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Abstract—With the advancement of communication technol-
ogy, there is a higher demand for high-precision and high-
generalization channel path loss models as it is fundamental to
communication systems. For traditional stochastic and determin-
istic models, it is difficult to strike a balance between prediction
accuracy and generalizability. This paper proposes a novel deep
learning-based path loss prediction model using satellite images.
In order to efficiently extract environment features from satellite
images, residual structure, attention mechanism, and spatial
pyramid pooling layer are developed in the network based
on expert knowledge. Using a convolutional network activation
visualization method, the interpretability of the proposed model
is improved. Finally, the proposed model achieves a prediction
accuracy with a root mean square error of 5.05 dB, demon-
strating an improvement of 3.07 dB over a reference empirical
propagation model.

Index Terms—Deep learning, satellite images, channel predic-
tion, path loss.

I. INTRODUCTION

W ITH the continuous development of communication
technology, there has been significant improvement in

performance, capacity, and user experience of communication
systems. Wireless channel plays a crucial role as it determines
system performance [1]. With the increasing number of dimen-
sions and enhanced resolution at higher frequencies, channel
model accuracy and generalization capability requirements
have become increasingly demanding [2].

The environment is of significant importance for propaga-
tion, contributing to the complexity of the wireless channel
[3]. Channel models depict the impact of interacting objects
(IOs) within the environment on propagation. Hence, effective
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utilization of environment features improves the accuracy of
channel models. Traditionally, there are two main types of
channel models: statistical models and deterministic models.
Statistical models quantify channel characteristics that signifi-
cantly influence system performance within a specific scenario,
utilizing measurement data to fit parameters [4]. However,
statistical models can only provide an average depiction of
channel parameters. Most statistical models require hand-
crafted features, such as correction factors in Hata and LEE
models [1]. When the terrain changes, a significant amount
of parameter adjustments is needed, limiting model accuracy
and generalization capability. Deterministic models, such as
ray tracing, calculate signal propagation based on Maxwell
equations and environment data. This approach yields high
accuracy, but at the cost of higher computational complexity
compared to statistical models. Additionally, deterministic
models have relatively poor generalization ability, and the
model is supposed to be reconfigured and recalculated when
IOs in the environment change.

Deep learning (DL), with multiple layers of feature trans-
formation and nonlinear activation functions, has excellent
nonlinear fitting ability and flexibility [5] that make it suitable
for learning nonlinear channel features. Moreover, compared
to statistical and deterministic models, DL-based models can
adapt to more complex and diverse environments by auto-
matically extracting general environment features from input
data [6]. Consequently, DL-based methods achieve a balance
between accuracy and generalizability.

A. Related Work

DL has already been used for channel modeling [7]–[13].
Based on environment databases, handcrafted features are used
as model inputs, such as the percentage of buildings between
the transmitter (Tx) and receiver (Rx), antenna height, etc., and
multilayer perceptron (MLP) networks are constructed to pre-
dict received signal strength [14]–[16]. A neural based hybrid
system that employs a propagation loss algorithm to assist the
MLP network. In [17]–[20], it was found that the radial basis
function models can fit measurement data faster and obtain
more accurate prediction than MLP by selecting appropriate
radial basis functions. Deeper DL models are able to search in
a larger hypothesis space, thereby describing channel nonlinear
features more accurately [20]. However, handcrafted features
are mostly based on statistics and cannot fully represent the
environment information that affects propagation, especially
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high-dimensional spatial information in real environment. This
will affect the prediction accuracy of the model.

To capture environment information more comprehensively,
many studies have adopted images as input, such as satellite
images, elevation maps, building maps, etc. Currently, models
that use images as input focus primarily on large-scale chan-
nel parameters, and this paper specifically focuses on path
loss prediction. Propagation modeling using images can be
classified into three main approaches based on the granularity
of input and output. The first approach involves a large-area
satellite image or feature map as model input, covering a
geographic range of up to 2 km, and returns channel character-
istics corresponding to the entire image, such as the path loss
exponent and shadow fading [21]–[24]. The second approach
still uses a large-area satellite image or feature map as input,
but focuses on a narrower geographic range surrounding the
Tx, typically between 250 m and 2000 m, and returns channel
characteristics for each pixel point in the image [25]–[27]. The
third approach, in contrast, uses a small-area satellite image
or feature map as input, generally focusing on an area within
250 meters of the Rx, and returns channel characteristics
at a specified Rx location [28]–[30]. Usually, computational
efficiency and accuracy are mutually constrained. This article
focuses on the third type, which is high-precision point-to-
point path loss prediction. In [28], the authors propose a multi-
input network to predict point-to-point path loss in a campus
environment. The input features include satellite images of the
area near Rx and measurement parameters between Tx and Rx.
[29] further improves the above approach by using a model-
aided method. In the campus scenario, the output of the neural
network is used as a calibration value for the empirical path
loss model, and it is found that the accuracy can be further
enhanced. Subsequently, [30] addresses the issue that the
amount of channel measurement data is often insufficient for
training neural networks based on [29]. Specifically, a transfer
learning approach is developed to pre-train the model using
extensive simulation data generated by a conventional model,
and then the model is fine-tuned to obtain accurate results
on the basis of measurement data. However,above models are
constrained by the range of input images, which requires all
input images to be of the same size. In this case, it is hard for
the network to capture the complete environment information
of the entire propagation link, since the range of environment
features changes with variations in Tx-Rx distance, leading to
poor generalization when transitioning to new environments.

Several solutions have emerged to address the above prob-
lems. In [31], a network based on self-supervised learning is
designed that can calculate the path loss between a specified
Tx and Rx in a satellite image. Specifically, a larger satellite
image is used as a base map and a mask is applied to
extract the effective portion of the Tx-to-Rx link from the
satellite image. However, the effective mask only occupies
a small portion of the satellite image, leading to a waste
of computational resources. In addition, a small zoom factor
of the satellite image may not provide sufficient detailed
information about the propagation environment, which could
affect the accuracy of predictions. In [32], a convolutional
neural network (CNN) is designed to predict path loss between

specific Tx and Rx locations. The model takes a binary
building image from Tx to Rx as input and merges it with a
free space path loss (FSPL) map centered on the Tx location
in the channel dimension. Due to the fact that the image size
is restricted to be a square, Tx and Rx are placed at the two
diagonal vertices or at the midpoint of two opposite sides.
As the relative position between Tx and Rx changes, the
image needs to be scaled to maintain a square aspect ratio.
This operation can affect the shape of buildings and roads,
potentially leading to inaccurate output. Therefore, improving
accuracy and generalization requires further exploration.

B. Contributions

In this paper, we propose a path loss prediction model based
on DL using satellite images. The complexity of the proposed
model inputs is balanced, aiming to improve accuracy while
maintaining generalization capability. Our contributions can be
summarized as follows.

1) To improve generalizability and prediction accuracy,
an input image feature containing Tx-Rx connectivity
and surrounding environment information is designed.
Specifically, the image size is variable because of the
different distances between Tx and Rx.

2) A model capable of handling variable-size inputs is
developed based on channel propagation knowledge.
The model is designed based on convolutional layers,
and residual structures are employed to improve the
model receptive field. In order to enhance the ability
to extract spatial features, an attention mechanism is
incorporated for both spatial and channel dimensions.
In addition, a spatial pyramid pooling layer is designed
to preserve spatial features when converting features to
a fixed size.

3) A visualization method for the intermediate layer out-
puts of the model is proposed to validate the effective-
ness of the designed satellite image data and the model,
demonstrating the reliability of the model generalization
ability in new scenarios.

C. Article Organization

Section II introduces the path loss prediction model. Section
III describes the measurement data and satellite image data,
as well as data pre-processing and feature design. The design,
visualization and training process of the proposed model are
presented in Section IV. Performance validation is analyzed
in Section V. Section VI discusses the issues related to the
generalizability and visualization accuracy of the proposed
model. Finally, Section VII concludes the paper.

II. PATH LOSS PREDICTION MODEL

The classic close-in free space reference distance (CI) path
loss model [33] has been widely used to estimate path loss in
various environments [34]. It can be expressed as

PLCI(fc, d3D) = FSPL(fc, d0) + 10n log10(d3D), (1)
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where n is the path loss exponent, which can be obtained by
minimizing the mean square error (MSE). d3D is the Euclidean
distance between Tx and Rx, and it should be larger than 1m
[35]. FSPL(fc, d0) is the free space path loss with frequency
fc at a physically-based reference distance d0 which is 1m
in this paper. The CI model can be used as reference for
comparison in this paper.

For DL-based path loss prediction models with feature
images, the input data generally consists of two types: feature
images containing propagation environment information and
system parameter vectors based on expert knowledge, such as
Tx height, Tx power and Tx-Rx distance. The architecture of
the model can typically be divided into three parts. The first
part involves using CNN to extract environment features from
images, which converts the image input into a one-dimensional
environment feature vector. The second part involves employ-
ing an MLP to extract features from the system parameter
vector and producing a one-dimensional feature vector. Finally,
in the third part, the extracted features of the first two parts
are combined and fed into an MLP for path loss prediction.

In order to maintain computational efficiency while using
fine-grained environment features, it is important to select the
necessary range of environment features based on a specific
Tx-Rx location. However, existing models are limited by
the fixed-size input of satellite images, such as 256 × 256,
which contributes to the inefficient utilization of environment
features. The limitation of a fixed input size primarily arises
from the fully connected layers used after convolutional layers.
These layers have a strict size limit for the input data. The fully
connected layer is shown below:

h = g(wTx+ c), (2)

where w is a linearly varying weight matrix and its size is
determined by the input feature x and the output feature h.
c is bias term. g is an activation function, also known as a
nonlinear function, such as Rectified Linear Unit (ReLU) and
sigmoid. The input data dimension of the fully connected layer
is fixed when the network is established. A common MLP
structure is shown in Fig. 1(a).

The convolutional layer can be described as

s(t) = x(a)w(t− a)da, (3)

where w is the convolutional kernel and x is the input image.
t represents a specific position in the output feature map, and
a represents a position in the input image x. There is no size
limit for the input of a convolutional layer because it calculates
by sliding the convolutional kernel w over image to determine
if this pattern exists at different locations. Therefore, with
variations in input size, the convolutional layer is still able to
recognize the same pattern, even if it is in a different location,
as shown in Fig. 1(b).

To address the limitation of input size, an effective approach
is to add a global average pooling (GAP) layer or a global
maximum pooling (GMP) layer after the CNN before entering
it into MLP. However, global pooling can result in loss of
location information in the feature map, which is indispensable
for the inference of propagation information.

Input Layer Hidden Layers Output Layer

1 3 5
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´
Î

1 31 31 31 31 3 5 2 5 5
W

´
Î

2 52 52 52 52 5 5 3 5 4
W

´
Î

3 53 53 53 53 5 4

(a) (b)

Fig. 1. Classical Model Architecture. (a) Schematic diagram of 3 layers
MLP structure, where the hidden layer does not calculate the bias. The sizes
of W1, W2, and W3 are fixed when constructing the MLP, so only a fixed
input dimension can be inputted. (b) Convolution Calculation Illustration. The
green rectangle represents the convolutional kernel, and the light blue color
indicates the size of the input image. The dark blue rectangle represents the
computation area of the convolutional kernel on the image. The gray area
represents the extendable range of the input image. The convolutional kernel
slides over the image to perform computations, generating feature maps of
different sizes when operating on images of different sizes (gray area).
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Fig. 2. An overview of data map collected in Bologna, Italy. Solid lines
represent the measured data of this route used as training set, while dashed
lines represent the measured data of this route used as test set. Different colors
represent different environment types. The concentric circles connected to
the lines represent Tx locations corresponding to the respective measurement
routes.

III. DATASET CONSTRUCTION

In this section, path loss dataset collection and satellite
image design are first presented. Data preprocessing and the
splitting of dataset are then described in detail.

A. Channel Measurement

We employ an open source dataset [36], where the measure-
ment campaign was performed in a vehicle-to-infrastructure
(V2I) scenario in Bologna, and the geographical locations
of the measurement data can be observed from Fig. 2. The
dataset includes 8 different roadside unit (RSU) locations as
Tx locations. The frequency band of the measurement dataset
is 5.9 GHz. The Tx heights are set at 6.5 and 10.5 meters,
while the Rx is mounted on the roof of a car at approximately
2.5 meters. Given that the measurements were conducted in
urban areas, we assume that the Rx height remains constant
throughout the measurement campaign. Large-scale channel
parameters are provided as received signal strength indicators

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2024.3454019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

(RSSI) in the original dataset. In this article, path loss is
calculated through the RSSI [1] and calibrated for antenna
pattern and cable loss [36], which can be described in the
logarithmic scale as

PL = PTx − PRx + Lcable −GTx −GRx, (4)

where PTx is the transmission power, and PRx is the received
power, which in this context is the measured RSSI value, Lcable
represents the cable loss, and GTx and GRx are the Tx and Rx
antenna gains, respectively.

B. Satellite Images Collection and Processing

As the distance between Tx and Rx varies, the size of the
environmental image affecting propagation also changes. As
shown in Fig. 3, this variation in size is difficult to quantify
using fixed-size features. Therefore, we have defined a new
input image. For each satellite image, the Tx and Rx are fixed
on the left and right sides, respectively. To ensure sufficient
feature information, satellite images are set to a zoom level
of 16, where each pixel corresponds to a ground distance of
0.915 meters. This allows for detailed analysis of environment
features. The extent of the environmental impact is calculated
using the root mean square (RMS) delay spread under Line-
of-Sight (LOS) conditions in the UMa scenario, as described
in [37]. Specifically, the mean value of the logarithmic RMS
delay spread under LOS conditions is calculated as follows:

µLOS [dB] = −6.955− 0.0963 log10(fc), (5)

where fc is the frequency in GHz, and the standard deviation
σLOS is 0.66. Considering the lower height of the Tx relative
to the UMa scenario and to reduce the amount of input data
for the model, we use µLOS + 0.7σLOS as the extent of the
environmental impact, where 0.7 is an empirical value. This
corresponds to a distance of approximately 80 meters or 87
pixels. This distance determines the minimum image boundary
distance to the Tx and Rx. Satellite image collection in this
paper is based on the Mapbox static map API. An example of
a satellite image from the dataset is shown in Fig. 4(a). The
size of the satellite image is 175 (vertical) × p (horizontal) ×
3 (RGB color channels), where 175 represents the vertical
length of the image, including top and bottom borders (87×2,
with an additional 1 pixel for the position of Tx and Rx). p
indicates the horizontal length of the image, which varies with
the distance of the Tx and Rx.

C. Data Preprocessing

To enable the model to fully comprehend the locations of
the Tx and Rx and further learn the propagation mechanism,
two feature maps are supplemented: (i) an FSPL map, where
pixel values represent the FSPL from the Tx location, and (ii)
a distance map, where pixel values represent the distance to
the Rx location. These two feature maps are merged with the
satellite image along the channel dimension. Ultimately, the
combination of these five channels is used as the model input,
as illustrated in Fig. 4(b).

Fig. 3. Description of satellite image size. Tx and Rx locations are marked
in red and blue. The yellow rectangle represents the size of the intercepted
satellite image.

TX RX

Transceiver distance80m

TX RX

Transceiver distance80m 80m

(a)

(b)

Fig. 4. Illustration of the model input for the satellite image part. (a)
Calculation method of satellite image size. (b) Model input feature map, where
the value of x varies with the distance between transceivers.

The original satellite image, with values ranging from 0
to 255, contains three channels. To standardize the satellite
image, we normalize each pixel value to the interval [0, 1]
by dividing by the maximum value of 255. Since a larger
range of images will be used for model prediction, a more
stable normalization method for the two feature maps should
be employed to enhance the model robustness. In this case,
we apply the function f(x) = e−x to normalize each pixel
value in feature maps, ensuring that the Tx-Rx locations on the
feature maps are always set to 1. This normalization function
maps larger values to a smaller range while preserving the
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relative relationships of both FSPL and distance values on
feature maps.

The system state information during measurement also
contributes to the prediction of path loss. The distance between
Tx and Rx, FSPL, and Tx height are used as input features.
This feature vector is normalized using f(x) = x−µ

σ , where
µ is the mean value and σ is the standard deviation of the
feature vector.

D. Dataset Splitting

The dataset is categorized based on different environment
scenarios: the common city scenario and the tree and vege-
tation impact scenario. Each measurement activity was con-
ducted independently on a single route. Therefore, in each
category, the dataset is divided into training and test sets based
on routes as the smallest unit, ensuring that the generalizability
of the model can be effectively validated by the test dataset.
Dataset splitting is illustrated in Fig. 2. Only RSU 4 and
RSU 5 have a height of 10.5 meters, while the heights of
the other RSUs are all 6.5 meters. Additionally, 10% of the
samples are randomly selected as continuous segments from
each measurement route in the training set and combined
to form the validation set. The training, validation, and test
sets include approximately 16979, 1893, and 13484 samples,
respectively. The features of each sample include the satellite
image for the specified Tx and Rx location, the Tx and Rx
distance, the Tx height, and the FSPL between the Tx and Rx.
The label is the path loss value.

IV. MODEL DESIGN AND IMPLEMENTATION

In this section, the architecture and loss function of the
proposed model are discussed, and the model implementation
is presented.

A. Model Design

We propose a multi-input model capable of extracting
features from satellite images and system parameters to predict
path loss at a given transceiver location. The model is trained
to learn the mapping relationship between the complex en-
vironment and path loss values. CNN is applied to extract
underlying features from satellite images, while an MLP
network is set to handle system state information. Finally,
the two sets of features are merged, and an MLP network
is developed to predict path loss.

For feature extraction from satellite images, three modules
are designed to enable the model to learn effective propagation
features and spatial information. Propagation features are
complex and abstract, and satellite images contain only visual
information of environment features, making it challenging
to learn an accurate mapping relationship. We implement
a residual link-based architecture [38] for the first module,
which allows for the development of deeper models and
improves the ability to learn complex functions. Since the
transceiver position and relative position of IOs are crucial
to propagation, 3× 3 and 5× 5 size convolutional kernels are
used to effectively increase the receptive field of the model.
The improved residual blocks are illustrated in Fig. 5.
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Fig. 5. (a) Modified Resblock architecture with 5× 5 convolutional kernel.
(b) Attention mechanism architecture.

For the second module, an attention mechanism is employed
for both the channel and spatial dimensions inspired by [39].
The attention mechanism in the channel dimension filters the
extracted feature patterns, retaining the most effective features.
In the spatial dimension, the attention mechanism focuses on
the valid parts of feature maps.

To merge the extracted satellite image features with system
state information features, it is necessary to convert feature
maps of different sizes into the same size. Therefore, we use
a spatial pyramid pooling (SPP) layer in the third module
to process the output of the convolutional layer, preserving
the spatial information of feature maps [40]. SPP divides the
feature map into several specified bins and then performs
pooling operations on each bin individually, stitching them
together to obtain the final result. The pooling operations can
be divided into three parts, as illustrated in Fig. 6. The first
part directly uses feature map to perform global pooling. In the
second and third parts, feature map is horizontally divided into
three and five equal parts, respectively. This approach provides
different receptive field information for the model, enabling it
to focus on the link condition of LOS propagation.

For both the feature extraction of measurement parameters
and the final prediction part, we use three-layer MLP networks.
The architecture diagram of the model is shown in Fig.
7, and the model parameters can be found in Table I. To
avoid overfitting, we apply L2 kernel regularization with a
strength of 10−4 on the convolutional layers and dropout with
a rate of 0.2 on the fully connected layers. Additionally, all
convolutional and fully connected layers use Leaky ReLU as
the activation function.

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2024.3454019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

Feature maps from 
the previous layer 
(Channel is 256)

OutputSPP layer

9×256

Fig. 6. SPP layer design methodology. The feature map is divided horizontally
to highlight the LOS contribution. Feature maps are divided into three different
ways. After the division, bins obtained are pooled to obtain vectors with length
equals to the number of channels. By concatenating these vectors together,
the output result can be obtained.
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Fig. 7. Improved model architecture. The residual block, attention block, and
SPP module are shown in Fig. 5(a), Fig. 5(b), and Fig. 6, respectively.

B. Model Interpretability

Model visualization can help understand how model makes
predictions [41]–[44]. A common method is to calculate the
gradient of the output with respect to a certain activation
layer to obtain influence of each part of the activation layer
on the final result and then visualize it as an activation map
[45]–[47]. In this method, output values are mostly positive,
with larger values indicating higher confidence. The ReLU
activation function is widely used to remove negative values
in activation and gradient maps to enhance visualization per-
formance. However, in the proposed model, output values can
be negative, and an increase in the prediction result indicates
a stronger signal. Therefore, identifying positive values in the
gradient map helps us find the areas in the environment that
significant impact signal strength, while the activation map
should retain negative values.

To enhance model interpretability, we design a visualization
scheme based on [47], which calculates a saliency map to
indicate the importance of different locations in the image
for model prediction, thus helping us understand how model
makes decisions. The saliency map Lij , representing the
importance of each spatial position (i, j) for prediction, is
calculated as shown in formula 6. Since Leaky ReLU is used
as the activation function in the model, leading to negative
values in intermediate layers, absolute value calculations are

TABLE I
MODEL ARCHITECTURE DETAILS.

Network Layer Output Description

Satellite
Image

Input (175, p, 5) /

Conv Block (88, p, 32) 7× 7, 32, Stride 2

Res Block 1 ×3 (44, p, 32)

3× 3, 32, Stride 2

3× 3, 32, Stride 1

5× 5, 16, Stride 1

1× 1, 32, Stride 1

Res Block 2 ×4 (22, p, 64)

3× 3, 64, Stride 2

3× 3, 64, Stride 1

5× 5, 32, Stride 1

1× 1, 64, Stride 1

Res Block 3 ×6 (11, p, 128) ...

Res Block 4 ×3 (6, p, 256) ...

SPP (9, 256) [1, 1], [3, 1], [5, 1]

Flatten 2304 /

State
Information

Input 3 /

Dense Block 1 10 10

Dense Block 2 10 10

Dense Block 3 10 10

Combined
Network

Concatenate 2314 /

Dense Block 1 2048 2048

Dense Block 2 512 512

Dense Block 3 1 1

performed to enhance the visualization effect.

Lij =
∑
k

∣∣∣∣∣relu
(

∂Y

∂Ak
ij

)
·Ak

ij

∣∣∣∣∣ , (6)

where Ak
ij represents the activation map of the k-th channel

in a certain layer. Y represents the prediction result.

C. Model Implementation

In this work, we mainly use TensorFlow 2.10.0 on a work-
station equipped with an NVIDIA GeForce RTX 4090 GPU
for model training. To avoid the training instability caused
by zero-padding when concatenating images of different sizes
in a batch, we use the stochastic gradient descent method
with a batch size of 1. We employ the random gradient
descent method with a batch size of 1. Besides, the Adam
optimizer [48] with a learning rate of 0.0001 is used. The
two hyperparameters in Adam optimizer, β1 and β2, are set
to be 0.9 and 0.999, respectively. MSE is employed as the
loss function. After training with 300 epochs, the path loss
prediction model can be obtained.

V. PERFORMANCE EVALUATION

In this section, we validate the effectiveness and inter-
pretability of the proposed model for environment information
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extraction and compare it with previous approaches. Addi-
tionally, we compare the gains brought by different model
architectures.

A. Environment Information Extraction Effectiveness

Firstly, we compare the path loss prediction accuracy of
the proposed model, the CI model, and a prediction model
using satellite images near the Rx as input (referred to as the
“model with local image”). For the model with local image,
we construct a model with the same framework as [28]. The
CI model and the model with local image are trained on the
same dataset as the proposed model. After fitting, the path
loss exponent of the CI model is 2.33. Fig. 8 shows the
prediction performance of the above three models on a test
dataset under two scenarios: the common city scenario and the
tree and vegetation impact scenario. It can be first observed
that the CI model only captures the overall trend of path loss
and fails to fit well with measurement data due to insufficient
utilization of environment information. Furthermore, there is
a certain mismatch between the predictions of the model with
local image and measurement data. In contrast, the proposed
model demonstrates the best prediction accuracy and fitting.
Additionally, the RMSE at different distances between the
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Fig. 8. Comparison of model prediction accuracy for different scenarios.
(a) Testing route for common city scenario. (b) Testing route for trees and
vegetation scenario.
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Fig. 9. Average RMSE versus distance in the test route for the common city
scenario. Each point represents the average RMSE with a bin size of 50m.

proposed model and the model with local image is compared,
as in Fig. 9. Specifically, the route is divided into 50 m bins,
and the average RMSE is calculated for all points within each
bin. The proposed model outperforms the model with local
image at all distances.

The performance of different models is validated using
RMSE based on all routes in the test set. The prediction
accuracy is depicted using a box plot in Fig. 10. The top
and bottom edges of the boxes represent the first and third
quartiles, respectively, and the boxes contains 50% of the error
results. The whiskers extend to the remaining data, with the top
and bottom ends of the whiskers representing the maximum
and minimum values, respectively. We also verify the average
RMSE, mean absolute percentage error (MAPE) and Pearson
correlation coefficient (PCC) of different models for each test
scenario, as shown in Table II, Table III and Table IV. The
RMSE, MAPE, and PCC are given by:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (7)

Fig. 10. Boxplot of model prediction accuracy on different test routes.
Compute RMSE for models using measurement data from each route in the
test dataset.
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MAPE =
100

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , (8)

PCC =
cov(y, ŷ)
σyσŷ

, (9)

where y = {y1, . . . , yN} and ŷ = {ŷ1, . . . , ŷN} refer to the
measured and predicted values, respectively. N indicates the
number of samples. cov(y, ŷ) represents the covariance of y
and ŷ, and σy and σŷ are the standard deviations of y and
ŷ, respectively. In the common city scenario, the propagation
environment is relatively simple, with radio waves mainly
following a LOS path, exhibiting a log-scale relationship.
As a result, the CI model can achieve a better fit, but the
proposed model is more prone to overfitting in such a simple
environment. According to the Pearson correlation coefficient,
the proposed model shows a good correlation with the data in
the common city scenario, though it exhibits a certain mean
bias during predictions. This issue could be improved in the
future through model-aided methods , such as using the output
results of the model to compensate for the predictions of a
statistical model. In complex scenarios influenced by trees
and vegetation, channel characteristics become more nonlinear,
and the proposed model outperforms the other two models in
terms of prediction accuracy. For the overall test dataset, the
proposed model can improve RMSE prediction accuracy by
1.90 dB compared to the model with local image and by 3.07
dB compared to the CI model.

Visualization results of a partial output of the model are
presented in Fig. 11, where Tx and Rx locations are marked
in red and blue, respectively. In the saliency map, light blue
corresponds to important pixels, as opposed to dark blue. In
the bottom image, we have marked the most important parts
influencing the prediction with yellow dashed lines.

The saliency map clearly highlights the impact of envi-
ronmental features within the LOS region on the prediction

TABLE II
RMSE COMPARISON OF PREDICTION ACCURACY IN DIFFERENT

SCENARIOS.

Proposed
model

Model with
local image CI model

Common City 4.43 dB 6.80 dB 4.02 dB

Trees and Vegetation 5.67 dB 7.13 dB 11.08 dB

All 5.05 dB 6.95 dB 8.12 dB

TABLE III
MAPE COMPARISON OF PREDICTION ACCURACY IN DIFFERENT

SCENARIOS.

Proposed
model

Model with
local image CI model

Common City 4.54 % 6.60 % 2.95 %

Trees and Vegetation 5.58 % 7.77 % 8.49 %

All 5.03 % 7.15 % 5.54 %

TABLE IV
PCC COMPARISON OF PREDICTION ACCURACY IN DIFFERENT SCENARIOS.

Proposed
model

Model with
local image CI model

Common City 0.90 0.65 0.81

Trees and Vegetation 0.88 0.75 0.90

All 0.85 0.69 0.81

results, confirming the necessity of incorporating environmen-
tal information between Tx and Rx in the model input. By
observing the important regions within the yellow dashed
lines, the model identifies the most crucial areas for pre-

Tx position             Rx position

Fig. 11. Visualization results for 4 different input satellite images. The Tx and Rx positions are marked in red and blue, respectively. In saliency map, light
blue corresponds to important pixels, as opposed to dark blue.
The top image shows the satellite image input to the model, the middle image shows the saliency map calculated based on
this input, and the bottom image shows the satellite image with the overlaid saliency map. In the bottom image, we have

marked the most important parts influencing the prediction with yellow dashed lines.
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Fig. 12. Model performance improvement comparison.

diction as highly overlapping with the terrain features along
the propagation path, such as buildings and vegetation. This
illustrates the substantial effect of terrain features on path loss
prediction. It can be observed that the importance assigned by
the model to the trees and vegetation regions is greater than
that to building regions. This may be due to buildings typically
causing obstruction and resulting in reflection or refraction,
while trees and vegetation areas cause extensive scattering,
leading to a larger impact area. Moreover, the model does
not extract features only from large areas of vegetation and
buildings. Observing the first three visualizations, it can be
seen that the model consistently assigns high importance to a
single tree located at the bottom right corner of the transmitter.
Despite some margin left around the images near the Tx and
Rx, it does not significantly affect the prediction results. These
findings fully demonstrate that effective feature extraction
between Tx and Rx can further enhance the accuracy and
effectiveness of the model in path loss prediction.

B. Model architecture validation

We compare the effects of using GAP and GMP, SPP
after CNN. Both GAP and GMP are applied to the feature
layer output by CNN, and the results obtained by these two
methods are concatenated. The experimental results are shown
in Fig. 12. Although the SPP method has more parameters, it
improves the network prediction accuracy by about 0.52 dB.
We also compare the proposed model with and without using
the attention mechanism. It can be observed that using the
attention mechanism improves the RMSE by about 0.82 dB
for the model.

VI. DISCUSSION

A. Model Generalizability

We proposed a path loss prediction model based on satellite
images, validating the generalization advantages of using
complete satellite image features between the Tx and Rx links
as input. While there is still room for improvement in the
generalization of the proposed model in other aspects, we will
continue to investigate these issues in future work.

1) The colors of satellite images: Since the model extracts
environmental features from satellite images, the color infor-
mation in these images can impact the generalizability of the
model. However, in the dataset, most buildings in Bologna
have red roofs, causing the model to associate the building
information with red roofs. As a result, the generalizability
of the model decreases in entirely new scenarios. Similarly,
vegetation changes in different seasons can also affect the
generalizability. This problem can be addressed by utilizing
the subsequent two approaches.

• Environmental Feature Extraction: In the process of de-
signing environmental features, incorporating semantic
segmentation results for objects like buildings and vege-
tation, along with elevation data, can be beneficial. This
approach can help minimize color-related interference
and aid the model in identifying crucial features that
influence propagation, thus enhancing the model’s ability
to generalize across various environments.

• Expanding the Dataset: Expanding the dataset to include
various regions can improve the generalizability of the
model. Introducing a diverse range of buildings and
natural environments into the training dataset will enable
the model to better adapt to new scenarios and avoid
relying solely on specific color features for predictions.

2) Frequency Bands and Scenarios: The proposed model
supports training and prediction in any frequency band in
outdoor scenarios. However, due to the limitations of the
dataset, the model’s design does not include multi-band feature
extraction and prediction, and its generalizability in mixed
scenarios still needs to be further validated with corresponding
data. In the future, we will explore the generalizability of the
model in multi-band complex scenarios.

3) Model Prediction Distance: Due to the dataset con-
straints, the furthest testable distance is about 1.5 km. Beyond
this limit, the model is unable to generate reliable prediction
results. This problem can be improved by employing the
following two approaches.

• Transfer Learning Method: Use extensive simulated chan-
nel data for transfer learning, followed by fine-tuning the
model with measured data. This approach leverages the
richness of the simulated data while ensuring the model’s
accuracy in real-world scenarios, thereby improving the
issue of unreasonable model predictions at long distances.

• Model-aided Method: Use the output of the DL model
as a compensation value for an empirical model or a
simple deterministic model. This enhances the stability
and accuracy of the model predictions.

B. Model Interpretability Method

The model visualization method is based on the feature
maps output by the top convolutional layers. Due to the low
resolution of these feature maps, the resulting importance maps
also have low resolution. Consequently, the visualization can
only highlight key areas in the input image that influence the
prediction results, making it difficult to precisely align the
important regions with specific scatterers. Future work will
explore more refined visualization techniques to explore the
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relationship between environmental features and radio wave
propagation mechanisms.

VII. CONCLUSION

In this paper, a DL-based path loss prediction model is
proposed. The model mainly employs satellite images as input,
which contain complete propagation environment information
between Tx and Rx. To extract features from images, residual
structures, attention mechanisms, and spatial pyramid pooling
are designed. In addition, a visualization method is proposed to
demonstrate the necessity of considering complete propagation
environment information as input. The prediction accuracy of
the proposed model is verified by comparing it with the CI
model and the prediction model that uses only local satellite
images. Results show that the proposed model have better
agreement with the measurements, achieving an RMSE of 5.05
dB.
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