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ABSTRACT Digital self-interference cancellation (DSIC) has become a pivotal strategy for implementing
in-band full-duplex (IBFD) radios to overcome the hurdles posed by residual self-interference that persist
after propagation and analog domain cancellation. This work proposes a novel reservoir computing-based
DSIC (RC-DSIC) technique and compares it with traditional polynomial-based (PL-DSIC) and various
existing neural network-based (NN-DSIC) approaches. We begin by delineating the structure of the RC
and exploring its capability to address the DSIC task, highlighting its potential advantages over current
methodologies. Subsequently, we examine the computational complexity of these approaches and undertake
extensive simulations to compare the proposed RC-DSIC approach against PL-DSIC and existing NN-DSIC
schemes. Our results reveal that the RC-DSIC scheme attains 99.84% of the performance offered by PL-based
DSIC algorithms while requiring only 1.51% of the computational demand. Compared to many existing
NN-DSIC schemes, the RC-DSIC method achieves at least 99.73% of its performance with no more than
36.61% of the computational demand. This performance justifies the viability of RC-DSIC as an effective and
efficient solution for DSIC in IBFD, striking it is a better implementation method in terms of computational
simplicity.

INDEX TERMS Digital self-interference cancellation, in-band full-duplex, reservoir computing.

I. INTRODUCTION
A. MOTIVATIONS

IN-BAND full-duplex (IBFD) radio is one of the promising
techniques in the next generation of wireless communica-

tions to double the spectral efficiency and reduce the end-
to-end latency by simultaneously transmitting and receiving
at the same frequency [1], [2], [3]. However, the receiver is
exposed to the transmitter of the same node that is interfered
with by its transmitted signal, i.e., self-interference (SI). The
SI could be more than 100 dB higher than the received
signals from other nodes due to the proximity of the trans-
mitter to its receiver, swamping any desired signal of interest.
Several self-interference cancellation (SIC) techniques have
been proposed in the past few years, and the efficiency
of IBFD with SIC has been demonstrated through simula-
tions and hardware experiments in various applications [2],
[4], [5], [6]. These SIC techniques are mainly available in

three domains: i) propagation domain ii) analog domain and
iii) digital domain. We refer to the SIC in the propagation
and analog domain as analog self-interference cancellation
(ASIC) as they both suppress the SI before the analog-to-
digital converter (ADC) at the receiver. DSIC is initiated after
the ADC has converted the analog signal to a digital format.
This stage leverages sophisticated digital signal processing
algorithms to minimize any residual self-interference further
not addressed by the ASIC phase [7], [8], [9], [10]. Moreover,
given that DSIC can be readily implemented and adapted
in the digital domain, while modifications to ASIC often
necessitate hardware changes, which are more costly, less
flexible, and more challenging, the focus of this work is on
advancing DSIC schemes.

The transmitter and receiver hardware impairment has
beenmodeled byGaussian noise, which leads to residual self-
interference, and its effect has beenminimized using different
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optimization techniques in the literature; for example [8],
the author considers an IBFD multi-user non-orthogonal
multiple access communication system and optimizes the
received signal-to-interference-plus-noise ratio (SINR) per
unit power. In [9], the feasibility of spectrum sharing between
a multiple-input multiple-output (MIMO) radar system and
an IBFD MIMO cellular system is considered, where a joint
transceiver design technique at the cellular system and users
is proposed to maximize the probability of detection of the
MIMO radar system, subject to constraints of quality of
service of users and transmit power at the cellular system,
null-space based waveform projection is used to mitigate
the interference from radar system toward cellular system.
The weighted sum rate maximization in IBFD multi-user
multi-cell MIMO networks is considered at [7]. In [10], the
author considers the IBFD MIMO interference channel, and
two transmit beamforming design problems are solved: 1)
sum-power minimization problem subject to rate constraints
and 2) energy-efficiency maximization problem subject to
individual power constraints.

In [11] and [12], the transmitter and receiver hardware
non-linearity is modeled, and its effect has been mitigated
by machine learning techniques. Specifically, [11] utilizes
a robust channel NN-DSIC, where the neural network esti-
mates the linear self-interference channel coefficients. While
machine learning-basedDSIC strategies have been rigorously
studied, some challenges still need to be addressed. One of
the most significant obstacles facing current DSIC algorithms
is the high computational complexity and extended running
time [12], which must be carefully managed to optimize
performance. Therefore, the search for more efficient DSIC
schemes continues to be a focal point for researchers in the
field.

Reservoir computing has emerged as a compelling
approach for enhancing DSIC in wireless networks. Exist-
ing DSIC algorithms usually require high accuracy in their
channel estimation and are computationally intensive. How-
ever, RC’s unique architecture enables it to model complex
systems quickly and accurately, and it is thus suitable for
estimating the SI channel. Originating from recurrent neural
networks (RNNs) [13], RC is distinguished by its unique
‘‘reservoir’’ architecture [14], where neurons are sparsely
and randomly interconnected [15]. This reservoir functions
as a dynamic temporal memory, adeptly capturing the latent
temporal features of incoming signals and mapping them into
a high-dimensional space [16]. In this transformed space,
linear readout mechanisms can effectively tackle complex
nonlinear problems [17]. The advantages of incorporating
RC into DSIC are twofold. Firstly, RC’s adaptive nature
and ‘one-shot learning’ capabilities enable rapid acclimation
to fluctuating network conditions, a frequent occurrence in
wireless communication systems [18]. This contrasts tradi-
tional DSIC algorithms, which often necessitate complex
optimization schemes that may not be as agile in adapting to
environmental changes. Secondly, RC demonstrates excellent

computational efficiency by requiring fewer computational
resources [19], enabling real-time processing and providing
a scalable solution for DSIC. In summary, the integration of
reservoir computing into DSIC schemes presents a promising
advancement in the field of self-interference cancellation.
By offering an amalgam of high performance, adaptability,
and reduced computational complexity, RC has the potential
to revolutionize current DSIC paradigms.

B. CONTRIBUTIONS
This study proposes an RC-DSIC scheme for IBFD wire-
less communications, balancing computational complexity
and system performance. We introduced the concept and
operation of RC, highlighting its suitability for DSIC. Then,
we compared the complexity of our proposed RC-DSIC
scheme against the traditional polynomial-based approach
(PL), and many existing NN-based DSIC schemes, including
the robust channel stable NN-aided method (SNN) [11], tra-
ditional NN-aided scheme (TNN) [20], hybrid-convolutional
recurrent NN (HCRNN) scheme [21], hybrid-convolutional
recurrent dense NN (HCRDNN) scheme [21], ladder-wise
grid structure (LWGS) scheme [22], and moving-window
grid structure (MWGS) scheme [22]. We have validated our
theoretical findings through optimization simulations of the
RC-DSIC parameters. The comprehensive simulation com-
parisons with the previously mentioned schemes highlight
the RC-DSIC strategy’s capability to reduce computational
demands while significantly maintaining effective SI cancel-
lation performance. The details of contributions are given as
follows:

1) PROPOSING THE RC-DSIC SCHEME
We introduced an innovative RC-DSIC scheme for IBFD
wireless communication systems. Initially, we detailed the
reservoir initialization process, introducing parameters such
as the number of neurons, spectral radius, leak rate, and scal-
ing factor. To ensure effective training, we carefully selected
pilot symbols to represent the dataset adequately. We then
described the reservoir state update and the training pro-
cess. We also analyzed non-linearity, illustrating how RC’s
capability for nonlinear dimensionality expansion enables the
modeling of complex dynamics, thereby enhancing the DSIC
process.

2) COMPREHENSIVE COMPLEXITY ANALYSIS
We comprehensively analyzed the computational complexity
associated with our proposed RC-DSIC scheme. By compar-
ing it with the complexities of existing SNN, TNN, HCRNN,
HCRDNN, LWGS,MWGS, and PL schemes presented in the
Appendix, we delineated the inherent advantages of our pro-
posed RC-DSIC methodology. This analysis offered valuable
insights into how the RC-DSIC scheme balances the cancel-
lation performance and computational demands, positioning
it as a viable scheme for DSIC.
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FIGURE 1. A simplified model of an IBFD transceiver utilizing a
shared local oscillator. A comprehensive version of this model
is available in [4] and [20].

3) THOROUGH SIMULATION VALIDATION
We conducted numerous experiments to evaluate the per-
formance of the RC-DSIC scheme thoroughly. Our simu-
lations were based on a dataset from an IBFD hardware
testbed, equipped with National Instruments FlexRIO hard-
ware, including two FlexRIO 5791R RF transceiver modules.
Initially, our simulations optimized key parameters within
the RC framework, laying the foundation for further anal-
ysis. We conduct subsequent simulations to compare the
SI cancellation performance and computational complex-
ity of the proposed RC-DSIC scheme against the existing
DSIC methods. Furthermore, to investigate the SI cancel-
lation performance of these DSIC schemes in low SNR
(Signal-to-noise ratio) environments, we introduce additional
noise into the dataset to evaluate their stability and robust-
ness, highlighting our proposed method’s practical value in
real-world scenarios.

C. ORGANIZATION
The remainder of the paper is structured as follows.
In Section II, we present the system model. In Section III,
we introduced the proposed RC-DSIC scheme. In Section IV,
the complexity analysis of the RC-DSIC scheme is presented.
The simulation results are discussed in Section V. Finally,
Section VI brings the paper to a conclusion. The complexity
analysis of baseline algorithms is given in the Appendix.

D. NOTATIONS
Scalars, vectors, matrices, and sets are represented by the
lower case (a), lower case boldface (a), upper case boldface
(A), and calligraphic (A) letters respectively. Transpose of
matrices is denoted by (.)T . Conjugate transpose is denoted
by (.)H . Conjugate is denoted by (.)∗. The notation ∥.∥2
denotes the l2 norm. |K| denotes the cardinality of the
set K.

II. SYSTEM MODEL
This section describes a comprehensive system model for
analyzing DSIC within an IBFD wireless communication
system.

A. IN-BAND FULL DUPLEX MODEL
The IBFD transceiver integrates both a local transmitter and
receiver while employing dual self-interference cancellation
strategies, specifically analog and digital techniques [21].

In this system configuration, as depicted in Figure 1, the
model is validated by experiments and widely adapted in
DSIC studies [21], [22], [23]. Digital cancellation takes place
before the analog-to-digital converter (ADC), aiming to elim-
inate any residual SI signal [21]. The digital signal x(n)
undergoes conversion to analog form via a digital-to-analog
converter (DAC), then passes through a low-pass filter (LPF),
and finally is modulated with the carrier frequency in an IQ
mixer, where n ∈ {1, . . . ,L} denotes each sample index
and L represents the sample length [21]. The mixer imparts
nonlinear distortion attributed to IQ imbalance, captured by
the equation [23]:

xIQ(n) = K1x(n) + K2x∗(n), (1)

where K1,K2 ∈ R, and K1 ≫ K2. x∗(n) presents the
conjugate of x(n). The signal, once modulated, is then
subjected to amplification by the power amplifier (PA),
which introduces additional nonlinear distortions. These dis-
tortions are represented through the parallel Hammerstein
model, an established method for approximating such non-
linear effects. As per the conventional parallel-Hammerstein
model [24], the PA’s output signal, reflecting these nonlinear-
ities, is formulated as:

xPA(n) =

PPA∑
p=1
p odd

M−1∑
m=0

hp(m)
∣∣xIQ(n− m)

∣∣p−1 xIQ(n− m). (2)

Here, hp(m) denotes the impulse response coefficients within
the parallel Hammerstein model. The terms PPA andM define
the PA’s nonlinearity order and memory length.

B. BASEBAND EQUIVALENT MODEL OF THE RECEIVED
SI
At the receiver end of an IBFD node, the signal composition
includes the SI signal, noise, and desired signals from remote
nodes. For the sake of simplicity in this study, we assume the
absence of desired signals from other IBFD nodes. Conse-
quently, the remaining SI signal that persists following the
RF cancellation stage undergoes a series of processing steps:
it is filtered by a band-pass filter (BPF), amplified by a low
noise amplifier (LNA), down-converted via an IQ mixer, and
finally digitized by an ADC. Assuming that the ADC and
potential baseband amplifiers are ideal, the down-converted
and digitized received SI signal ysi(n) can be modelled as

ysi(n) =

J−1∑
j=0

hsi(j)xPA(n− j), (3)

where J denotes the length of the SI channel, which is the
number of previous samples of xPA(n) that affect the cur-
rent SI signal received at the antenna, represented by hsi(j).
It describes how the signal that has passed through the PA
is subsequently spread over time due to the SI channel’s
characteristics. By substitute (1), (2) in (3), the resulting SI
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signal ysi(n) can be represented by the equation:

ysi(n) =

PPA∑
p=1
p odd

p∑
q=0

M+J−1∑
m=0

hp,q(m)x(n− m)qx∗(n− m)p−q,

(4)

where hp,q(m) denotes the impulse response of the channel,
encompassing the cumulative effects of the PA, IQ mixer,
and the SI channel [22]. The digital canceler in this system
is tasked with two main objectives: first, to accurately esti-
mate the effective channel coefficients hp,q(m), and second,
to generate a precise replica of the SI signal denoted as ỹsi(n)
at the receiver. These objectives are achieved through a two-
step process. In the first step, the digital canceler receives
the transmitted baseband samples before digital-to-analog
conversion and uses them for training purposes. During this
training phase, it learns to create an accurate replica of the SI
signal. In the second step, the trained digital canceler utilizes
this replica to mitigate interference in the received post-ADC
SI signal. The interference reduction is achieved by subtract-
ing the replica from the post-ADC SI signal, resulting in the
residual SI signal y(n) represented by the equation:

y(n) = ysi(n) − ỹsi(n). (5)

This separation of training and SI reconstruction processes
ensures the effectiveness of the digital canceler in accurately
estimating and cancelling the self-interference in the received
signal.

C. KEY PERFORMANCE INDICATOR
The performance of the SI canceller is evaluated using the
cancellation depth metric, quantified in decibels (dB). This
metric measures the logarithmic ratio of the energy of the SI
signal before suppression to the energy of the residual signal
after suppression. The cancellation depth CdB is mathemati-
cally defined as:

CdB = 10 log10

(∑L
n=1 |ysi(n)|2∑L
n=1 |y(n)|2

)
. (6)

Here, CdB provides a precise logarithmic measure of the
power reduction achieved by the canceller. It quantifies the
effectiveness of the SI suppression process by comparing
the power levels before and after cancellation, giving a clear
indication of the canceller’s performance in reducing the SI
signal.

III. RESERVOIR COMPUTING BASED DSIC SCHEME
In this section, we give a detailed explanation of how RC
works and why it could be leveraged for DSIC. Reservoir
computing employs a fixed, randomly initialized reservoir of
neurons with sparse interconnections. This reservoir serves as
a dynamic temporal memory, transforming incoming signals
into a high-dimensional feature space where linear readout
mechanisms can solve nonlinear problems. The effect of
reservoir computing lies in its ability to perform one-shot

FIGURE 2. Reservoir computing model.

learning, which enables quick adaptation to changing envi-
ronments. Such characteristics make it a promising approach
for digital processing.

In an IBFD radio employing DSIC, the reservoir could be
used to model the entire SI signal pathway from the trans-
mitter input to the digital canceller. By feeding the known
transmitted signal and the received signal (before DSIC) into
the reservoir, the network can quickly learn the characteristics
of the effective SI channel, including its nonlinearities and
time variances. The high-dimensional feature space, trans-
formed by the reservoir, could then be linearly read out
to provide a highly accurate estimate for the SI channel
coefficient vector ĥp,q that can derive the SI signal needed
to be cancelled. These estimates can generate an accurate
cancellation signal that, when subtracted from the received
signal, ideally leaves only the noise, thus completing the
DSIC process.

A. RESERVOIR INITIALIZATION
The first step of the RC-DSIC scheme is initializing the
reservoir. The reservoir is architected as an echo state network
(ESN), because of its computational efficiency in capturing
space-temporal relationships. The initialization of parameters
of the reservoir is significant, listed as follows:

• Number of neurons Ne,r : defining the reservoir capacity.
• Spectral radius ρ: determining the dynamic properties of
the reservoir.

• Leak rate lr : modulating the reservoir’s temporal scale,
with the rate itself being uniformly sampled from a range
delineated by a minimum lr and a maximum l̄r .

• Scaling factor σ : determining the influence of the input
data on the reservoir’s dynamics.

• Input weight matrix W ∈ RNe,r×L : consisting of
static random coefficients that determine the connec-
tions between the input and the reservoir nodes. It should
be scaled by the scaling factor σ to modulate the magni-
tude of the input signals, expressed as:

W ′
= σ ×W . (7)

• Reservoir matrix A ∈ RNe,r×Ne,r : determining the
connections of nodes within the reservoir, which are ini-
tialized randomly and remain fixed. Thematrix elements
are sparse, meaning only a small fraction of possible
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connections between nodes are non-zero. A should be
normalized by its largest eigenvalue (its spectral radius
ρA) and then scaled by a desired spectral radius ρ. The
scaling is performed as,

A′
=

ρ

ρA
A. (8)

• Regularization factor λ: balancing the fit to the training
data against the complexity of the readout weights.

The reservoir state is initialized to a Ne,r × 1 zero vector r0.

B. PILOT SYMBOLS PREPARATION
Pilot symbols play a crucial role in wireless communication
systems by facilitating channel estimation and synchroniza-
tion. However, the inclusion of pilot symbols entails a
trade-off with spectrum utilization, as dedicating resources
to pilot transmission potentially reduces the bandwidth avail-
able for actual data transmission. Consequently, minimizing
pilot overhead while ensuring sufficient data for accurate
system training is a critical consideration in the design of
DSIC schemes. This concern extends to the evaluation of pilot
overhead’s impact on performance, which is multifaceted
and typically challenging to encapsulate within a closed-
form expression. To address this, we explore the influence of
different pilot overhead configurations through simulation.

In this study, the dataset D comprises sequences of trans-
mitted and received signal pairs. To prepare pilot symbols for
training the RC system, we partition D into two disjoint sets:
the training pilot set Dtrain and the validation set Dval. This
partitioning is guided by the following relationship:

δ =
Ntrain

L
, (9)

whereNtrain represents the number of samples allocated to the
training setDtrain, and δ denotes the predetermined proportion
of the dataset designated as pilot symbols. The aim is to judi-
ciously select pilot symbols in a manner that minimizes pilot
overhead while ensuring robust training of the RC system.

We employ a systematic sampling strategy to ensure that
the pilot symbols provide a representative snapshot of the
entire dataset’s dynamics and variations. The dataset D is
chronologically indexed, and pilot symbols are extracted at
regular intervals. This approach not only captures the essen-
tial characteristics of the dataset for effective system training
but also addresses the critical concern of minimizing pilot
overhead in DSIC schemes.

After segregating the pilot symbols, the remaining data,
encapsulated within Dval, is reserved for validation and test-
ing purposes. Through these measures, we aim to balance the
demand for pilot overhead against the necessity for efficient
and effective interference cancellation, with the ultimate goal
of optimizing DSIC scheme performance in real-world sce-
narios.

C. RESERVOIR STATE UPDATE
After the pilot symbols are prepared, the reservoir state
update process commences. The number of time steps in RC

is defined as L since each data point in the RC input sequence
corresponds to a single time step, during which the reservoir
integrates information from the current input with its existing
state to capture temporal dynamics and dependencies. When
dealing with input data of length L, where each data point
is a discrete input to be processed, it is natural to define
the number of time steps in RC as L. Each vector rn of
time slot n contributes to this matrix, creating a rich, high-
dimensional representation of the input data as transformed
by the reservoir’s dynamic processes.

As depicted in Fig. 2, the input data x ∈ CL×1 is processed
by the scaled input weight matrix W ′ and then input to the
reservoir. At each time step n, The update equation of the
reservoir’s state vector rn ∈ CNe,r×1 is given by:

rn+1 = (1 − lr ) · rn + lr · f
(
A′rn +W ′x

)
, (10)

where f is the nonlinear activation function, chosen to be the
tanh function. rn represents the state vector of the reservoir
at time step n. Each element rn(j) of the vector rn repre-
sents the state of the j-th neuron at time step i. The term
(1 − lr ) · rn accounts for the retention of the previous state’s
influence, modulated by the leak rate lr , which allows for
control over the memory capacity of the reservoir. The term
lr · f

(
A′rn +W ′x

)
accounts for the current state’s update

based on the input data and the internal dynamics dictated by
the reservoir matrix A′. The matrix R ∈ CNe,r×L comprising
these evolving states rn, can capture the essence of the input
data through the reservoir’s dynamic response over time.

D. TRAIN THE READOUT MAP
The readout layer is a linear model trained using the regres-
sion technique. The goal is to find an optimal weight vector
ŵout ∈ RNe,r×1 mapping the feature matrix R to the
desired output ysi, the self-interference signal to be canceled,
expressed as,

ŵout = argmin
wout

∥RHwout − ysi∥2, (11)

where ysi ∈ CL×1 is the target output vector corresponding to
the desired signal. RH represents the conjugate transpose of
matrix R. To prevent overfitting, a regularization technique,
ridge regression is used,

ŵout = argmin
wout

(
∥RHwout − ysi∥2 + λ∥wout∥

2
)

, (12)

where λ is the regularization factor. The optimal weightswout
are solved for using closed-form solutions in the case of Ridge
Regression for other types of regularization, expressed as,

ŵout = (RRH + λI)−1Rysi, (13)

where I is the identity matrix. Once trained, the read-
out weights ŵout can be applied to the feature matrix R
derived from new input signals to predict and cancel the
self-interference signal in an IBFD communication system.
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E. OPTIMIZATION AND VALIDATION
The optimization of the RC parameters is a critical step
in enhancing the DSIC scheme’s performance. Cross-
validation, specifically K -fold cross-validation, is employed
to fine-tune these parameters. This approach allows for
a comprehensive evaluation of the model’s performance
across different subsets of the data, ensuring that the chosen
parameters are not overly fitted to a specific portion of the
dataset.

In K -fold cross-validation, the training pilot set Dtrain is
divided into K distinct folds. Each fold serves as a validation
setDval(k) in turn, while the remainingK−1 folds collectively
form the complementary training set Dtrain(−k) . This process
is represented as,

Dtrain=

K⋃
k=1

Dtrain(−k) ,Dtrain ∩Dval(k) =∅, ∀k ∈{1, 2, . . . ,K }.

(14)

For each fold k , the RC parameters—such as the number
of neurons Ne,r , spectral radius ρ, leak rate lr , input scal-
ing σ , and regularization factor λ—are adjusted, and the
model is trained on Dtrain(−k) . The performance of the trained
model is then validated on Dval(k) . The optimization criteria
are the cancellation depth defined in (6). The optimiza-
tion simulation results will be presented in the subsequent
sections.

F. NON-LINEARITY ANALYSIS
The aim of RC is to project the input into a higher-
dimensional, nonlinear state space and then seek linear
relationships within this space. The core of this RC’s ability
is embedded in its dynamic reservoir. The reservoir is a
high-dimensional space represented by a network of inter-
connected neurons, each characterized by a unique state.
The transformation from input x to the reservoir state R and
subsequently to the output ysi is facilitated through a series of
transformations that embed nonlinear characteristics into the
output.

1) THE RESERVOIR AS A NONLINEAR PROJECTOR
As the reservoir state update equation given by Eq. (10), the
reservoir is composed of a large number of interconnected
neurons, creating a high-dimensional space. Each neuron’s
state is affected by its connections to other neurons and the
input signal. This random, high-dimensional space is capable
of representing complex patterns that are not discernible in
lower-dimensional spaces.

2) NONLINEAR ACTIVATION FUNCTION
The activation function f , using tanh function, is pivotal in
introducing nonlinearity into the system. This function can
map the weighted sum of inputs and the current state into a
nonlinear range, thus enabling the system to capture nonlinear
patterns in the input data.

3) HIGH-DIMENSIONAL NONLINEAR MAPPING
The high-dimensional reservoir state R is mapped to the
output ysi through a linear readout layer. The output is given
by:

ysi = RHwout. (15)

The output weight vector wout is trained to linearly combine
the nonlinearly transformed states to produce the desired
output. The reservoir transforms the input x into a high
dimensional state matrix R. This state vector represents a
point in a high-dimensional space where linear separability of
nonlinearly related inputs is achievable. The nonlinearity of
the activation function ensures that the trajectory of the reser-
voir states corresponding to a time-varying input captures the
inherent nonlinearities of the system.

In conclusion, the nonlinear mapping capability of
RC is a result of the interplay between the high-
dimensional reservoir, the nonlinear activation function, and
the high-dimensional feature transformation. This intricate
mechanism enables the one-dimensional linear input x to be
mapped onto a PPA-dimensional nonlinear output space ysi,
facilitating the modeling of complex dynamics and patterns.

IV. COMPLEXITY ANALYSIS
In this section, we analyze the complexity of the RC-DSIC
scheme based on the number of floating-point operations
(FLOPs) that consist of addition and multiplication opera-
tions. Each complex addition is counted as two real additions,
and each complex multiplication is counted as three real
multiplications and five real additions.

A. COMPLEXITY OF THE RC-DSIC SCHEME
In reservoir computing, the computational complexity is
influenced by three key operations: the forward pass, weight
calculation, and prediction. The ensuing discussion presents
an in-depth analysis of each of these pivotal steps.

1) FORWARD PASS PROCESS
The forward process initializes and updates the reservoir
state, a high-dimensional space where linear input combi-
nations can be more easily separated. The concatenation of
these states across all time steps will serve as the new feature
matrix, which will be used for training the readout weights.

The forward pass is the phase where the input sig-
nal traverses through the reservoir to produce a new
high-dimensional feature space. Essentially, this step trans-
forms the input signal into the next reservoir state rn+1 by
using the dynamics of the reservoir. The input includes the
current input as well as M + J past inputs, thus increasing
the input vector size to L × (M + J ). In the forward process
as (10), the multiplication W ′x involves a matrix of size
Ne,r ×L× (M+J ). The multiplication A′rn involves a square
matrix A′ of size Ne,r × Ne,r and a vector rn of size Ne,r .
After the multiplications, the two results are summed and
passed through an activation function tanh, which needs 6

860 VOLUME 2, 2024



Liu et al.: Reservoir Computing-Based DSIC for IBFD Radios

FLOPs [21]. Therefore, the complexity of the forward pass
process can be presented as

Frc,f =3Ne,rL(M + J )+2(Ne,rL(M + J )−1)

+ 3N 2
e,r+2(N 2

e,r−1)+6Ne,r ,

= 5Ne,rL(M + J ) + 5N 2
e,r + 6Ne,r − 4. (16)

In summary, this complexity formulation arises from the
fundamental matrix-vector multiplications, summations, and
the activation function application.

2) WEIGHT CALCULATION
The output weights are learned via a supervised learning
algorithm using regularized least squares in the form of Ridge
Regression. The goal is to find the optimal weight vector
wout that minimizes the loss function, defined as the mean
squared error along with a regularization term. For the ridge
regression solution, the matrix R is of size Ne,r ×L. So, RRH

is a Ne,r × Ne,r matrix, where the complexity is 3N 2
e,rL. The

matrix ysi is of size L×1. The complexity for Rysi is 3Ne,rL.
For the ridge regression solution, the term (RRH + λI )−1

requires the inversion of a Ne,r ×Ne,r matrix. The complexity
for matrix inversion is N 3

e,r . Adding all these complexities,
we get,

Frc,w = 3N 2
e,rL + 3Ne,rL + N 3

e,r . (17)

In summary, the complexity of computing the optimal output
weights involves multiplications and matrix inversion, each
having its own specific computational costs that form the
overall complexity.

3) PREDICTION STEP
The computational complexity of the prediction step hinges
on the multiplication operations between the output weight
vector and the reservoir state matrix. The prediction step
is formulated as: ysi = RHwout. The complexity of the
multiplication operation is,

Frc,p = 3N 2
e,r L, (18)

The cost is proportional to the number of time steps for
which we are making predictions, as well as the number of
neurons in the reservoir, capturing both the temporal and
spatial aspects of the model’s complexity. Combining all the
steps, the overall time complexity for the model is,

Frc = 5Ne,rL(M + J )+6N 2
e,rL+N 3

e,r+5N 2
e,r+6Ne,r − 4.

(19)

B. COMPLEXITY COMPARISON ANALYSIS
The computational complexities of the baseline DSIC algo-
rithms are presented in the Appendix in detail. According to
the comprehensive analysis, it is evident that the RC-DSIC
scheme’s capacity for achieving lower computational com-
plexity relative to other DSIC approaches is rooted in its
operational strategies and the specific architecture.

TABLE 1. Parameter settings for simulations.

Reservoir computing relies on a fixed high-dimensional
dynamic reservoir that processes inputs by mapping them
into a higher dimensional space where linear separability of
the data is more achievable. The fixed nature of the reser-
voir means that once set, the majority of the network does
not require further adjustments, allowing the RC scheme to
focus computational efforts on optimizing a smaller set of
parameters. This process does not require backpropagation,
the adaptation of the reservoir’s weights during training,
significantly reducing the computational burden. The only
part of the system that is trained is a linear readout layer,
which is much simpler to optimize compared to the entire net-
work being trained in traditional and hybrid neural network
models.

When comparing the RC-DSIC scheme to other NN-based
schemes like TNN, SNN, HCRNN, HCRDNN, LWGS,
and MWGS, it’s evident that these models require more
complex network structures (including multiple layers and
specialized units like convolutional and recurrent layers).
The RC-DSIC scheme, by contrast, involves sparse inter-
connections within the reservoir, significantly cutting down
the number of required multiplications and additions dur-
ing both the state update and readout phases. This sparse
connectivity, along with the fixed nature of the reservoir
weights, means that the computational overhead for updat-
ing the reservoir’s state is substantially lower than that in
fully connected layers of traditional or hybrid neural network
models.
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FIGURE 3. Cancellation depth versus the pilot percentage.

V. SIMULATION RESULTS
We conduct simulations using a real-world dataset from an
IBFD hardware testbed, which utilized National Instruments
FlexRIO equipment with two FlexRIO 5791R RF transceiver
modules [25]. The dataset employed quadrature phase shift
keying (QPSK) modulated orthogonal frequency-division
multiplexing (OFDM) signals with a passband bandwidth
of 10 MHz and 1024 carriers. The signals were sampled
at a rate of 20 MHz, allowing for the observation of the
signal sidebands. Each transmitted OFDM frame consisted
of 20,480 baseband samples. The dataset was created with
an average transmit power of 10 dBm, and a pass-band
bandwidth of 10 Mhz, and the dual-antenna IBFD testbed
configuration provided 53 dB of passive analog suppression.
The source of noise in the dataset is attributed to oscillator
phase noise [26]. To evaluate the performance of our pro-
posed RC-DSIC scheme, we compare its self-interference
cancellation performance with the traditional PLmethod, and
various existing NN-based schemes, including the SNN [11],
TNN [20], HCRNN [21], HCRDNN [21], LWGS [22] and
MWGS [22]. All the simulation parameters are listed in
Table 1. The parameters for the RC-DISC schemes were
derived through optimizations, as detailed in the subse-
quent subsection. Other simulation parameters were carefully
selected and standardized based on the benchmarks estab-
lished in the referenced studies, ensuring they correspond to
conditions that yielded optimal performance in those papers.
This approach was adopted to facilitate a fair and meaningful
comparison of our results with the findings of those studies.
All results are averaged over multiple simulations.

A. PARAMETER OPTIMIZATION FOR THE RC-DSIC
SCHEME
It should be noted that both RC and PL schemes critically
depend on the accurate estimation of the self-interference
channel and its non-linear characteristics to perform effective
SI cancellation. This estimation process requires a specific
amount of pilot symbols to be transmitted so that the schemes

can learn or adapt to the channel properties accurately. More
training pilots can enhance their performance at the cost
of time-frequency resource efficiency. Figure 3 shows the
achievable cancellation depth of RC-DSIC and PL-DSIC
with increasing pilot percentages. As indicated in Figure 3,
when the percentage of pilot symbols is set to 0.1, the per-
formance of both the RC and PL schemes saturates, hence
we select a training set proportion of 0.1 as pilot symbols
for these methods. This strategy guarantees that the pilot
symbols do not excessively consume transmission resources
while enabling accurate self-interference channel estimation
and non-linear characteristics.

However, NN-based schemes, characterized by their abil-
ity to learn from data, require a division of the available
dataset into training and testing subsets. This allows the
models to learn from a large portion of the data and validate
their generalization capabilities on unseen data. This learning
process inherently differs from the pilot symbol-based train-
ing in RC and PL schemes. For the simulations of NN-based
DSIC schemes, 90% of the data is used for training, with
the remaining 10% reserved for testing. This division ensures
that the NN-based DSIC model is evaluated on unseen data,
verifying its generalization capability and performance reli-
ability. It should be noted that the NN-based DSIC schemes
have 100% time-frequency resource efficiency even though
we only use 10% data for testing.

The architecture of RC comprises a large number of
interconnected neurons forming a dynamic reservoir. The
behavior of this reservoir is highly nonlinear and com-
plex, making it difficult to formulate an analytical solution
for the optimal configuration mathematically. The interac-
tions between neurons, the choice of activation functions,
and the influence of various hyperparameters (such as the
number of neurons, spectral radius, and leak rate) all con-
tribute to the reservoir’s dynamics. These factors introduce
high-dimensional and nonlinear effects that are challenging
to model mathematically in a closed-form manner. As a
result, the optimal structure of an RC system is often found
through empirical experimentation and iterative refinement.
Researchers adjust the hyperparameters and reservoir archi-
tecture based on practical insights and domain knowledge.
This empirical tuning process involves running numerous
experiments with different configurations to identify settings
that yield desirable performance for a specific task. The
empirical tuning of RC parameters is a common practice
in the field. Many studies on RC-based applications fol-
low a similar methodology [18], [27], [28], emphasizing
the importance of practical adjustments to achieve optimal
performance.

To ascertain the optimized parameters for the RC-DSIC
scheme, Figure 4 first illustrates the effect of the spectral
radius ρ and the regularization factor λ on the cancellation
depth. It is obvious that the cancellation depth increases as
the spectral radius ρ ranges from 0.25 to 1.5 and diminishes
when ρ extends from 1.5 to 2.5. The optimal cancellation
depth is achieved when the spectral radius ρ equals 1.5. This
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FIGURE 4. Optimization for parameters of RC-DSIC scheme.

phenomenon occurs because the spectral radius ρ affects the
trade-off between the convergence speed and the stability
of the reservoir. In the range of [0.25, 1.5], the growing
cancellation depth reflects an enhancement in the reservoir’s
computational capacity, due to the ESN nearing the edge of
criticality—characterized by rich dynamics and augmented
memory capacity without sacrificing stability. When ρ sur-
passes 1.5, the network becomes unstable, with excessively
correlated dynamics, undermining the input signal processing
and the cancellation efficacy. The optimal spectral radius of
1.5 indicates the perfect balance between memory, stability,
and processing capability within the reservoir. Concurrently,
the cancellation depth is observed to increase when the reg-
ularization factor λ is increased from 10−9 to 10−3 and is
reduced from 10−3 to 10. The peak cancellation depth is
attained when λ is 10−3. It indicates a regularization factor of
10−3 strikes a balance between underfitting and overfitting,
allowing the reservoir computing model to maintain gener-
ality and achieve the highest cancellation depth through an
optimal balance of model complexity and fitting precision.

This figure also illustrates the impact of the number of
reservoir nodes (Ne,r ) and the leak rate range midpoint (lr,m)
on the cancellation depth within a reservoir computing frame-
work. The leak rate (lr ) is sampled from the range [lr,m −

0.025, lr,m + 0.025]. It is evident that the cancellation depth
increases when lr,m increases from 0,1 to 0.2 and subse-
quently decreases when lr,m is increased from 0,2 to 0.5. The
peak in cancellation depth at lr,m = 0.2 denotes an optimal
compromise, allowing the reservoir to adequately process
historical information while retaining the flexibility to adjust
to incoming data. Moreover, it is observed that as the number
of reservoir nodes (Ne,r ) increases, there is a corresponding
increase in the cancellation depth, which converges whenNe,r
reaches 20. As Ne,r expands, the system develops a more
comprehensive representation space, enhancing its ability to
discern and adapt to complex signal patterns and dependen-
cies, ultimately leading to more effective cancellation. The
stabilization of cancellation depth at Ne,r = 20 suggests that

FIGURE 5. PSD of the SI signal using the proposed and the
existing DSIC schemes.

the system has attained a sufficient scale to handle the current
informational load. Therefore, for the sake of computational
efficiency, the number of reservoir nodes will be set to 20 in
subsequent simulations. In summary, the RC-DSIC scheme’s
performance for the DSIC model is optimized at a spectral
radius of ρ = 1.5, a regularization factor of λ = 10−3,
nodes number Ne,r = 20 and leak rate range midpoint
lr,m = 0.2. In subsequent simulations, these parameters will
be held constant at these optimized levels to ensure maximal
cancellation depth.

B. SI CANCELLATION PERFORMANCE COMPARISON
In Figure 5, we evaluate the power spectral density (PSD) of
the SI signal after applying various cancellation techniques.
The PSD of the SI signal prior to the application of any
cancellation methods is depicted by the blue curve. Addi-
tionally, the black curve represents the PSD of the receiver’s
background noise when not transmitting, essentially the
noise floor of the receiver. As evidenced by the figure, the
RC-DSIC scheme can exhibit performance comparable to
other DSIC schemes, being a mere 0.12 dB above the optimal
DSIC performance.

The comparative analysis depicted in Figure 6 demon-
strates the SI cancellation depth achieved by the proposed
RC-DSIC scheme versus the traditional PL method and
various NN-based DSIC schemes, with respect to the SI
channel length J . As the SI channel length increases, the
cancellation depth decreases due to several factors. Primar-
ily, a longer SI channel length introduces more complex
interference patterns, involving signals from multiple past
transmissions that affect the current received signal. This
complexity arises because the SI channel with a longer
impulse response captures more echoes and reverberations,
which represent a broader range of time delays and signal
distortions. Consequently, the DSIC system must accurately
model and cancel a more extensive array of interference
effects, increasing the challenge of achieving deep can-
cellation. The extended channel memory demands more
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FIGURE 6. Cancellation depth versus the SI channel length J of
various schemes.

FIGURE 7. Cancellation depth versus the sample length L of
various schemes.

sophisticated and computationally intensivemodels, straining
the system’s processing capabilities and adversely affecting
its ability to deeply and effectively cancel interference, espe-
cially in real-time scenarios where computational efficiency
is crucial.

Figure 7 presents a comparison of various DSIC schemes
concerning the sample length L. As the total input data length
increases in DSIC systems, the cancellation depth initially
increases due to improved statistical accuracy and stability
in the modelling of the self-interference channel. With more
data, the algorithms have a more substantial basis to esti-
mate and adapt to the interference characteristics, leading to
more precise and effective cancellation. However, as DSIC
systems process larger datasets, they require more compu-
tational resources, which do not scale linearly with the size
of the data. This scaling challenge affects the algorithms’
ability to operate efficiently in real-time environments, where
timely processing is crucial. Additionally, the increased com-
plexity of handling larger datasets can introduce delays,
increase the computational burden, and limit the system’s
real-time performance capabilities. Thus, the initial gains in

FIGURE 8. Cancellation depth versus the additional noise power
of various schemes.

cancellation depth from using more extensive data can level
off as the system encounters practical limits in processing
capacity.

To research the DISC performance under a low signal-
to-noise ratio (SNR) environment, Figure 8 compares DSIC
schemes versus the additional noise power. As additional
noise power is introduced, the effective SNR of the system
decreases. A higher noise level masks the subtler features of
the SI signal that these DSIC schemes learn to identify and
cancel. This masking effect makes it increasingly difficult for
the DSIC algorithms to distinguish between the noise and the
actual SI, leading to a decreasing cancellation performance.
This figure also suggests that RC-DSIC possesses a com-
parable level of resilience to noise as its counterparts. This
resilience could be attributed to the inherent characteristics of
RC, which can capture and process temporal patterns in data.
RC’s dynamic memory, provided by the reservoir, allows it
to retain information over time, aiding in the identification
of interference patterns even as noise levels increase. Its
capacity to handle temporal dependencies efficiently enables
it to adapt to increasing noise levels in a manner similar to
more complex models.

C. COMPUTATIONAL COMPLEXITY COMPARISON
Figure 9 presents a comparison of computational complexity
against training sample size L, with the analysis conducted
over a range from 10,240 to 20,480 samples drawn from a
real-world dataset totalling 20,480 samples. The observed
trend of increasing computational complexity across all
schemes as the sample size L rises is an expected outcome.
This is because the complexity is directly proportional to the
number of operations required to process each sample. Larger
sample sizes mean more data points to process, which in turn
increases the number of mathematical operations, such as
multiplications and additions, that must be performed. Each
schememust apply its respective algorithms to a greater num-
ber of samples, thereby linearly scaling up the computational
workload.
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FIGURE 9. Computational complexity versus sample length L.

FIGURE 10. Computational complexity versus the SI channel
length J.

Figure 10 illustrates the relationship between computa-
tional complexity and SI channel length (J ) for various DSIC
schemes. As J is extended, all schemes experience an uptick
in computational complexity. This is because a longer SI
channel length implies that the models must account for a
more extended sequence of past inputs to predict or cancel the
current sample. Each additional unit of SI channel requires
the model to retain, process, and integrate an additional set
of computations corresponding to the historical data. For
the PL scheme, this means a higher number of polynomial
terms to calculate; for RC and NN-based schemes, it involves
additional nodes or states to update. This increased demand
for historical data processing inherently escalates the number
of computational steps, thus inflating the overall complexity.

Table 2 summarizes the performance comparison of vari-
ous existing DSIC schemes against the proposed RC-DISC
scheme, focusing on their computational complexity and the
effectiveness of SI cancellation. The simulation parameters of
this table are shown in Table 1. The ‘‘Relative complexity’’
indicates how many times the compared scheme’s computa-
tional complexity is of the RC-DSIC scheme’s complexity.

TABLE 2. Comparisons of the number of total FLOPs and SI
cancellation effect for the existing DSIC schemes to the
RC-DISC scheme.

The ‘‘Relative SIC depth’’ indicates the difference in the
SI cancellation depth of each DSIC scheme compared to
the RC-DSIC scheme, measured in dB. Notably, the RC
scheme stands out for its exceptional efficiency, requiring
significantly fewer FLOPs (75,786,116) while achieving an
SI cancellation of 44.38 dB, which is similar to other DSIC
schemes. In contrast, other algorithms exhibit a substantial
increase in computational complexity. For instance, the tradi-
tional PL-based method exhibits a computational complexity
that is 66.26 times that of the RC-DSIC scheme, yet it
only yields a modest improvement of 0.07 dB in SIC depth.
Existing NN-based methods, as exemplified by the SNN
model, show at least 2.73 times the computational complexity
of the RC-DSIC scheme. Among these NN-based meth-
ods, the highest improvement in SIC depth compared to the
RC-DSIC scheme is a mere 0.12 dB, as demonstrated by the
HCRDNN model. By calculations, the RC-DSIC approach
achieves 99.84% of the efficacy provided by PL-based DSIC
algorithms while necessitating only 1.51% of the computa-
tional resources. In comparison to various existing NN-DSIC
strategies, the RC-DSIC technique delivers at least 99.73%
of the performance while utilizing no more than 36.61%
of the computational load. The SNN achieves relatively
low computational complexity largely due to its adoption
of a pre-trained neural network and an input preprocessing
method. This analysis highlights the RC scheme’s superior
efficiency, achieving comparable or better SI cancellation
with far less computational overhead than the other evaluated
DSIC schemes.

VI. CONCLUSION
This study explored RC as a potential and lightweight solu-
tion for the digital self-interference cancellation for the
IBFD model, comparing its performance against the tradi-
tional polynomial-based and the neural network-based DSIC
approaches. Our findings reveal that while RC may not
achieve the highest levels of performance, it excels in striking
a commendable balance between efficiency and computa-
tional simplicity. The essence of RC’s effectiveness lies in
its ability to exploit the dynamical properties of reservoir
computing, harnessing its inherent power to capture and

VOLUME 2, 2024 865



utilize temporal dependencies in the self-interference sig-
nal. This innovative approach allows RC to provide efficient
self-interference cancellation while significantly reducing
computational complexity. This unique combination of capa-
bilities positions RC as a promising solution for digital
self-interference cancellation in IBFD wireless networks.
Future research will delve deeper into optimizing RC param-
eters or integrating them with other emerging technologies to
refine DSIC in IBFD wireless networks further.

APPENDIX
To enhance the readability and fluidity of our paper, empha-
size the low complexity of the RC-DSIC algorithm, and
increase the authenticity of the complexity comparisons
in the simulations, we provide a detailed analysis of the
computational complexities of the existing compared DSIC
algorithms within the Appendix. Different from the complex-
ity analysis in the reference papers, our focus is on the total
computational complexities throughout the entire process.

A. COMPLEXITY OF THE PL-DSIC SCHEME
Drawing from Table 1 in [11], the computational complexity
of the PL-DSIC scheme is described in the subsequent dis-
cussions.

1) BASIS MATRIX GENERATION
The initial phase of the scheme is generating the basis feature
matrix. This feature matrix encapsulates the nonlinear char-
acteristics intrinsic to self-interference. During the estimation
phase, the complexity is devoid of real additions. Let the
maximum nonlinearity order of the estimated model by PPA.
The multiplication complexity of this step can be quantified
by

Fpl,b = L(2np(PPA − 1)), (20)

where np represents the number of coefficients required for
the polynomial-based DSIC scheme, which is represented
as [20],

np = (M + J )
(
PPA + 1

2

)(
PPA + 3

2

)
. (21)

2) LEAST SQUARES ESTIMATION
After basis matrix generation, the scheme employs the least
squares estimation technique. The additional and multiplica-
tion computational complexity of this phase are,

Fpl,la = L(4n2p − 2), Fpl,lm = L(6n2p + 3np). (22)

3) SELF-INTERFERENCE CANCELLATION
Finally, the derived weights are applied to cancel the self-
interference. The additional andmultiplication computational
complexity of this phase are,

Fpl,sa = L(2np − 2), Fpl,sm = L(3np). (23)

Aggregating the complexities from each step, the overall
computational complexity of the PL-DSIC scheme can be

presented as,

Fpl = Fpl,b + Fpl,la + Fpl,lm + Fpl,sa + Fpl,sm (24)

= L
(
10n2p + (2PPA + 2)np − 4

)
. (25)

B. COMPLEXITY OF THE SNN AND TNN SCHEMES
To show the effectiveness of the reservoir computing scheme,
the SNN approach proposed in [11] and TNN proposed
in [20] are compared.

The input of the SNN-DSIC networks includes the trans-
mitted signal in the digital domain x and an input generator f.
f is the convolution sum between the linear channel estimate
ĥls and x. ĥls denotes the vector of estimated coefficients
acquired via LS estimation, used in the linear SI canceller for
modeling and canceling the SI’s linear component. The input
of the SNN-DSIC networks is only the transmitted signal x.
The neural network architectures of SNN and TNN both

use multi-layer perception (MLP), which includes an input
layer, a single hidden layer, and an output layer. The real
and imaginary parts of the signal are fed alternately. The
network’s output is the estimated non-linear SI component
ŷsi,nl. Drawing from Table 2 and Table 3 in [11], the compu-
tational complexities of the SNN and TNN schemes involve
the estimation and cancellation steps, which are presented as
follows.

1) ESTIMATION STEPS
For the estimation step, the complexities of SNN and TNN
arise from the basis matrix generation and least square esti-
mation. However, TNN has extra steps, including the NN
feedforward process, error calculation, and NN backpropaga-
tion, because SNN employs the neural network trained offline
before deployment. The basis matrix generation involves no
real additions and the realmultiplication complexities of SNN
and TNN are

Fsnn,bg = Ftnn,bg = L(2np(PPA − 1)). (26)

The least-square estimation requires additional and multipli-
cation complexities of SNN and TNN as

Fsnn,la = Ftnn,la = L[16(M + J )2 − 2], (27)

Fsnn,lm = Ftnn,lm = L[24(M + J )2 + 6(M + J )]. (28)

For TNN, the neural network feedforward process requires
additional and multiplication complexities as,

Ftnn,fa = Np,tLNe,t [2(M + J ) + 3], (29)

Ftnn,fm = Np,tLNe,t [2(M + J ) + 2]. (30)

Np,t denotes the number of epochs in TNN training, and Ne,t
is the number of nodes in the hidden layer. Error calculation
demands additional and multiplication complexities of TNN
as

Ftnn,ea = 4Np,tL,Ftnn,em = 4Np,tL. (31)
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Finally, the neural network backpropagation complexities of
TNN are

Ftnn,ba = Np,tLNe,t [4(M + J ) + 2], (32)

Ftnn,bm = Np,tLNe,t [6(M + J ) + 6]. (33)

2) NON-LINEAR CANCELLATION STEP
The first process in this step is the generation of the linear
self-interference estimate ŷSI,lin. The additional and multipli-
cation complexities in this process of SNN and TNN are

Fsnn,ca = Ftnn,ca = L [4(M + J ) − 2] , (34)

Fsnn,cr = Ftnn,ca = L [6(M + J )] . (35)

Then, the linear self-interference estimate from the received
signal is subtracted. For SNN and TNN, the complexity of
this process is characterized by a real addition complexity of
2L and no real multiplications. For SNN, before feeding the
signal into the neural network for further interference cancel-
lation, pre-processing is conducted. This step does not involve
any real additions, but the real multiplication complexity is
L [3(M + J )].

The final component in the cancellation step is the genera-
tion of the non-linear self-interference estimate, represented
as ŷSI,nl. The additional and multiplication complexities of
SNN and TNN for this component are

Fsnn,pa = LNe,s [4(M + J ) + 3] , (36)

Fsnn,pm = LNe,s [4(M + J ) + 2] , (37)

Ftnn,pa = LNe,t [2(M + J ) + 3] , (38)

Ftnn,pm = LNe,t [2(M + J ) + 2] . (39)

where Ne,s and Ne,t denote the number of hidden neurons in
the SNN and TNNneural networks respectively. The different
inputs cause different complexities. Therefore, the overall
computational complexity of the SNN and TNN scheme,
when considering both real additions and multiplications, can
be represented as

Fsnn = L{40(M + J )2 + 19(M + J ) + Ne,s[8(M + J ) + 5]

+ 2 np(PPA − 1) − 2}, (40)

Ftnn = L{40(M + J )2 + 16(M + J )

+ Np,tNe,t [14(M + J ) + 13]

+ Ne,t [4(M + J ) + 5] + 8Np,tnn
+ 2np(PPA − 1) − 2}. (41)

C. COMPLEXITY OF THE HCRNN AND HCRDNN
SCHEMES
The HCRNN and HCRDNN schemes are proposed in [21].
For the HCRNN-DSIC scheme, the number of FLOPs can be
given by

Fhcrnn=Fhcrnn,l+Fhcrnn,c+Fhcrnn,r+Fhcrnn,o, (42)

where Fhcrnn,l,Fhcrnn,c,Fhcrnn,r , and Fhcrnn,o denote the
FLOPs required for the linear cancellation, convolutional,
recurrent, and output layers of the HCRNN, respectively. The

FLOPs required for the linear cancellation Fhcrnn,l can be
expressed as,

Fhcrnn,l =3(M+J )+7(M+J )−2=10(M+J )−2. (43)

For the convolutional layer, Fhcrnn,c includes the complexi-
ties of convolution operations across all filters, applying the
activation functions, and adding the bias values, expressed as,

Fhcrnn,c = (2ChCwCd + 1)(OhOwF), (44)

whereCh,Cw,Cd are the height, width, and depth of the filter.
Oh,Ow are the height and width of the output feature map.
F denotes the number of filters. The activation functions are
relu functions needing only one FLOP.
Furthermore, the number of FLOPs required for the recur-

rent layer includes operations for matrix multiplications,
activation functions, and additions for biases, expressed as

Fhcrnn,r = 2Nr,hcrnn

(
Nf + Nr,hcrnn +

1
2

)
, (45)

with Nf as the number of input features and Nr,hcrnn as the
number of neurons in the HNRNN recurrent layer, and ReLU
again serves as the activation function. The FLOPs for the
output layer, which account for computing the weighted sum
of inputs, applying an activation function, and adding biases
to generate the final output, are given by

Fhcrnn,o = No
(
2Nr,hcrnn + 1

)
, (46)

where No is the number of output layer’s neurons. The only
difference between the HCRNN and HCRDNN models lies
in the inclusion of a dense layer in the HCRDNN, necessi-
tating additional FLOPs for calculating the weighted inputs,
activation functions, and biases at the dense layer neurons,
denoted as,

Fhcrdnn,d = Nd
(
2Nr,hcrdnn + 1

)
, (47)

whereNd is the number of neurons in the dense later.Nr,hcrdnn
is the number of neurons in the HNRDNN recurrent layer. So,
in the computation of theHCRDNN’s output layer FLOPs,No
should be replacedwithNd . Let the number of training epochs
of HCRNN and HCRDNN be Np,hcrnn and Np,hcrdnn, respec-
tively. The number of FLOPs for HCRNN and HCRDNN can
be expressed as,

Fhcrnn
= 2Np,hcrnnL [10(M + J ) − 2 + (2ChCwCd + 1)OhOwF

+2Nr,hcrnn

(
Nf + Nr,hcrnn + No +

1
2

)
+ No

]
, (48)

Fhcrdnn
= 2Np,hcrdnnL [10(M + J ) − 2 + (2ChCwCd + 1)OhOwF

+2Nr,hcrdnn

(
Nf + Nr,hcrdnn + 2Nd +

1
2

)
+ 2Nd

]
,

(49)

The factor of 2 in front of Np,hcrnn and Np,hcrdnn accounts for
both the forward and backward pass complexities.
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D. COMPLEXITY OF THE LWGS AND MWGS SCHEMES
The LWGS and MWGS schemes are introduced by [22].
Within the LWGS, the computational load, encompassing
the multiplication of inputs or previous layer outputs by the
weight matrix, the addition of bias terms, and the application
of the CRELU activation function, is detailed as follows

Flwgs

= 2Np,lwgsL

3(Ne,lwgs∑
i=1

i+M + J ) + 5(
Ne,lwgs∑
i=1

i+M + J )

+2(
Ne,lwgs∑
i=1

i+M + J ) + 2Ne,lwgs + 6Ne,lwgs


= 2Np,lwgsL

[
5Ne,lwgs(Ne,lwgs+1)+10(M+J )+8Ne,lwgs

]
,

(50)

whereNe,lwgs denotes the number of the hidden layer neurons
of LWGS. Similarly, in theMWGS, the number of FLOPs can
be expressed as

Fmwgs
= 2Np,lwgsL

{
3[M + J +Ws(Ne,mwgs − 1) + Ne,mwgs]+

5[M + J +Ws(Ne,mwgs − 1) + Ne,mwgs] + 2[M + J+

Ws(Ne,mwgs − 1) + Ne,mwgs] + 2Ne,mwgs + 6Ne,mwgs
}

= 2Np,mwgsL
{
10[M + J +Ws(Ne,mwgs−1)]+18Ne,mwgs

}
,

(51)

whereWs denotes the window size, andNe,mwgs is the number
of the hidden layer neurons of MWGS.
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