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ABSTRACT The proliferation of the Internet of Things (IoT) has created significant opportunities for future
telecommunications. A popular category of IoT devices is oriented toward low-cost and low-power applica-
tions. However, certain aspects of such category, including the authentication process, remain inadequately
investigated against cyber vulnerabilities. This is caused by the inherent trade-off between device complexity
and security rigor. In this work, we propose an authentication method based on radio frequency fingerprinting
(RFF) using deep learning. This method can be implemented on the base station side without increasing the
complexity of the IoT devices. Specifically, we propose four representation modalities based on continuous
wavelet transform (CWT) to exploit tempo-spectral radio fingerprints. Accordingly, we utilize the generative
adversarial network (GAN) and convolutional neural network (CNN) for spoof detection and authentication.
For empirical validation, we consider the widely popular LoRa system with a focus on the preamble of the
radio frame. The presented experimental test involves 20 off-the-shelf LoRa modules to demonstrate the
feasibility of the proposed approach, showing reliable detection results of spoofing devices and high-level
accuracy in authentication of 92.4%.

INDEX TERMS Physical layer security/authentication, IoT, LoRa, RF fingerprinting, spoof detection.

I. INTRODUCTION

DEVICE authentication is of great importance for secure
communications of the Internet of Things (IoT) net-

works. A reliable authentication method should perform
two essential functions: detecting malicious spoofing (rogue
devices) and authenticating legitimate devices. The conven-
tional authentication relies on software-based approaches
such as cryptographic protocols [1] or credential exchange
methods [2]. In more recent literature, efforts have also been
seen in utilizing packet-level features obtained from network
flow [3], [4] to profile IoT devices. However, these methods
often require all devices with access to the network or trans-
port layer to accommodate relevant protocols, making them
less favorable for resource-constrained IoT devices.

Recent research explores approaches like radio frequency
fingerprinting (RFF) as an alternative or add-on to exist-
ing software-based methods for additional security in device
authentication. While software approaches consider features

within the digital domain, RFF mainly focuses on analog
ones. RF fingerprints originate from physical layer imperfec-
tions due to component-level defects such as manufacturing
errors or aging. As a result, every imperfect transmitter (Tx)
differs from the others even when they are of the same model
and make. Accordingly, the imperfect Tx components intro-
duce impairments such as frequency offsets, phase noises and
IQ imbalance to the signal during transmission [5]. Depend-
ing on the defects of interest, the corresponding impairments
can be exploited from the received signal through proper
signal processing and used as device-identifiable fingerprints.
As these impairments depend solely on a device’s intrin-
sic characteristics, they are device-specific and challenging
to replicate. Therefore, RFF offers the advantage of fin-
gerprinting devices directly without the need for manual
credential generation. Unlike other physical layer approaches
such as physical unclonable functions (PUF) [6], RFF does
not require any hardware or software modifications during
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or after manufacturing to make a device eligible. This char-
acteristic makes RFF favorable for IoT applications that
utilize resource-constrained end devices (e.g., sensors with-
out access to the transport layer or above) or are challenging
for post-deployment modifications.

Literature has covered the extraction of transmitter fin-
gerprints from both the transient stage and steady-state [7]
for authentication. Conventionally, manual extraction of fin-
gerprints is essential [8]. However, this process becomes
challenging when the root source of fingerprints involves
a mix of imperfections at different stages of the RF chain.
The emergence of deep learning opens new possibilities
for fingerprint utilization with minimal manual interven-
tion. In previous literature, efforts are seen in introducing
deep learning models such as convolutional neural network
(CNN) [9], [10], [11], [12] and long short-term memory
(LSTM) [13], [14] to offer device authentication solutions for
RF devices.

RFF can also be utilized for detecting rogue or spoof-
ing devices, especially when incorporated with specific
deep learning networks. The generative adversarial net-
work (GAN), a sub-category of adversarial neural networks
(ANN), has shown effectiveness in applications of various
domains, including medical [15] and industrial [16] anomaly
detection. GANs excel in automatically extracting features
and only require true class samples during the training pro-
cess. The exploration of GANs for spoof detection in wireless
applications has been observed in multiple fields, such as for
GPS signal [17] or spacecraft telemetry data [18].
In this study, we present a framework for spoof detec-

tion and authentication, where we utilize continuous wavelet
transform (CWT) to extract cross-domain (tempo-spectral)
physical layer fingerprints. Accordingly, deep learning tools
like GAN and CNN are respectively utilized for spoof detec-
tion and device authentication. To obtain practical data for
training and testing, we explore LoRa modulation due to its
wide availability and popularity for IoT applications. The
RF fingerprints are extracted from the preamble section of
the LoRa radio frame. This frame portion is independent
of the payload and thus remains consistent across different
transmission schemes (configurations). In summary, the main
contributions of this work are as follows:

• We propose a framework for spoofing detection and
authentication utilizing GAN and CNN, respectively.
For efficient fingerprint exploitation, we further pro-
pose four cross-domain signal representation modali-
ties based on CWT: rawCWT, stackCWT, CWTd, and
stackCWTd. Each modality adopts a slightly different
pre-processing techniques to emphasize potential device
fingerprints from different perspectives.

• We evaluate our framework under line-of-sight (LoS)
and non-line-of-sight (NLoS) channels using an experi-
mental setup built with off-the-shelf LoRa IoT modules.
Given that only the preamble portion of a LoRa signal is
used, the proposed framework is compatible with both

LoRa physical layer (PHY) and LoRaWAN standards.
The results show that the proposed framework achieves
robust performance under NLoS environments without
channel compensation.

• We open-sourced the collected dataset1 and the
MATLAB realization of GANomaly.2

The paper is structured as follows: Section II provides a
review of relevant literature, Section III provides the prelim-
inary knowledge on the techniques of interest, Section IV
details the methodologies, Section V explains the experimen-
tal setup, Section VI and VII present the experimental results,
and lastly Section VIII concludes the work.

II. RELATED WORKS
While a great number of anomaly detection protocols imple-
mented on the packet level aim at detecting irregular network
traffic behaviors frommultiple consecutive instances of pack-
ets [3], [4], RFF methods rather focus on authenticating
the transmitting hardware directly per transmission basis.
Such approaches only utilize physical layer features and
do not require analysis of packet attributes. In addition,
in contrast to software-based authentication methods relying
on cryptographic [1] or mutual authentication [2], physi-
cal layer approaches do not require both end devices to
have a similar level of architecture complexity. Although
software methods offer a greater degree of freedom in
algorithm complexity, RFF’s potential for asymmetry design
and single-transmission detection helps reduce the computa-
tional burden for resource-constrained IoT devices, allowing
more design flexibility.

The source of device-specific RF fingerprints that are
commonly used for device identification can be broadly cate-
gorized into: (i) transient or (ii) steady state fingerprints. The
transient fingerprints refer to the short modulation-irrelevant
portion at the beginning of the transmission when a trans-
mitter, or its power amplifier (PA), is turned on to transmit.
Features like energy spectral coefficients [8] and higher order
statistical (HOS) measures [19] can serve as efficient RF
fingerprints from this region. However, capturing the tran-
sient signals requires a receiver (Rx) with a high bit-precision
analog-to-digital converter (ADC). Meanwhile, fingerprints
from the steady state are more commonly available as typical
RF devices spend a much longer period in the steady state.
Popular steady state impairments, such as carrier frequency
offset (CFO) [13], in-phase/quadrature (IQ) imbalance [10],
and PA nonlinearity [20], can be considered as the source(s)
of device fingerprints. However, since isolating a specific
impairment source can be challenging, some studies consider
the combined effects of multiple impairments as united RF
fingerprints [11], [12], [14]. In these approaches, extraction
of certain impairments is not required, and it is up to the clas-
sifier to decide what deterministic fingerprints can be learned
from amixture of multiple impairment sources. Though some

1https://bit.ly/49A311C
2https://bit.ly/49VBQOH
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efforts have been made to utilize channel state information
(CSI) as device fingerprints [21], it is not considered an intrin-
sic RF fingerprint but rather depends on the environment and
location of devices [22], making it unsuitable for dynamic
applications.

Within the existing body of knowledge, most literature cen-
ters around well-known modulation schemes like quadrature
amplitude modulation (QAM) and phase shift keying (PSK),
which differ from the modulation scheme used in LoRa. As a
form of frequency shift keying (FSK), the linear chirp spread
spectrum (CSS) adopted in LoRa differs from conventional
QAM and PSK by lacking a clear constellation. This charac-
teristic of FSK signals leads to challenges in utilizing specific
impairment sources (e.g., CFO and IQ imbalance). Hence,
a relatively complex feature engineering framework might
be necessary to exploit deterministic fingerprints, as demon-
strated in study [33]. Furthermore, the linear CSS LoRa
signals occupy a broader bandwidth than conventional mod-
ulation schemes and operate in a different frequency band,
influencing propagation behaviors and raising doubts about
the applicability of existing methods for LoRa. Additionally,
the packet structure of the LoRaWAN standard [34] is simpler
than those within TCP/IP architectures, limiting the complex-
ity of software-based authentication algorithms that can be
implemented in the application layer.

Consequently, implementing new authentication and
spoofing detection methods, or re-evaluating the compati-
bility of existing techniques, for LoRa signals is necessary.
However, to the best of the authors’ knowledge, there are only
limited studies focusing on the authentication and spoofing
detection of LoRa IoT devices. In a prior work [29], sLoRa
was introduced by authors proposing the use of combined
CFO and link signature (estimated link variations) for LoRa
device authentication. Two-dimensional signal representa-
tions can also be introduced as additional modalities with
embedded fingerprints. For instance, DCTF is utilized in [26]
to transform LoRa signals into 2D images. Accordingly, the
clustering centers of the DCTF are extracted as device finger-
prints, and the Euclidean distance is employed to authenticate
LoRa transmitters based on the distances between the cluster-
ing centers of each device. In other attempts, the short-time
Fourier transform (STFT) spectrograms of the LoRa pream-
ble are adopted as the signal representation in [13] and [27].
While CNN functions as the classifier in [13], it is only
employed for feature extraction in [27], where an additional
k-nearest neighbor (k-NN) classifier is introduced for authen-
tication. In another work with a similar essence, authors
in [28] feed STFT spectrograms of LoRa preambles into
a deep fractional scattering network (DFSNet) for feature
extraction and train 1D-CNNs to classify the obtained feature
vectors.

By training only on true class samples, GANs can effec-
tively mitigate the insufficiency in the training set due to
the difficulty in preparing sufficient data for all potential
anomalous scenarios, known as the data imbalance problem

in anomaly detection [35], [36]. Originally designed for syn-
thetic data generation, various adaptations of GANs have
been employed to tackle spoofing detection. For instance,
utilization of fully connected GANs to detect spoofs is
observed in global navigation satellite system (GNSS) [30]
as well as generic QPSK signals [14]. Alternatively, GAN
built based on CNN structure serves as another popular can-
didate. Authors in [17] utilize GAN built on 1D-CNN to
detect spoofing in raw GNSS IQ samples. In other instances,
researchers in [18] have customized the GAN architecture,
integrating long short-term memory (LSTM) networks with
2D-CNN to extract temporal fingerprints, thereby adapting
the model to sequential data. Notably, GANomaly is utilized
in [31] to detect spoofing for ZigBee devices. The approach
employs a 2D image representation technique known as
differential constellation trace figure (DCTF) to derive com-
bined fingerprints arising from IQ imbalance, I/Q channel
direct-current (DC) offset and CFO. It’s worth noting the
growing interest in utilizing few-shot learning for anomaly
detection, as seen in literature handling both packet [37],
[38] and physical layer level features [39], [40]. A significant
advantage of few-shot learning lies in its learning ability
given limited labeled training samples. Although few-shot
learning is a strong candidate for authentication, it remains
susceptible to data imbalance when introduced for spoofing
detection, as providing comprehensive scenarios in its sup-
port set remains challenging.

For LoRa systems, the application of GAN in spoofing
detection remains relatively limited. Instead, in [27], the
authors utilize a CNN+ k-NN architecture for spoofing detec-
tion. They claim that spoofing inputs are clustered separately
from legitimate ones after passing through the trained classi-
fier. In another study [32], gated recurrent units (GRUs) are
introduced in a federated learning setup to detect anomalies
in industrial LoRa systems by monitoring variations in CFO.
However, since CFO has limited resilience to channel vari-
ations, additional mechanisms are required to continuously
track CFO changes, resulting in increased complexity.

Wavelet transform, an additional well-regarded method
for time-frequency analysis, can also be introduced to cre-
ate 2D representations. The potential of utilizing wavelet
transform for device authentication has been explored in pre-
vious literature. For instance, authors in [41] and [42] assess
the potential of STFT, CWT, and recurrence plots (RPs)
for transmitter classification and evaluate their resilience
against IQ imbalance degradation on the receiver side.
The authors determine that CWT exhibits greater resilience
against undesired receiver degradation while ensuring decent
classification accuracy. However, the application of wavelet
transforms in LoRa contexts remains underexplored.

Table 1 and Table 2 provide a summary of reviewed
literature. In the context of LoRa, existing works mainly
concentrate on capturing combined features using techniques
with fixed resolution, such as STFT. On the other hand,
this study aims to assess the viability of various modalities
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TABLE 1. Reviewed literature on RFF for transmitter authentication.

TABLE 2. Reviewed literature on spoofing transmitter detection using physical layer features.

generated using multi-resolution transform CWT for authen-
tication and spoofing detection. In particular, the stacked
modalities produce a more compact representation than tradi-
tional spectrograms. Additionally, we tackle the literature gap
in ANN-assisted spoofing detection for LoRa applications by
exploring the potential of a specific GAN variant.

III. PRELIMINARIES
This section provides a brief theoretical background of CWT
and LoRa, the focus technology in this work, as well as their
associated settings used in this work.

A. CONTINUOUS WAVELET TRANSFORM
Unlike other time-frequency analysis methods like STFT,
CWT offers an advantageous capability in multi-resolution
analysis. This is facilitated by utilizing a filter bank consisting
of wavelets with different scales. This inherent flexibility
enables the customization of CWT to meet specific applica-
tion requirements by selecting appropriate parameters. In this
work, we adopt the generalized Morse wavelet as the mother
wavelet, whose Fourier transform is obtained as follows:

9P,γ (ω) = U (ω)cP,γ ω
P2
γ e−ωγ

. (1)

Within (1), U (ω) is the unit step and cP,γ is the normal-
izing constant. One can adjust two additional parameters,
time-bandwidth product P2 and symmetry parameter γ ,
to customize the shape of the mother wavelet. In this work,
we select the typical value of γ = 3 to minimize demodulate

skewness and P2 = 90 to enhance frequency localization.
Moreover, we choose 16 voices per octave (i.e., 16 intermedi-
ary scales between consecutive integer values of a) for better
estimation resolution.

B. LoRa MODULATION
The LoRa signals utilize the CSS as their dedicated modula-
tion schemes. Without loss generality, a typical LoRa signal
is expressed as a standard analytical linear chirp [43] as

c(t) = Aexp

(
−j2π

∫ t

0

[
B
2

−

(
Bx + mi

Tsym

)
modB

]
dx

)
, (2)

where A denotes the amplitude, Tsym is the symbol period and
mi ∈ {0, 1, . . . ,TsymB − 1} is the symbol value of index i.
Further, the symbol period is determined by bandwidth B and
spreading factor SF as Tsym = 2SF/B.
Before transmission, the LoRa Tx handler appends an

uncoded, payload-independent preamble portion to the begin-
ning of each LoRa PHY packet. As specified in the current
standards [34], this segment consists of eight upchirps and
4.25 synchronization symbols, as depicted in Fig. 1. The
synchronization symbols vary based on the chosen synchro-
nizationwords but remain constant when a network type (e.g.,
public or private) is selected. As the duration of this portion
is only determined by the choice of B and SF, it can serve as
a suitable reference sequence during synchronization.

For better integrality, we focus on the first twelve sym-
bols within this signal portion (i.e., we discard the last
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FIGURE 1. Spectrogram of the packet portion added by a LoRa
Tx handler (SF = 7, B = 125 kHz).

0.25 symbol). Empirically, the targeted portion can be
obtained by segmenting the first Ns × (2SFfs/B) samples
from a synchronized received signal, where fs is receiver’s
sampling frequency and Ns = 12 is the number of
symbols.

IV. METHODOLOGY
This work considers a base station as the receiver (Rx) and
is tasked to authenticate the end-node IoT devices (i.e., Tx).
Meanwhile, the incoming traffic may originate from mali-
cious transmitters attempting to gain access by faking their
identities through relaying or forging valid transmissions.
Noteworthy, this work does not consider scenarios where
legitimate Tx devices are compromised and hijacked by
adversaries.

The based station has, inherently, better access to resources
(processing and energy) and thus could performmore compli-
cated tasks, such as spoof detection and authentication. From
this perspective, the proposed framework does not require any
additional processing on the Tx side. As illustrated in Fig. 2,
the proposed RFF framework is implemented on the receiver
(i.e., base station) side. It operates on the baseband physical
layer waveform and therefore requires no additional hardware
for data acquisition. Given that no changes need to be made
to other devices within the network, they are omitted from the
figure for simplicity.

In this framework, spoofing detection and authentication
take place before the demodulation and decoding of the
physical layer payload. Thus, it operates independently of
packet analysis and any subsequent applications. Upon com-
pleting RFF, only validated transmissions proceed for further
processing, while any suspicious ones are discarded (i.e.,
access denied). Overall, there are a few steps required at the
base station, which include (i) Pre-processing that conducts
frame segmentation, compensation of unwanted effects and
power normalization, (ii) Representaion (modality) gen-
eration that transforms the signal from raw RF domain to
more suitable representation for deep learning, and (iii)Deep
learning phase. During the deep learning phase, the training
data is transmitted to the backbone server to facilitate train-
ing. Once completed, a copy of the trained network is stored
at the base station for local access. The RFF authentication
process follows a sequential order. The representation of a
PHY transmission is initially subjected to the trained GAN
for spoofing detection before being processed by the trained
CNN for authentication.

FIGURE 2. Overall framework diagram at the base station
(receiver side) for spoof detection and authentication.

More detail of these steps are explained as follows:

A. PRE-PROCESSING
In a typical IQ receiver, the captured IoT signal is first
down-converted by mixing it with two carrier signals offset
by 90◦. After applying a low-pass filter (LPF), the two signals
are sampled using two different analog-to-digital converters
(ADCs) with sampling frequency fs, resulting in two base-
band sample streams ri[n] and rq[n]. The analytical received
signal is then represented in a complex form as r[n] = ri[n]+
jrq[n]. This stream is further processed following the steps
illustrated below. For simplicity, we reuse the same symbol
r[n] to represent the signal stream and use ‘‘⇐’’ to denote
the updating process of r[n] after certain processing. Note
although this work primarily considers LoRa signal portions
configured as described in Section III-B, the utilized tech-
niques can potentially be applied to other signals or packet
preambles with repetitive patterns.

1) SYNCHRONIZATION AND SEGMENTATION
This step encompasses three stages: (i) coarse synchroniza-
tion based on energy detection, (ii) fine synchronization
based on matched filtering, and (iii) extracting the signal
portion of focus. Energy detection can be achieved by setting
a threshold to extract the signal portion with energy above the
threshold. This will give a rough indication of the radio frame
location. The segment is then match-filtered with an ideal
reference sequence h[n] of length L generated at Rx. In this
work, we select the LoRa preamble as outlined in Section III-
B as h[n]. Accordingly, we conduct the match-filtering in the
frequency domain as

n⋆
= argmax

n
F−1

(
k=N∑
k=1

F(h∗[n− k])F(r[k])

)
, (3)

where n⋆ refers to the starting point of the detected portion,
F(·) and F−1(·) respectively denote the Fourier transform
and inverse Fourier transform operation, and N is the length
of r[n]. An illustrated example of the synchronization steps
applied on the received signal is presented in Fig. 3. Lastly,
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FIGURE 3. Synchronization examples of a LoRa signal.
(a) Energy detection when choosing the −10 dB bandwidth
power as the threshold, and (b) matched filtering following the
energy detection for fine synchronization.

the signal portion of interest can be easily segmented from the
Rx frame by extracting L samples starting from position n⋆.

2) CFO COMPENSATION
After down-conversion, the theoretical baseband signal is
centered around 0 Hz. Nonetheless, the presence of CFO
shifts the signal spectrum along the frequency axis. Although
CFO can be considered a potential RF fingerprint, it is
affected by factors such as variations in ambient temperature
as well as Rx hardware degradation. As such, it is difficult
to isolate the CFO portion that only originates from the
Tx devices. Therefore, we introduce CFO compensation to
resolve this ambiguity and ensure consistent performance.
We adopt the method presented in [13] for CFO compensa-
tion, starting by calculating the instantaneous frequency of
r[n] as

fr[n] =
1
2π

dφ[n]
dn

, (4)

where φ[n] = atan2(rq[n], ri[n]) denotes the instantaneous
phase of r[n]. Accordingly, the average frequency of r[n] is
obtained as

fr =
1
L

L∑
n=1

fr[n]. (5)

Since an ideal LoRa preamble should give fideal = 0 as it is
centered around 0 Hz, the coarse CFO is obtained straight-
away as δfcoarse = fr, and the corresponding signal after
coarse compensation is updated as follows,

r[n] ⇐ r[n]e−j2πnTsδfcoarse . (6)

The resolution of coarse CFO compensation is subject
to the precision of fr[n] estimation and hence requires a
finer compensation to mitigate the residuals. The fine CFO
compensation benefits from the repetitive structure of the
preamble. As such, the residual CFO is estimated as

δffine = −
1

2πTsLsym

∑L−Lsym
n=1 r[n]r∗[n+ Lsym], (7)

where Lsym is the symbol length, Ts is the sampling period,
and (·) returns the phase of the variable. Lastly, CFO com-
pensated signal is given as

r[n] ⇐ r[n]e−j2πnTpδffine . (8)

FIGURE 4. Example of de-chirping a LoRa signal: (a) original
LoRa signal, (b) ideal basic upchirps and downchirps generated
for de-chirping, and (c) LoRa signal after de-chirping (SF = 7,
B = 125 kHz).

3) NORMALIZATION
Due to the influence of radio channels, signals arrive at
the Rx with varying power levels. To compensate for this
variation, r[n] is normalized based on its root mean square
(RMS), ensuring unity power. For more comprehensive train-
ing and testing purposes, we inject a controlled additive
white Gaussian noise (AWGN) to simulate different levels of
signal-to-noise ratio (SNR) levels.

4) DE-CHIRPING
This is an optional step that could be applied to a typical chirp
modulated signal, such as LoRa. In this step, a sequence of
basic chirps are employed to de-chirp the incoming signal
to produce a simple frequency shift keying (FSK) represen-
tation [43], [44]. We adopt this principle and formulate a
sequence consisting of basic upchrips and downchirps, as the
example depicted in Fig. 4, to de-chirp r[n]. The underlying
assumption is that an ideal de-chirped r[n] predominantly
comprises frequency components centered around 0 Hz,
except for those from synchronization symbols.

B. SIGNAL REPRESENTATION METHODS
To improve the detectability, the CWT is utilized to transform
the raw pre-processed r[n] into a two-dimensional represen-
tation. When applying the CWT to complex signals (with
negative frequency components), two normalized scalograms
are produced, one containing CWT estimations for wavelets
of positive scales and another for the negative. Since both of
these scalograms are generated based on the same complex
signal, merging them into a single scalogram matrix can be
achieved by flipping the negative frequency scalogram and
then concatenating it with the positive one, as illustrated in
Fig. 5.
Although the resulting scalogram can be directly utilized

as a 2D representation for training the neural network, if de-
chirping is applied prior to the CWT transformation, any
fingerprint stemming from physical layer impairments mani-
fests as non-DC deviations.

Another optional step that can be employed is to stack
the repeated symbols in the preamble. This will improve
the SNR and allow a simpler signal representation for deep
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FIGURE 5. Illustration example on concatenating
negative/positive frequency CWT scalograms of a complex
signal into a single matrix.

FIGURE 6. Illustration example on the generation of a stackCWT
representation, when considering Ns = 12.

learning.With known SF andB, individual LoRa symbols can
be directly segmented from the synchronized time domain
signal. We then apply CWT to each symbol independently
and overlap the yielded scalograms to produce a stacked
modality as demonstrated in Fig. 6. The resulting stacked
scalogram Ss can be obtained as follows

Ss[a, b] =
1
Ns

Ns∑
i=1

|Si[a, b]| , (9)

where Si is the scalogram of the ith individual symbol, a and
b are the wavelet scales and shifting parameter. The range of
a is subject to the selection of filter banks, and the maximum
value of b is equivalent to the number of samples within a
signal segment, which, in this particular case, is further given
as b = Lsym.

By exploring various combinations, we propose four
potential signal representations (modalities), namely: (a) the
original scalogram rawCWT, which is similar to the rep-
resentations used in [41] and [42], (b) the stacked scalo-
gram stackCWT, (c) the de-chirped scalogram CWTd, and
(d) the de-chirped and stacked scalogram stackCWTd. A sam-
ple showcasing these four possible modalities is displayed
in Fig. 7. It is important to note that the pseudo-colors are
used for illustrative purposes only, and the actual scalogram
is saved as a 2D matrix normalized to the range [0,1]. The 2D
representations are used due to their efficiency in presenting
spatiotemporal information on how the signal varies during
propagation.

In the context of LoRa, both transient and steady state RF
impairments can be considered as potential features embed-
ded in the proposed modalities. While previous literature has
utilized impairments like CFO as one potential fingerprint,

FIGURE 7. Examples of the four proposed CWT modalities:
(a) rawCWT, (b) stackCWT, (c) CWTd, and (d) stackCWTd (SF = 7,
B = 125 kHz, SNR=20 dB).

we compensate such relatively stochastic impairment dur-
ing pre-processing to ensure better robustness. Consequently,
our focus centers on two specific impairments (fingerprint
sources): 1) transient imperfections resulting in random fre-
quency components appearing in the low-frequency range
and regions around inter-symbol transitions, and 2) IQ imbal-
ance leading to varying frequency change patterns, impacting
the density centers and gradients of different LoRa symbols.

C. DEEP LEARNING
The proposed framework considers detecting malicious
spoofing and authenticating legitimate devices sequentially
by utilizing different deep learning algorithms. We employ
GANomaly, a variant of GAN, for spoofing detection along-
side CNN for authentication. The GAN block is favorable as
it addresses several limitations in CNNs trained for classifica-
tion tasks. A CNN trained for classification invariably seeks
to classify inputs to known classes, even if the input comes
from an unknown class (spoofing device). Consequently,
leaving a sole CNN insufficient for effective spoofing detec-
tion. Moreover, GANs are good candidates for handling data
imbalance problems, allowing for decent performance when
only data from limited scenarios are available during training.

A typical GAN network comprises two key components:
a generator network G and a discriminator network D. The
training process of a GAN is adversarial, with G and D being
trained simultaneously and competing against each other to
improve their own performance. The G learns to produce
synthetic data that deceives D, while D aims to differenti-
ate between the data generated by G and genuine inputs.
By trained solely using legitimate (true) samples, a trained
GAN exclusively learns the distribution of true samples and is
proved to produce poor reconstructions when presented with
spoof (rogue) samples [45].

As illustrated in Fig. 8, the architecture of GANomaly
incorporates several components. Its generator G starts with
a typical conventional deep convolutional GAN (DCGAN)
structure named generator decoder GD and is extended by
two additional blocks: generator encoder GE and E . The
discriminator D follows the structure typical of a DCGAN
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FIGURE 8. Architecture of the utilized GANomaly for spoof
detection.

discriminator. The principle of GANomaly largely follows a
general GAN, while the main difference lies in its training
aims at minimizing the following objective (loss) function

L = wadvLadv + wconLcon + wencLenc, (10)

where wadv, wcon and wenc are adjustable weighting
parameters, Ladv, Lcon and Lcon denotes the adversarial
loss, contextual loss and encoder loss, respectively. More
specifically,

Ladv = Ex∼px(x)||f (x) − Ex∼px(x)f (G(x))||2 (11)

calculates the feature statistics matching error between real
x and reconstructed x′ at D’s intermediate layer f (·) using
Euclidean norm,

Lcon = Ex∼px(x)||x − GD(GE(x))||1 (12)

measures the pixel level difference between x and x′ through
the Manhattan norm, and

Lenc = Ex∼px(x)||GE(x) − E(GD(GE(x)))||2 (13)

measures the Euclidean distance between z and reconstructed
z′ within the latent space. Since the implementation and train-
ing principle of GANomaly is not a contribution of this work,
we encourage the readers to refer to the original literature [46]
for more detail.

The key hyperparameters of the GANomaly architecture
used in this work are summarized in Table 3, where certain
layers like input and output layers are omitted for simplicity.
Diffrent from the original publication, we slightly modify
hyperparameters such as the number of layers, size of the
filters (kernels) and the number of channels for better perfor-
mance. Once trained, only the generator G is used for spoof
detection. When passing a sample through G, an anomaly
score is calculated to assess the likelihood of spoofing by
measuring the reconstruction error between latent represen-
tations z and z′. For arbitrary input x̃, the anomaly score A(x̃)
is obtained as

A(x̃) = ||GE(x̃) − E(GD(GE(x̃)))||1. (14)

All A(x̃)s obtained from the test batch are further normalized
to be in a range of [0,1].

FIGURE 9. Architecture of the CNN to accommodate
authentication, with an input size [64×64×1] used in this work.

Given that the sources of impairment interact in a nonlinear
manner, manually determining learnable patterns remains
challenging. Based on this consideration, we choose deep
learning methods over conventional machine learning. Such
an approach helps reduce the complexity of post-processing
by minimizing the need for manual feature engineering.
Furthermore, as evaluated in our previous work [10], for
inputs presented using 2D modalities instead of time series,
a network based on LSTM is generally more complex (e.g.,
with more total learnable parameters) and harder to train.
Therefore, we employ a CNN with architecture illustrated
in Fig. 9 to perform device authentication. The CNN shares
the same input size as the GANomaly network and is struc-
tured using a multi-block design, where the convolutional
layers within each block share identical hyperparameters.
Batch normalization and ReLU activation are applied to all
2D convolutional layers. A dropout layer with a 30% drop
rate is adopted accordingly to prevent overfitting, followed
by one fully connected (hidden) layer prior to output lay-
ers. Notably, no pooling layers are utilized, and the feature
map’s dimension reduction is achieved by setting a stride
of 2 for all convolutional layers. Hyperparameters like each
convolutional block’s kernel sizes and filter numbers are opti-
mized via Bayesian optimization during training. The tuned
hyperparameters for CNNs trained for the best-performing
modalities are summarized in Table 5.

V. EXPERIMENTAL SETUP
This section summarizes the configurations of the experimen-
tal setup.

A. EXPERIMENTAL HARDWARE
We use two different types of commercially available LoRa
shields from two different manufacturers representing our
devices under test (DUT). Specifically, as outlined in Fig. 10,
we acquired ten LoRa PHY shields (Semtech SX1276
chipset) from Duinotech and another ten LoRaWAN shields
(Semtech SX1262 chipset) from Dragino. Both shields are
mounted onto the same Arduino Uno and linked to MAT-
LAB to function as transmitters. Additionally, we employ an
ADALM-PLUTO software-defined Radio (SDR) from Ana-
log Devices as the receiver due to its configuration flexibility.
The Rx actively monitors transmissions centered at fc =

916.5MHz (as part of the license-free ISM band in Australia)
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TABLE 3. GANomaly hyperparameters.

FIGURE 10. Experimental LoRa devices under test, where 1st and
2nd row is Dragino LA66 LoRaWAN Shield, while 3rd and 4th

row belongs to Duinotech XC4392 LoRa Shield.

FIGURE 11. Approximate floor plan of the experimental room,
where ‘‘A’’ is the fixed Rx position, ‘‘B’’ is the LoS Tx area, and
‘‘C’’ is the NLoS Tx area.

with a sampling frequency of fs = 1 MHz. For robust and
consistent performance, the same SDR is consistently used
with its auto-gain controller (AGC) disabled.

B. DATA ACQUISITION
The data collection occurs within a residential room whose
rough floorplan is illustrated in Fig. 11, where Rx is placed at
a fixed location A while the Txs are placed at either location
B or C depending on desired channel conditions, i.e., LoS
or NLoS. The dataset of LoS and NLoS transmissions are
collected independently, where the distance between two end
devices in LoS scenarios is approximately 7m, and 11m for
the NLoS scenarios. Owing to the operating frequency band
and the adoption of CSS, LoRa signals are more resilient
against noise and losses. As such, they have better per-
formance under low signal-to-noise-ratio conditions, which
allows the operation in deep indoor environments, urban

TABLE 4. Table of key parameters.

canyons, and even underground locations. Hence, the slight
difference in the transmission distance will not cause sig-
nificant variation in the received signals. In the meantime,
the power normalization techniques outlined in Section IV-A
help ensure consistent signal power and a controllable SNR
range, further retaining the validity of the collected data under
both scenarios.

As indicated in [13], oscillators can be affected by chip
heating, leading to fluctuations in CFO. To ensure the unifor-
mity of data collection, all data collection is performed under
an air-conditioned environment in an attempt to maintain
consistent ambient temperature.

All Tx shields are configured with SF=7, B=125 kHz and
with a transmit power Ptx=5 dBm. Given that our inves-
tigation centers on the signal portion appended by the Tx
handler, only random bits are generated as the payload and
the same payload is reused by all DUTs for all transmissions.
Upon the acquisition of r[n], we only retain the preamble por-
tion while the payload is discarded. In total, approximately
5000 samples per Tx DUT per channel scenario are collected
across multiple days within a month to account for possible
environmental variations.

Lastly, all the key parameters and configurations used in
this work to implement the experimental setup are summa-
rized in Table 4 for easy reference.

C. TRAINING SETUP
This work’s processing and training are conducted using
MATLAB on a desktop PC with an Intel Core i7 10700KF
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CPU and a single NVIDIA RTX GeForce 2070s GPU.
To balance the computational complexity and the amount of
learnable RF fingerprints, we adopt an input size of [64×64×
1] for all generated representations and for both GANomaly
and CNN networks. Independent sets of GAN and CNN
are separately trained for each of the proposed signal repre-
sentations. To ensure fair comparisons, the hyperparameters
of their corresponding networks are individually optimized,
following the same manner described in Section IV-C. For
GANomaly training in particular, we only involve samples
from the same DUT at a time. This setup simulates a coun-
termeasure against the relay (i.e., man-in-the-middle) attack,
where all transmissions not from the legitimate device are
considered spoofing. To evaluate behavior differences across
DUTs, we train multiple copies of GANomaly while con-
sidering one different DUT as the legitimate class each time
(i.e., we conducted an iteration on the legitimate DUT). For
both deep learning algorithms, each training round runs for a
maximum of 50 epochs with a minibatch size set at 256 and
uses the Adam optimizer as the solver.

During the training phase, 80% of the involved samples
are randomly selected as the training set, while the remaining
20% are reserved for testing, i.e., they are not shown to the
classifier during the training phase. Moreover, the training
phase involves data with SNR levels of 0 dB and 10 dB
as a mean of providing relatively adequate variations within
the training set while maintaining acceptable signal quality.
Samples with other SNR levels are used only for testing
unless specified otherwise.

VI. MAIN RESULTS AND DISCUSSION
Results presented in this section utilize the dataset acquired
from all 20 Tx DUTs under the NLoS channel and are trans-
formed into the stackCWT representation. This modality is
selected as it reflects the best performance under a practical
scenario. In addition, SectionVII provides supplement results
that cover the performance comparison between the proposed
modalities and representations introduced in existing litera-
ture.

A. SPOOF DETECTION
Given that GANomaly only outputs a normalized numeri-
cal value (i.e., the anomaly score) for any arbitrary input,
a threshold must be selected to facilitate decision-making.
Whereas the determination of appropriate thresholds hinges
on the specific design requirements. Here we employ the area
under the curve (AUC) derived from the receiver operating
characteristic (ROC) curve as a metric to evaluate the trained
network’s overall performance.

The ROC curve maps the true positive rate (TPR) against
the false positive rate (FPR) across various decision thresh-
olds. These are two competing metrics, and, for example, the
rise of TPR leads to increased FPR, which is an undesirable
effect. In such case, AUC can capture the joining performance
of these twometrics and is calculated by integrating the entire
FPR range, as illustrated in Fig. 12. In addition, we compute

FIGURE 12. Visualization example of the utilized metrics (AUC
and TPR).

FIGURE 13. SNR sweeping results of spoof detection: mean and
standard deviation of AUC and precision.

the precision, obtained as TPR/(TPR + FPR), at the single
selected decision threshold that returns FPR=0.2 to serve as
an additional metric. Although this particular threshold might
not return the highest TPR, it limits the occurrence of Type 1
errors (i.e., false alarms) and ensures robust system behavior.

The trained model is tested using samples across the full
SNR range, and the outcome of this SNR sweep is depicted
in Fig. 13, where the line charts present the average metric
values calculated among all 20 Tx DUTs and the error bars
show the standard deviation of corresponding metrics. The
standard deviation is introduced to visualize the performance
variations between different Tx devices.

Based on the results in Fig.13, GANomaly demonstrates an
adequate overall spoof detection performance, especially for
SNR larger than 0 dB. For instance, the highest average AUC
of 0.946 and the highest average precision of 0.882 are both
achieved at SNR=20 dB. In addition, performance increment
as SNR level increases can be observed in both curves in
the form of increased metric values and gradual reduction of
the standard deviation. This behavior is as expected, given
low random noise effect in the signal. Similarly, the rela-
tively worse performance in the low SNR region is limited
by the high random variation in the signal that restricts the
detectability of potential RF fingerprints, such as the short
transients between adjacent symbols.

B. AUTHENTICATION
The authentication performance is verified using the CNN
presented in Figure 9 (from Section IV-C) and trained
following hyperparameters summarized in Table 5 (from
Section VII-B). We attempt to train a single CNN to authen-
ticate all Tx DUTs, given it is impractical to determine
the manufacturer group of a specific Tx before conducting
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FIGURE 14. Average authentication accuracy at various SNRs.
Accuracy is calculated either among all Tx DUTs or among Txs
from the same manufacturer.

authentication. As such, the worst-case accuracy that could
be possibly obtained is 5% (i.e., 1/20), equivalent to the per-
formance of random guess, good classification results should
far exceed this baseline.

The average authentication accuracy obtained from
the SNR sweep is summarized in Fig. 14. The plot shows
both the average accuracy across all 20 Transmitter Tx DUTs
and the accuracy for devices from the same manufacturer.
The shaded area represents the interquartile range (IQR),
encompassing results distributed between the 25th and 75th

quartiles (i.e., the middle half). The results demonstrate
the feasibility of the proposed approach with an overall
authentication accuracy surpassing 90% for SNRs≥0 dB. The
performance convergence is found at around SNR=10 dB,
where an average accuracy of 92.4% is achieved among all
Tx DUTs. When considering only the Dragino Tx DUTs
(Tx1 - 10), the average accuracy at SNR=10dB reaches
96.1%. Furthermore, the IQR is also found to converge as
SNR increases, indicating a more consistent performance
across all Tx DUTs at relatively higher signal power. This
performance increment is achieved as potential fingerprints,
such as instantaneous inter-symbol transients, become more
distinguishable as the impact of noise diminishes at higher
SNR levels.

Furthermore, to better compare device-wise performance,
the trained CNN is tested against a subset with samples
from all 20 Tx DUTs at an SNR of 10 dB. The corre-
sponding results are presented as a confusion matrix (CM)
in Fig. 15. In line with the spoof detection results, primarily
affected by Tx19 and Tx20, the Duinotech DUTs exhibit
a relatively worse overall authentication performance than
Dragino DUTs. This insufficiency implies that the process of
fingerprint development appears to be an independent process
for each device. Alternatively, the decisive fingerprints might
require extra processing steps to be more comprehensively
exploited.

However, it is noteworthy that, despite the variation in
authentication accuracy among different devices, no devices
are misclassified into the wrong manufacturer family. This
observation indicates some decisive fingerprints might be
manufacturer or chipset-oriented. Lastly, the results indi-
cate that the proposed framework can efficiently exploit RF

fingerprints from 2D cross-domain representations for the
purpose of spoofing detection and authentication. There is a
high potential that the same framework can be utilized for
signals of other modulation schemes if presented using 2D
modalities (e.g., STFT spectrograms of QAM or PSK sig-
nals). While these hypotheses are not thoroughly examined
within this work, it might serve as a potential direction for
future research.

VII. SUPPLEMENTARY RESULTS
This section presents additional results that support the
experimental setups selected for Section VI. In particular,
this section presents performance comparisons of different
modalities and channel conditions. The additional tests in this
section use a subset containing samples of six Txs randomly
selected from the complete dataset obtained in Section V-B.
This subset comprises data from five days, labeled as D1 to
D5, with approximately 1000 samples per DUT. To assess the
robustness of the trained networks, we train the deep learning
algorithms exclusively on samples from D1 to D3 and test
their performance on samples from D4 and D5. To simplify
the testing scenario, the tests primarily focus on samples with
a consistent SNR level of 10 dB.

A. IMPACT OF CHANNEL CONDITIONS
To validate the impact of channel condition, we conducted
a comparison using CNNs trained and tested respectively
using LoS and NLoS data, both transformed into the rawCWT
representation. By following the same training setup outlined
in Secion V-C, the obtained results, presented as CMs in
Fig. 16, indicate that despite the NLoS scenario yielding a
slightly worse overall accuracy, the discrepancy between the
performance achieved under two channel conditions is not
notably substantial.

This resilience can be attributed to a few factors. Firstly,
adopting CSS modulation distributes the signal’s spectrum
across the entire bandwidth B, making the waveform less
susceptible to frequency-selective fading that affects only
certain frequency components. Secondly, preambles with
duration at the millisecond level reduce the degree of impact
by small-scale fading induced by multipath effects which is
measured in a few nanoseconds range. Moreover, CWT facil-
itates visualization of channel-affected signals from various
viewpoints, owing to its multi-resolution analysis ability.

Given that NLoS channels are more common in practical
wireless access network applications, all subsequent testing
will solely focus on data collected from NLoS scenarios.

B. MODALITY COMPARISONS
Lastly, we compare the potential modalities introduced in
Section IV-B. For this evaluation, we concentrate on data
acquired from the NLoS channel with CFO compensation
in place. Furthermore, we compare our proposed modali-
ties against the STFT spectrogram introduced in [13] and
the channel-independent STFT (ch-ind STFT) technique
presented in [27], along with a de-chirped variant of the
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FIGURE 15. Authentication performance CM among all 20 Tx DUTs (10 Dragino LA66 + 10 Duinotech XC4392),
measured at SNR=10 dB.

FIGURE 16. Resulting CMs when tested against the presence of
the (a) LoS channel and (b) NLoS channel, with CFO
compensation.

FIGURE 17. Average authentication accuracy and corresponding
standard deviation when adopting different representation
modalities.

channel-independent STFT (ch-ind STFTd). Notably, the
CNN of each modality is independently trained, with hyper-
parameters separately optimized.

The average authentication results of all tested modalities
are presented in Fig. 17 along with the standard devia-
tion showcasing the performance difference across DUTs.
Observed from the presented results, all the de-chirped
methods exhibit worse performance than the representations
generated directly from the original signal. This phenomenon
can be attributed, at least in part, to factors such as the
restricted range of interpretable frequencies in CWT due to
limited available wavelet scales. This limitation particularly

TABLE 5. CNN hyperparameters of best-performed modalities.

impacts low-frequency components, especially those around
0 Hz, that need to be detected using wavelets of larger scales.
In the case of STFT, the performance discrepancy might be
attributed to the fixed window size, which fails to effectively
capture both high and low-frequency components simulta-
neously. Nonetheless, modalities that utilize CWT achieve
respectable overall accuracy compared to STFT due to their
inherent multi-resolution capability.

From Fig. 17, we note that both rawCWT and stackCWT
exhibit decent performance. Given their similar performance,
a comparison of their respective CNN hyperparameters is
detailed in Table 5 for further insights. Notably, the network
optimized for stackCWT is found to be less complicated
(i.e., characterized by fewer total learnable parameters) while
delivering equivalent performance. Accordingly, we compare
several operating metrics between the two modalities and
summarize the results in Table 6. The results present the
average relative difference between the twomodalities, where
a negative number indicates the metric value of stackCWT
is less than the measurement for rawCWT by a certain per-
centage, and vice versa. Note the comparison is conducted
under the setup explained in Section V-C. Based on the
comparison, it is clear that despite the training and prediction
of stackCWT’s model being relatively more time-consuming,
it excels in faster modality generation and significantly
reduces the memory space required to achieve a similar level
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TABLE 6. Performance metrics of stackCWT (relative to
rawCWT).

FIGURE 18. Average spoofing detection performance and
corresponding standard deviation when adopting different
representation modalities.

of performance. Based on these observations, we select stack-
CWT as the representation of focus in Section VI.
In addition, we compare the spoofing detection capabil-

ities of stackCWT with modalities employed in [13], [27].
Utilizing the metrics outlined in Section VI-A, we visualize
the average results obtained from iterating through six Txs in
Fig. 18. The analysis demonstrates that stackCWT achieved
the highest overall detection accuracy among all three modal-
ities. However, compared to ch-ind STFT, its slightly higher
standard deviation also indicates relatively worse robustness
across various devices.

VIII. CONCLUSION
This work presented a spoof detection and authentication
framework for IoT devices enabled by deep learning. Four
data representation modalities were introduced to exploit
device-identifiable RF fingerprints based on the uncoded
preamble of the RF frame. To achieve spoof detection,
we adopted the GANomaly architecture, while the CNN
architecture was employed for performing authentication.
As a practical example of IoT systems, we implemented
the framework on commercially available LoRa modules.
Based on the testing results, we showed that continuous
wavelet transform (CWT) outperforms the short-time Fourier
(STFT) representation, particularly when using the intro-
duced stacked 2D modality stackCWT, a sequence of CWT
snapshots. Under an adequate signal-to-noise ratio (SNR),
a high accuracy of 92.4%was achieved for successful authen-
tication, and an area under the curve (AUC) of 0.946 was
achieved for spoof detection when involving 20 testing
devices. Accordingly, the proposed framework shows a sig-
nificant potential for practical applications in IoT networks.
In addition, the testing results also indicate a dependency
on the module manufacturer, which is naturally expected

given the dependency on the fabrication tolerances and per-
formance stability. Future work will evaluate the framework
under dynamic radio channels and explore other potential
classifier architectures and fingerprint representations.
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