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Abstract—In this article, we introduce machine learning (ML)
techniques developed for the monitoring of the brown marmorated
stink bug (BMSB), a significant agricultural pest responsible for
considerable crop damage worldwide. The HALY.ID project, initi-
ated in early 2021, aims to enhance BMSB monitoring through the
utilization of information and communication technology methods.
We employ computer vision techniques on RGB images captured
by drones and investigate the performance of deep neural networks
to evaluate the impact of this invasive species on crop yields in
orchards around Europe. Specifically, we evaluate the single shot
multibox detector, detection transformer, YOLOV5, YOLOV9, and
YOLOV10 architectures for full-level and patch-level image anal-
ysis, respectively. To improve detection accuracy, we experiment
with shortwave infrared hyperspectral imaging (SWIR-HSI) in
laboratory settings. Given that pheromone baited traps are the
most accepted tools for pest detection by field operators, we also
propose an Internet of Things sticky trap with an integrated
camera equipped with lightweight convolutional neural networks
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models operating “on the edge” in this resource constrained system.
In addition, we develop a client–server application for real-time bug
detection, integrating the ML models to provide accessible results
to farmers. Lastly, we explore effective postharvesting strategies
using SWIR-HSI images to detect insect punctures invisible to the
naked eye, thereby enhancing the quality of marketable fruit.

Index Terms—Brown marmorated stink bug (BMSB), computer
vision algorithms, hyperspectral imaging, insect detection, RGB
imaging, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

THE European project HALY.ID [1], started at the beginning
of 2021, aimed at monitoring the Halyomorpha halys,

also known as the brown marmorated stink bug (BMSB), a
global agricultural pest causing significant damage to crops. The
BMSB, originating from East Asia [2], is a highly destructive
and polyphagous pest, infesting various fruit trees, such as
pears, peaches, and apricots, leading to substantial crop damage
worldwide with significant economic impact. Its global spread
is facilitated by human activities, such as international trade,
and worsened by climate change, causing significant financial
losses, notably in regions, such as Italy’s Emilia Romagna [3],
which is known for its fertile orchards. Current monitoring meth-
ods primarily rely on traps, which use lures with aggregation
pheromones that attract bugs in the vicinity, increasing the local
damages [3]. Unfortunately, once the BMSB specimens are dis-
covered to be present in an orchard, there is no specific chemical
defense except for the use of broad-spectrum systemic pesticides
that disrupt integrated pest management strategies, and raise
environmental and human health concerns for customers.

To address the challenges posed by BMSB, and in particular
those related to computer vision, HALY.ID proposes to lever-
age machine learning (ML) technologies [4] in the following
research activities.

1) We worked with RGB images of insects “in the field” and
generated diverse image datasets from various campaigns
and imaging platforms, smartphones, drones, and open
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access databases between 2022 and 2023. The largest
dataset of insect images from the orchard was obtained
through autonomous missions conducted by unmanned
aerial vehicles (UAVs), commonly known as drones.

2) We evaluated the performance of different ML models
to achieve accurate BMSB detection, with a focus on the
single shot multibox detector (SSD), detection transformer
(DETR), YOLOV5, YOLOV9, and YOLOV10 architec-
tures.

3) We explored alternatives to RGB, such as shortwave in-
frared hyperspectral imaging (SWIR-HSI) and visible-
near infrared (Vis-NIR) multispectral imaging (MSI) sys-
tems, identifying spectral regions for affordable and rapid
multispectral sensors to use with RGB cameras and
drones. However, our research was limited to the lab due
to the lack of commercially available solutions.

4) We developed an intelligent sticky trap with integrated
cameras and edge-based convolutional neural networks
(CNNs) for image classification on resource constrained
Internet of Things (IoT) systems. Despite the drawbacks
associated with traps using aggregation pheromones (at-
tracting the insect of interest to the trap location), they
are generally accepted by field operators as the primary
source of data for insect population identification.

5) We developed a versatile client–server application with
the primary goal of integrating any trained model and
making it accessible to end-users. The ultimate aim of
this application is to engage farmers in a decision support
system. In addition, the application enables UAVs to plan
their routes within orchards to capture images at specific
waypoints for the RGB image dataset.

6) We proposed postharvest strategies crucial for maintaining
fruit quality in the market. Fruits that are punctured at an
early stage develop significant deformities, making them
clearly unmarketable. On the other hand, fruits punctured
just before harvesting may present internal damages not
visible to the naked eye at the time of harvest and transfer
to the marketplace. Besides compromising the safety of
healthy fruit and facilitating the outbreak of other diseases,
their presence in the market can undermine consumer
confidence in fruit quality. Hence, we recommended inte-
grating nondestructive techniques, such as SWIR, into the
fruit sorting system to enhance the quality of marketable
fruits by identifying previously undetectable damage at an
early stage.

In this article, we delineate the methodologies, findings,
and implications derived from our comprehensive endeavor
aimed at advancing BMSB monitoring techniques, amalga-
mating cutting-edge technologies with practical surveillance
strategies to mitigate agricultural threats effectively. So, our
objective was to develop information and communication tech-
nology enabled strategies for implementing the most effective,
most cost-efficient, autonomous and adaptable monitoring of the
BMSB with minimal human intervention.

The rest of this article is organized as follows. Section II
discusses related works. Sections III and IV present ML tech-
niques that work with RGB and spectral imaging, respectively.

Section V presents the sticky trap imaging system, which was
developed. Section VI showcases the client–server application.
Section VII proposes a technique for fruit puncture detection.
Finally, Section VIII concludes this article and future research
directions.

II. RELATED WORK

In this section, we review the literature on computer vision,
focusing on its applications in insect and puncture detection.

A. Insect Detection

Nowadays, there has been a growing trend toward leveraging
ML techniques for insect species monitoring. Traditional meth-
ods, such as support vector machines, adaptive boosting, and
neural networks (NNs) [5], [6], [7], have been widely utilized
alongside deep learning techniques based on CNNs [8], [9], [10]
to achieve optimal results in insect monitoring. For instance, a
novel approach for early detection and continuous monitoring of
adult-stage whitefly and thrip in greenhouses has been proposed
in [5]. Their approach, based on an image-processing algorithm
and artificial NNs, yielded highly satisfactory results in whitefly
and thrips identification [5]. Such approaches hold significant
promise in enhancing integrated pest management strategies and
in reducing the dependence on harmful chemicals in greenhouse
agriculture. In addition, the use of pheromone loaded sticky traps
is a common and effective method for autonomously detecting
pest infestations [11].

In the literature, apart from the results of HALY.ID, there
are some results on the Pentatomidae family to which BMSB
belongs [12], [13], [14]. However, all these results did not
evaluate their models on datasets built from in-field images
as we do. Trufelea et al. [12] proposed training a CNN to
classify four different kinds of Pentatomidae insects, including
BMSB adult/nymph, Pyrrhocoris apterus, and Nezara viridula.
Many images are from the Maryland Biodiversity database [15],
and others are from a custom dataset collected by profes-
sional cameras. Ichim et al. [13] investigated the identifica-
tion of BMSB insects with four CNNs, namely, GoogLeNet,
ResNet101, DenseNet201, and VGG19. One dataset is built on
two public datasets with many different insects, and a custom
dataset is collected with a mini-drone containing images with
adults and nymphs of BMSB. Transfer learning and data aug-
mentation are used to reduce computational effort during the
learning phase, and statistical indicators (such as precision and
recall) derived from confusion matrices are employed to evaluate
the performance of each CNN.

Very recently, the YOLO model [16], [17] has been used
to detect harmful insects in ecological orchards by Sava et al.
[14]. The authors evaluated YOLO with region-based CNNs,
and several YOLO models have been trained, validated, and
tested on the Maryland dataset [15], which contains professional
macroimages of BMSB in different poses, from different short
distances, and at different stages of evolution. Betti Sorbelli
et al. [18], [19], [20] explored the use of RGB cameras, drones,
and computer vision algorithms to monitor and detect the BMSB
in orchards using a drone in first person view. While these
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results were obtained in the first year of the HALY.ID project,
we do not discuss them here. Instead, we focus on the computer
vision algorithms used to detect BMSB in images collected
autonomously by the drone. From this perspective, it is evident
that the majority of achievements related to BMSB detection
have been generated within the HALY.ID project. Furthermore,
unlike others, we are currently exploring solutions that can
accurately determine the BMSB’s position directly from aerial
or in-field images.

B. Puncture Detection

In literature, efforts specifically concerning the detection of
insect punctures on harvested fruits refer to visible superficial
damage on the skin [21], generally detectable in the Vis-NIR
range (400–1000 nm). Typically, the main applications for
detecting nonvisible damage, internal to the fruit pulp, using
SWIR-HSI, refer to the presence of bruising [22], [23], [24].
Efficient techniques for rapid and effective quality assessment of
fruits and vegetables are essential to meet the growing consumer
demand for better, more consistent, and safer food products. Lu
et al. [25] focused on three innovative HSI-based techniques
or sensing platforms—spectral scattering, integrated reflectance
and transmittance, and spatially resolved spectroscopy—that
have been developed in the laboratory for property and quality
evaluation of fruits, vegetables, and other food products. Simi-
larly, Alamar et al. [26] focused on the detection of mechanical
damages, including bruising. Interestingly, Zamljen et al. [27]
examined the metabolic response of apples to BMSB punctures.
Compared to healthy fruits, the sugar and phenolic compounds
contents differ, suggesting that NIR-HSI imaging could be useful
in detecting damages caused by the BMSB. To the best of the
authors’ knowledge, there are no previous works concerning
BMSB puncture detection and its annotation, which followed
a practical on-field protocol and involved numerous samples
collected over several years.

III. BMSB DETECTION USING RGB IMAGING

To develop an intelligent system for insect detection in or-
chards using images and CNNs, the first step is to collect a
database of relevant images of insects in the trees, which need
to be labeled and categorized to identify the type of insects
encountered [28]. The next step is image preprocessing, which
involves removing noise and distortion, resizing images, adjust-
ing brightness and contrast, and data augmentation. From the
preprocessed dataset, a representative subset of images needs to
be selected for training CNNs to identify and classify insects
in the images and adjust internal weights to improve accuracy.
Then, the CNN must be validated and tested on separate image
subsets to evaluate its performance.

Within HALY.ID, the following NNs were used to identify
the BMSB insect: YOLOV5, YOLOV9, YOLOV10, SDD with
VGG16 backbone, and DERT with ResNet-50 backbone.

Fig. 1. Examples of images from the dataset used in this article.

A. Experimental Setup

Before starting, we created a dataset of RGB images obtained
from several UAV flights in real conditions in the study orchard
in Carpi (Modena, Italy). Obviously, the larger the database used
for training and validating NNs, the higher the performance of
the created models can be [29]. Therefore, we augmented the
initial image set due to its limited size. The images acquired
by the UAV are 24-bit RGB, with dimensions of 5184× 3888
pixels each (see Fig. 1). Since the BMSB occupies a minuscule
fraction of the entire image, it is evident that directly inputting
the raw image into the NN would yield unpromising results. This
claim is enforced by Betti Sorbelli et al. [20], who attributed
the cause of performance degradation to the loss of information
resulting from image scaling. Indeed, resizing the images to
640× 640 pixels from their original sizes (5184× 3888 pixels)
renders the BMSB practically invisible. Consequently, we pro-
cessed the images by dividing them into nonoverlapping patches
of size 640× 640 pixels. We divided then the dataset into 70%,
20%, and 10% for training, validation, and test sets, respectively,
by automatically and randomly distributing the indexed dataset
with a script created for this purpose. The dataset contains
402 images and, as a consequence of the slicing technique, is
decomposed in 17 766 patches of which 423 are positive ones
(with BMSB).

Due to the slicing procedure, the testing results of the pro-
posed models are conducted on two test sets: ALL that means
patches with and without BMSB (1920 patches), and ONLY that
means patches with BMSB (71 patches).

B. Experimental Results

To evaluate the network performance, we used metrics, such
as precision (P ), recall (R), mean average precision (mAP),
and intersection over union (IoU), summarized in Table I, where
TP, FP, and FN represent true positive, false positive, and false
negative, respectively. We also include other indicators that will
be used in subsequent evaluations.

The SSD is a single shot detector known for its efficiency
and accuracy. Like YOLOV5, SSD performs object detection,
namely, object localization and classification, in a single forward
pass. Key to its success is the use of a series of convolutional
layers that produce feature maps at multiple scales, enabling
the SSD to detect objects of various sizes within the image.
The implementation of SSD in our application was implemented
using the PyTorch library. For the SSD backbone we leverage
VGG16 [30]. Although SSD demonstrates a rapid detection
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TABLE I
PERFORMANCE INDICATORS USED

of objects in images and is more accurate than many other
detectors [28], [31], it tends to lose specimens (i.e., high value of
FN) and also to have a not negligible number of FP. When testing
SSD on ALL and ONLY, its precision score remains stable. The
number of FP slightly increases in the ALL experiment, but not
dramatically.

The DETR leverages the transformer architecture, originally
designed for natural language processing tasks. It has emerged
as a novel NN for object detection, comprising four main com-
ponents: backbone, encoder, decoder, and prediction heads [32].
In our experiments, we employed ResNet-50 as the backbone,
using a CNN to learn a 2-D representation of the input image.
The model flattens this representation and supplements it with
positional encoding before feeding it into a transformer encoder.
Subsequently, the encoded image data pass through an encoder–
decoder structure and is then directed to the prediction heads.
These prediction heads, based on feed-forward networks, predict
either a detection class and bounding box, or a NOOBJECT class
(i.e., background). We utilized the PyTorch implementation of
DETR in our application, and the testing results are presented
in Table II. As indicated, the recall is poor, resulting in a high
number of FN. However, since it achieves the same P for ALL

and ONLY, it follows model robust against empty patches.
YOLOV5 stands out for its lightweight and fast computation

capabilities, demanding less computational power compared
with other current state-of-the-art algorithms while maintaining
comparable performance [16]. Although YOLOV5 is offered
in several model sizes, in the following, we rely solely on the
eXtra-large model (X) since it is the most powerful configuration
to find fine-grain objects inside a frame due to its architecture.
YOLOV5-X has been trained on our custom dataset by fine-
tuning pretrained weights [33] on an NVIDIA RTX 3060 OC.
The YOLOV5-X results are depicted in Table II. In principle,
its precision on ONLY is considerably high, while it balances
precision and recall on ALL.

YOLOV9 [34] introduces some innovation with respect to
its predecessor. Specifically, to improve accuracy, it introduces
programmable gradient information (PGI) and the general-
ized efficient layer aggregation network (GELAN). PGI pre-
vents data loss and ensures accurate gradient updates, whereas
GELAN optimizes lightweight models with gradient path plan-
ning. We trained YOLOV9-T and YOLOV9-E using transfer

TABLE II
RESULTS FOR TESTING SSD, DETR, YOLOV5, YOLOV9, AND YOLOV10,

WITH IOU = 0.5

learning. Table II gives that both models achieve notable per-
formance. YOLOV9-T demonstrates a solid robustness against
background-only patches, overcoming YOLOV9-E in all the
metrics. Despite the previous observation, YOLOV9-E depicts
significant detection ability. Notably, YOLOV9-T showcases
simultaneously a high mAP0.5 and mAP0.95

0.5 , setting interesting
confidences and IoU values, respectively.

We extend our analysis to the latest release of YOLO family,
namely, YOLOV10 [35]. The newest architecture offers a range
of model scales, but we decided to rely on YOLOV10-N and
YOLOV10-X. One of the main improvements is the introduction
of consistent dual assignments, which replaces nonmaximum
suppression. Moreover, the developers introduced partial self-
attention to boost the detection ability without any burdening
on inference speed. As reported in Table II, YOLOV10 confirms
its ability to recognize objects also in challenging environments
showcasing interesting performance for both the models. Once
again, despite YOLOV10-N is the lightest version, it outper-
forms YOLOV10-X demonstrating also a fair robustness against
background-only patches. On the other hand, YOLOV10-X gains
limited knowledge on BMSB detection suggesting potential
overfitting on training data.

Comparing all the NNs, SSD and DETR have performed
almost the same obtaining a higher precision and a lower recall.
SDD tends to miss fewer BMSB inside the frame than DETR,
detecting at least the ≈ 27% of the total occurrences in contrast
with the poor ≈ 13% reached by DETR. Both SSD and DETR
revealed a significant robustness against background-only pixels
because their performance is almost the same in the two sets,
i.e., ALL and ONLY. Moreover, DETR raised less FP than SSD,
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TABLE III
COMPARISON OF MODEL’S COMPUTATION DEMANDS

characterizing a more precise detection overall. Conversely, the
YOLOV5-X model was able to detect the largest number of
BMSB reaching the highest recall. Despite achieving partic-
ularly notable metrics scores in the ONLY set, the model has
depicted the least robustness against background-only patches,
namely, in the ALL set. So, YOLOV5-X was prone to recognize
≥55% of BMSB instances with a particularly promising pre-
cision when a BMSB appears inside the frame. However, this
latter capability deteriorates dramatically (P = 53.5%) when
images without BMSB are considered. It is noteworthy that each
network tends to achieve a larger P than R. This phenomenon is
strictly related to the poses experienced during the acquisition,
compounded by the noise surrounding the BMSB pixels, such as
blur or overexposure. Despite the dataset comprising a diverse
range of BMSB samples, certain poses and lighting/blurriness
conditions are more frequent than others. Also, since the dataset
consists of images captured by a drone operating according to an
autonomous protocol, characterizing the entire range of possi-
bilities is extremely challenging. As a result, the networks were
able to detect BMSB instances that presented limited variation
in pose and color appearance, thereby minimizing FP. How-
ever, instances significantly affected by noise were occasionally
missed. Both YOLOV9 and YOLOV10-X achieve interesting
performance representing a true step ahead of the predeces-
sor, YOLOV5. Although YOLOV10-X obtained the largest R,
YOLOV9-T achieves the best performance overall. Specifically,
it reaches a satisfactorily R (≈ 60%) and almost the largest P
with both the thresholds, 95.0% and 94.0%, respectively.

Looking at mAP0.5, all the NNs have achieved ≥45% of
BMSB, establishing a satisfactory confidence level overall. On
the other hand, the NNs have developed limited abilities in
contouring the BMSB according to mAP0.95

0.5 because they are
less robust when the IoU increases. In other words, the ma-
jority of predictions overlap partially with the ground truth.
This represents a predictable outcome due to the limited size
of the BMSB with respect to the entire image. For monitor-
ing purposes, recognizing all instances inside the frame, i.e.,
achieving high recall, is more important than accurately con-
touring a bug, i.e., achieving high IoU. However, it noteworthy
that both YOLOV9 and YOLOV10 demonstrate improved IoU
values between prediction and ground truth, suggesting a clear
enhancement with previous releases. Moreover, in comparison
with the results in [20] where entire images are simply resized
and fed to the model, the current implementation of the slicing
mechanism allows a boost in the performance, specifically in the
recall. Indeed, image slicing prevents information losses since
it retains every pixel of the original image.

Table III summarizes model’s computation demands listing
the number of parameters and the number of giga floating point
operations per second (GFLOPs), respectively. We can observe

that YOLOV5-X, YOLOV9-E, YOLOV10-X, SSD, and DETR
are more “desktop oriented” due to their requirements, rather
than YOLOV9-T and YOLOV10-N that appear compatible with
current state-of-the-art embedding system boards. According to
the computation footprint, both YOLOV9-T and YOLOV10-N
are, even more so, the best NNs overall.

IV. BMSB DETECTION USING SPECTRAL IMAGING

In the HALY.ID project, alongside a comprehensive analysis of
RGB images primarily captured by UAVs, we also conducted an
assessment of spectral imaging as a potential method for field
monitoring to detect the presence of BMSB. To this purpose,
SWIR-HSI and Vis-NIR MSI systems were evaluated both in the
laboratory and in the field, respectively. In fact, unlike cameras
operating exclusively within the visible spectrum, they may
mitigate misclassifications caused by BMSB’s resemblance to
vegetal backgrounds with similar colors, such as bark or brown
leaves.

A. Evaluation of SWIR-HSI

We captured 35 hyperspectral images of BMSB specimens
positioned against various vegetal backgrounds (including bark,
branches, grass, soil, green/brown leaves) within the 980–1660
nm spectral range, aiming to replicate real field conditions. We
acquired the hyperspectral images using a HSI line-scan system
equipped with a desktop NIR Spectral Scanner (DV Optic)
incorporating a Specim N17E reflectance imaging spectrometer,
coupled with a Xenics XEVA 1.7-320 camera (320× 256pixels)
and a Specim Oles 31 f/2.0 optical lens. The acquisition soft-
ware conducted an automatic calibration of the images based on
the dark current signal and a high-reflectance standard signal. We
excluded pixels unrelated to either bugs or vegetal backgrounds
based on a reflectance threshold measured at 1000 nm. In addi-
tion, we preprocessed the images using standard normal variate
(SNV) and mean center techniques. Subsequently, we applied
principal component analysis (PCA) to each image to implement
a masking procedure, thereby separating the pixels belonging to
the bugs from those belonging to the vegetal backgrounds.1

To develop classification models capable of distinguishing
between BSBM specimens and vegetal backgrounds based on
spectral signatures, we assembled a library comprising 14 000
reference spectra from both classes. We employed the Kennard–
Stone algorithm [37] on principal component (PC) scores to
select these spectra. Then, we divided the images into training
and test sets for model development and validation, respectively.
Our classification approach focused on modeling the spectral
information contained in the HSI images and identifying the
relevant spectral regions to discriminate BMSB from vegetal
backgrounds. To do this, we used the soft partial least squares-
discriminant analysis (Soft PLS-DA) algorithm, coupled with
sparse-based methods for spectral variable selection (s-Soft
PLS-DA) [38]. This allowed us to build effective classification
models tailored to our dataset.

1A detailed description of the methodology used for acquiring and processing
the hyperspectral images can be found in the work of Ferrari et al. [36].
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Fig. 2. Prediction images obtained by applying Soft PLS-DA and s-Soft PLS-
DA models alongside the corresponding RGB images as references.

The application of Soft PLS-DA yielded promising results
in both cross-validation and prediction of the external test
set. It achieved sensitivity and specificity for the BMSB class
exceeding 90.0% [36] (see Table I). Furthermore, employing
sparse variable selection through the s-Soft PLS-DA algorithm
maintained high classification performance while considering a
reduced subset of 60 relevant spectral variables. The selected
wavelengths can be grouped into five main spectral regions,
corresponding to absorption bands associated with cellulose,
hemicellulose, and lignin (1220–1295 and 1420–1480 nm).
These are indicative of different background types. In addi-
tion, we selected absorption bands related to water, proteins,
chitin, and lipids (980–1070, 1330–1350, and 1370–1400 nm),
reflecting the biochemical structure of insects’ exoskeleton [36].
Subsequently, we applied both Soft PLS-DA and s-Soft PLS-DA
models to the test set images to generate prediction images, fa-
cilitating the evaluation of classification performance across the
entire images. This assessment allowed an overall understanding
of the models’ effectiveness in accurately classifying BMSB
specimens and vegetal backgrounds

Fig. 2 presents some representative prediction images along-
side their corresponding RGB counterparts. It is evident that, in
general, the pixels are accurately classified into their respective
classes. This observation highlights the challenge of detecting
BMSB specimens against dark brown vegetal backgrounds using
only RGB images, whereas the bugs are distinctly identified
using SWIR-HSI. The prediction images of tree branches and
soil as background reveal that spectral variable selection slightly
enhances the classification of background pixels. To enhance
BMSB detection capabilities for field applications, we integrated
spectral information modeling with CNN algorithms to leverage
spatial relationships among pixels. U-Net, in particular, is well
suited for implementation on UAVs due to its ability to achieve
satisfactory model performance with minimal computational
resources [39].

To streamline network complexity in the spectral dimension,
we effectively applied U-Net using only the spectral bands
identified by s-Soft PLS-DA [36]. Notably, the spectral regions
selected by s-Soft PLS-DA can serve as a basis for developing

Fig. 3. Utilization of deep learning object detection models for BMSB detec-
tion with the false-color image constructed using manually selected wavebands
of the NIR range.

more affordable and rapid multispectral sensors, ideal for field
monitoring using UAVs. When coupled with RGB cameras,
these sensors can enable the deployment of efficient monitoring
systems capable of autonomously detecting BMSB and provid-
ing real-time information on pest spread to farmers.

Furthermore, light and cost-efficient hyperspectral cameras
covering the SWIR range are increasingly accessible in the
market [40]. This trend enhances the practicality of develop-
ing advanced monitoring solutions for agricultural applications,
facilitating timely and accurate pest management decisions.

B. Evaluation of Vis-NIR MSI

We conducted a pilot study employing a snapshot Vis-NIR
UAV camera in the field to detect BMSB. The camera consists
of two distinct acquisition devices capturing in the ranges 457–
593nm (16 bands) and 605–845nm (15 bands), respectively.
For our experiments, we used the latter 15 bands of the images.
In one approach (camera I, Fig. 3), we performed manual wave-
length selection based on the visibility of BMSB to construct
the false-color image. We identified the wavelengths 727.24,
811.24, and 608.75 as suitable for BMSB detection.

Then, we trained two object detection models, namely, Faster
RCNN and RetinaNet, on these images [41], [42]. The pretrained
RetinaNet yielded the best results with an F1 score of 78.45%,
precision of 74.61%, recall of 76.39%, and accuracy of 78.45%
(see Table I). In the other approach, we utilized the entire
Vis-NIR hypercube from camera II (see Fig. 3) to train the
two object detection models. We customized the input layer
of these models to accommodate the hyperspectral image with
15 channels. RetinaNet trained from scratch exhibited the best
performance, achieving an F1 score of 70.74%, precision of
84.25%, recall of 60.96%, and accuracy of 54.73%.

V. EDGE-BASED SMART STICKY TRAP IMAGING SYSTEM

As part of the HALY.ID project, we developed IoT imaging
systems with integrated pheromone enhanced sticky traps to
monitor the population of BMSB and to combat the spread of
this invasive species. Sticky traps are widely used in orchards to
attract and capture insects based on their color or pheromones.
Agronomists can use these traps to estimate the insect popu-
lations by visiting their orchards regularly with manual trap
inspection and insect counting. A preliminary version of the
trap using mainly lab-based experiments and artificial insects to
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Fig. 4. Smart sticky trap (upper) and the steps followed for the detection and
classification approach (lower).

develop datasets has been described in [43] and [44]. Recent
studies have proposed edge-based systems, such as [11] for
precision agriculture, most of which suggested power-hungry
hardware, such as Raspberry Pi for computation. This research
utilized a microcontroller (MCU)-based system to minimize
power consumption, which is a crucial factor for edge-based
systems, particularly in agricultural settings where devices must
operate on batteries due to the absence of power lines in orchards.
The image processing solution is here compared to other com-
monly used approaches, this time using real image data captured
in the field throughout the deployment of the IoT device in
orchards for several months in 2023. In addition, the impact
of considering past data on the system’s accuracy is examined.

A. Trap Architecture

We designed and developed an edge-based smart trap to make
the identification and insect counting procedure automated and
more accurate. The system is an ultra low-cost and low-power
device able to detect and count insects on the device itself in
the orchard without relying on expensive and power-hungry
equipment. Fig. 4 depicts the second version of the proposed
device. As described in [44] in detail, the camera unit is an
OpenMV board based on an MCU with an embedded camera
capable of running lightweight image processing and deep learn-
ing methods. In addition, this device supports two-sided traps
and a servo motor is used to rotate the trap, so the camera can
capture images of the trap on both sides. The purpose of the
mechanism is to increase the probability of capturing insects (as
the captured area is doubled) and, at the same time, make it more
approachable to insects since the sticky area is not shadowed by
the camera. The image processing pipeline is shown in Fig. 4.
This is a modified version of the image processing pipeline
proposed in [44].

The analysis of real-world data captured in 2023 revealed that
the detection phase was unable to properly detect insects. Conse-
quently, we modified and enhanced this aspect by implementing
a histogram equalization technique on the captured images to
normalize the contrast and brightness. This adjustment, denoted
as the first step in Fig. 4, resulted in a significant improvement
in the output of the detection phase, reducing both the mean
squared error (mse) from 50.8 to 13.6 and mean absolute error

TABLE IV
COMPARISON OF DIFFERENT MODELS ON THE NEW DATASET COLLECTED

FROM THE REAL WORLD FOR BMSBS COUNTING

(MAE) from 5.1 to 2.1, indicating a reduction by a factor of
approximately 3.7 in mse and approximately 2.5 in MAE. This
highlights how important it is to incorporate a wide range of
real-world images into the algorithm development and help the
algorithm adapt to the complexities of real-world situations.

As shown in Fig. 4, in the detection phase, the process be-
gins with the application of histogram equalization to the raw
captured image ( 1©), followed by conversion to gray scale ( 2©).
Then, a smoothing filter is applied to eliminate small objects,
such as windblown dust, leaves, or tiny insects ( 3©). Then,
the image is converted to black-and-white using Otsu’s method
( 4©) and finally the suspected area that might be filled by the
target insect is detected using a blob detection algorithm ( 5©).
It should be noted that the detected blobs are filtered based on
their size and only those with a size approximating that of a
BMSB are considered as suspected areas. So, these suspected
areas are cropped and fed to the classification phase ( 6©), where
a lightweight CNN-based image classification model is used to
classify the images ( 7©). Finally, the number of the target insects
on the trap along with the cropped images (as an option) is sent
to the growers ( 8©).

Our CNN-based model has a program size of only 80 kB,
with a peak memory usage of 75 kB and an inference time of
0.07 s (on the OpenMV board), making it suitable for running on
memory-constrained MCUs. In designing the model, as detailed
in [44], the main considerations are itemized as follows.

1) Utilizing depthwise separable convolution instead of stan-
dard convolution: This reduces computations by factor-
izing the process, significantly decreasing computational
cost.

2) Using global average pooling instead of flatten layer:
This decreases parameter numbers, leading to a substantial
reduction in computation and model size.

3) Quantizing: The model weights were quantized to 8-bit
integers from the original 32-bit float data, which is critical
for deploying the model on memory-constrained MCUs.

4) Utilizing skip connections: Skip connections enhance per-
formance by facilitating data flow, combining features
from different layers, and addressing vanishing gradient
issues during training.

B. Experimental Results

Table IV reports the accuracy of the proposed BMSB identifi-
cation and quantification based on images from the new dataset
gathered from the real world as compared to that proposed
in [44] using known YOLO methods that are widely used in
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insect detection systems [45], [46]. As described, compared to
the algorithm described in [44], the new algorithm used in this
study decreased mse from 50.8 to 13.6 and MAE from 5.1 to 2.1,
and also increased recall around 34%, indicating a reduction of
about 3.7× in mse and 2.5× in MAE. In comparison with YOLO
methods, although the accuracy of YOLO methods is better than
the proposed one, they are too computationally intensive, too
large in size, and unable to run on resource-constrained MCUs.

Moreover, our analysis revealed that the presence of a high
level of overlap among the captured insects in the obtained
images, which occurs when new insects are trapped physically
stuck overlapping the existing ones trapped previously, increases
the error of the detection phase. This is due to the fact that the
detected blobs are filtered out if their size is much larger than
that assigned to the presence of a BMSB (overlapping increases
the blob size). Thus, considering previously captured data and
detected insects plays a significant role that impacts the system
performance. To evaluate the impact of insects overlapping each
other, we made some alterations to the dataset by removing the
images that exceeded seven days between trap replacement. This
time interval was selected based on the frequency of new insects
being captured on the trap. This led to a significant reduction
in error by decreasing the MAE from 2.07 to 1.05 and mse
from 13.55 to 1.81. It also increased the recall by almost 10%.
These results prove the impact of envisaging overlapping on
the performance and that the recent changes in the algorithmic
process are in the right direction to improve the efficiency of the
system.

In terms of running time, the added step in the detection phase
of the image processing algorithm takes up to 0.5 s per image.
Therefore, the total runtime for a complete system operation,
including image capturing (from two sides of the trap), detection
(on two captured images), classification, and results, is approxi-
mately 17.5 s. It is important to note that the running time varies
depending on the number of detected areas identified during
the detection phase, as the classification model runs separately
for each detected area. The mentioned 17.5 s correspond to a
trap with six insects on each side. Moreover, regarding power
consumption, the device consumes up to 320mA in operation
mode. However, during nonoperation periods, the device enters
deep sleep mode to reduce power consumption, consuming only
7mA.

VI. CLIENT–SERVER APPLICATION

In this section, we describe a client–server architecture de-
signed for bug detection that also facilitates farmer involvement
through a feedback loop: subscribed farmers can send their
images for inspection. Any RGB trained model can be integrated
into this client–server application (briefly, app). In addition, also
the UAV can use this app to autonomously fly inside the orchard
to collect picture in order to augment the dataset of images, and
enhance the trained ML models.

This client–server app is primarily utilized by farmers and
autonomous UAVs for collecting RGB images to augment the
image dataset, and presently, there is no direct connection with
edge-based sticky traps. Nevertheless, it is technically feasible

Fig. 5. Application architecture illustration. The server hosts a Python Flask
service where AI YOLO models are stored. The models are accessible via
exposed APIs, allowing any client device, such as smartphones or drones, to
access and utilize them.

to enable the trap to trigger exposed application programming
interfaces (APIs) from the server side and this will be considered
in future work.

A. Overview of the Architecture

The primary objective of the app is to create an almost real-
time mechanism capable of detecting and counting BMSB in
the field. We use the term “almost” because the detection does
not occur in real time; it starts after the clients take pictures.
A client can be any device equipped with a camera (such as
smartphones, tablets, or drones) and network connectivity. The
app consists of two main components: a server and a client.
The server hosts the trained models discussed in Section III and
listens to requests sent by one or more clients. The concept of
request splits into two different manners: API request or GUI
request. Upon receiving a request, the client sends the captured
images to the server for evaluation using one of the various ML
algorithms stored within. Once the server completes processing
the request, it responds to the client by transmitting the potential
bug detections in the form of bounding box coordinates, along
with their associated confidence levels. At the client level, also
autonomous UAVs can perform these requests. The architecture
of the client–server app is depicted in Fig. 5.

B. Server Side

The server component is responsible for providing BMSB
detection to clients that make requests. It remains passive until
a client submits a request consisting of a set of captured images
and specifies a particular model for querying. The server exposes
a Flask service, which is a lightweight web framework written in
Python. Flask falls into the category of microframeworks due to
its minimalistic requirements and flexibility [47]. We opted for
Flask due to its simplicity and lack of dependencies on specific
tools or libraries.

Flask listens for incoming requests via HTTP POST
requests. This allows clients to include captured images in
the body of the request message, which is essential for our
app. Clients can trigger a POST request using a specific URL
format (url/model:port), with the enclosed images in
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Fig. 6. Screenshots of the Android app interfaces. In (a) the user can take
pictures (or upload other ones) and perform the detection, while in (b) the UAV
operator can visualize the status of the autonomous mission.

the message body. The model string in the URL can refer to
any of the models discussed in Section III, such as x-model
or m-model. When a client invokes the exposed service, the
server executes the image recognition procedure using the
specified model, implemented with PyTorch [48]. If BMSBs are
detected, the server returns a set of bounding box coordinates
plus the confidence values to the requesting client.

Considering the GUI interaction, a web page is hosted in
the Flask service at the root of the previous URL. The web
page consists of a minimal interface that comprises a list box,
a file picker, and a button. The list box allows the user to select
the preferred model for the detection, whereas the file picker
consents to upload the images to be processed. Once the user
has made their selection, they can submit their choice using the
button, which will then display the detection results, i.e., images
with the BMSB outlined by a bounding box. While this GUI
service is based on the same framework as the API, it serves as
a user-friendly shortcut for nontech users to access the service
and promotes wider project dissemination.

C. Client Side

The client component is responsible for capturing pictures
and sending requests to the server. As the server component
is decoupled in this architecture, various devices with differ-
ent technologies can make requests to the server, as long as
they support HTTP POST requests. For us, clients can include
smartphones, tablets, laptops, computers, as well as drones.

For smartphones and tablets, we developed an Android-based
Java app [see Fig. 6(a)], whereas for laptops and computers, we
created an HTTP-based web app. In both versions, users can
capture or select pictures and choose a model for querying, either
via HTTP POST requests or through the web page interface. The
app’s aim is to enable people, particularly farmers, to actively
scout and monitor the presence of BMSB. Users can manually
take pictures of trees with one or more BMSBs, upload pre-
viously captured images, select an appropriate ML model, and
await the detection results. The server then sends the potential

Fig. 7. Autonomous UAV operations in an orchard: (a) Waypoints for image
capturing performed with a photo mosaic as a 4× 5 matrix in (b).

BMSB detections back to the client, represented by bounding
box coordinates and their corresponding confidence levels. In
the current version of the app, the pictures sent by clients, along
with the detections, are stored on the server. This step is crucial
for augmenting the dataset and improving the ML models. We
are considering adding an additional supervisory step to verify
the accuracy of the detections, facilitating effective retraining of
the models. Thereby, the more expert the models become, the
more accurate they will be, saving a lot of time for annotations.

The client app running on our drone (a DJI Matrice 300)
has been developed in Java using the DJI mobile software
development kit (SDK) V4 [see Fig. 6(b)]. This SDK enables the
creation of custom Android- or iOS-based apps for installation
on mobile devices directly connected to the drone’s remote
controller. With this app, the drone can autonomously perform
flights at designated waypoints, adjust the gimbal, and capture
images with specific camera parameters, such as focal length.
Communication between the app and the remote controller
occurs via a USB cable, which communicates with the DJI
Matrice 300 drone and its DJI Zenmuse H20 camera. Although
primarily designed for autonomous flights and image capture,
the app also allows users to manually select and send stored
pictures to the server. So, the Android app prompts the user to
specify waypoints [see Fig. 7(a)] within the orchard where the
drone will capture images. At each waypoint, the drone halts
and captures approximately 20 adjacent images from different
angles, forming a grid pattern of four rows by five columns [see
Fig. 7(b)]. The images are sent to the server to augment the
dataset and to conduct analysis through predictions.

VII. BMSB PUNCTURES DETECTION

Due to the high damage potential of BMSB [49], it is crucial to
adopt monitoring strategies both upstream, through field moni-
toring to prevent BMSB activity and to address crop infestations
in a timely manner, and downstream along the food supply chain
to manage the quality of the harvesting. To this aim, in the
HALY.ID project, SWIR-HSI was also evaluated as a postharvest
sorting system for the identification of BMSB late damages on
pears, which consist in internal necrosis of the fruit pulp not
visible to the naked eye.

A. Experimental Setup and Data Collection

Pear fruits of cv. Williams and cv. Abate Fétel were collected
in an organic orchard in Carpi during summer 2022 and 2023.
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TABLE V
NUMBER OF ANALYZED IMAGES OF CONTROL AND PUNCTURED SAMPLES,

GROUPED BY VARIETY AND VINTAGE

As detailed in [50], we covered tree branches with exclusion
cages on fruit set to safeguard the flowers and ripening fruits
from uncontrolled biotic and abiotic adversities. These exclusion
cages consist of a semirigid black plastic mesh covered by a
sleeve made of fabric mesh. Approximately one week prior
to harvesting, we placed BMSB specimens inside half of the
exclusion cages, while we used the fruits in the remaining
exclusion cages as control samples.

The monitoring of fruit damages occurred at eight subsequent
acquisition times, from harvesting (T1) until five weeks later
(T2–T8). After harvesting, we stored the fruits at 6–8◦C for
1–2 days to avoid chilling damages, then we gradually lowered
the temperature to 0–4 ◦C to simulate postharvest refrigeration
conditions. Then, we acquired hyperspectral images using a
SNAPSCAN SWIR camera (IMEC, One Planet), covering the
1156–1674 nm spectral range. Before imaging each fruit, the
acquisition software performed an automatic calibration based
on the dark current signal and a high-reflectance standard. For
each pear, we acquired four hyperspectral images to consider the
whole fruit surface. Following the same procedure, we acquired
RGB images of the pear as visual reference both before and after
peeling the fruits.

Based on experimental conditions, the collected pear samples
can be divided in two groups: samples exposed to BMSB and
control samples. However, after peeling the fruits, we observed
that not all the exposed samples had been punctured, and that
some control fruits presented damages. In addition, some dam-
ages found on exposed fruits were not due to BSBM but to other
adversities (e.g., moulds). For these reasons, we used the RGB
images of unpeeled and peeled samples to visually classify the
fruits based on damage type and intensity. This labeling process
allowed a better identification of the actual sound and punctured
samples, and thus we only considered the images belonging to
these two classes for further elaborations. Table V reports the
number of images belonging to sound control pears and damaged
fruits exposed to BMSB, subdivided by fruit variety and harvest
year.

We separately analyzed the hyperspectral images belonging to
Abate Fétel and Williams varieties, and before their elaboration,
we used SNV and linear detrend as spectra preprocessing meth-
ods, respectively. Then, we used an automated procedure based
on PCA to mask the fruit area by removing pixels belonging to
the background setting, fruit peduncle, and plastic label present
in the image scene. Then, we improved the segmentation by
applying an erosion morphological operator, using a disk struc-
turing element with a 2-pixel radius.

Fig. 8. Schematic representation of the procedure followed for the supervised
annotation of BMSB punctures: in (a), data dimensionality reduction of the
hyperspectral images using the CSH method, in (b), application of iPLS-DA
classification and variable selection algorithm to select the CSH features (i.e.,
image pixels) related to the punctures, and in (c), image reconstruction of the
selected features ascribable to punctures.

B. Supervised Annotation of Punctures

A preliminary exploratory analysis using PCA allowed to
distinguish between sound and punctured areas based on slight
spectral differences, but at the same time highlighted the dif-
ficulty of correctly identifying the regions of interest (ROIs)
ascribable to the punctured areas, due to their irregular shapes
and the blurred edges between sound and damaged regions. The
identification of ROIs belonging to punctured areas is important
to extract representative spectra to be used for the development
of pixel-level classification models. To overcome this issue, we
developed a supervised annotation method to automatically se-
lect pixels belonging to punctured areas. The proposed approach
is based on data dimensionality reduction of the hyperspectral
images using the common space hyperspectrograms (CSH) [51]
followed by image-level classification, coupled with feature
selection and visualization of the selected features back into
the original image domain. More in detail, each image was
converted into the corresponding CSH, a 1-D signal obtained
by merging in sequence the frequency distribution curves of
quantities obtained from a global PCA model2 (i.e., PC score
vectors, Q residuals, and Hotelling T2 values).

Starting from the CSH dataset, we applied the interval PLS-
DA (iPLS-DA) algorithm [52] to calculate image-level classi-
fication models and select relevant spatial features ascribable
to the presence of punctures. Then, we visualized back the
selected features of interest into the original image domain,
allowing to automatically select ROIs ascribable to punctured
areas; this procedure will be referred to as image reconstruction.
Fig. 8 shows a schematic representation of such a supervised
annotation method.

For both pear varieties, we split the images acquired in 2022
into a training set, used to calculate the common PC space of
CSH and calibrate the classification models, and a test set of
images used for external validation. We randomly assigned about

2A detailed description of the CSH method is in the work of Calvini et al. [51].
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2
3 of the sound and punctured fruits to the training set, while the
rest 1

3 used for external validation. We calculated the image-
level iPLS-DA models considering different interval sizes, and
we performed an image reconstruction by evaluating the most
frequently selected variables.

Finally, we applied the automated annotation procedure de-
veloped considering year images from 2022 to the hyperspectral
images acquired in 2023 as an additional external validation.
The proposed approach allowed to correctly select the pixels
ascribable to BMSB related damages on 212 out of 322 images
of punctured cv. Abate Fétel pears (65%) and on 273 out of
352 images of punctured cv. Williams pears (77%). Concerning
the detection of different kind of damages, such as bruises, Lee
et al. [53] reached 92% accuracy while Li et al. [54] reached
95% accuracy using near-infrared hyperspectral imaging on pear
fruits. A similar annotation procedure was proposed on apples
in Ferrari et al. [22], in which 92% and 94% efficiency values
were obtained for “Golden Delicious” and “Pink Lady” apple
varieties, respectively.

Starting from the ROIs of the annotated punctured areas, it will
be possible to build a dataset of representative spectra belonging
to both punctured and sound regions, which represents a crucial
step for the development of more effective pixel-level classi-
fication models and the selection of relevant spectral regions
ascribable to BMSB punctures. Indeed, the selection of spectral
variables able to identify BMSB punctures is a key step in the
implementation of MSI systems, which are more suitable for
postharvest sorting lines in terms of computational time and
lower costs of optical components.

VIII. CONCLUSION

In this article, we highlighted the main steps taken in the
HALY.ID project to implement a system aimed at automating
the monitoring of BMSB pests in orchards. Specifically, we
detailed computer vision techniques for effectively detecting
the BMSB, primarily on RGB images captured by UAVs, as
well as utilizing spectral imaging as a complementary strategy.
We also proposed an edge-based smart IoT sticky trap with
integrated cameras and running resource efficient algorithms to
be used in conjunction with the entire monitoring system to
estimate population of specific invasive insect species. Finally,
we successfully applied computer vision algorithms to spectral
imaging to detect punctures on harvested pears, which can be
integrated into a fruit sorting system to optimize food quality on
the shelves of supply to customers. In addition, we developed a
client–server application to enrich the dataset and enhance the
trained models within this system.

As next steps, it will be necessary to effectively counteract
BMSB by leveraging the aforementioned techniques to monitor
and control their population. A comprehensive monitoring sys-
tem, coupled with a decision-process model to actively combat
this pest, is essential for successful pest management.
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