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ABSTRACT This paper proposes a novel joint signal-to-noise ratio (SNR) and Rician K-factor estimation
scheme based on supervised multimodal learning. In the case of using machine learning to estimate the
communication environment, achieving high accuracy requires a sufficient amount of training data. To solve
this problem, we introduce a multimodal convolutional neural network (CNN) structure using different
waveform formats. The proposed scheme obtains ‘‘feature diversity’’ by increasing the modalities from
the same received signal, such as sequence data and spectrogram image. Especially with a limited dataset,
training convergence is accelerated since different features can be extracted from each modality. Simulations
demonstrate that the presented scheme achieves superior performance compared to conventional estimation
methods.

INDEX TERMS Convolutional neural network (CNN), multimodal learning, Rayleigh fading, Rician
fading, Rician K-factor estimation, SNR estimation.

I. INTRODUCTION

W ITH the proliferation of the Internet of Things
(IoT), the demand for wireless communications is

increasing. In IoT, efficient communication is required
under limited power and computing resources. Therefore,
it is important to promptly recognize the surrounding
environment and implement it to reflect in the overall
system for efficient communication [1], [2], [3], [4]. Many
methods for estimating the communication environment
have been studied. In particular, signal-to-noise ratio (SNR)
and Rician K-factor, which indicate the effects of noise
and direct and scattered waves, are important factors that
determine the communication environment [5], [6], [7],
[8]. These estimation methods are classified into two main
categories: non-machine learning (ML)-based and ML-based
approaches.

As non-ML-based approaches, numerous schemes have
been extensively researched. In SNR estimation, these can be

classified as data-aided (DA) requiring additional reference
signal and non-data-aided (NDA) without reference sig-
nal [5], [6]. The DA approach provides simple and accurate
SNR estimation; it sacrifices spectral efficiency due to the use
of many reference signals [9]. In contrast, the NDA approach
generally requires relatively long observation time to achieve
satisfactory performance. It is unsuitable for time-varying
conditions, such as in fast-moving environments [10], [11].
K-factor estimation of the non-ML-based approach includes
using the moments of the received signal for estimation [7],
[8] and estimating based on the envelope of the received
signal [12]. For K-factor estimation, most of these are DA-
based approaches to cancel self-interference in the modulated
phase, leading to loss of spectral efficiency [13], [14].

On the other hand, ML-based approaches overcome
these challenges, such as spectral efficiency issues due
to DA, model mismatches, and limited observation time.
ML has a strong generalization capability by absorbing
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knowledge of the communication environment and making
per-packet estimates without relying on reference signals.
Additionally, ML-based estimation exhibits flexibility in
preventing mismatches; thus, it can adapt dynamically to
changing scenarios and characteristics [5], [6]. With these
characteristics, ML applications in wireless communication
technology have been actively investigated in recent years,
not only in SNR and K-factor estimation [11], [14], [15],
[16], [17] but also in automatic modulation classification and
localization [18], [19].

ML-based estimations are superior to non-ML-based esti-
mations in accuracy and robustness, although the challenge
lies in obtaining sufficient training data for constructing ML
models. Many studies have addressed this challenge using
transfer learning (TL) [15], [19] and data augmentation with
a generative adversarial network (GAN) [20], [21]. TL is a
training technique aimed at improving the performance of
the target domain by transferring knowledge from different
but related source domains. A typical example involves
transferring a model previously trained on a large dataset
when insufficient data is available for a specific task and then
fine-tuning it to suit the requirements of the new task [22].
Data argumentation with GAN is a technique that generates
an unlimited amount of labeled data from generators that
have completed training and adds them to the training dataset.
GAN consists of two neural networks, a generator, and a
discriminator. The generator takes a random variable as input
and generates images by repeated up-samplingwith transpose
convolution. The discriminator evaluates whether the input
data is generated or obtained from a training dataset and
updates each parameter by feeding it back as a loss [23].

While the ML performance can be improved through
data expansion, these schemes have several challenges.
In TL, the performance heavily depends on the similarity
between the source network’s training data and the target
data intended for transfer. As the complexity of the target
training model increases, it becomes more challenging to
match the sourcemodel. In addition, collecting an appropriate
dataset for a source TL model in wireless communications
is remarkably expensive, posing challenges for effective
implementation [22]. Data augmentation with GAN requires
sufficient data and can collapse when trained with insufficient
training data, the same as TL. Furthermore, GAN needs
substantial computation to train two networks [24]. As a
result, data augmentation forML in wireless communications
remains a challenge in terms of both data collection and
computational resources.

Furthermore, accurate SNR and K-factor information is
needed without delay to optimize communication parameters
in increasingly complex wireless communications. In AMC,
the SNR table for control undergoes significant changes, and
the throughput performance is degraded due to fluctuating
K-factors; thus, it is crucial to have a fast and accurate
estimation of K-factors along with SNR estimation [25].
On the other hand, the joint estimation of SNR and K-factor
proposed in [13] and [26] are an autocorrelation function

and moment-based method that estimates the SNR and K-
factor stepwise, respectively. These methods suffer from low
estimation accuracy and increased processing time.

Therefore, it is necessary to develop a technique that
enables high-performance ML even from limited training
data without increasing the computational complexity. In this
paper, we propose a multimodal learning-based network to
jointly estimate (classify) the communication environment,
such as SNR and K-factor. In the proposed network, the
output of CNN uses classification. While regression is
often utilized for estimating SNR and K-factor using ML,
it is sufficient to know what range the estimates fall in
for the actual parameter control, and the discrete value
of classification is practical enough [27]. Furthermore,
classification can result in a lighter network than regression,
making it more suitable for situations like ours, where
the training dataset is limited [28]. The proposed network
simultaneously inputs the sequence data of the received signal
and the spectrogram image obtained by short-time Fourier
transform (STFT) into the network. This conversion from the
same signal to numerical and image formats can increase
the number of modalities; thus, it maximizes efficiency
and extracts the features necessary for estimation from a
small amount of wireless signal data. Since each modality
has a different feature extraction robustness, it enables the
obtaining of ‘‘feature diversity’’. The multiple different
feature extraction networks are implemented in parallel and
combined to achieve both high efficiency in feature extraction
and low computational complexity of the networks.

The contributions of this paper are as follows:
1) We explore a scheme that simultaneously captures SNR

and K-factor with high accuracy and low complexity.
Simultaneous estimation of SNR and K-factor from
received signal information without reference signals
enables appropriate communication parameter control
while minimizing overhead.

2) We propose a multimodal network for wireless envi-
ronment estimation and investigate its feasibility. In the
proposed scheme, the sequence data and spectrogram of
the received signal are used as inputs, and the features
are extracted separately to improve the performance
through feature diversity. Despite limited training data,
the proposed scheme demonstrates superior estimation
accuracy and processing speed.

3) We reveal the optimal network structure for estimating
SNR and K-factor. When conducting multimodal learn-
ing, the timing of fusing feature extractions significantly
influences accuracy [29]. This paper assumes a network
structure with three depths, categorizing it into early
fusion, mid-term fusion, and late fusion, and by altering
the quantity of training data, it clarifies the optimal
fusion stage regardless of the data volume.

In Section II, we overview the related work about
estimating the communication environment parameters using
ML and multimodal learning. Section III describes the
transmission system and the fading model. Section IV shows
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the proposed multimodal network and describes multimodal
training in detail. Section V presents the effectiveness of
the proposed network through numerical evaluations. Finally,
Section VI provides the conclusion.

II. RELATED WORK
SNR estimation using ML has been widely studied, not
only in wireless [11], [14], [15], [16], [17] but also in
optical communications [30], [31]. In SNR estimation, ML-
based schemes have been shown to have higher accuracy by
using image data converted from the sequence data, such as
constellations and spectrograms [11], [15], or the sequence
data itself [16]. In [11], it trained the network on spectrogram
images with frequency, time, and received power data,
allowing for joint SNR and Doppler shift estimation. In [15],
SNR is estimated by applying TL with constellation image,
and [16] shows a higher estimation accuracy by inputting
time signals. On the other hand, K-factor estimation is
performed using constellation without any information from
the transmitter [14]. Further, [17] introduced CNN-based K-
factor estimation using spectrum to improve the estimation
accuracy. These schemes are good examples of how ML-
based estimation of communication environment can perform
better than conventional non-ML-based estimation. However,
these schemes assume sufficient training data and have not
been evaluated for training on limited datasets.

Multimodal learning, in which different data are trained
simultaneously, has been studied in several fields such as
acoustic signal processing [32], [33] and wireless com-
munications [34], [35], [36], [37]. Specifically, acoustic
signal is transformed into numerical values and spectrograms
to classify scenes [32], [33]. In wireless communications,
multimodal learning has been used for channel estimation
in MIMO to achieve more advanced estimation than other
ML-based estimations [34]. In [35], despite differences in
UAV sensors, multimodal learning accurately estimates non-
intuitive features by identifying correlations. In [36], AMC
performance has significantly improved due to multimodal
characteristics over training from a single feature by
simultaneously training time-domain and frequency-domain
relationships specific to wireless signals. The paper [37]
shows that converting the received signal into the radio
image and handcrafted features and then training them
simultaneously can achieve advanced estimation even when
the SNR is low. Thus, themultimodal learning network shows
the potential to outperform networks that are trained from a
single modality by effectively exploiting the ability to train
from multiple features in wireless communications.

Notably, the works discussed above mainly focus on large
datasets and do not address the challenges posed by limited
datasets, which are the focus of our paper. Furthermore,
to the best of our knowledge, no work has been done
using multimodal networks to estimate the communication
environment. The network presented in this paper does not
require any other sensors to be attached to it since it increases
the number of modalities by using the same received signal.

Furthermore, its potential is exploited by inputting numeric
and image data. Because multiple waveform formats are
used as input and feature extraction by individual CNNs is
performed in parallel, it efficiently extracts features even
from a small amount of data and achieves highly accurate
estimation.

III. SYSTEM MODEL
This section describes the characteristics of the Rayleigh
and Rician fading model and the transmitter and receiver
architecture assumed in this paper.

A. FADING MODEL
1) RAYLEIGH FADING
Let r(t) be the received signal in multipath fading.We assume
that the in-phase and quadrature components of this signal
follow the Gaussian distribution N (0, σ 2), and define z(t) as
z(t) = |r(t)|. The probability distribution function (PDF) of
z (z ≥ 0) follows the Rayleigh distribution, which can be
expressed as

fz(z) =
2z

P̄r
exp

(
−
z2

P̄r

)
=

z
σ 2 exp

(
−

z2

2σ 2

)
, (1)

where P̄r = 2σ 2 represents the average received power.

2) RICIAN FADING
We consider the case where a direct wave is occurring; the
received signal is a superposition of the line-of-sight (LOS)
component and non-LOS (NLOS) components. Therefore,
the in-phase and quadrature components satisfy N (a, σ 2).
The PDF of the envelope z (z ≥ 0) becomes

fz(z) =
z

σ 2 exp
{

−(z2 + a2)
2σ 2

}
I0

( za
σ 2

)
, (2)

where a2 represents the received power of the LOS compo-
nent, and 2σ 2 represents the received power of the NLOS
components. I0 denotes the modified Bessel function of the
zeroth order. The power ratio between the LOS and NLOS
components is defined as the K-factor

K =
a2

2σ 2 . (3)

As K increases, the signals in the LOS path become more
dominant, and the channel behaves more like a frequency flat
fading [38].

B. CHANNEL MODEL
The impulse response of a multipath fading channel is
denoted as

hd (τ ) =

M−1∑
m=0

hm(t)δ(τ − τm)

=

M−1∑
m=0

hm(t)δ
(
τ −

m
B

)
, (4)
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FIGURE 1. Illustration of the transmitter and receiver structure.

where

M = ⌊BTm⌋ + 1, (5)

M represents the discrete path number, and hm represents
the complex gain of each path. τm is discrete timing, and B
represents the bandwidth, Tmmeans themultipath spread, and
δ(·) represents the delta function. In this case, the LOS fading
channel component, denoted as hLOS (τ ), and the complex
channel coefficient h0 are expressed as follows

hLOS (τ ) = h0δ(t − τ1), (6)

h0 = g0 exp(jθ0). (7)

where g0 represents its magnitude, and θ0 represents its
phase angle [39]. The path gain of the Rician fading channel,
denoted as h(τ ), is given by

h(τ ) =

√
K

K + 1
hLOS (τ ) +

1
√

(K + 1)
hd (τ ). (8)

It is clear from (8) that the LOS component disappears when
K is 0, thus (8) becomes h(τ ) = hd (τ ) in (4), which reduces
to Rayleigh fading. Therefore, the channel response depends
on the Rician K factor.

C. TRANSMITTER
This paper assumes orthogonal frequency-divisionmultiplex-
ing (OFDM) for transmission. After encoding the data to be
transmitted, the signal is modulated. The modulated signal
goes through serial-to-parallel (S/P) conversion and is then
subjected to inverse discrete Fourier transform (IDFT) to
make it into a time-domain signal. A guard interval is inserted
to create the transmitted signal to prevent interference. The
transmitted signal in the time domain is

s(t) =

∞∑
w=−∞

√
2Pt
Ns

c (t − wT )

·

[ Ns∑
v=1

d(v,w) exp
(
j2πv (t − wT )

Ts

)]
, (9)

where

c(t) =

{
1 (−Ti ≤ t ≤ Ts)
0 otherwise,

(10)

where Pt represents the average transmit power, T is the
symbol duration, and Ts is the effective symbol lengthwithout
the guard interval. d(v,w) is the v-th subcarrier of the w-th
modulated symbol, which satisfies E [|d(v,w)|] = 1. The
guard interval Ti is used, and the relationship T = Ts + Ti
is satisfied. The transmitted symbol is represented using any
window function defined by the rectangular pulse c(t).

D. RECEIVER
In the time domain, the received signal, denoted as r(t),
is affected by fading and additive white Gaussian noise
(AWGN) n(t). It can be represented as

r(t) =

∫
∞

−∞

h(τ, t)s(t − τ )dτ + n(t). (11)

Here, we assume the channel state is nearly constant over
symbol time T . The channel response in the frequency
domain can be approximated using the channel response in
the time domain as

H
(
v
Ts

,wT
)

≃

∫
∞

−∞

h(τ, t + wT )

· c(t − τ ) exp
(

−j2πwτ

Ts

)
dτ . (12)

The received signal of the frequency domain is expressed as

r̃(v,w) ≃

√
2Pt
Ns

H (v,w)d(v,w) + n(v,w), (13)

where H (v,w) is channel matrix. As shown in Fig. 1, signals
obtained are processed in the reverse order of the transmitter,
and the hard decision is made [11], [40]. As can be seen
from (13), the received signal is greatly affected by the
channel matrix H (v,w) and n(v,w). In a fading environment,
rapid power attenuation occurs, and the values of the channel
matrix change significantly. This is reflected significantly in
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sequence data and spectrograms, making estimation difficult.
Also, when the SNR defined by Pt and n(t) becomes small,
it greatly affects the spectrogram.

IV. PROPOSED MULTIMODAL NETWORK FOR JOINT
SNR AND RICIAN K-FACTOR ESTIMATION
As mentioned in the previous section II, many ML-based
communication environment estimation schemes exist. Nev-
ertheless, most focus on a single modality, and utilizing
multiple modalities is key to achieving higher accuracy and
low latency. This paper proposes a joint SNR and K-factor
estimation scheme by the multimodal network with sequence
and spectrogram input. The proposed network consists of
two main phases: an extraction phase and a fusion phase.
A series of training steps allows for effective learning even
with limited datasets.

Sequence data and spectrograms are input and trained
separately in the extraction phase. Sequence data is good
at extracting features related to specific power levels. The
spectrogram can effectively capture features related to power
fluctuations caused by phenomena such as fading. This
intensive, individualized training allows each modality to
extract the features it is best at. While in the fusion phase,
feature maps from which each data is best at extracting
features are fused. Estimation accuracy is highly dependent
on the architecture of this fusion network [29]. This paper
examines the most suitable timing to perform the fusion
process to optimize performance.

A. SPECTROGRAM IMAGE
In ML applications in wireless communications, waveform
formats such as the spectrum, constellation, and spectrogram
are generally effectivewhen utilizing CNNs, which specialize
in feature extraction in images [11], [14], [17]. Our previous
works [11], [41] have shown that spectrogram images, which
are three-dimensional data (time, frequency, and power),
are suitable for SNR estimation. Therefore, in this paper,
spectrogram images shown in Fig. 2 are used as the image
input for the proposed network. Spectrogram images are
obtained by performing STFT on sequence data using a
window function. The window function for spectrogram ξ (t)
is defined as

ξ (t) =

{
1 (0 ≤ t ≤ T )
0 otherwise.

(14)

With this function, we can obtain the signal with complex
elements Rspg as

Rspg(v,w) =

∫
∞

−∞

r(τ )ξ (τ − w)e−j2πvwdt

=

∫ T

0
r(τ )e−j2πvwdt. (15)

Therefore, spectrogram Pspg is represented as

Pspg(v,w) =
∣∣Rspg(v,w)∣∣2 . (16)

FIGURE 2. Spectrogram images of OFDM signal acquired in
various channels at SNR 20 dB.

Fig. 2 shows the difference in spectrogram images of
OFDM signals affected by a fading channel with an SNR of
20 dB. Fig. 2(a) shows the case of the AWGN channel. The
power of the data portion exhibits minimal fluctuation, and
there is a distinct difference between the power of the data
portion and the power of the portion without data. Fig. 2(b)
shows the case of the Rayleigh channel. The received power is
not as apparent as Fig. 2(a) due to significant signal distortion
from Rayleigh fading and multipath delay. Figs. 2(c) and (d)
are derived from Rician channels. Fig. 2(d) with K = 10 is
more similar to the AWGN image than Fig. 2(c) with K =

5. This indicates that with higher values of K , the channel
becomes closer to flat fading, as shown in (8). Thus, feature
extraction using CNN is possible because fading features
clearly appear as power fluctuations in the spectrogram.

B. CNN: FEATURE EXTRACTION
In general, CNNs specialize in image recognition and
comprise several convolutional layers, pooling layers, and
one ormore fully connected layers. In the convolutional layer,
features are extracted from the input data using various filters
with different sizes. The filters are smaller matrices compared
to the input data. They slide over the input data, performing
element-wise multiplication with the filter, and the results are
summed up to generate a new featuremap [42]. The activation
functions and pooling layers enable complex expressions and
efficient computation by reducing the feature map.

The output of the (l+1)-th convolutional layer, denoted as
Y l+1
o,c′,m′,n′ , is calculated as follows

Y l+1
o,c′,m′,n′ =

C∑
c=1

P∑
p=1

Q∑
q=1

W l+1
c′,c,p,q · X lo,c,m,n + Bl+1

c′ , (17)

where o (o = 1, 2, · · · ,O) represents the mini-batch index,
c (c = 1, 2, · · · ,C) and c′ (c′ = 1, 2, · · · ,C ′) represent the
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FIGURE 3. Multimodal network structure of the proposed scheme.

input and output channels. m′ and n′ denote the height and
width of the output data. p and q represent the height and
width of the filter. X lo,c,m,n indicates the output at position
(m, n) of the c-th channel in the l-th layer for the o-th mini-
batch. W l+1

c′c,p,q corresponds to the weight at position (p, q) of
the filter between the c-th and c′-th channels in the (l + 1)-
th layer. Bl+1

c′ represents the bias of the c′-th channel in the
(l + 1)-th layer. The activation function and pooling used in
this paper is the ReLU function and max-pooling, which is
defined as

X l+1
o,c,m,n =

{
Y l+1
o,c′,m′,n′ (Y l+1

o,c′,m′,n′ > 0)

0 otherwise,
(18)

Y l+1
o,c′,m′,n′ = max

p,q

(
X lo,c,m,n

)
, (19)

where p ∈ [1,P], q ∈ [1,Q]. Through (17) to (19), the feature
extraction of the CNN is performed [11]. This series of layers
is defined as a training block.

C. NETWORK TRAINING
The overview of the proposed network is shown in Fig. 3.
In the proposed scheme, two different CNNs are used
to extract features from sequence data and spectrograms,
respectively, and finally combined to estimate SNR and K-
factor at the same time. Therefore, we need to select the
optimal network structure, and three patterns are considered
here: early fusion, mid-term fusion, and late fusion. In early
fusion, sequence and image data are passed through a training
block once each, then fused and estimated after two training
blocks. Inmid-term fusion, the twomodalities go through two
training blocks, feature fusion is performed, and estimation
is performed after one training block. In late fusion, the
two modalities experience three training blocks each, are
combined by fully connected layers, and are estimated. Each
of the fusion architecture layers and their sizes are shown in
detail in Fig. 4.
In general, CNNs require a real vector as input [43].

Therefore, received signal sequences, complex data, cannot
be input directly. The sequence data proposed in this paper is

divided into the real and imaginary parts of the (13) signal for
training. During the training process, the input sequence data
is given as

rtrain = (ℜ (r̃) , ℑ (r̃)) , (20)

Here, the output of the previously defined training block in
i-th layer as

Otraining = f i(·). (21)

Sequence and spectrogram image data are separately
trained in the extraction phase. We denote the input feature
maps of the sequence data and spectrogram data as Xsq and
Xsp, respectively. They are individually trained to the j-th
layer. The output at the j-th layer is given by

Qj = f j(Xsq), (22)

Pj = f j(Xsp). (23)

The output of the fusion operation in the j-th layer is then as
follows

Rj = A[Qj,Pj], (24)

where R indicates the output, and A means element-wise
addition [44]. This fused feature map Rj is retrained in both
Early and Mid-term Fusion. After that, these feature maps
go through the dropout layer. The dropout layer prevents
overlearning by overwriting input features with random zeros
with arbitrary probability as

Dk ∼ B(p), (25)

R̃ = Dk ∗ R, (26)

where B(p) is Bernoulli distribution. Dk is a vector of inde-
pendent Bernoulli random variables, each with probability
p = 1, and (∗) means element-wise product [45]. In this
paper, 50% of the input features are set to 0. The features
trained through the fully connected and softmax layers
are probabilistically classified into i classes. The process
carried out by the softmax layer involves the inputs xi ∈
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FIGURE 4. Architecture of a multimodal network, where (a) is early fusion, (b) is mid-term fusion, and (c) is late fusion.

x1, x2, · · · xN , which are the outputs of the fully connected
layer. The softmax operations represent it

Yclass =
exi∑N
j=1 e

xj
= exp

xi − ln

 N∑
j=1

exj

, (27)

where i = 1, 2, · · · ,N [46]. The communication environ-
ment is estimated by this classification result. After offline
training is completed, the trained network can be used
online to estimate and classify parameters such as SNR
and K-factor to determine the communication channel
environment.

Sequence data can take negative values, yet it does not
have color information. On the other hand, as shown in (16),
while spectrograms cannot take negative values and suffer
from conversion errors, they are suitable for CNNs because
the power distortion related to SNR and K-factor clearly
appears as a feature. By combining modalities with different
features at the same time, the proposed network can train to
compensate for each other, even in limited training data. As a
result, it is possible to extract features from limited training
data with a lightweight CNN, and stable estimation can be
realized.

V. NUMERICAL RESULTS
In this section, we evaluate the estimation accuracy of
the proposed multimodal network compared to various
benchmark schemes. The simulation environment used
was MATLAB 2022a, Intel(R) Core(TM) i9-10900K CPU,

TABLE 1. Simulation parameters.

NVIDIA RTX 3090 GPU. We generate wireless signal
data using parameters outlined in Table 1 by Monte Carlo
simulations. During the network’s offline training phase,
we allocate 80% of the training dataset for actual training
and 20% for validation. We employ the Adam optimization
algorithm [47], conduct training over 50 epochs, and set the
initial learning rate at 0.0001.

This paper estimates SNR or K-factor by classifying
based on either SNR or K-factor intervals. For example,
we classify SNR values at 3 dB intervals into five classes,
starting from 0 dB as {0, 3, 6, 9, 12} dB. Also, K-factor
estimation is conducted similarly, classifying the K-factor
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FIGURE 5. Accuracy of SNR estimation in different multimodal network structures: early, mid, late fusion.

FIGURE 6. Accuracy of K-factor estimation in different multimodal network structures: early, mid, late fusion.

prepared according to the K-factor interval, starting from
0. For instance, if there are three classes and the K-factor
interval is 5, the estimated K-factor is classified into one of
the classes {0, 5, 10}. Unless otherwise specified, we classify
SNR into five classes and K-factor into three classes. Here,
classification accuracy is defined as the ratio of the number
of test data that can be correctly classified to the number of
total test data.

A. OPTIMAL STRUCTURE DETERMINATION
We compare the proposed multimodal network structures
shown in Fig. 4 to determine which are optimal for SNR
and K-factor estimation. Here, each network is respec-
tively trained on a data set consisting of 300, 500, and
1000 packet samples for each class. The architecture is
determined by comparing the estimation results for each
parameter on the test dataset, which differs from the training
dataset. At this time, the SNR estimation is evaluated in a
Rayleigh fading environment, and the K-factor estimation
is evaluated in a Rician fading environment with an SNR
of 20 dB.

The results of SNR estimation are shown in Figs. 5(a)–
(c). It can be observed that the mid-term fusion archi-
tecture has the highest estimation accuracy among the
three architectures. Mid-term fusion architecture effectively
extracts features from sequence and spectrogram data,
calibrates by retraining after fusion, and achieves the

highest SNR estimation accuracy for each training dataset.
On the contrary, in late fusion architecture, the potential
of the proposed multimodal learning is not fully exploited,
and the sequence and spectrogram data are not well
calibrated since they are not retrained through training
blocks after fusion. Early fusion architecture requires more
training from each modality, resulting in feature vector
redundancy.

K-factor estimation results are shown in Figs. 6(a)–(c). It is
clear that, unlike SNR estimation, the estimation accuracy
does not change significantly regardless of the network’s
structure when trained on the 300 datasets shown in Fig. 6(a).
We also compare the estimation using the network trained
on the 500 dataset shown in Fig. 6(b) with that using the
network trained on the 1000 dataset shown in Fig. 6(c). The
results of the mid-term fusion architecture do not change
significantly when the training dataset is doubled, but the late
fusion approaches the mid-term fusion by 2.49% when the
K-factor interval is 5. On the other hand, early fusion also
improves estimation accuracy as the training dataset becomes
richer.

These results indicate that the ideal architecture differs
based on the estimation target. For SNR estimation, achieving
higher accuracy is fused to an earlier stage, while in K-
factor estimation, superior accuracy is associated with a
later stage of fusion. This indicates the need to adjust the
architecture according to the target estimation task. The
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FIGURE 7. Accuracy of SNR estimation.

TABLE 2. Impact of the amount of training dataset on ML-Based
SNR estimation [%].

influence of architecture on the estimation target occurs when
one modality cannot train effectively due to a negative impact
on the overall estimation. Mid-term fusion, which showed
the most stable estimation accuracy for both SNR and K-
factor estimation, will be used as multimodal in subsequent
evaluations.

B. COMPARISON RESULTS IN SNR ESTIMATION
To validate the effectiveness of the proposed scheme,
we compare SNR estimation accuracy with that of conven-
tional schemes. Here, we evaluate the estimation accuracy
by classifying five SNR classes in a Rayleigh fading
environment. As conventional schemes, moment-based SNR
estimation [6], CNN only with spectrogram images [11],
TL using constellations [15], CNN-LSTM only with
sequence data [16], and data augmentation with GAN [20]
are compared to the proposed scheme used in the previous
study. A limited dataset of 500 data for each SNR is used
as the training dataset in all ML-based schemes. For a fair
comparison, the proposed approach assumes SNR estimation
only.

Fig. 7(a) shows the SNR estimation accuracy compared
with various schemes. From this figure, the proposed
multimodal estimation achieves the best accuracy of all
schemes. M2M4, a non-ML-based scheme, has lower SNR

TABLE 3. Impact of the number of classes on the proposed SNR
estimation [%].

estimation accuracy than any other ML-based schemes due
to its vulnerability to noise. From the perspective of feature
extraction byML, comparing schemes that use sequence data
and spectrogram images as input, sequence data provides
better estimation accuracy in regions with narrow SNR
intervals. In contrast, spectrogram images perform better
in regions with wide SNR intervals. This indicates that
the strength of feature extraction differs depending on
the modality. The proposed multimodal learning network
is based on sequence data and spectrogram. It increases
feature diversity and compensates for the other modality
even when features extracted from one modality do not
effectively capture the model. This estimation scheme has
proven effective in challenging feature extraction due to
limited training data and unpredictable power fluctuations
caused by Rayleigh fading. The strategy of increasing
feature diversity results in stable estimation and maximizes
accuracy.

Table 2 illustrates the impact of the amount of dataset
size with various ML-based SNR estimation schemes. Here,
we assume the five classifications with a 3 dB SNR interval
under a Rayleigh fading channel and training datasets of
various sizes, including 100, 300, 500, 1000, 2000, and 5000,
are prepared for offline training. The table reveals that the
accuracy of all estimation schemes consistently improves
as the dataset size increases. It is observed that image-
based schemes yield higher accuracy for smaller datasets.
In contrast, with larger datasets, the sequence data-based
scheme becomes more accurate. The proposed multimodal
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FIGURE 8. Accuracy of K-factor estimation.

TABLE 4. Impact of the amount of training dataset on ML-based
K-factor estimation [%].

estimation approach, which leverages both sequence and
image data, surpasses other schemes in terms of accuracy,
highlighting the advantage of combining data modalities for
enhanced performance.

Table 3 presents the individual SNR estimation result
using the proposed network. For SNR estimation, we selected
Rayleigh fading as the channel model, setting the SNR
interval to 5 dB. The result in Table 3 indicates that for the
individual SNR estimation, accuracy declines as the number
of classes increases. However, accuracy remains above 90%,
even with increased classes.

We evaluate SNR estimation accuracy and the impact of
channel K-factor. Fig. 7(b) shows the estimation accuracy
in a Rician fading environment in case of changing the K-
factor. As shown in this figure, SNR estimation accuracy
improves as K increases. In particular, when K is 20, 80.15%
accuracy is obtained even when the SNR interval is 1 dB.
In SNR estimation, obtaining high accuracy is difficult due
to fluctuation caused by sudden changes in received power
due to fading. As the K-factor increases, the channel state
becomes closer to flat fading, as shown in Fig. 2, and
the fluctuations due to received power fluctuations become
reduced. As a result, SNR estimation accuracy improves with
increasing K-factor.When the SNR interval exceeds 2 dB, the
estimation accuracy exceeds 88.83% in any K environment,
confirming that the effect of the K-factor on SNR estimation
is relatively small.

TABLE 5. Impact of the number of classes on the proposed
K-Factor estimation [%].

C. COMPARISON RESULTS IN K-FACTOR ESTIMATION
We compare the proposed multimodal network with several
benchmarks for K-factor estimation: ML using constella-
tion [14], spectrum [17], sequence data, and spectrogram.
Each network is trained on a limited dataset of 500 for each
class. In this evaluation setup, we consider the classification
problem of three K-factor patterns for an unknown input, and
the SNR is kept at 20 dB. For a fair comparison, the proposed
approach assumes K-factor estimation only.

Fig. 8(a) shows the comparison results of the K-factor esti-
mation with various benchmarks. The proposed multimodal
network can train two modalities as well as SNR estimation,
and it is more specific than any of the other schemes, which
confirms that it can improve estimation accuracy. On the
other hand, unlike SNR estimation, K-factor estimation using
ML with spectrograms is consistently more accurate than
with sequence data. This indicates that the optimal modality
depends on the classification target.

Table 4 illustrates the impact of varying training dataset
sizes on the accuracy of ML-based K-factor estimations. The
SNR is fixed at 20 dB, and the K-factor interval is three.
Training dataset sizes of 100, 300, 500, 1000, 2000, and
5000 are prepared for offline training. The results confirm a
trend similar to that observed from previous SNR estimation:
increasing the size of the dataset improves accuracy across
all schemes. However, in contrast to SNR estimation, the net-
work trained with spectrograms consistently achieves higher
estimation accuracy than those using sequence estimation,
regardless of the dataset size. The difference, also confirmed
by the evaluation in Fig. 8, suggests that the optimal modality
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FIGURE 9. Confusion matrix when there are 4 classes of SNRs
and 2 classes of K-factors.

varies depending on the estimation target. Moreover, the
proposed approach enhances accuracy by combining features
extracted from sequences with those from spectrograms,
yielding superior accuracy compared to other schemes.

Table 5 shows the K-factor estimation result using the
proposed network. The SNR is fixed at 20 dB for K-factor
estimation, and the K-factor interval is set to 5. The result in
Table 5 represents that, similar to Table 3, accuracy declines
as the number of classes increases, and estimation accuracy
drops below 70% when the class count exceeds 7.

We evaluate the effect of SNR variation on K-factor
estimation in the proposed network in Fig. 8(b). We assume
environments with SNRs of 0 dB, 5 dB, 10 dB, 15 dB, and
20 dB. As in the previous sections, we limit the training
of the network to 500 training data. As the SNR increases,
the estimation accuracy of the K-factor improves. On the
other hand, as the SNR becomes low, the estimation accuracy
deteriorates significantly. This indicates that the effect of
noise has a significant impact. For K-factor estimation,
when the SNR is 0 dB, the K-factor estimation accuracy is
34.76% when the K-factor interval is 1, and 61.57% when
the interval is 10. When the SNR is 20 dB, the accuracy
is 43.54% when the K-factor interval is 1, and 98.03%
when the interval is set to 10. From these results, it can be
concluded that the influence of SNR onK-factor estimation is
always significant. This is because multimodal training with
small datasets is susceptible to unexpected noise due to the
specificity of the estimation results.

D. JOINT ESTIMATION OF SNR AND K-FACTOR
Table 6 shows the joint estimation accuracy of SNR and K-
factor, classifying SNR into 4 to 7 classes and K-factor into
2 to 5 classes. In the case of four-class SNR estimation,

FIGURE 10. Confusion matrix when there are 3 classes of SNRs
and 3 classes of K-factors.

TABLE 6. SNR and K-Factor joint estimation accuracy [%].

there is a 15.75% difference in accuracy between two and
five classes of K-factor estimation. However, as the SNR
class increases, this difference diminishes, with the largest
classification of seven SNR classes showing a difference of
10.22%. This demonstrates that as the SNR class increases,
the influence of K-factor estimation becomes weak, which
means that the accuracy of SNR estimation has a significant
impact on joint estimation. Overall, estimation accuracy
decreases as the number of classes increases, although the
decrease in estimation accuracy becomes smaller as the SNR
class increases. The joint estimation accuracy deteriorates
due to the increase in the number of classes compared to
the individual estimation results in Tables 2 and 4. However,
the proposed scheme is superior to conventional methods in
estimation accuracy, confirming its effectiveness. Moreover,
estimating SNR and K-factor jointly reduces training and
computation costs compared to estimating each of them
separately.

We discuss the confusion matrix regarding estimation
accuracy to examine further the effectiveness of the proposed
joint SNR and K-factor estimation. Fig. 9 shows the
confusionmatrix when SNR is classified into four classes and
K-factor into two classes, and Fig. 10 shows the confusion
matrix for SNR classified into three classes and K-factor into
three classes. From Fig. 9, it can be confirmed that as the

776 VOLUME 2, 2024



Tamura et al.: Joint SNR and Rician K-Factor Estimation Using Multimodal Network

TABLE 7. Computational complexity for SNR estimation.

SNR increases, the estimation accuracy increases. This is
consistent with Fig 7(b). Fig. 10 shows that when classifying
the K-factor as 5, the estimation accuracy is low at all SNRs.
This significantly affects the overall decrease in estimation
accuracy compared to Fig. 9. This result suggests that it may
not be possible to effectively classify when the K-factor is
5 and when it is 10.

E. COMPUTATIONAL COMPLEXITY
We evaluate the computational complexity of the proposed
and benchmark schemes. Here, we consider the SNR estima-
tion of five classifications with 1 dB SNR intervals. Table 7
comprehensively compares different schemes, focusing on
processing time, floating point operations (FLOPs), and
accuracy. Processing time is defined as the time required to
compute SNR from a test signal in non-ML-based approaches
and the time required to process a test signal through a trained
ML model in ML-based approaches. FLOPs, a metric of
computational complexity, is determined by the total number
of multiply-adds, which is the most used definition [48],
[49]. According to this table, non-ML-based approaches
minimize processing time. On the other hand, it can also
be confirmed that the accuracy is the poorest. Although
ML-based approaches have high estimation accuracy, their
FLOPs tend to be large. Meanwhile, the proposed scheme
achieves the best accuracy while keeping the increase in
processing time and FLOPs at the same level as other ML-
based schemes.

VI. CONCLUSION
In this paper, we proposed the joint SNR and K-factor
estimation using a multimodal network. In the proposed
scheme, the received signal is converted into two modalities:
sequence data and spectrogram image. Then, the SNR and K-
factor are estimated by taking two forms of sequence data and
spectrogram as inputs, extracting features from each input
respectively, and finally combining them. Feature diversity
is obtained by converting a single received signal into two
modalities for feature extraction, thus achieving sufficient
performance even from a limited dataset. In the simulation,
we have compared SNR and K-factor estimation with
conventional schemes regarding estimation accuracy and
computational complexity. The results have demonstrated

that the proposed scheme achieves the highest accuracy
and allows simultaneous estimation of SNR and K-factor at
reasonable processing speeds.
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