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ABSTRACT Recent advancements in satellite communications have highlighted the challenge of interfer-
ence detection, especially with the new generation of non-geostationary orbit satellites (NGSOs) that share
the same frequency bands as legacy geostationary orbit satellites (GSOs). Despite existing radio regulations
during the filing stage, this heightened congestion in the spectrum is likely to lead to instances of interference
during real-time operations. This paper addresses the NGSO-to-GSO interference problem by proposing
advanced artificial intelligence (AI) models to detect interference events. In particular, we focus on the
downlink interference case, where signals from low-Earth orbit satellites (LEOs) potentially impact the
signals received at the GSO ground stations (GGSs). In addition to the widely used autoencoder-basedmodels
(AEs), we design, develop, and train two generative AI-based models (GenAI), which are a variational
autoencoder (VAE) and a transformer-based interference detector (TrID). These models generate samples
of the expected GSO signal, whose error with respect to the input signal is used to flag interference.
Actual satellite positions, trajectories, and realistic system parameters are used to emulate the interference
scenarios and validate the proposed models. Numerical evaluation reveals that the models exhibit higher
accuracy for detecting interference in the time-domain signal representations compared to the frequency-
domain representations. Furthermore, the results demonstrate that TrID significantly outperforms the other
models as well as the traditional energy detector (ED) approach, showing an increase of up to 31.23% in
interference detection accuracy, offering an innovative and efficient solution to a pressing challenge in satellite
communications.

INDEX TERMS Non-geostationary orbit satellites (NGSOs), geostationary orbit satellites (GSOs), inter-
ference detection, satellite communication, generative AI (GenAI).

I. INTRODUCTION
A. CONTEXT AND MOTIVATION

AMONG the dynamic field of satellite communications,
the co-existence between non-geostationary (NGSO)

and geostationary (GSO) satellite systems has become an
increasingly important issue, due to the increasing number of
satellites in NGSO, particularly in low-Earth orbit (LEO) [1].
This co-existence may lead to the possibility that NGSO
satellites inadvertently degrade GSO communication with
GSO ground stations (GGSs), which can severely impair
the quality and reliability of vital communication services
for many global applications [2]. To address this problem,
the International Telecommunication Union (ITU) mandates

a power radiation checkpoint whenever an NGSO operator
files for a specific spectrum use, this is often referred to as
the equivalent-power flux density (EPFD) limits [3]. This
checkpoint is found to be too relaxed for GSO operators
and too strict for NGSO operators [4]. Tackling interference
effectively requires a multifaceted approach, encompassing
several stages: monitoring of interference [5], [6], detection
of interference [7], classification of interference types [8],
pinpointing the location of interference [9], and finally, mit-
igating interference [2], [10]. In our paper, we focus on the
aspect of interference detection problem. Traditional inter-
ference detection methods, such as energy detectors (EDs),
are increasingly inadequate in this evolving landscape [11].
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EDs primarily measure the energy of a signal to determine the
presence of an interference signal by thresholding over signal
power. However, in a densely populated orbital environment,
where there are many low-power signals, EDs may not have
the sensitivity to detect weak or hidden interfering signals
in the background noise. This lack of sensitivity can lead to
missed detections.

The limitations of traditional interference detection tech-
niques set the stage for exploring advanced machine learning
(ML) techniques as possible solutions [12]. Consequently,
various advents in generative artificial intelligence (GenAI),
in which advanced algorithms are trained to create new orig-
inal content [13], such as variational autoencoder models
(VAEs) [14] and recent transformer-based models [15], could
offer a new paradigm for complex interference detection
tasks. Our research focuses on highlighting the promising
benefits of GenAI in interference detection tasks for satellite
communication systems. These benefits include improved
accuracy, adaptability, and predictive capability, which help
overcome the limitations of conventional methods.

B. RELATED WORK
1) INTERFERENCE DETECTION BASED ON
TRADITIONAL TECHNIQUES
The current state of the art in interference detection within
satellite communications predominantly revolves around
traditional techniques that have been instrumental in interfer-
ence detection problems [16].

The optimal detector depends on the amount of
side-information that we have with respect to the signal to be
detected. Since we generally do not have much information,
the optimal detector (also known as the likelihood-ratio test)
for stochastic signals in white Gaussian noise environments
is the ED [16]. An ED essentially measures the energy of the
received signals and compares it to a specific threshold, which
makes a binary decision on the presence of interference. The
simplicity and low computational requirements of EDs make
them popular in scenarios where fast and direct detection is
needed [11]. However, they have limitations in environments
with complex signal characteristics or low signal-to-noise
ratios (SNRs) [17]. In these cases, energy detectors can face
difficulties in distinguishing between legitimate signals and
interference, resulting in false positives or missed detections.
Among the challenges of ED, the most relevant is the def-
inition of the time window where the energy is calculated,
as well as the establishment of an appropriate threshold [18].

Regarding the use of ED in space-based applications, Poli-
tis et al. [7] presented a novel two-step algorithm to detect
interference in satellite communications using on-board spec-
trum monitoring units (SMUs). Focusing on the use of the
DVB-S2X standard [7], [19] leverages pilot symbols for
data transmission. The proposed method involves removing
pilot signals from the received signal and applying an ED
technique, showing superior performance to conventional
ED, especially in low interference-to-signal and noise ratios

(ISNRs). A significant limitation of this methodology is that
the complexity and power consumption of on-board process-
ing need to be optimized, as these are critical factors for
in-orbit systems.

Another popular technique is the detection of cyclostatinar-
ity. For instance, Dimc et al. [20] examined cyclostationary
feature detection for mobile satellite transmission. Although
this technique overcomes the limitations of ED in low-SNR
environments, it requires high computational complexity
since all the cycle frequencies need to be calculated. Such
complexity poses challenges in fast time-varying scenarios
such as those included in this work, where the NGSO satel-
lite(s) quick propagation results in a relatively short-time
interference impact on the desired signal.

In general, key challenges faced by traditional techniques
include their limited adaptability to rapidly changing and
increasingly crowded satellite environments, the requirement
for more sophisticated real-time processing and analysis
capabilities, and dependence on external factors such as sig-
nal strength and environmental conditions. These challenges
highlight the need for more advanced, flexible, and robust
interference detection methodologies as the satellite commu-
nications landscape evolves.

2) MACHINE LEARNING FOR INTERFERENCE
DETECTION
ML in satellite communication operations, particularly for
interference detection, has seen remarkable advances in
recent years. Machine learning models offer several advan-
tages over traditional methods, such as improved accuracy,
adaptability to complex signal environments, and the ability
to learn and predict interference patterns [21], [22]. How-
ever, the integration of ML models into existing systems and
the trade-off between computational efficiency and detection
performance remain areas of ongoing research and develop-
ment [23].
In this context, Pellaco et al. [24], presented an

autoencoder-based long-short term memory model (LSTM),
or LSTMAE, to identify both short-term and long-term
interference within the spectrum of NGSO satellite signals
at GSO ground stations, the goal was to detect deliberate
interference or jamming, which was artificially created and
added to the NGSO communication signal. Vazquez et al.
[12], utilized a convolutional autoencoder (CAE) model to
classify signals by processing in-phase and quadrature (IQ)
samples directly. The primary signal considered is from a
GSO satellite link, while interference is presumed to come
from ground-based cellular networks. Saifaldawla et al. [25],
proposed a conventional autoencoder model (AE) to detect
interference from NGSO system to a GSO ground station
in time and frequency domains data representations. The
authors investigate the scenario of single NGSO satellite, and
single modulation schemes (ModCods) for both GSO and
NGSO.
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The aforementioned investigations [12], [24], [25] are
limited to only high-level and simplified scenarios. Con-
sequently, significant challenges remain in the application
of ML for interference detection in satellite communica-
tion. In this paper, we investigate the use of VAE and
a transformer-based interference detector (TrID) models’
capabilities for interference detection tasks in satellite com-
munications, and we also address some of the existing
interference detection challenges, which include the need for
large and diverse datasets for training, the complexity of real-
time processing, and adapting approaches to the dynamic
nature of satellite communication environments. To the best
of our knowledge, this is the first paper to investigate the use
of VAE and TrID for interference detection tasks in satellite
communications.

C. CONTRIBUTIONS
The key contributions of this paper to the field of satellite
communication, particularly in the area of interference detec-
tion betweenNGSOs andGSO satellite systems, can be stated
as follows,

• The main contribution of this work is to design, develop,
and investigate GenAI-based models (i.e., VAE and
TrID models) capabilities for NGSOs-to-GSO interfer-
ence detection tasks in satellite communications.

• We present a detailed evaluation of the proposed
GenAI-based models against benchmark ML models,
that is, AE, CAE, and LSTMAE, to detect interference
instances in both time-domain and frequency-domain
representations of the GGS received signal. This eval-
uation is one of the first to assess GenAI-based models
in the context of satellite interference detection.

• We then provide a comparative analysis between the pro-
posed GenAI-based models and a traditional detection
methods, such as EDs, within the same NGSO interfer-
ence conditions, to critically analyze their performance.
This comparison highlights the strengths and limitations
of both traditional and modern GenAI-based approaches
in various satellite interference scenarios.

• Within this analysis, we explored the impact of vary-
ing GSO modulation schemes and bandwidth overlap
scenarios on interference detection accuracy, along with
the LEO off-axis arrival angles and various interference
power levels.

• We implement innovative and extensive simulation
and data generation methodologies to facilitate and
introduce new datasets for future investigation of
NGSOs-GSO interference management techniques.
In which we found that the proposed GenAI-based mod-
els reconstructing ability, especially TrID, can be used
to generate new interference-free data samples to train
future unsupervised learning models.

• The findings reveal that the proposed models exhibit
higher accuracy in detecting interference in the
time-domain signal representations compared to the

frequency-domain representations. Moreover, our find-
ings demonstrate the superior detection capabilities
of GenAI-based models, with TrID outstanding from
the VAE and other benchmark models over the ED
approach. This highlights the potential of advanced
GenAI-based techniques in improving the reliability and
efficiency of satellite communication systems.

• We believe that this study lays the foundation for future
research in this domain. The introduced datasts, the
comparative analysis, and findings offer a baseline for
further exploration and enhancement of ML models in
the context of increasingly complex interference-limited
satellite communication systems.

D. ORGANIZATION
The remaining structure of the paper is as follows: Section II.
outlines the system model, focusing on the calculation of the
link budget and the model for the received digital baseband
signal. Section III. discusses the simulation of NGSO-to-
GSO interference scenarios and the generation of training
data. Section IV. details the proposed GenAI-based models
and the improved AEs models. Section V. analysis the results
obtained from training the models as well as the interference
detection performance. Section VII. provide a comprehen-
sive comparison of GenAI-based models and a traditional
ED approach. The paper concludes with Section VII., which
provides a summary and concluding remarks.

II. SYSTEM MODEL
This research investigates the downlink dynamics of forward
links originating from two distinct satellite constellations.
Our main focus is on satellites in GSO orbits, as a primary
system. We consider satellites in NGSO orbits, particularly
those in LEO orbits, as potential sources of interference to a
GGS.1 In this section, a comprehensive description of the sys-
temmodel is presented, which includes aspects of link budget
calculations and modeling of the received digital baseband
signal.

A. LINK BUDGET MODEL
In this context, we consider that both the GSO and LEO
satellites are actively transmitting signals, with the primary
lobe of the transmission consistently directed toward a GGS,
as shown in Fig. 1. At the GGS receiver, the carrier power
received, denoted as C , from the desired GSO satellite sys-
tem, can be expressed as follows

C =
EIRPgsoGr,gso(θ0)

LFS, gsoLAD
, (1)

where EIRPgso is GSO satellite equivalent isotropic radiated
power (EIRP), which quantifies the combination of the satel-
lite antenna transmission power and its gain,Gr,gso represents
GGSmaximum receiving antenna gain, θ0 indicates the bore-
sight angle, defining the alignment between the main lobe

1A general GSO ground station is assumed in the system model, which
can represent either a gateway, a teleport or a user-terminal.
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FIGURE 1. Simplified scenario scheme with a GGS pointing towards the desired GSO satellite and a potential interference
from a NGSO system.

axis of GGS and GSO communication link, LFS, gso is the
free space path loss (FSPL) at the GSO-GGS communication
linkwith distance dgso, signal wavelength λgso and carrier fre-
quency fc,gso. Lastly, LAD correspond to the additional losses
of the link (which include atmospheric, environmental, and
external losses). With GGS being stationary on Earth, it con-
sistently points towards its associated GSO satellite, which
ensures optimal gain from its receiving antenna, As such, the
value of (θ0) is set to zero.

As LEO satellites traverse GGS visible sky, GGS may
concurrently receive signals from one or more LEO satellites
when they operate in the same frequency bands. These LEO
signals primarily elevate the interference level within the
primary signal. Consequently, the interference power Ik that
GGS receives from an individual LEO satellite indexed as k
is as follows

Ik =
EIRPkGr,k (θk )Badj,k

LFS,kLAD
, k ∈ [1,K] (2)

where K represents the cumulative number of visible LEO
satellites that can potentially affect the GGS at a particular
time of day (time instant). EIRPk refers to the EIRP of k th

LEO satellite, Gr,k denotes the GGS receiving antenna gain
to k th LEO satellite. Unlike (1), here θk represents the off-axis
angle that aligns GGS beam primary lobe axis with the k th

LEO communication link as depicted in Fig. 1. The adjust-
ment factor for bandwidth overlap, denoted as Badj,k ∈ R,
Badj,k ∈ [0, 1], is constrained within the range [0,1], and
it count for GSO and LEO bandwidth overlap, and can be

calculated from the following formula

Badj,k =
Boverlap,k
Bi,k

, (3)

where Boverlap,k denotes the bandwidth overlap between the
k th LEO satellite bandwidth and GSO bandwidth, and Bi,k is
the bandwidth of the k th LEO satellite. The value of Badj,k
adjusts the value of Ik according to the calculated ratio. Note
that a full overlap of GSO and LEO bandwidths corresponds
to a factor Badj,k = 1. LFS,k convey the FSPL for the k th

LEO-GGS link. It should be noted that we have assumed a
standardized value LAD for both GSO and LEO connections,
since they transmit under similar channel conditions. FSPL
of the k th LEO-GGS communication link with distance dk ,
signal wavelength of λk and carrier frequency fc,k .

The determination of the off-axis angle between GGS and
the direction of the LEO satellite beam is based on the law
of cosine. This relationship is expressed by the following
formula

θk = arccos

(
d2gso + d

2
k − dgso,k

2dgsodk

)
, (4)

where dgso,k is represents the slant range between the GSO
and the k th LEO satellite.
In a context where transmission gain from both the GSO

and LEO satellites is always at maximum, the impact of
the receive antenna gain plays a pivotal role. Owing to the
LEO satellite dynamic position, this receiving gain is sub-
ject to change and is influenced by the off-axis angle of
the LEO satellite as observed from GGS. To make things
more straightforward, we use a standard radiation pattern
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to determine the receiving gain of a generic ground station
receiver equipped with a parabolic antenna [26]. This gain is
associated with the first-order Bessel function J1 [27] and
can be expressed as

Gr,k (θk ) = Gr,gso(θ0)
[
2λk
πDA

J1 [(πDA/λk )sin(θk )]
sin(θk )

]
, (5)

whereDA refers to GGS antenna aperture diameter. The GGS
boresight receiving gain Gr,gso(θ0) is given by

Gr,gso(θ0) = eA

[
πDA
λgso

]2
, (6)

where eA indicates the efficiency of the receiver aperture. The
downlink carrier-to-noise ratio (CNR) of the GSO satellite
signal received by GGS can be calculated as

CNR =
C

κblzTtempBx
, (7)

where κblz represents the Boltzmann constant (1.380649 ×
10−23 J/K ), Ttemp stands for the receiver noise temperature,
and Bx is the bandwidth of the GSO baseband signal.
For interference coming from the LEO satellite, the

Interference-to-Noise Ratio (INRk ) received by GGS from an
individual LEO satellite indexed as k is given as

INRk =
Ik

κblzTtempBx
. (8)

Furthermore, to gauge the effect of interference imparted
by all LEO satellites on the GSO system, we employ the
carrier-to-interference plus noise natio (CINR) as an evalu-
ation metric. It can be calculated as

CINR =
C∑K

k=1 Ik + κblzTtempBx
. (9)

In this context, we adopt the maximum bit error rate (BER)
metric denoted by er and the corresponding minimum CINR
denoted by CINRmin that must be satisfied to meet the quality
of service (QoS) of the desired signal [28]. For ease of expo-
sition, despite the different possible modulation schemes,
we show hereafter an example assuming that the modulation
alphabet used by both the desired and interference signals
is quadrature phase-shift keying (QPSK). The corresponding
CINRmin for QPSK is given as

CINRmin =

[
Q−1fun(er )

]2
2

=
CNR

INRmax + 1
, (10)

where Q−1fun(·) is the inverse Qfun function. The maximum
allowed interference from LEOs at GGS receiver is denoted
by INRmax and can be found from (10) as

INRmax = max
(

CNR
CINRmin

− 1, 0
)

. (11)

B. DETAILED RECEIVED SIGNAL MODEL
In the forward link of the GSO system transmits the baseband
signal x(t),2 which we will refer to as the desired transmitted

2Up and down conversion impairments are considered ideally compen-
sated through standard methods.

signal. It can be expressed as

x(t) =
Vx−1∑
v=0

x[v]pRCx (t − vTx), t ∈ [0,VxTx] (12)

where x[v], v = 0, 1, . . . ,Vx − 1 are modulated symbols
sourced from a ModCod scheme in accordance with the
DVB-S2X standard [19]. Each symbol holds an average
power of Px and lasts for a duration of Tx . The relationship
between Tx and the baseband signal bandwidth Bx is given
by Tx = 1

Bx
. Furthermore, Vx denotes the total number of

symbols present in the desired signal. The function pRCx
corresponds to a raised cosine filter with unit energy and
duration Tx , and is incorporated with a roll-off factor between
[0, 1] indicating how much power pRCx emits above a given
bandwidth.

Simultaneously, one or several LEO satellites might trans-
mit interfering signals towards the GGS. These signals can
potentially cause interference with x(t) in GGS. Conse-
quently, the transmitted baseband signal ik (t) originating
from the individual LEO satellite indexed as k to GGS can
be expressed as

ik (t) =
Vi−1∑
v=0

ik [v]pRC i (t−vTi,k ), t ∈ [0,ViTi,k ] (13)

where ik [v], v = 0, 1, , . . . ,Vi − 1 are modulated symbols
drawn from a ModCod scheme in accordance with the DVB-
S2X standard. Each symbol holds an average power of Pi,k
and lasts for a duration of Ti,k . This duration Ti,k correlates
with the baseband signal bandwidth Bi,k from the k th LEO
satellite, such that Ti,k = 1

Bi,k
. The function pRC i is indicative

of a raised cosine filter with unit energy and duration Ti,k , and
has a roll-off factor. For simplicity, we assume that ViTi,k =
VxTx , that is, both the desired and interference signals blocks
have the same total time duration.

In a time instant, the two signals components received by
GGS are

yx(t) = x(t)
√
CNR+ ζ (t), (14a)

yi(t) =
Kt∑
k=1

(
ik (t)ej2π (fc,k−fc,gso)t

√
INRk

)
, (14b)

Equation (14a) presents the desired signal components of
GSO, where CNR as defined in (7), denotes the SNR of the
GSO signal, and ζ (t) represents the complex-valued additive
white Gaussian noise (AWGN) process, which has zero mean
and maintains unity power throughout the bandwidth 2Bx .

Equation (14b) showing the components of the interference
signals, where INRk denotes the SNR of the k th LEO signal.
This equation aggregates the received interfering baseband
signals at GGS originating from all visible LEO satellites at a
time instant. In particular, the ik (t) signal is down-converted
from its bandpass form using fc,gso. Fig. 2 shows the over-
lapped bandwidth (Boverlap,k ) between GSO and LEO.

The complex-valued time domain received signal y(t) at
the GGS, which encompasses the desired signal, interference
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FIGURE 2. Overlap of GSO and LEO bandwidths in frequency
domain.

Algorithm 1 Computation of CNR and INR
Input: Link Budget Parameters
Output: VCNR, VINR

1 Initalize: VCNR as a vector, VINR as cell array
2 Create a satellite scenario object of period T
3 Determine 1(τ ) and N
4 Add GSO to the scenario using the TLE information.
5 Add all LEOs to the scenario using TLEs information
6 for n← 1toN do
7 Get GSO coordinations at n
8 Calculate CNRn from (7)
9 Concatenate CNRn to VCNR

10 Get Kn, the number of LEOs that impact the GSO
communication with GGS at n

11 Initalize: vINR,n as an empty vector
12 for k ← 1toKn do
13 Get the k th LEO coordinations
14 Calculate θk from (4)
15 Calculate Gr,k from (5)
16 Calculate INRk from (8)
17 Concatenate INRk to vINR,n

18 Compute INRsum,n =
∑Kn

k=1 vINR,n[k]
19 Calculate CINRmin,n from (10)
20 Calculate INRmax,n using CNRn from (11)
21 if INRsum,n ≥ INRmax,n then
22 Concatenate vINR,n as cell to VINR
23 else
24 Concatenate empty cell to VINR

25 Return VCNR,VINR

signal, and noise components is given by

y(t) = yx(t)+ yi(t)

= x(t)
√
CNR

+

Kt∑
k=1

(
ik (t)ej2π (fc,k−fc,gso)t

√
INRk

)
+ ζ (t). (15)

Algorithm 2 Generating the Datasets
Input: VCNR, VINR, fc,gso, fc,k, Bx , Bi,k , Data Generation

Parameters, and GSO ModCods
Output: YA, YF

1 Initalize: YA, YF as empty matrices
2 for n← 1toN do
3 Generate ζn, AWGN noise of lengthMt
4 Get CNRn, the value of VCNR[n]
5 Generate xn(t) from (12) at ModCod matching

CNRn
6 Generate yx,n(t) from (14a)
7 Get the vINR,n vector, the cell of VINR[n]
8 if vINR,n is an empty cell then
9 Set: αn = 0, interference-free label
10 Set: yi,n(t) as zeros array
11 else
12 Set: αn = 1, interference label
13 Initialize: yi,n(t) as zeros array
14 for k ← 1toKn do
15 Get INRk , the value of vINR,n[k]
16 Generate ik (t) from (13) at a defined

LEO ModCod
17 From (14b), yi,n(t)←

yi,n(t)+
(
ik (t)ej2π(fc,k−fc,gso)t

√
INRk

)
18 Get yn(t) from (14)
19 Get yAn of lengthMt from (16)
20 Concatenate [yAn , αn] to YA
21 Get yFn of lengthMf from (17)
22 Concatenate [yFn , αn] to YF
23 Return YA, YF

At the analog-to-digital (A/D) conversion process, the
received baseband signal is sampled at a frequency fs = 1

Ts
Hz, where Ts denotes the sampling duration. The number of
samples per symbol of the desired x(t) signal is s1 = ceil(TxTs ),
and the number of samples per symbol of the interfering ik (t)
signal is s2 = ceil(Ti,kTs ). To avoid a potentially high sampling
rate and the corresponding large number of samples for each
symbol, we assume that the signal is sampled in its baseband
form. In particular, in our analysis, the bandwidths Bi,k and
Bx are similar, implying that both GSO and LEO employ an
identical bandwidth value.When the received signal is shifted
by fc,gso in the baseband, its highest frequency component is
Bx . The minimum sampling frequency required to capture the
entire subband spectrum is fs,min = 2Bx .
Although (14) is a time-domain signal, our work will con-

sider both time and frequency-domain input signals. Both the
IQ time-domain and frequency-domain representation are of
complex type, which is not accepted as input to ML models.
Regarding the time-domain IQ samples of y(t), we transform
them into 1-dimensional (1D) data, or a sequence, which
can be used for training and testing. In a time instant n a
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time-domain representation (yAn ) of the signal yn(t) can be
generated by taking the magnitude3 of the signal as follows

yAn = |yn(t)|, (16)

where yAn ∈ RMt is a vector with Mt elements of amplitude
(A) values and it represents the time-domain representation of
the signal yn(t). For simplicity, we refer to the time-domain
representation as Signal. The frequency-domain representa-
tion (yFn ) is based on the fast Fourier transform (FFT), and
can be obtained by generating the estimated power spectral
density (PSD) of yn(t) using theWelch method [29]. This step
can be formulated as follows

yFn = 10log10(ϕ(yn(t))), (17)

where ϕ is the equivalent pewlch function inMATLAB, and
yFn ∈ RMf is the PSD estimation vector for the IQ samples of
yn(t), withMf elements of decibels per Hertz (dB/Hz) values.
For simplicity, we refer to the frequency-domain representa-
tion as Spectrum.

III. DATA PREPARATION
Before diving into the description of the proposed models for
NGSO interference detection, in this section we present how
the link budget and the received signal model presented in
Section II, are used to generate a realistic dataset for training
and evaluation.

Due to the need to calculate realistic CNR and INR values
for generating the training and evaluation data, we first run
a satellite simulation scenario with one GSO and multiple
LEOs using MATLAB satellite toolbox [30]. The real-time
positions and trajectories information of the GSO and LEO
satellites are based on Kepler’s six orbital elements. These
can be easily extracted from the corresponding satellite
two-line element (TLE) information that is publicly avail-
able on the celestrak website [31]. The corresponding orbit
propagation of the selected LEO satellite has been calculated
using MATLAB built-in functions, which provide estimates
of latitude, longitude, and altitude over time according to
the satellite trajectory. Using this setup in simulating satel-
lites’ interference scenarios where we consider the physical
environment (distances, angles, satellites’ orbit propagation,
etc.), propagation conditions (path loss, weather, etc.), and the
operational conditions (frequency, bandwidth), each element
can drastically affect signal integrity and interference levels,
altering CNR and INR values. Thus, considering all these
factors allows us to generate more realistic link budget values
and datasets, to fill the lack of real datasets in this specific
domain [32], and which we believe are better than generating
data from fixed CNR and INR values.

The simulation runs for a period of T , and at each simula-
tion step 1(τ ), a sample of CNR, INRk values are calculated
from (1) to (9), and only values that exceed the INR threshold

3Preliminary testing showed that the magnitude component was bringing
good results and such results did not improved when adding the phase
component. Therefore, in this study, only the magnitude is considered.

INRmax in (11) are saved. In general, we capture a total of N
samples of CNR and INR values, within the time period T .
The overall data generation process is thus composed of two
steps:
• CNR and INR values per-time instant calculation (see
Algorithm 1).

• Detailed data generation of received signals (see
Algorithm 2).

Algorithm 1. summarizes the calculations CNR and INR
for each time instant. It outputs two vectors, the first VCNR ∈
RN is a vector consisting of all GSO CNR values calculated
for each simulation step (time instant) indexed by n. The
second output is a cell array VINR, each nonempty cell can
be denoted as VINR[n] ∈ RKn , and it contains a vector vINR,n
withKn elements, each element representing a INRk value of
the k th LEO that affects GSO communication with GGS at
the nth time instant.

The Algorithm 2 expresses the data generation steps of the
received signals. It outputs two separate datasets generated
for N samples, which are: 1) The dataset of the received
signals in time-domain representation (Signal dataset) YA ∈
RN×Mt+1, and 2) The dataset of the received signals in
frequency-domain representation (Spectrum dataset) YF ∈
RN×Mf+1. The additional variableαN ∈ Z2 is a binary indica-
tor for whenGGS receives an interference signal, in particular
when GGS receives an interference-free signal αn takes a
value of 0. In contrast, when interference is present within
the signal, αn takes 1. Please note that αn is not needed for
the interference detection per-se but it is required for the
evaluation of the different models (i.e., ground truth).

IV. INTERFERENCE DETECTION MODELS
The proposed models process 1D data based on the concepts
of unsupervised learning. In this section, the models details
are presented and discussed.

A. NOTATION AND ASSUMPTIONS
For readability purposes, we denote a single 1D input data
(vector of lengthM ) to the models as

yn =

{
yAn , for a time-domain (Signal) data
yFn , for a frequency-domain (Spectrum) data

where yn ∈ RM , n ∈ [1,N ], andM ∈ {Mt ,Mf }. Furthermore,
an element-wise normalization is performed on the input
before it is fed to the models; this can be expressed as follow

yn,norm =
yn − a
b− a

, (18)

where yn,norm is the normalized version of yn of scale ranging
from 0 to 1, a and b are the minimum and maximum values in
the processed data representation, respectively. The subscript
‘‘norm’’ will be removed for readability, but the input yn from
now onwards is assumed to be normalized.

The goal of the proposed interference detection models
is to learn an efficient and meaningful representation of the

910 VOLUME 2, 2024



Saifaldawla et al.: GenAI-Based Models for NGSO Satellites Interference Detection

FIGURE 3. Benchmark models.

input data byminimizing the reconstruction error between the
original input (yn) and a reconstructed output (ŷn ∈ RM ). The
interference detection problem is performed as an anomaly
detection task [33]. An interference-free (anomaly-free) data
consist of a GSO signal and noise only. A signal containing an
anomaly (interference) from LEO consists of a GSO signal,
noise, and LEO signals as interference. The mean absolute
error (MAE) is the loss function that is used to evaluate the
performance of all proposed models. In a noisy and interfer-
ence data, the MAE loss function is robust to outliers and
treats all errors with equal importance, this uniform treatment
helps ensure that no single large error (outlier) can dominate
the loss calculation, which is particularly beneficial in the
context of interference detection where the goal is to identify
all instances that deviate from the normal pattern of the
data. MAE loss is calculated as the average of the absolute
differences between the predicted values and the actual values
and is given by the formula

LMAE =
1
N

N∑
n=1

|ŷn − yn|. (19)

The expectation is that the proposed models will recon-
struct interference-free sequences with a lowMAE, and when
interference data is received, this will be compared with the
expected one and that would raise higher MAE. By setting
a threshold β on the MAE loss, it is possible to differentiate
between normal and interference observations, thus β serves
as the interference score, and so on.

dn =

{
1 Interference, if LMAE > β

0 Interference-free, otherwise
(20)

where dn is the model predication decision of the input yn
after being judged by the thresholding process.

B. BENCHMARK MODELS
Here we present and redesign three AE-based interference
detection models, which are AE [25], CAE [12], and LST-
MAE [24], as shown in Fig. 3, and will serve as a benchmark
models to compare with our proposed models.

An AE-based model takes any input yn and compresses
it into a lower-dimensional representation vector zn ∈ RMz

(Mz =
M
4 ) using an Encoder E(·) as

zn = E(yn). (21)

A reconstructed version of yn can be found by decoding
the representation vector back to the original dimension by
the Decoder D(·) as

ŷn = D(zn). (22)

Fig.3a shows a standard AE architecture, with a modified
architecture compared to the one proposed in [27]. Excluding
the input layer, the model comprises a total of five fully
connected dense layers with a rectified linear unit (ReLU),
and a final dense layer with a Sigmoid functions to ensure
the output values fall between 0 and 1, this is useful for
the normalized input data. The dense layers are adept at
capturing linear relationships and basic patterns within the
interference-free signal signal. By learning to compress and
accurately reconstruct the typical GSO signal, the AE model
can be used to establish a baseline of interference-free signal
behavior.

Fig.3b illustrates amodified architecture of the CAEmodel
proposed by [12]. CAE adapts convolutional ability to the AE
architecture, which leverages feature extraction from input
data with spatial or temporal structures. The encoder’s convo-
lutional (Conv1D) and max pooling (MaxPool1D) layers first
perform dimensional reduction to encode the input sequence
into the representation vector dimensions. The decoder lay-
ers then use conventional transpose layers (Conv1DTr) to
up-sample the sequence dimensions, and the last Conv1DTr
layer withM filters and a single kernel produces a single fea-
ture map, which then flattened to produce the reconstructed
output. All layers use ReLU activation, except the last one
with Sigmoid activation. The CAE can capture local patterns
with shared weights (kernels), making it more efficient than
dense layers for high-dimensional GSO signals that may
have inherent spatial correlations due to modulation tech-
niques. NGSO interference would likely disrupt these spatial
correlations, which the CAE would manifest as increased
reconstruction errors.

Fig.3c illustrates the architecture of the LSTMAE model,
it combines dense layers with an LSTM unit on the encoder
to process the representation vector of the input sequence,
which is suitable for learning order dependence in sequence
data prediction problems, and it is an improved architecture
from that of [24]. The LSTM unit, a type of recurrent neural
networks (RNNs), is particularly useful for sequence data
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FIGURE 4. Variational autoencoder interference detection model
(VAE).

where the current sequence is dependent on the previous
sequence. This is particularly appealing for NGSO-to-GSO
interference detection, where the expected GSO signal has a
strong correlation with the previous GSO signal instance.

C. PROPOSED GenAI-Based MODELS
1) VARIATIONAL AUTOENCODER MODEL (VAE)
Our first proposed GenAI-based model is the VAE model,
its architecture illustrated in Fig. 4. VAE learns not only
the encoding of the data, but also the underlying probability
distribution [14].
As an architecture, VAE consists of similar hyperparam-

eters in the encoder and decoder parts as in the standard
AE. The major difference lies in the encoder and the rep-
resentation vector part. Here, VAE learns to generate new
sequences that are similar to the input sequence by enforcing
a distribution on the representation vector. This is achieved by
introducing a sampling layer instead of a typical neural layer.
This layer samples from the distribution defined by the mean
(µn) and standard deviation (σn) dense layers. Furthermore,
the reparameterization trick is utilized in VAE, which entails
expressing the representation vector as a deterministic func-
tion of learnable parameters and a fixed distribution sample.
This technique effectively decouples the stochastic element
from the parameters optimization process. The reparameteri-
zation trick is represented by the equation

zn = µn + σn ⊙ ε, (23)

where µn and σn are learnable parameters, and ε is a sample
of a standard Gaussian distribution. The symbol⊙ represents
the Hadamard product, or element-wisemultiplication, which
facilitates the combination of the variability introduced by ε

with the scaled parameter σn. The form in (23) of zn allows
differentiation with respect to the parametersµn and σn while
incorporating randomness, thereby allowing the loss gradient
to be backpropagated through the stochastic sampling pro-
cess.

Let p(y) denote the actual training data distribution, p(z)
express the distribution of the representation vector, and
p(ŷ|z) indicate the conditional distribution of data recon-
struction -generation- given the representation vector. The

goal of VAE is to infer p(z) from p(z|y). The distribution
p(z|y) is a complex probability distribution that positions
the input data in a representation vector, which is typically
a standard Gaussian distribution N (0, 1). However, lacking
the actual distribution p(z|y), we approximate it through a
more tractable distribution q(z|y), in this case as an approx-
imation of the Gaussian distribution N (µ, σ 2). During the
VAE training process, the encoder is tasked with assimilat-
ing the approximate distribution N (µ, σ 2) so that it closely
resembles the true distribution N (0, 1). This resemblance is
quantified using the Kullback-Leibler (KL) divergence [34],
as a metric of disparity between two probability distributions.
The loss function for the VAE inherently incorporates this KL
divergence term, which it strives to minimize as

DKL [q(z|y)||p(z|y)] =
∫
q(z|y) log

q(z|y)
p(z|y)

dz. (24)

In this case, DKL can be derived as [14]

DKL = −
1
2

(
1− µ2

− σ 2
+ log(σ 2)

)
. (25)

VAE probabilistic approach allows it to generate new
sequences that are variations of the input data, potentially
offering a more robust detection of NGSO interference by
evaluating how likely a new signal instance could have been
generated by the same distribution as the GSO signal. Diffrent
from the benchmark models, the loss function of the VAE
incorporate the KL divergence DKL term, or the similarlty
loss as follows

LVAE =
1
N

N∑
n=1

|ŷn − yn| + DKL, (26)

The loss function of the VAE is composed of two main
components: the reconstruction error, using LMAE, and a
regularization term DKL, which accounts for the divergence
in the representation vector distribution approximations. The
integration of DKL within the VAE loss function can be
interpreted as a measure of how well the representation
vector matches the desired standard normal distribution,
ensuring that the model generates meaningful and diverse
data samples. Additionally, this regularization aids in curbing
overfitting throughout the model training process.

2) TRANSFORMER-BASED INTERFERENCE DETECTOR
MODEL (TRID)
Inspired by transformer models [15], we propose the TrID
model as illustrated in Fig. 5. Unlike VAEs, which sample
probability distributions to generate new data, transformer
models are particularly adapted for GenAI applications
because of two mechanisms: self-attention and positional
encodings. Both of these technologies allow the model to
focus on how sequences are related to each other over a long
time [15].

Our proposed TrID model consists of three main blocks.
At the beginning, the input signal is passed through Con-
volutional Front-end where two conv1D layers with ReLU
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FIGURE 5. Transformer-based interference detector model (TrID).

activation and each is followed by MaxPool1D. The Con-
volutional Front-end primarily serves to extract meaningful
features from the raw input signal, reducing dimensionality
while reducing the computational load, and helping in bridg-
ing the local features with the global context needed for the
transformer layers. This is very important for understanding
the underlying structure of the data. This setup ensures that
the transformers are not merely processing raw data but rather
more abstract representations of the input signal.

The second block is Transformer Encoder, which consists
of a sinusoidal positional encoding followed by two standard
transformer encoder layers [15]. The abstract representation,
which has the dimensions M

4 × 16, of the input signal is
treated as a sequence of embeddings (sequence length ×
embedding size), a Positional Encoding is applied before the
first transformer layer to encode the embedding order of the
input sequence and get,

PE(pos,2i) = sin(pos/10002i/dTrID ), (27)

PE(pos,2i+1) = cos(pos/10002i/dTrID), (28)

where pos is the embedding position in the sequence, i is the
dimension in the embedding space and dTrID is the dimen-
sionality of the embedding or the embedding size. That is,
each dimension of the positional encoding corresponds to a
sinusoid. Next, the first transformer’s multi-head attention
is applied on the positional encoding output. Toward that,
we consider the linear projections of the queries Q, the keys
K , and the values V , then we obtain the attention matrix as

Att (Q,K ,V ) = softmax
(
QKT
√
dk

)
V , (29)

where dk represents the dimension of the keys. If the num-
ber of attention heads is h, and the output weight matrix is
denoted as W l

out , the output of the multi-head attention is
given as

MH (Q,K ,V ) = Concat (H1, . . . ,Hh)Wout , (30)

where

Hi =
(
QWQ

i ,KWK
i ,VWV

i

)
, (31)

where WQ
i , W

K
i , WV

i are the weight matrices of each head’s
inner dense layers, and Wout is the final dense layer weight
matrix. In this paper, WQ

i ∈ RdTrID×dk , WK
i ∈ RdTrID×dk ,

WV
i ∈ RdTrID×dv , where dv = dk =

dTrID
h .

In the self-attention mechanism of a transformer, the inter-
nal relationships within an input sequence are comprehen-
sively learned. Essentially, attention weights are calculated at
each sequence position by comparing a given position with
every other position in the sequence. This process allows the
model to capture the overall sequence information, enhancing
the representation of each observation by focusing on the
contributions of all other positions. Consequently, the hidden
state of each point in the sequence emphasizes the contextual
significance of the surrounding regions to that specific point.

The output of the multi-head attention are added and nor-
malized before process by a feed forward network (FFN) with
residual connection, followed by addition and normalization
once again in order to obtain the final output of the first
transformer encoder layer. This layer processes the embed-
ding sequence input to create a unified hidden representation
for each position within the sequence. Subsequently, these
representations are fed into a second transformer encoder
layer, which iteratively helps generate more sophisticated,
higher-level representations during training. This hierarchi-
cal processing enhances the model’s ability to discern more
complex patterns and relationships within the data.

The extracted features of the Transformer Encoder block
are further processed with the third block, namely Convolu-
tional Back-end. The Convolutional Back-end is consisting
of transposed convolutional layers (two conv1D layers with
ReLU, and a third conv1D layer with Sigmoid), and serves to
up-sample these features back to the original dimensionality
of the input in ŷn. The output of the convolutional layer is
fed into the flattening layer where the final reconstructed
signal ŷn is conveyed. The Convolutional Back-end not only
reconstructs the signal from the abstracted and generated
representations from the Transformer Encoder block but also
refines this reconstruction to ensure that the output is detailed
and accurate. It effectively translates the global contextual
understanding of the transformer back into a high-resolution
space. TrID utilized the MAE loss function defined in (19).

D. INTERFERENCE DETECTION PERFORMANCE
METRICS
Performance metrics provide quantitative measures that help
to understand how well the model performs, particularly in
distinguishing between different classes [35]. Here we intro-
duce some of the selected metrics that will be used in this
paper to evaluate the performance of the models, listed in
Section IV.IV-B, for the interference detection task.

Let us first introduce the basic key performance indicators:
1) True Positives (TP): The number of interference (pos-
itive) instances correctly identified by the model, 2) True
Negatives (TN): The number of interference-free (negative)
data correctly identified by the model, False Positives (FP):
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The number of interference-free data incorrectly identified
as interference, and 4) False Negatives (FN): The number
of interference data incorrectly identified as interference-free
observations. The derived metrics includes
• True Positive Rate (TPR): Also known as Recall, or the
probability of detection (PD). This metric measures the
proportion of actual interference instances that are cor-
rectly identified by the model.

TPR =
TP

TP+ FN
. (32)

• False Negative Rate (FNR): It indicates the proportion
of actual interference instances that are missed identi-
fied by the model as interference-free instances. Is the
complement of the TPR.

FNR =
FN

TP+ FN
. (33)

• True Negative Rate (TNR): This metric measures the
proportion of actual interference-free instances that are
correctly identified as such by the model.

TNR =
TN

TN+ FP
. (34)

• False Positive Rate (FPR): This metric measures the
proportion of actual interference-free instances that are
incorrectly identified by the model, in other words it
indicates the probability of false alarms. Is the comple-
ment of the TNR.

FPR =
FP

TN+ FP
. (35)

• Normalized-valued ConfusionMatrix (NCM): NCM is a
tabular representation of TNR, FPR, and FNR and TPR,
widely used in classification problems [35].

• Accuracy score: It represents the overall proportion of
correct predictions (both TP and TN) relative to the total
number of cases examined.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
. (36)

• Precision score: This metric measures the proportion of
predicted interference that are actually TP. It focuses
on the purity of interference identifications. Precision is
particularly important in contexts where the cost of false
alarm is high.

Precision =
TP

TP+ FP
. (37)

• F1 Score: F1 score is the harmonic mean of precision
and recall. This score is a robust metric for evaluating
interference detection models because it accounts for
both the model’s ability to correctly identify interference
and its efficiency in not misclassifying interference-free
signals as interference.

F1 = 2×
Precision× Recall
Precision+ Recall

. (38)

FIGURE 6. Schematic overview from data generation to models
training and evaluation.

• Receiver Operating Characteristic Curve (ROC): ROC
is a graphical representation that plots TPR against FPR
at various threshold settings.

• Area Under the ROC Curve (AUC): AUC score is
a scalar value summarizing the ROC curve. AUC is
a valuable metric for evaluating the performance of
interference detection models [36], it gives a sense
of how well the model can be tuned to balance the
detection of interference (TPR) against mistakenly flag-
ging interference-free instances as interference or false
alarms (FPR).

V. SIMULATION RESULTS
In this section, we present the simulation setup, including
details on the data generation, model training phase, as well
as validating and comparison of the different MLmodels pro-
posed in Section IV. The workflow logic is shown in Fig. 6.
In this approach, data labeling (interference and interference-
free) is only used to calculate the key performance metrics
described in Section IV-D.

A. DATA GENERATION PHASE
We initialize our simulation in MATLAB by selecting
one GSO satellite from the SES fleet, the ASTRA 28.2E
system [37].The GGS is assumed to be a VSAT dish
located in Luxembourg City, Luxembourg, Coordinates:
(49.6257N, 6.1598E, 300m). The GSO system corresponds
to an European broadcasting system operating at 10.7-
12.7 GHz [38]. The potential NGSO interference is emulated
by selecting 20 LEO satellites that eventually fly in the
neighboring area of the GSO line of sight. These correspond
to 10 LEO satellites from SpaceX Starlink constellation,
and 10 LEO satellites from Eutelsat-OneWeb constellation.
Note that the altitudes of these LEO satellites are between
550 and 1,200 Km. Starlink and OneWeb constellations are
deployed to provide broadband connectivity worldwide, and
according to recent filings with the Federal Communications
Commission (FCC), Starlink OneWeb satellites are oper-
ating in the same Ku frequency bands 10.7-12.7 GHz as
ASTRA [39], [40].
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TABLE 1. Simulation setup and link budget parameters
(Algorithm 1).

1) SIMULATION SETUP AND LINK BUDGET
CALCULATION
Table 1 describes the simulation setup and link budget param-
eters used in Algorithm 1 for the computation of CNR
and INR values. Satellite communications implement the air
interface defined in the DVB-S2X standard for downlink
transmission. The DVB standard defines a set of ModCod
schemes that adapt the transmission mode depending on the
link characteristics. In our simulation, the value of the link
losses (LAD) is intentionally varied over time within the range
of [0,9] dB to emulate different ModCod schemes for both
GSO and LEO links independently.

A representation part of the visibility intervals of GSO and
LEOs satellites to the GGS during the simulation is shown in
Table 2. It can be observed that the selected GSO satellite
(ASTRA 2F) is visible to GGS all the time with a total
duration of 48 hours (172800 seconds, which corresponds
to the overall simulation period), while the selected LEO
satellites have discrete visibility to GGS occurring 296 times
during the whole simulation period, with varying visibility
duration (190 to 1190 seconds).

With this setup, Algorithm 1 generates a total of N =
48×60×60

10 = 17281 simulation samples. We recorded
2218 data points whose aggregated interference over noise

TABLE 2. The visibility of GSO and LEOs to the GGS.

FIGURE 7. Plot of numbers of LEO satellites interfering GGS
(Top), and the received CNR and INRsum (Bottom), over the
simulation period.

ratio exceeds the INR threshold INRmax defined in (11).
The maximum aggregated interference over noise ratio is
INRsum[dB] = 32.47 and the minimum is INRsum[dB] =
4.49. Regarding individual interference over noise ratio (INR
per LEO satellite), we obtain maximum INRk [dB] value of
32.47,4 and the minimum INRk [dB] value is−31.03. For the
GSO satellite link, the maximum CNR[dB] value is 15.40,
and the minimum CNR[dB] is 6.40.

Fig. 7 illustrates how the simulation and the calculation of
CNR, INR are performed in parallel. The top plot visualizes
the varying number of LEO satellites received as interference
at GGS for each time instant n. The bottom plot illustrates
CNR[dB] and INRsum[dB] that exceed the INR threshold
INRmax mentioned above in (11).

Fig. 8 shows the GGS radiation pattern described in (5) and
the gain of each satellite access to it at the 4227th time instant
(i.e., at 30-07-2023 11:44:30). It can be seen that satellite
LEO1 is received with a significantly higher gain than the rest
of the LEO satellites.

2) RECEIVED SIGNALS DATA GENERATION
To generate data from the received signals for training and
evaluation as described in Algorithm 2, we implement the
parameters shown in Table 3, and the table of simplified
modulation schemes from [19] as in Table 4.

4During the simulation, the maximum aggregated interference at the GSO
ground station was primarily caused by significant in-line interference from
a LEO satellite, while another LEO contributed with a close-to-negligible
interference power.
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FIGURE 8. Visualization of the GGS receiving gain of each
satellite accessing to GGS at 30-07-2023 11:44:30.

TABLE 3. Data generation parameters (Algorithm 2).

TABLE 4. GSO ModCods.

With this parameter set-up, Algorithm 2 generates two sets
of data, the time-domain Signal dataset, and the frequency-
domain Spectrum dataset as described in Section III. The
Signal dataset (YA) has dimensions of N × Mt = 17281 ×
800 after excluding the label column α ∈ ZN

2 . Due to the fact
that the FFT signal bandwidth covers the spectrum [− fs

2 ,
fs
2 ]

in baseband, and the number of frequency bins in the fre-
quency domain is equal to the number of samples in the time
domain, thus the Spectrum dataset YF , has the dimensions
of N ×Mf = 17281 × 800 after excluding the label column
α ∈ ZN

2 . In this case, both datasets have the same dimensions
N ×M , where M ∈ {Mt ,Mf }.

As mentioned in Section IV-A, the input layer in each
model takes a vector (sequence) yn with length M , where n
indicates the sample index within N data points (sequences).
The label αn indicating the presence and absence of inter-

ference is only used to ensure that the models are trained
only with the expected GSO signal. Consequently, the final
data distribution used for training and testing is as follows:
1) The Training Set, composed exclusively of 10, 397 ×

M interference-free dats; 2) The Validation Set, containing
1, 175 × M interference-free data; and 3) The Testing Set,
contains 2, 907×M interference-free data and all 2, 802×M
interference data.

B. MODELS TRAINING PHASE
Tensorflow and Keras frameworks are used to build the
models proposed in Section IV-B in Python. All models are
compiled with MAE as the main loss function, and Nesterov
implemented Adam as the optimizer. The weight and base
parameters were updated using the interference-free Training
Set, and the results were validated using the Validation Set.
The experiments in the following parts were carried outusing
the HPC facilities of the University of Luxembourg [42].
Thanks to these facilities, 60-core CPU units with 3 TB RAM
memory are used.

1) MODELS TRAINING
Each model inputs yn, after a normalization step using the
maximum and minimum values found on the Training Set as
explained in (18). Each AE-based models, including VAE,
reduced the dimensionality of the input from M = 800 in
yn, to Mz = 200 in zn, each layer parameters and structures
can be seen in Fig. 3 and Fig. 4. For the TrID model, Fig. 5,
in the Transformer Encoder we apply h = 4 parallel attention
layers, l = 2 transformer encoder layers, and all the sub-
layers, including the positional encodings, produce output of
dimensions ∈ R

M
4 ×dTrID , with dTrID = 16.

The models were trained for 30 epochs with a batch size
of 64. The model training phase is shown in Fig. 9. First,
Fig. 9a shows theMAE loss over 30 epochs of training for the
Signal dataset. The x-axis represents the epoch number, and
the y-axis represents the MAE loss. A lower MAE indicates
better reconstruction performance, as the error between the
model predictions and the actual data is smaller. AE, LST-
MAE, and VAE models seem to converge quickly, with most
of the loss reduction occurring in the first few epochs, CAE
converges after, and TrID converges at a significantly lower
MAE value than the other models. This suggests that the
TrID model learns the patterns in the time-domain data more
efficiently. Except for TrID, all other models show a sharp
decline in loss initially, which flattens as the epochs increase,
indicating that they have quickly reached a point of minimal
improvement in error reduction. Similarly, Fig. 9b shows the
MAE loss over 30 epochs of training for the Spectrum dataset.
The models training behavior is quite similar to that of the
Signal dataset, with all models showing rapid convergence
in the initial epochs, except TrID and CAE. Compared to
the Signal dataset training, the loss values for the Spectrum
dataset are lower overall, which may suggest that the mod-
els struggle a bit to capture the patterns in the data in the
time-domain or that it is inherently more complex.

In Fig. 9c, the bar chart compares the number of trainable
parameters across the models, which is the same for both
Signal and Spectrum datasets. Generally, a model with more
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FIGURE 9. Training phase results.

parameters can capture more complex patterns, but may also
be prone to overfitting and may require more data to train
effectively. AE, LSTMAE, and VAE models appear to have
a similar number of parameters with their fully connected
dense layers, while the models with convolutional layers
seem to have a smaller number of parameters, with TrID
being significantly the lowest. In satellite communication
systems, where computing resources are often constrained,
models with a large number of parameters can be impractical.
Theymay requiremorememory and processing power, which
could impact the efficiency of satellite systems.

Fig. 9d shows the training time for each model in min-
utes (min) for training both Signal and Spectrum datasets.
Training time is important for practical consideration, since
models that take longer to train can be more costly in terms of
computational resources and time. Here, on both datasets, the
TrID model trains the slowest compared to the other models,
potentially due to the self-attention mechanism within the
transformers, which despite its computational complexity,
is an important layer for improving the model accuracy. Other
models, while having more trainable parameters than the
TrID, were quicker to train.

Fig. 9e shows the inference time for each model in mil-
liseconds (ms) for both Signal and Spectrum datasets. It can
be seen that LSTMAE takes the longest time (up to 160 ms)
to reconstruct an input data, which could be due to the LSTM
unit complexity. Despite having a longer training time, TrID
took less time (up to 20 ms) to reconstruct the input data.
AE and CAE, VAE were the most efficient in terms of infer-
ence time. Satellite communications often require real-time
or near-real-time response to maintain system integrity
and performance. Interference detection models with faster
inference times can quickly identify and respond to poten-
tial issues, preventing further complications or system
failures.

Fig. 10 shows the reconstruction performance of the mod-
els, each figure depicts input data (cyan color) alongside the
reconstructed output (navy color) obtained and the recon-
struction error area between them (golden color), after being
rescaled back to the original values of amplitude or dB/Hz.
It is observed that the reconstruction error ismore pronounced
in the data with interference, as indicated by the larger golden
area, which is expected since the models were trained in
interference-free data and interference would naturally be
harder to reconstruct and thus easier to detect. Despite the

FIGURE 10. Model input (cyan color), reconstructed output (navy
color), and error area (golden color) for an interference-free and
interference Signal data (sub-left figures) and Spectrum data
(sub-right figures).

complexity of the training data,5 the TrID model generates an
interference-free datawithminimalMAE error, indicating the
possibility of utilizing themodel for future data generation for
the purpose of training deep learning models.

2) THRESHOLD SELECTION
As discussed in Section IV-A, by setting a threshold β on the
training loss of each model and each dataset, it is possible to
differentiate between interference-free and interference data.
We propose to use an initial threshold value β0 for eachmodel
and dataset, from the sum of the mean and two standard
deviation of the MAE loss values on the training dataset
LMAE,Train, and it can be derived using this equation

β0 = µ(LMAE,Train)+ 2× σ (LMAE,Train) (39)

5For training data of a single NGSO satellite, single SNR, and single
ModCod [25], all models demonstrated perfect reconstruction performance.
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FIGURE 11. Threshold selection based on optimal AUC score
approach.

FIGURE 12. AUC_ROC plot per model for Signal data (left), and
Spectrum data (right).

The initial threshold value has been derived with the
objective of achieving satisfactory performance in the task
of interference detection. However, as part of this paper’s
contribution, we extended the threshold definition to an
enhanced threshold value (β) by examination of interfer-
ence segments (assuming that these are available and have
been previously identified as such). In particular, we first
evaluate the classification performance of each model on
a Testing Set that includes interference and interference-
free data, iterating over a series of threshold values that are
derived from the MAE losses values of the training dataset
LMAE,Train. Subsequently, we pinpoint the optimal threshold
value that yields the maximum AUC score. The choice of the
AUC score is due to its ability to be tuned to balance the
detection of interference, or the recall, while avoiding false
alarms.

Fig. 11 illustrate an example of the initial threshold β0 and
the enhanced threshold β within the MAE Loss values
(thresholds series) specifically derived for theVAEmodel and
the Signal dataset.

TABLE 5. Models performance summary on signal test data.

TABLE 6. Models performance summary on spectrum test data.

C. MODELS EVALUATION PHASE
After training and selecting the threshold for each model and
each data representation, we can now evaluate the trained
models with the data from the Testing Set. We analyze the
performance of these models in detecting NGSO interference
at GGS based on the key performance indicators described in
Section IV-D. Evaluation encompasses two different repre-
sentations of received signals: time domain (Signal data) and
frequency domain (Spectrum data). We present some classi-
fication performance plots for each model: Fig. 12 presents
the ROC curves per model for the Signal dataset (right), and
the Spectrum dataset (left), as well as highlighting the AUC
scores within the figure labels. These ROC curves show the
trade-off between the true positive rate and false positive rate
for each model. The closer the curve follows the left-hand
border and then the top border of the ROC space, the more
accurate the model. Hence, the closer AUC is to 1, the better
the model is at predicting true interference-free instances
while minimizing false alarms. The models’ performances
vary significantly between signal and spectrum data. For sig-
nal data, LSTMAE, VAE, and TrID perform equally well and
slightly better than AE and CAE. For spectrum data, the TrID
and VAE clearly outperform the other models, indicating
that their architectures may capture the complexities of the
spectrum data better. The CAE and LSTMAE models do not
adapt as well to the spectrum data, possibly due to limitations
in how they capture and utilize features in this type of data.

Fig. 13 shows the normalized confusion matrices CM for
all models and data representations. In addition, Table 5 and
Table 6 summarize the results from Fig. 12 and Fig. 13, for
the Signal dataset and the Spectrum dataset, respectively.

Starting with Table 5, TrID tends to lead in all metrics
compared to other models, it has the highest Accuracy and
AUC at 83. 18%, it also has a low false alarm rate or FPR at
17.63%, which is about 1% higher than VAE with the best
value of 16.61%. On the other hand, LSTMAE and VAE
show a closely identical performance with VAE being slightly
better in Accuracy, FPR and AUC. AE and CAE while not
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FIGURE 13. Normalized Confusion Matrices per model for Signal data (sub-left figures), and Spectrum data (sub-right
figures).

leading in any specific category, they still perform reasonably
well.

Regarding Table 6 for the Spectrum dataset, TrID and
VAEmodels outperforms others, achieving the highest scores
across all metrics, with +71% in AUC score, except FPR
which LSTMAE and CAE were superior, however, this
comes with a trade-off as their TPR are very low. VAE,
although still performingwell, falls slightly behind TrID in all
metrics. All models show a marked decrease in performance
metrics in the frequency-domain as compared to the time-
domain, highlighting the complexity of detecting interference
in the spectrum data.

As a conclusion for this evaluation, our proposed
GenAI-based models (TrID and VAE) performed the best in
both signal and spectrum data compared to the other mod-
els, with the highest Accuracy, F1Score, and AUC values.
In applications where processing of both spectrum and sig-
nal data is required, VAE or TrID would be the preferable
choice given their superior AUC scores. In real-world appli-
cations, the choice between TrID and VAE, or another model,
might also be influenced by computational constraints, train-
ing time, inference times, and reconstructing ability, which
depends on the application requirements and the resources
available. Given the critical nature of detecting NGSO inter-
ference in GGSs, where missed detections and false alarms
may have significant implications, a model with a strong
balance between TPR and FPR is essential. Overall, TrIDwas
superior and also the best model in terms of reconstructing
the input data. Thus, the TrID model on time-domain Signal
data representation is recommended for further investiga-
tions. Here are some insights on possible reasons why the
TrID architecture shows better results than the AE, CAE,
LSTMAE, and VAE:

• Multi-Head Self-Attention Mechanism: As men-
tioned in the model description, the self-attention mech-
anism in TrID allows for a dynamic weighting of the
significance of different parts of the signal. Moreover,
the global receptive field of self-attention enables the
model to capture long-term dependencies without being
restricted by the vanishing gradient problem in typical
LSTM.

• Enhanced Accuracy: The inclusion of convolutional
layers for post-processing and skip connections within
the TrID architecture helps maintain gradient flow and
adjust dimensionality. This contributes to a more accu-
rate signal reconstruction and guards against issues such
as vanishing gradients that can hinder training in deep
networks.

• Better Data Generation Capabilities: When generat-
ing data, TrID often outperform VAE as they can model
complex distributions without being constrained by the
need to match a specific prior distribution, leading to a
higher fidelity in the generated data.

• Adaptability: The architecture of TrID is inherently
flexible, allowing them to be adapted for a broad range
of applications. This adaptability stems from the ability
to process inputs of varying lengths and the ease of
integrating additional information.

• Computational Efficiency: The potential for omitting
the decoder in Transformers, along with the paralleliza-
tion capabilities of Transformers, can lead to significant
reductions in training time and computational complex-
ity. This also paves the way for batch processing of
signals, contributing to real-time performance in prac-
tical applications.

VI. COMPARISON WITH TRADITIONAL APPROACH
In this section, we provide a comparison between our
proposed GenAI-based models (TrID and VAE), and the
traditional ED detector using only data in the time-domain.

A. GENERATION OF COMPARATIVE DATASETS
First, we examine the performance of the models in detect-
ing the received LEO interference signals when its signal
bandwidth: 1) 100% overlapped with GSO bandwidth, 2)
75% overlapped with GSO bandwidth, 3) 50% overlapped
with GSO bandwidth and 4) 25% overlapped with GSO
bandwidth. In other words, where the adjustment factor Badj,k
in (3) is 1, 0.75, 0.5 and 0.25 respectively. Therefore, to per-
form this comparison, we need to generate four new datasets,
each referred to as the OVRLP% set representing the percent-
age of overlap within the data.
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To generate these four OVRLP% sets, we considered only
one LEO satellite pass (k = K = 1). The simulation period is
selected by experimental methods, where the LEO satellite is
always visible to theGGS. The percentage of overlap between
the GSO and LEO bandwidths is controlled by setting the
GSO and LEO bandwidths at 50MHz each and then adjusting
the overlap bandwidth Boverlap,k in (3) according to the value
that satisfies the target percentage, which will also require the
change in the LEO carrier frequency fc,k . The following steps
outline the process of generating a single OVRLP% set:

• Initially, we fix GSO ModCod to QPSK, and the CNR
values are selected within the range defined in Table 4
for the corresponding ModCod.

• The simulation runs with a single LEO satellite
pass, ‘‘STARLINK-6173’’, starting at ‘‘01-Aug-2023
06:07:00’’, and a duration of T = 120 seconds, and it
samples LEO coordination and INR value every 1τ =
5 ms, resulting in a total of N = 2400 samples from
CNR and INR samples.

• We then repeat the simulation for other GSO ModCods
listed in Table 4, i.e., 8PSK and 16APSK. This results
in a total of three simulation rounds and a total of N =
7200 samples from CNR and INR values.

• Using simulation samples, we generate N × Mt time-
domain interference data from (16). All N rows are
then labeled as ‘‘1’’. In addition to the label, we also
append the corresponding GSO ModCod scheme, the
INR value, and off-axis angle to each row. This step
forms the interference segment of 7200 data points to
OVRLP% set.

• We also create interference-free data in the time-domain
N ×Mt , from the magnitude of (14a), resulting in addi-
tional data points to the overall OVRLP% set. These
data points are then labeled ‘‘0’’ and append the corre-
sponding GSO ModCod, and two empty data columns
to align with the other segment dimensions. This step
forms the interference-free segment of 7200 data points
to OVRLP% set.

• Finally, both segments are joined to form the full
OVRLP% set, amounting in a total of N = 14400 time-
domain data points and labels (i.e., 7200 × Mt +

4 interference-free data and 7200×Mt + 4 interference
data).

Four distinct OVRLP% sets are generated, each based on
the varying degrees of overlap bandwidth Boverlap. By refer-
ring to equation (3), and with both Bx and Bi fixed to 50MHz,
the sets are created as follows:

1) OVRLP100 set: Featuring 100% overlapping percent-
age (Boverlap = 50 MHz, fc,leo = 11.750 GHz)

2) OVRLP75 set: With 75% overlapping percentage
(Boverlap = 37.5 MHz, fc,leo = 11.7625 GHz)

3) OVRLP50 set: Comprising 50% overlapping percent-
age (Boverlap = 25 MHz, fc,leo = 11.775 GHz)

4) OVRLP25 set: Including the 25% overlapping percent-
age (Boverlap = 12.5 MHz, fc,leo = 11.7875 GHz).

FIGURE 14. LEO pass vs INR and off-axis angles.

Fig. 14 showcases an example of the LEO off-axis angles
and INR values during single simulation round, particularly
the GSO at QPSK within the OVRLP100 set.

B. ENERGY DETECTOR APPROACH
An ED [43], is the optimal likelihood-ratio test for stochas-
tic signals in white Gaussian noise (WGN) environments
according to the classical detection theory [16]. ED is a
fundamental tool for identifying the presence of interference
signals in designated frequency bands. It functions by quan-
tifying the energy content of received signal samples within
a defined temporal window and comparing this value with
a pre-established energy threshold. This mechanism enables
the detector to effectively discern between GSO signals and
scenarios encompassing both GSO and LEO signals.

Regarding the generated data, we know that the nth data
within N data points is a vector yn → yAn of length Mt , and
each vector contains the magnitude values of the correspond-
ing received signal. Hence, the energy (magnitude squared)
En of each data yn is calculated by squaring the amplitude of
its samples and summing them up.

En =
Mt∑
m=1

y2n[m] (40)

where yn[m] is the amplitude of the mth sample in the signal
yn. An energy threshold βE is set to determine whether a
signal yn contains an interference signal or not. This threshold
is fixed and its value is derived from the Testing Set based
on the optimal AUC Score approach as for the threshold
of the ML models explained in Section V-B.2. In his case
βE = 86.03. The performance of the interference detector
can be evaluated using the previously described interference
detection performance metrics as in Table 5 and Table 6.

C. COMPARISON RESULTS
1) COMPARE FOR DIFFERENCE OVERLAPPING FACTOR
First, we compare the performance of TrID, VAE and ED
using the aforementioned OVRLP% sets. Table 7 presents a

920 VOLUME 2, 2024



Saifaldawla et al.: GenAI-Based Models for NGSO Satellites Interference Detection

TABLE 7. Performance comparison of models across bandwidth
overlap.

comparative analysis of the three different models to detect
NGSO-GSO interference in a time-domain representation
of the signal yn with varying degrees of bandwidth overlap
between the NGSO and GSO signals.

In Table 7, TrID consistently outperforms the other mod-
els in all levels of bandwidth overlap. Its robustness to
changes in overlap scenarios makes it a versatile model for
different signal environments. VAE tends to minimize false
alarms effectively, but struggles more than TrIDwith decreas-
ing overlap in terms of accurately identifying interference.
ED shows that traditional methods are less effective than the
proposed GenAI-based approaches, especially as bandwidth
overlap decreases, which likely introduces more complexity
into the signal to which ED methods are not equipped to
handle.

As a conclusion, in satellite communication systems, when
choosing a model for interference detection across vari-
ous environments constrains and possibilities of bandwidth
overlaps, TrID may stand out as the most robust and high-
performing model. Although VAE has merits, particularly in
environments where false alarms are highly undesirable, its
performance drops with reduced overlap make it less reliable
than TrID in diverse conditions. Traditional ED is signifi-
cantly outclassed by the GenAI-based models, highlighting
the potential benefits of GenAI-based in signal processing
tasks.

2) OTHER COMPARISONS
Based on the previous comparison, themodels aremore likely
to detect interference in a fully overlap bandwidth scenar-
ios than other scenarios. Therefore, we will focus on this
next analysis only using the OVRLP100 set. In this section,
we particularly investigate the impact of off-axis angles and
INR values versus different GSO modulation schemes detec-
tion capabilities. The interference segment can be divided
into three sub-segments based on GSO modulation schemes:
[QPSK sub-segment, 8PSK sub-segment, and 16APSK sub-
segment], each sub-segment contains 2400 data, and while
different in GSO CNR values, each sub-segment contain the
same LEO off-axis angles and the corresponding CNR values
as in Fig. 14. The GSO CNR values range from 2.4 to 6.6 dB
in the QPSK sub-segment, 6.7 to 9 dB for 8PSK, and 9.1 to

FIGURE 15. Detection vs LEO off-axis Angles for Various GSO
ModCods.

14 for 16APSK. The probability of detection PD (or TPR)
values are tested using coherent chunks of fixed sizes from
each the sub-segments after sorted it out depending on the
parameter of interest using the TrID, VAE, and ED.

The ability to maintain high interference detection per-
formance across a range of off-axis angles is particularly
important for systems that involve moving satellites, such
as those in NGSO. We are comparing the models detection
performance based on the LEO off-axis angles as seen from
GGS. A small off-axis angle corresponds to a higher receive
GSO ground station gain, therefore increasing the probability
of detection. The previous hypothesis is validated with the
results shown in Fig. 15, where the probability of detection is
plotted with respect to the LEO link off-axis angle.

Based on the results in Fig. 15, we observed the following

• Off-axis Angle Consideration: When examining the
probability detection with respect to the LEO off-
axis angle, all models demonstrate a decreasing trend
in PD as the off-axis angle increases. This trend is
expected because larger off-axis angles typically result
in a weaker signal and more difficult detection. Thus,
the models are more likely to detect LEO interference
signals when their off-axis angles are close to the in-line
interference scenario ( i.e., LEO off-axis angle ≈ GSO
boresight angle θ0 = 0◦ ).

• Impact of GSOModulation Schemes: All models per-
form best in the 16APSK GSO modulation scheme,
and the performance decreases as the GSO modula-
tion scheme decreases in complexity. For the lower
modulation scheme (i.e., GSO in QPSK), the models
detection probability decreases to zero for LEO off-axis
angles higher than 20◦ with TrID capturing interference
in slightly higher angles. For GSO scenarios in 8PSK
and 16APSK, TrID maintains its detection capability at
superior performance compared to VAE and ED as well.
We noticed that the model performance in detecting
relatively higher off-axis angles ( i.e., higher than 20◦)
increases for higher GSO modulation schemes.
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FIGURE 16. Detection vs LEO INR Values for various GSO
ModCods.

• TrID Performance: TrID maintains the highest PD
over a larger range of off-axis angles, reinforcing its
robustness. VAE and ED show a steeper decline in per-
formance, with the ED being the most affected. This
suggests that the TrID is better equipped to detect LEO
interfering signals when they are not perfectly aligned
with the GSO. Moreover, for different GSO modulation
schemes data, TrID maintains a superior PD across all
modulation schemes compared to other models.

• VAE Performance: VAE detection performance also
decreases with increasing off-axis angles, but at a faster
rate than the TrID. This indicates that the VAE is some-
what sensitive to LEO off-axis angle, which could limit
its effectiveness in operational environments where LEO
usually does not perfectly align with GSO.

• EDPerformance: The performance of the ED shows the
most significant decline with increasing off-axis angles.
This steep performance drop highlights the ED vulnera-
bility to low levels of interference. The ED performance
gap drops more significantly with higher-order modula-
tions ( i.e., 16APSK).

Although the INR values are depending on LEO receiving
off-axis angles at GGS, lower angles do not always lead to
high INR, this due to the side lobes and nulls of the GGS
beam pattern, as can be seen in Fig. 14. Higher INR values can
provide a more distinct separation between the GSO desired
signal and LEO interfering signals, which shall be exploited
by the proposed models shall exploit to improve the detection
performance. Fig. 16 shows the evolution of the probability of
detection versus the INR values observed at the GSO ground
station.

Based on the results in Fig. 16, we observe the following

• INR values Consideration: All models’ performance
increases with higher INR values, they are capable
of detecting LEO interference signals with INR value
around 15 dB and higher. The ability of the TrID model
to maintain high detection performance across a range

of INR values is essential for practical applications, as it
ensures reliability in various interference conditions.

• Impact of GSO Modulation Schemes: The model
performance in detecting relatively small INR values
increases for higher GSO modulation schemes. The
models can still detect up to -5 dB INR values at the
16APSK sub-segment, 5 dB INR values at the 8PSK
sub-segment, with TrID standing out across all the mod-
ulation schemes sub-segments and ED being the worse.

• TrIDPerformance: TrID consistently outperforms both
VAE and ED across all GSO modulation schemes with
respect to LEO INR values. Its performance is particu-
larly notable at lower INR values, this implies that the
TrID is more highly capable of distinguishing between
the desired GSO signal and LEO interfering signals
when the interference is within the noise level.

• VAE Performance: The VAE shows moderate detec-
tion performance, which is generally less than that of
the TrID but superior to that of the ED. Its perfor-
mance also degrades more gracefully compared to the
ED as INR decreases, which can be advantageous in
lower-quality signal environments. The VAEmodel also
shows improved detection accuracy as INR increases,
but to a lesser extent compared to the TrID.

• ED Performance: ED performance is less competitive
compared to GenAI-based models, particularly at lower
INR values. However, it shows a gradual increase in
PD with increasing INR, suggesting that it can still be
somewhat effective in high interference scenarios.

TrID emerges as the superior model due to its high interfer-
ence detection performance in comparison to other models,
and it is also less sensitive to the complexity of themodulation
scheme, making it a versatile and reliable choice for detecting
NGSO to GSO interference. The VAE could serve as a fall-
back due to its moderate performance, while the ED could
be considered for scenarios where computational simplicity
is more critical than detection accuracy. Given these observa-
tions, the TrID is recommended as the best model for the task
of NGSO to GSO interference detection due to its robustness
to signal quality variations and its superior performance in
both off-axis angles and INR values scenarios.

VII. CONCLUSION
This paper addressed the problem of interference detection in
satellite communication, where signals from NGSO satellites
have the potential to disrupt communications with GSO satel-
lites when operating in the same spectral bands. We employ
realistic simulations of satellite positions and trajectories,
using actual system parameters to create interference scenar-
ios. We proposed and evaluated different ML performance
for the interference detection task. The proposed ML models
are adeptly trained to discern interference in both the time
and frequency domains of the received signals. The core
contribution of this work is the development of GenAI-based
models (TrID, and VAE) interference detectors designed to
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identify LEO interference by generating new samples of the
original GSO signals.

The findings reveal that the models exhibits higher accu-
racy for detecting interference in the time-domain signal
representations compared to the frequency-domain represen-
tations, with TrID being superior compared to VAE and other
ML models. Moreover, TrID, VAE and ED were put in a
comparison to explore the impact of varying GSO modula-
tion schemes, bandwidth overlapping scenarios, LEO off-axis
angles, and the interference power values (INR) on the detec-
tion accuracy, where TrID consistently outperforms both the
VAE and ED across all the scenarios. Our research provides
actionable insights for satellite communication operators.
By understanding the efficacy of GenAI-based models in
interference detection, they can make informed decisions and
trade-off about integrating these technologies into existing
and future satellite communication infrastructures.

Future work should focus on enhancing the models’ capa-
bilities in the frequency domain, potentially exploring hybrid
models or advanced feature engineering techniques. Multiple
models could be trained to detect interference in a single
modulation scheme each, instead of training the models in
all modulation schemes at once and see if that makes a dif-
ference. The data used in this paper will be publicly available
on the Smart-Space project website [32].
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