisions. Therefore, our
strategy’s primary rationale is to model caching policies’ effi-
ciencies as distinct and fixed stochastic distributions. In this
direction, we modeled the policy choice as an exploration and
exploitation problem, typically covered by Online Learning
with Partial Feedback (OLPF) algorithms.
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FIGURE 1. Meta-caching policy approach based on online
learning with partial feedback and content/context management
module. Each policy can work with a different number of N
context information.

The second rationale of our strategy is the decoupling of
the content eviction strategy frommanaging the context infor-
mation used by the policies. For that, we consider a Content
and Context Management (CCM) module able to manage the
cached contents and the context information associated with
the set of content replacement policies � available in the
cache.

Algorithm 1 Caching Meta-Policy Protocol

foreach iteration I in a time horizon T do
Choose policy ωI ∈ � according to the OLPF algorithm
Call CCMI , ωI , � to configure/operate the cache and
compute the cache efficiency
Receive the cache efficiency CE(ωI )I ∈ R
Update policy choice parameters according to the OLPF
algorithm

end

We combined the two procedures to propose a caching
meta-policy strategy capable of learning the suitable policies
online and dynamically adapting to context variations that
leads to changes in which policy is best. Figure 1 illustrates
the two main components: an OLPF agent and a CCM mod-
ule. The cache node works with the two components by
implementing the caching meta-policy protocol described in
Algorithm 1. In summary, the OLPF agent is responsible for
choosing the policies to run in each interval, while the CCM
module operates the cache and measures the cache efficiency
CE . Then, the OLPF algorithm receives the CE measured to
update its parameters used in the learning process.

That model allows the cache node to act as an agent learn-
ing traditional stochastic Gaussian distributions regardless
of the policy set. The strategy enhances the cache with an
upper abstraction level over the content eviction strategies,
and adjusts the cache to network changes that influence the
policies’ performance. We detail the components in the fol-
lowing subsections.

Algorithm 2 CCM - Content and Context Management for
the Meta-Policy Strategy
Input: I , ωI ∈ �, �
Output: CE(ωI )I

Initialize cache miss and hit counters:M = 0, H = 0
foreach request for content c during the iteration I do

if c is not in the cache then
Increment cache miss counter:M = M + 1
Elect content c’ to evict from the cache according to
ωI eviction logic
Add new content c in the cache
foreach ωi ∈ � do

Remove context data used by ωi and related to c’
end

else
Increment cache hit counter: H = H + 1

end
foreach ωi ∈ � do

Update context data used by ωi and related to c
end

end
Compute and return CE(ωI )I =

H
M+H

A. ONLINE LEARNING AGENT WITH PARTIAL FEEDBACK
OLPF describes a set of sequential decision-making prob-
lems. An agent interacts with the environment online by
deciding to execute one action over a finite set of actions. The
chosen action yields a numerical reward after being executed,
and the reward of the unplayed actions remains unknown.
The agent has no previous knowledge about the mechanism
generating the sequence of rewards for each action. This
way, there is always uncertainty about whether the agent
made the best choice. The agent can explore a new action
at each iteration or exploit the best action learned in previous
iterations. The agent has to explore to learn its possibilities
and also exploit to increase its gains in the long term.

In the caching meta-policy strategy, the decision-maker
agent is represented by the cache node, and each cache
replacement policy is an option to be chosen. For in-network
architectures, cache nodes are the network routers enhanced
with storage capacity. The cache works with a fixed set of
policies. Then, in a continuous task, the agent chooses a
policy to run inside a predefined interval of time. At the end
of each interval, the agent receives the reward associated with
the policy and evaluates whether the same caching policy will
be running in the next interval or another policy. The reward
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is the cache efficiency measured inside the interval and relies
only on the running policy. This way, the OLPF agent uses
the reward obtained in each interval to learn the policies’
distributions, i.e., the cache efficiencies’ distributions. The
agent is agnostic to the caching policy eviction logic and does
not associate the choice with any traffic pattern or network-
related characteristic.

Caching policies’ performance may vary according to traf-
fic characteristics changes, especially for highly dynamic
networks with intermittent wireless communication. In that
context, the distributions are expected to be non-stationary.
Models with stationary distributions have no variation in
which option will achieve the highest cumulative rewards
over time. This way, the learning process focuses on finding
which one is the best option. However, in non-stationary
stochastic problems, the distributions may infrequently
change in a time horizon. The learning process, thus, requires
different strategies to adapt to possible variations of best
arms. Therefore, the agent may employ algorithms able to
deal with non-stationarity in stochastic models.

The stationarity degree and characteristics depend on the
set of policies. The strategy effectiveness and adaptability
rely on the employment of OLPF algorithms appropriate to
the distributions’ profile of changes.

B. CONTENT AND CONTEXT MANAGEMENT MODULE
Since the caching meta-policy strategy consults the OLPF
agent at each iteration I to configure the cache with the
policy chosen by the agent (see Algorithm 1), each iteration
can be executed with a different policy ω. A requirement
to allow the dynamic change of policies during the cache
operation is to maintain the context information associated
with each policy’s eviction logic in the set �. This way, the
strategy implements a CCM module to store the context for
all contents in the cache. The management module keeps
the context information used by all the policies in the cache
policy set � regardless of which policy is executing. Besides,
the module manages the content eviction engine by matching
the stored context information with the context information
used by the running replacement policy.

Upon the beginning of an iteration, a chosen policy begins
its execution relying on the stored context. This way, it is pos-
sible to continue the cache operation from the current cache
state left by the previous running policy. Otherwise, it would
not be possible to change policies online. Algorithm 2
presents the pseudo-code of the CCM module.

The policy set can vary in number and replacement logic
exploring different context aspects, such as content, router,
and network properties. Several context factors can influence
the performance of policies. Therefore, there is no single
criterion for choosing the candidate caching policies to com-
pose the set. Each cache on the network can work with a
different set. The meta-policy strategy is a mechanism of
choice, and the learning will converge to the most suitable
policy among the options in the chosen set. In other words, the

cache performancewill converge to the performance obtained
if only the best policy present in the set is executed.

V. EXPERIMENTAL EVALUATION
To demonstrate the applicability and benefits of using the
caching meta-policy strategy for choosing suitable caching
policies, we have carried out a simulation-based study
through the NDN architecture. NDN in-path cache works
as an opportunistic cache to distribute contents across the
network. This section details the evaluation methodology and
discusses the experimentation settings.

A. EVALUATION ENVIRONMENT
The generic aspects of the caching meta-policy encompass
both the policy set with its corresponding context information
and the OLPF algorithm (Figure 2). The strategy allows the
employment of different policy sets and OLPF algorithms for
each cache. It is also generic regarding the network type in
which the cache operates. This section details the evaluation
methodology we carried out as a proof of concept of the
strategy. We present the settings of simulation-based experi-
ments in caching routers implementing the NDN architecture,
with common caching policies and basic OLPF algorithms.
We expect the performance of a cache that executes the
meta-policy to converge to the performance of the policy best
suited to the context of the cache’s operation.

We have implemented the meta-caching strategy in a mod-
ified version of the ndnSIM simulator [22], [23] coupled with
the ns3-gym framework [24]. The ndnSIM is an open-source
NDN simulator to reproduce discrete-event network scenar-
ios, and the ns3-gym framework is designed to support the
interaction of machine learning agents with the network envi-
ronment. This way, a learning agent based on the ns3-gym
framework can interact with the NDN cache node created
by the ndnSIM. To evaluate our proposed strategy, we have
implemented cache replacement policies on the ndnSIM and
online learning algorithms on the ns3-gym. In the following
subsections, we describe the policies and algorithms and
detail the scenario settings.

B. CACHE REPLACEMENT POLICIES
For our proof-of-concept evaluation, the caching policy set
contains four basic policies: LRU, LFU, FIFO, and Random.
As described previously in section II, LRU removes the last
accessed content, LFU removes the last frequently used con-
tent, FIFO removes the oldest content, and Random removes
one content randomly. Those are traditional replacement poli-
cies inherited from the memory management of operating
systems and used in web cache networks.

To exemplify possible efficiency distributions for the dis-
tinct caching policies, Figure 3 illustrates the execution of
LFU, LRU, FIFO, and Random, in a single cache scenario
running individual policies separately. The scenario had a
fixed catalog of 20.000 contents, static content popularity
following the Zipf model with α = 0.8, relative cache size
of 5%, and request rate of 10 requests/s. We illustrate each
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FIGURE 2. The meta-policy strategy is generic and can be instantiated with different policy sets and learning agents. The agents on
the left side represent possible bandit algorithms that could be instantiated. Each CR in an ICN can have one instance of a chosen
agent. Thus, INSTANCE 1 and INSTANCE 2 (right side) would represent two different CRs, each running its caching meta-policy
strategy with its chosen bandit algorithm.

policy’s cache efficiency in a day, measured in 5 seconds
intervals. The figure shows the distribution of policies’ per-
formances from three different perspectives: (a) the log-scale
graph of all immediate measures by interval, (b) the total
cache efficiency over time, and (c) the normal distribution
for each policy. Under the Independent Reference Model
(IRM), LFU has optimal performance but requires some time
to populate the cache with the most popular contents. Notice
the variance in the first iterations, in which other policies
performed better than LFU. Upon increasing the iterations
number, LFU started to perform better, and the distribu-
tions became stationary. In this scenario, FIFO and Random
obtained similar distributions, almost indistinguishable in the
graph.

Different scenario settings would generate distinct dis-
tributions for the same policies. In the same way, dif-
ferent policies would generate new distinct distributions.
Our proposed strategy stems from the analysis of similar
distributions to learn which ones should be used by the
cache.

The caching meta-policy strategy has native context adapt-
ability associated with the policy set diversity. Therefore,
we have implemented the ARC policy to compare the ARC
adaptive behavior to the behavior of our strategy. Moreover,
we extended the experiments to assess the generality of our
strategy by including ARC in the policy set used by the
learning agents. For both purposes, we made different com-
binations of policies to compose the set used by the learning
agents. The ARC policy uses a learning rule to dynamically
adjust the cache by balancing content recency and frequency
aspects. We discuss more details of the policy and the results
of experiments in section VI-D.

In the following, we present the online learning algorithms
we have employed in the learning process of the caching
meta-policy strategy.

C. OLPF ALGORITHMS
We evaluated our strategy with Upper Confidence Bound
(UCB) algorithms as learning agents. UCB is a Multi-armed
bandit (MAB) strategy successfully used to solve stochastic
bandit problems. In the stochastic setting, bandit algorithms
usually estimate the arm’s values by incrementally averaging
its rewards in a time horizon. The more an action is taken,
the more confidence we have that the average will reflect the
action’s actual value. UCB strategies add a fixed confidence
interval to each arm’s mean to estimate the expected arm’s
values optimistically. It is based on the concept of optimism
in the face of uncertainty about the mean values. The strategy
can gradually reduce the interval as the bandit gains more
confidence in the mean values.

The literature presents several variations of UCB algo-
rithms. A standard UCB deals with stationary problems in
which the average considers the entire distribution evenly.
In non-stationary scenarios, it is possible to include a discount
factor to give higher weights to more recent rewards, similar
to the ones proposed by [25] and [26]. Another alternative is
to consider only the most recent measurements in a sliding
window over time [25].

The experiments considered UCB algorithms for non-
stationary stochastic bandits that choose the policy ω for the
interval I according to the following equation:

ωI = argmax
ω∈�

[
CE I (ω) + γ

√
ln I
NI (ω)

]
(3)
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FIGURE 3. Distribution of policies‘s performance for a single
cache under IRM model.

in which CE I (ωt ) is the average efficiency for policy ω

obtained before iteration I , and the square root part is the
confidence interval; NI (ω) is the number of times policy ω

has been chosen, and γ is a fixed parameter to tune the effect
of the confidence interval thereby controlling the degree of
exploration [26].

The algorithms are (i) UCB with discount factors
(UCBd ) and (ii) sliding-window UCB (SW -UCB). For
the UCBd , we have applied the incremental exponential

recency-weighted average (ERWA), according to equation 4,

CE I+1(ω) = CE I (ω) + d
[
CEI (ω) − CE I (ω)

]
(4)

in which d ∈ (0, 1] is a step-size parameter that works as a
discount factor in the average learning process. The discount
factor adjusts distinct weights over the reward distribution,
wherein higher values emphasize recent rewards. So, in the
experiments, we adopted d = 0.2 and d = 0.8 as two
opposite values to evaluate the bandit’s adaptability. The SW -
UCB used the simple average and tuned the window size
parameter according to [25].

D. SCENARIOS AND EVALUATION METRICS
We have conducted experiments to analyze our strategy
effectiveness in converging to the best policy for different
scenarios. The scenarios contain variations on content request
patterns, cache sizes, and locations of the cache node into the
topology. We also analyzed the impact of different interval
times that the learning agent interacts with the cache. The
evaluation metric for all scenarios is the cache efficiency
obtained by applying the meta-caching strategy. The strategy
efficiency was compared with the correspondent benchmark
scenario consisting of one replacement policy throughout the
simulation period. Table 2 summarizes the scenarios param-
eters and their respective values.

1) NETWORK TOPOLOGY
Regarding the network topology, we divided the evaluations
into single-cache and multi-cache scenarios (Fig. 4). In the
single-cache, we have tested the impact of different access
patterns, cache sizes, and agent iteration times.

In the multi-cache scenario, we present an analysis regard-
ing the impact of different node positions on the network.
We aim to explore the variance of suitable policies for
the individual caches. To this end, we first carried out
experiments with a tree topology composed of one interme-
diate caching node and three edges caching nodes. Then,
we expand the study on different intermediate positions with
nine caching nodes arranged in a 3 × 3 grid topology.
We placed the producer and consumers at opposite ends of
the same grid’s diagonal. The consumer issues content inter-
ests that transverse the caching nodes up to match searched
contents in respective caches or the content producer. When
a cache node does not have a requested content, it broadcasts
the incoming content interest to neighbor nodes. This setting
allows us to simulate dense cache connections while explor-
ing the different in-network cache positions. The different
positions allow each cache to have unique traffic views and
thereby possible variations of suitable policies. All caches
have similar sizes.

2) DATASETS
To accomplish variations of the access pattern, we have
performed experiments with the IRM request model imple-
mented in the simulator, and also on three public datasets
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TABLE 2. Scenarios parameters.

FIGURE 4. Cache network topologies for the experiments. The
network devices implement the NDN protocol stack, and all the
NDN routers have cache capacity.

suitable for caching experimentation: a dataset of user
requests for Youtube videos [27], a Web Proxy dataset from
Digital Equipment Corporation (DEC) [28], and web traffic
traces from Boston University [29]. All datasets contain trace
files with users’ content requests and the respective times-
tamps. Figure 5 illustrates sample traces of each dataset. The
figure shows the different content request rates over time
and the distribution of content popularity in a sample day.
We carried out experiments with different periods on the
datasets and selected one-day traces to present the results.

VI. RESULTS
This section presents our findings in applying themeta-policy
strategy under different network scenarios. In general, the
policies presented distinct behaviors for each scenario, and
most strategy instances performed close to the best-fixed
policy for all scenarios.

Figure 6 depicts the results of applying the caching
meta-policy strategy in scenarios with different content
request patterns. The figure shows the total cache efficiency
over time, i.e., at each iteration, we measured the total con-
tent requests and total cache hit from the simulation’s start
to the corresponding iteration. We first elaborate on the
meta-strategy application in the single-cache IRM scenario
of section V-B with the three variations of bandit algorithms.

The agents explored all policies in the set according to its
learning algorithm. As we have described, LFU is the best
policy in the set for the IRM model, followed by LRU. The
results show that both UCBd=0.2 and UCBd=0.8 performed
closer to LFU in the long run. Even applying discount fac-
tors, UCBd is influenced by the initial distribution values.
However, in this scenario, both lightweight and aggressive
discount factors could minimize the influence of lower LFU
initial values. A stationary strategy would not be able to have
that effect. Although SW -UCB considers more recent distri-
bution values and is not impacted by the initial values, the
bandit had struggled to adapt by showing a slower learning
curve. One possible reason is that the policies may obtain
immediate measures with nearby values that may overlap
in some iterations. Hence the importance of learning with
many iterations of the agent to estimate more confident policy
values. Figure 7 complements the IRM results by showing (a)
the immediate measures of cache efficiency at each 5 seconds
intervals, and (b) the distribution of policies choices by bandit
algorithms.

It is worth mentioning that the distributions perceived by
the bandit in the learning process are not exactly the same as
those obtained when a single policy is executed throughout
the entire cache execution. Inside the bandit, the policies
obtain different reward values due to the different cache
states at each iteration that starts with a new policy. Even
with fragmented executions, the policies manage to maintain
their distribution characteristics. However, we notice that in
such a static setting, frequency-based policies may perform
optimally when executed alone but may not perform the
same way inside the bandit. The reason is the possible loss
of high-frequency contents during other policies’ execution.
In similar cases, the bandits can only approximate their per-
formance.

Figure 6 also depicts the cache efficiency for one sample
day of (a) Youtube, (b) DEC, and (c) Boston traces. Unlike
the IRM model, the real web traces present degrees of tem-
poral locality between content requests. Temporal locality
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FIGURE 5. Sample traces for three distinct real content request datasets. The number of content requests were measured in
5 seconds intervals. The distributions of content requests per content refers to measures in one sample day.

describes correlation properties in content requests, in which
recently accessed contents are likely to be reaccessed shortly.
Policies such as LRU tend to present better performances
when the temporal correlation is the prevailing characteristic
of the content request pattern.

For Youtube trace, LRU stands as the best policy in the
set, and the performance of all bandits approached LRU.
The other policies performed well and approximated to LRU,
except for LFU, which had degraded performance as the
simulation progressed. Therefore, in more dynamic scenarios
such as with content popularities changes, the bandits can
perform as well as the best-fixed policy in the long run.
In such a scenario, even stationary bandits would perform
well.

The DEC trace results presented interesting behavior with
the variation of the best policy during the simulation time.
After an initial period in which all policies appeared to
perform almost evenly, LFU started to perform better and
became the best option. Still, LFU gradually lost performance
due to content popularity profile changes, and LRU remained

stable as the best choice. Since LRU uses the least recent
approach to evict content, it is more appropriate for dynamic
scenarios. However, the cache size is also a factor that impacts
cache efficiency. The increase in cache size could mitigate
LFU performance degradation in such cases. Regarding the
bandit’s behaviors, UCBd=0.8 demonstrated better adaptabil-
ity. The bandit approached LFU and then adapted to LRU
when LRU became the best option. UCBd=0.2 got stuck in
LRU from the beginning, probably due to its higher initial
distribution values when LFU went through its natural learn-
ing curve. The trace results reaffirmed the better adaptability
of the meta-policy strategy to more dynamic scenarios since
most bandits performed as well as the best-fixed policy in the
long run.

For the Boston trace, the policies behaved very similarly
to the Youtube trace; however, the agents could not approach
the LRU performance in the same way. The reason was the
absence of request patterns in approximately half of the trace
time. In the trace, requests are practically extinguished in the
second half of the day. Thus, the performance measurements
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FIGURE 6. Cache efficiency for single-cache scenarios with
different content request patterns. Simulation parameters:
relative cache size: 5%, iteration time: 5s, γ = 0.2, warm-up
period: 200 s.

obtained by the agents in the absence of requests were not
able to measure the value of each policy. Still, the learning
process in the first half of the time allowed the agent to
perform close to the best policies in the set.

A. IMPACT OF AGENT ITERATION TIME INTERVAL
The iteration interval determines the time an agent will inter-
vene in the cache to evaluate the running policy and perform
policy changes. As such, the interval sets the time a policy
has to run before being evaluated. The shorter the interval, the
more interactions the agent will make in a time horizon, and
thereby the agent will have more confidence in the estimated
policies’ values. However, small intervals may not adequately
reflect the value of the evaluated policies, as the policies
need space to show their ability to assist content requests.
In contrast, long intervals lead to slow convergence in agent
learning.

We assessed the impact of different time intervals on
cache performance when applying our meta-policy strategy.
Figure 8 depicts the results of experiments with the IRM
model and Youtube traces. There were variations for each
interval as the distributions obtained are distinct, but the
average performance for each interval size remained nearby
to each other. The variation was more significant for the IRM
experiments, while the cache performance remained almost
constant for the Youtube experiments.

FIGURE 7. Cache efficiency for the single-cache IRM scenario.
Simulation parameters: relative cache size: 5%, iteration time:
5s, c = 0.2, warm-up period: 200 s; 20.000 distinct contents,
Zipf(a)=0.8, request rate: 10 requests/s.

In general, the cache maintained the performance regard-
less of the time interval used by the agent. The experiments
used the static time configuration, but the cache can adopt
dynamic approaches to increase or reduce the interval accord-
ing to network variations.

B. IMPACT OF CACHE SIZE
The cache size is one of the context factors correlated to
the policies’ performances and can influence the policy
choice [8]. We carried out experiments with cache size vari-
ations in scenarios with the IRM model and Youtube traces
to analyze the impact on our proposed method. Figure 9
depicts the results. In general, the direct impact of cache
size variations relied on the policies’ performances. However,
we notice a not negligible impact on the average performance
of the agents.

Regarding the policies performances, the increase in cache
size usually causes two effects: first, the cache performance
naturally increases regardless of the policy since there is more
space to store popular content, but the performance gain is
not linear with increasing cache size; and second, the policies
performances tend to converge for reasonably large cache
size. The IRM and Youtube scenarios presented both effects
but with very different granularities, as shown in the picture.
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FIGURE 8. Average cache efficiencies for different agent iteration
intervals in a single-cache scenario. Average over 10 runs.
Common simulation parameters: duration of each run: 1 day,
relative cache size: 5%, γ = 0.2, warm-up period: 200 s; For IRM
model: 20.000 distinct contents, Zipf(a)=0.8, request rate:
10 requests/s.; The Youtube trace samples are similar to the
sample in Table 2.

Regarding the caching meta-policy strategy, the agents
choose between the four replacement policies as in the previ-
ous experiments. The figure shows the comparison with the
two most representative policies. In the IRM experiments,
the agents generally achieved better average performance for
smaller cache sizes. There were more variations for larger
cache sizes, as seen from the increase in the standard devia-
tion. That means the UCB agents explored the policies more.
This behavior could be associated with the slight conver-
gence of policies’ performance and the learning pattern of
UCB algorithms. For the Youtube experiments, the agents
performed very similarly for all cache sizes. The combination
of both results reinforces that variations in the policy set’s
performance pattern can influence the agent’s learning rate,
not the cache size directly.

C. IMPACT OF NODE LOCATION IN THE NETWORK
This section presents our experiment in the multi-cache
topologies described in section V-D.1. The experiments
aimed to explore the variance of suitable policies for different
cache node positions on the network, and thereby our strat-
egy’s effectiveness in learning accordingly.

FIGURE 9. Average cache efficiencies for different cache sizes in
a single-cache scenario. Average over 5 runs. Common
simulation parameters: duration of each run: 1 day, iteration
time: 5s, γ = 0.2, warm-up period: 200 s; For IRM model:
1.000 distinct contents, Zipf(a)=0.8, request rate: 5 requests/s.;
The Youtube trace samples are similar to the sample in Table 2.

Multiple cache levels naturally present variations in the
traffic characteristics perceived by each cache. The reason
is the filtering effect when a cache closer to the user hits a
content request. The cache does not propagate that request to
the rest of the network and propagates only the miss requests
to upper-level caches. This behavior modifies the original
characteristics of the traffic and directly impacts each cache’s
choice of policies. Therefore, a homogeneous policy configu-
ration may not adequately address the individual cache needs.
Besides, a policy running in one cache can influence the
efficiency of all neighbor caches. Therefore, an appropriate
choice of policies would consider that interaction to ensure
overall network efficiency. Yet, this section presents a simple
model of independent and distributed bandits. We show that,
even without collaboration, most bandits can learn and adapt
the policies with all routers executing the meta-policy self-
ishly. We compare the results with the homogeneous policy
setting, i.e., all routers with the same replacement policy.

We first show the results of the experiment in the tree
topology. The topology has one intermediate router and three
access routers. We aimed to evaluate the meta-policy adapt-
ability in the intermediate node while all edge routers are
also running the meta-policy. Each access router had distinct
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FIGURE 10. Cache efficiency for the intermediate node position
in the tree topology. Simulation parameters: relative cache size:
2%, iteration time: 5s, γ = 0.2, warm-up period: 200 s; For IRM
model: 20.000 distinct contents, Zipf(a)=0.8, request rate:
2 requests/s; For Dec trace: ≈ 65.000 requests, ≈

37.000 contents; For Youtube trace: ≈ 45.000 requests, ≈

30.000 contents.

traffic profiles: IRM traffic, parts of DEC trace, and Youtube
trace. Thus, the intermediate node receives filtered and mixed
traffic of all three edge nodes. Figure 10 depicts the results
for the intermediate node. The edge nodes maintained the
cache behavior discussed before in the single cache experi-
ments according to their respective traffics. Meanwhile, the
intermediate cache node was also able to adapt its policy on-
demand. The graph shows the efficiency of an agent in the
intermediate node relative to the efficiency of all other edge
nodes’ efficiencies running the same agent type. Likewise,
the single policies’ efficiencies are relative to the same policy
running in all edges.

To further explore the adaptability in intermediate cache
nodes, we performed experiments in the 3 × 3 grid topology
presented in section V-D.1. We placed the content consumers
at one cache node to isolate the edge effect, and thenwe evalu-
ated the agent’s ability to learn from the different intermediate
node positions. Figure 11 illustrates the caching nodes’ effi-
ciencies for the experiment with IRM traffic. We kept the
same simulation parameters as the single-cache IRM scenario
presented earlier (see Figure 6), e.g., the same consumer
request rate and the number of distinct contents. Notice
the variance in both cache efficiencies and policy behaviors
according to the node position. In the present scenario with
equal caches setting, the variations are mainly due to each
node’s particular traffic view. The caches enhanced with the
meta-policy were able to adapt their policies on-demand. The
bandits presented variations in efficiency for each node posi-
tion as the single policies due to the different traffic views in
each position. However, the bandit configurations improved
the overall network efficiency over the homogeneous policy
settings. UCBd=0.2 stood out with the highest performance
levels for most node positions.

As mentioned earlier, the bandits’ performances are linked
to the policy set. FIFO has performed poorly in the cache
network scenario for most node positions, and the bandits

managed to maintain good performance even using FIFO
in their continuous learning process. Regarding the cache
efficiencies compared with the single-cache IRM scenario,
as expected, the overall cache network efficiency improves,
i.e., the sum of all individual cache efficiencies, since we
have increased the total system cache capacity. Naturally, the
average cache efficiency reduces due to a combination of the
hierarchical grid structure and the configuration parameters
of the simulated scenario (e.g., content popularity, request
rate, and cache size).

In caching networks, each cache could work with differ-
ent policy sets and bandit algorithms. More realistic traffic
presents variations in the temporal locality patterns perceived
by each cache. The traffic received by caches closer to the
users presents strong temporal localities. As cache levels
filter requests, the temporal locality intensity becomes grad-
ually weakening, and the traffic profile at upper-level caches
becomes more random. Real caching networks would simi-
larly benefit from the online policy adaptation.

D. EXPERIMENTS WITH ADAPTIVE REPLACEMENT
POLICY
This section presents the experiments we have performed
with the adaptive policy ARC. We ran the policy alone to see
its adaptability in our scenarios, and we included ARC in the
policy set to assess the generality and inclusiveness of our
strategy.

The ARC is an adaptive policy able to perform adaptations
online when the traffic pattern changes between recency and
frequency aspects. The policy works with two LRU lists
(L1 and L2), one to capture recent one-timer content requests
and the other to capture content accessed more than once,
capturing the frequency aspect. The total size S = |L1|+ |L2|
of the two lists is fixed, but their individual sizes vary accord-
ing to the traffic pattern. To carry out the adaptation, ARC
applies a learning rule of constantly resizing the individual
LRU lists based on the eviction history. In addition, the policy
maintains a list of content eviction history of size S. This way,
the context information used by ARC and saved by the CCM
module of our strategy are: the content frequency and recency
(same as LFU and LRU), the size of the lists, and the cache
eviction history.

Figure 12 depicts the results. The figure shows experiments
with three traffic patterns: the IRMmodel, Youtube, and DEC
traces. We plotted the caching performance when running the
single policies used in the previous experiments (LRU, LFU,
FIFO, Random) and ARC. Also, the figure shows the caching
performance when applying the meta-policy with different
policy set configurations. We have varied the number of poli-
cies in the set. That means varying the number of arms used
by the learning agent. The figure shows a) five-armed UCB
agents, running with the policies LRU, LFU, FIFO, Random,
and ARC; b) three-armed agents, with policies LRU, LFU,
and ARC; and c) two-armed agents, with policies LRU and
LFU.
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FIGURE 11. Cache efficiencies for different node positions in the IRM 3 × 3 grid scenario. Simulation
parameters: relative cache size: 5% for each cache node, iteration time: 5s, γ = 0.2, warm-up period:
200s, distinct contents: 20.000, Zipf(a)=0.8, request rate: 10 requests/s.

In our experiments, the ARC policy has shown good adap-
tation to the different traffic patterns. Still, its position in
the rank of best policies varies: in the IRM scenario, ARC
performed as well as LFU in the long run, presenting a better
performance at the beginning of the simulation; with the
Youtube trace, ARC presented a lower performance than all
the other basic policies; meanwhile, in the DEC scenario,
ARC increased the cache performance and stood out as the
best policy. The experiments ratify that ARC alone may not
suit better in all scenarios.

The meta-policy strategy also adapts to distinct traffic
patterns, but the adaptation process is different because it
continuously converges to the best policy in the operation
set. This way, in our scenarios, we benefit from including
ARC in the policy set used by the learning agent. Parts
(a) and (b) of Figure 12 shows the experiments including
ARC in the policy set. Most UCB agents generally converge
to the best policy in their policy set. The convergence had
different degrees depending on the number of policies in
the set.

The tree-armed agents with LRU, LFU, and ARC had the
best adaptation, in which the agents converged to perform the
best policy in all scenarios. For the IRM scenario in which
ARC presented a slightly better performance than LFU, the
UCB agent with discount factor d = 0.2 adapted to ARC at
the beginning of the simulation. It remained during almost
all the simulation time. The agent has chosen ARC 93% of
the time. For the Youtube trace, both UCB configurations
converged to LRU as the best policy, but the UCB with
d = 0.8 achieved better performance by maintaining the
convergence for a more extended period. In the DEC trace,
the UCB with d = 0.2 got stuck in LRU from the beginning,
almost indistinctly in the plot, and the configuration with
d = 0.8 converged to ARC as the best policy.

We also performed experiments with two-armed agents
choosing between LRU and LFU (part (c) of Figure 12). That
is the closest behavior to compare with the ARC policy. The
agents and the single policy ARC are similar because both
will balance frequency and recency aspects. However, the
agents will execute one policy at a time, and ARC maintains
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FIGURE 12. Comparisons with ARC policy in single-cache scenarios with different content request patterns. Simulation parameters:
relative cache size: 5%, iteration time: 5s, γ = 0.2, warm-up period: 200 s.

both aspects in the cache simultaneously. The results show
that all UCB agents performed the best policy for each
scenario. We also plotted the ARC performance to empha-
size that the agents’ performance relies on the policy set.
Therefore, the experiments assess the benefits of choosing
representative policies to compose the set and the generality
of the strategy by including adaptive policies.

E. REMAINING REMARKS
Thiswork focused on evaluating themeta-policymodel appli-
cability for on-path in-network caching. To this end, we have
implemented and tested standard caching policies in simu-
lated ICN scenarios. However, there are a variety of different
caching policies that include different aspects of context in
their eviction logic. We believe it is crucial to evaluate the
impact of the meta-policy approach on implementing other
policies to support the generality aspect of the policy set.

For example, the meta-policy approach would impose a
limitation on the normal function of Time-To-Live (TTL)
based policies. Those policies can evict content after a spe-
cific lifetime or after it reaches a certain age in the cache.
Considering the meta-policy working with a policy set con-
taining a TTL-based policy, content that reaches its lifetime

during the interval of another policy execution could not
be removed from the cache. One approach would be to
implement the policy differently, in which the eviction of
expired content would be triggered at the beginning of the
interval of the TTL-based policy and continue during the
policy execution interval only. Nevertheless, the suitability of
such implementation to the proposed algorithms remains to
be evaluated.

Moreover, freshness-driven caching for dynamic con-
tent [30] is gaining increasing attention as several content
types receive dynamic updates, e.g., news, weather, social
media updates, etc., that render cached data irrelevant and
prompt sophisticated caching decisions. This way, policies
designed to handle dynamic content updates are also prone
to require particular approaches since they may account for
the content generation dynamics. For instance, the simple
alternance with other policies would maintain stale versions
of the same content in the cache.

Regarding the meta-policy strategy suitability for caches
operating in different network systems, we believe the core
principle of online learning the best policy through the
perspective of a meta-policy is applicable for other cache
systems besides ICNs, such as Content Delivery Networks

1090 VOLUME 2, 2024



Pires et al.: On Learning Suitable Caching Policies for In-Network Caching

(CDNs), and Web proxy caches. Nevertheless, different
systems may require adaptations to accommodate their par-
ticularities. For example, in our model, we represented the
cache operating with total capacity because we have consid-
ered the plain on-path caching approach on the vast amount
of content circulating the Internet. This way, the replacement
policy is constantly in operation. That may not be a reality for
CDNs working with prefetching strategies. Filling the cache
with content is not always the optimal strategy because it has
to consider the cost of moving content from the back-end
database to the edge cache. The viability in such a scenario
requires further investigation of cache management strategies
in CDNs.

VII. CONCLUSION AND FUTURE WORK
In-network caching architectures can employ different cache
replacement policies for each networking node. Configuring
caching networks with appropriate policies is of fundamen-
tal importance to effectively realize the benefits of caching
content. We have introduced a meta-policy approach that
models the replacement policy choosing problem as a bandit
problem. Such online learning techniques open up straight-
forward mappings to build self-driven intelligent networks.
Our experimental results with traditional caching policies and
basic non-stationary stochastic UCB algorithms revealed the
potential for widespread use in different caching scenarios.

In future work, we intend to extend the model for
collaborative cache systems in multi-cache networks. Col-
laborative caching systems are complex and may employ
different caching strategies, but are crucial to obtain opti-
mal/suboptimal overall network performance. One approach
to tackle the correlation in cache’s decisions is to model
the problem as a combinatorial MAB (CMAB). In CMAB,
a bandit plays a set of arms together and observes their
individual rewards. This way, one action corresponds to a
combination of different arms. The learning process, thus,
aims to converge to the best combination. Such a strategy has
been shown effective for proactive cache content placement
in mobile BSs [14]. In that case, the contents are arms for a
BS bandit player. The general problem is to choose the best
combinations of contents to be cached over a fixed content
set.

Regarding the caching replacement policy choosing prob-
lem for multiple caches, a possible combinatorial model
would have a centralized entity deciding the policies’ combi-
nations for all caches. Instead of accounting for the individual
cache efficiencies separately, the centralized entity would
account for the aggregated network efficiency. A realistic
assumption of collaborative caches would consider different
caching settings, such as variations in cache sizes. An inter-
esting aspect to investigate would be the impact of different
cache sizes on the learning curve of the agents. Taking into
consideration the replacement policies only and the on-path
in-network caching approach explored in the experiments,
a high variance among cache sizes would have an impact
on the convergence time because the larger cache would

naturally take longer to start executing content evictions and,
therefore, support the learning process. Overall, that combi-
natorial model requires the study of computationally efficient
multi-task bandit approaches.

Meanwhile, a centralized bandit convergence would be
impractical in feasible times for dynamic, distributed, and
heterogeneous caching settings with intermittent connec-
tions. Besides the variance of caching nodes, heterogeneous
devices could work with different policy sets and bandit algo-
rithms. Moreover, the caching nodes may employ different
bandit iteration times. Such cache networks arewell suited for
collaborative multi-agent MAB models. Convergent learning
is still challenging but feasible in combination with solutions
designed for game-theoretical problems.
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