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Abstract—Insufficient availability of essential nutrients, such as
iron, can impede plant growth, decrease crop productivity, and even
lead to plant death. This is why it is crucial to employ proximal
monitoring techniques to detect early signs of nutrient stress and
prevent yield loss. In this study, we continuously monitored the
stem impedance of eight tomato plants every hour for 38 days.
This was done to observe the effects of iron stress by comparing
these plants with those not under stress. The normalized impedance
magnitude at 10 kHz reveals a noticeable divergence in the trend
of impedance magnitude shortly after the removal of iron from the
nutrient solution, clearly indicating the effect of iron stress on plant
bioimpedance. Additionally, the Cole equivalent circuit model was
employed to evaluate the electrical parameters of the impedance
spectra. The fitting results exhibit an average root-mean-square
error of 466.3 Ω. Statistical analysis of the extracted circuit pa-
rameters shows significant differences between iron-stressed and
control plants. Based on this hypothesis, the extracted circuit
components have been used to train the machine learning clas-
sification model with several algorithms, to demonstrate that the
multilayer perceptron is the best performing model, yielding 98%
accuracy and 91% and 89% precision in identifying early and late
stress, respectively. This research demonstrates the effectiveness
of bioimpedance measurements in tracking iron stress in plants.
Our findings highlight the usefulness of impedance measurements
for monitoring iron stress in plants and provide insights into the
physiological responses of tomato plants to nutrient deprivation by
observing changes in bioimpedance circuit parameters over time.
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I. INTRODUCTION

TOMATO (Solanum lycopersicum) is a globally important
crop, boasting a production surpassing 170 million tons,

as reported by the Food and Agriculture Organization. Around
40% of harvested tomatoes are utilized in food processing, with
Italy playing a major role in this industry [1]. Being a model
organism, tomato plants are highly regarded in the scientific
community for their well-known advantageous traits. These in-
clude a compact, fully sequenced genome, a relatively short life
cycle with straightforward cultivation methods, the feasibility of
horticultural interventions, as well as the availability of a wide
range of mutant lines, advanced genomics tools, and established
protocols for conducting controlled environmental experiments
with tomato plants [2].

Tomato plants are continuously interacting with their sur-
rounding environment, which has both positive and negative
influences, contributing to the plant stress with a wide spectrum
of abiotic and biotic stressors. Here, one of the main causes of
stress is nutrient starvation, to which the plants respond with
a series of well-studied physiological changes such as reduced
photosynthetic activity and inadequate chlorophyll production
leading to a clear impact on leaf greenness [3]. Among the
most important nutrients for the plants correct physiological
functioning, iron (Fe) plays an important role. In fact, despite its
abundance in the soil, it results in an already low availability for
the plant due to its low solubility [4]. Iron is, indeed, an essential
micronutrient for plants contributing to several vital processes,
including chlorophyll development and function. When plants
lack sufficient iron, they experience reduced photosynthetic
activity, resulting in yellowing and interveinal chlorosis in young
leaves [5], leading to yield losses of up to 30% [6]. Such visible
symptoms typically manifest several days or weeks after iron
deprivation begins, varying with crop species, but typically when
the plant is already in a late stress stage [5]. For this reason,
tools allowing a precise characterization of the plant nutrient
levels and needs assume a crucial importance to early detect
any stress and allow thus a timely intervention thereby leading
to higher yields. In this context, different proximal monitoring
methods have been described in the literature [7], with increasing
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use of techniques that rely on the measurement of changes in
the electrical properties occurring in plants, such as field effect
transistors [8], [9], resistive [10], electrophysiological [11], and
impedimetric [12] techniques. Such methods demonstrate the
potential for cost-effective and continuous proximal plant mon-
itoring, offering valuable insights into plant health conditions.
Among these, bioimpedance is attracting an increasing interest
in the field, especially for what concerns its application in
measuring the electrical impedance of biological tissues when
exposed to an alternating current (ac) stimulus, which can be
in the form of either voltage or current [13]. The impedance of
biological tissues is influenced by a variety of factors, such as
their health status, structural attributes, and chemical compo-
sition. When an ac stimulus is applied, at lower frequencies,
the current predominantly flows through the fluid surround-
ing the cells, whereas at higher frequencies, it tends to pass
through the cells themselves [14]. The impedance properties of
plant tissues are intimately linked to several passive electrical
characteristics, including the ion content in the cells, the integrity
of the cell membranes, and the viscosity of the tissue [15].
Although bioimpedance has been previously employed in plant
monitoring [16], [17], [18], [19], to the best of our knowledge,
the use of this technique for the continuous assessment of
the effects of iron deficiency on plant health remains largely
unexplored. This study focuses on the investigation of the
impact of iron deficiency on 8 tomato plants by monitoring
the impedance of their stems over a duration of 38 days. The
experiment was carried out in a glasshouse, with controlled
environmental conditions, reducing the effect of the environ-
mental variability, thus increasing scientific rigor in comparison
with alternative literature with a comparable, usually smaller
population of plants [17], [18], [20], [21], [22]. The impedance
data were collected using a semiportable impedance analyzer
in the 100 Hz–10 MHz frequency range. As an initial assess-
ment, the evolution of the bioimpedance magnitude at fixed
frequency was analyzed over time showing a deviation between
the control and iron-stressed plants. Subsequently, the entire
bioimpedance data were fitted to the Cole model equivalent
circuit [23]. Analysis of variance (ANOVA) proved the statistical
difference between the equivalent circuit parameter extracted for
control and stressed plant. Based on this, the equivalent circuit
parameters were employed as features to successfully train a
data classification model to discriminate between iron-deficient
and control plants. The study emphasizes the potential of stem
impedance measurements as indicators of plant response to
iron deficiency, presenting a novel method for monitoring plant
health and enhancing crop management.

II. MATERIALS AND METHODS

A. Plant Material

Eight tomato seedlings (Solanum lycopersicum cv. Po-
modoro Tondo) were first transferred to soilless pots (diameter
21 cm/ 4 L) filled with an inert (i.e., free of nutrient components)
perlite substrate (Karl Bachl Kunststoffverarbeitung GmbH &
Co. KG) and subsequently grown for 7–8 weeks in a greenhouse
with a controlled environment, as reported in Fig. S1 (day:

14 h, 24 ◦C, 70% relative humidity, 250 µmol photons m −2

s−1; night: 10 h, 19 ◦C, 70% relative humidity), maintaining
these at approx. 60% water holding capacity, by watering them
once a day with tap water. The necessary nutritional supply
was provided by the addition of a Hoagland solution [24] com-
posed of main macronutrients and micronutrients with the fol-
lowing composition: Ca(NO3)2·4H2O, MgSO4·7H2O, K2SO4,
KCI, KH2PO4, H3BO3, MnSO4·H2O, CuSO4, ZnSO4·7H2O,
(NH4)6 Mo7O24·4H2O, and Fe-EDTA [25], allowing complete
control over the distribution of nutritional constituents. The
control group, consisting of four plants, remained exposed to a
complete Hoagland nutrient solution [24] throughout the entire
experiment. In contrast, the four iron-stressed plants underwent
three distinct phases over the duration of the experiment, carried
out withing the optimal tomato growth window and lasting a total
of 38 days. The first phase represented the optimal conditions,
characterized by optimal nutrient availability, from 29th of July
to 4th of August. This initial phase was designed to bring all the
plants to comparable health conditions before the application of
iron stress. The second phase, from 5th of August to 27th of
August, represents the iron deficiency condition, wherein iron
was deliberately removed from the nutrient solution. Finally, in
the recovery phase, the iron was reintroduced into the nutrient
solution until 5th September.

B. Electrical Impedance Spectroscopy

Bioimpedance data for the tomato plant were collected using
a semiportable impedance analyzer (the Digilent Analog Dis-
covery 2), which allows capacitance between 50 pF and 500µF
to be measured, with a 14-b resolution, for our purpose, it
was equipped with the Impedance Analyzer add-on, setting a
10 kΩ feedback resistor, representative for an expected biologi-
cal samples magnitude between 1 and 20 kΩ, within a frequency
range of 100–10 MHz. This was done over 200 logarithmically
spaced frequency points using a two-electrode configuration.
Electrical contact with the plant stem was established using a pair
of stainless steel subcutaneous needle electrodes (Technomed,
Medical Accessories), each 13 mm long and 0.4 mm in diam-
eter (27 g). These electrodes were vertically inserted into the
plant stem 5 cm above the substrate, maintaining a consistent
0.5 cm distance between them. All plants were connected to the
impedance analyzer at the same time, as in the representation in
Fig. 1, and reducing the contribution of cables, by performing
an open-/short-circuit compensation prior measurement. The
switching between different plants was synchronized with data
collection using a centralized Python script, which controlled
the multiplexer channels via an Arduino setup. Measurements
were continuously acquired for a period of 38 days with 1-h
acquisition interval, resulting in a final dataset consisting in a
total of 7557 impedance spectra, respectively, divided into 3881
spectra from the control and 3676 spectra from the iron-stressed
plants.

C. Equivalent Circuit Component Analysis

The bioimpedance data were organized, postprocessed, and
analyzed using MATLAB R2022b (The MathWorks Inc.,
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Fig. 1. Schematic representation of the experimental setup with plants of both groups monitored using bioimpedance measurement. The portable impedance
analyzer Analog Discovery 2 is connected to each plant through a multiplexer, synchronized by a Python script controlling the channel opening by an Arduino
board.

Natick, MA, USA). To reduce the dataset to a smaller set of
interpretable variables, the bioimpedance data were fitted by
the MATLAB Zfit script [26] with the single dispersion Cole
electrical model [23] shown in Fig. s2 (see Supplementary
material). Here, the best fitting was calculated using the real
and the imaginary components of the bioimpedance spectra as
input data and iterating different combinations of nine selected
optimal initial conditions with a reasonable magnitude for the
considered dataset ranges, evaluating the results in terms of
root-mean-square error (RMSE). As result of the fitting, the
equivalent circuit parameters (i.e., the series resistor Rs, parallel
resistor Rp, magnitude component of the constant phase element
CPEt, and phase angle component of the constant phase element
CPEp,) were extracted for each measurement. One-way ANOVA
was performed to evaluate statistical differences among each
circuit parameter for class discrimination (i.e., between control
and iron-stressed plants). The Tukey’s honestly significant dif-
ference (HSD) method was performed, and the differences were
calculated for an appropriate level of interaction (p ≤ 0.05).
Results were reported as the mean and standard deviation (SD) of
the mean. The possible linear dependency between the obtained
equivalent circuit parameters and the greenhouse environmental
conditions during the experiment was investigated by studying
the correlation of each circuit component with respect to RH, T,
and light, calculating Pearson’s correlation coefficient for each
relationship [27].

D. Data Processing and Classification

The dataset to train the models was composed of the equiva-
lent circuit parameters extracted for the measurement acquired
in the temporal interval between the 5th of August and the 27th
of August, labeling the data according to the respective group of
the plant, either control or stress. In addition, the measurements
collected from the iron-stressed plants were further divided into
two classes, with data from the 5th of August to the 16th of

August labeled as in early stress while data referring to the
measurements of the subsequent days (i.e., until 27th of August)
indicated as late stress. Afterward, the obtained dataset was
partitioned with an 80:20 ratio into train and test sets, to train and
validate various machine learning classification models, includ-
ing discriminant analysis (DA), kernel methods (KM), k-nearest
neighbors (KNN), linear models (LM), naive Bayes classifier
(NBC), multilayer perceptron (MLP), support vector machines
(SVM), and decision trees (DT), using MATLAB’s automatic
toolbox fitcauto that allows the evaluation of the performance of
different classification algorithms by automatically optimizing
their hyperparameters. The different type of machine learning
algorithms was employed due to their different characteristics,
to evaluate the one with better performance in discriminating
the fruit ripening. LR utilizes a logistic function to model a
binary dependent variable, assuming a linear relationship be-
tween log-odds and predictors. DT are nonparametric, creating
simple decision rules from data features, providing easily in-
terpretable models but susceptible to overfitting. NBC assumes
conditional independence of features given the class variable,
offering speed and effectiveness in generating simple models.
KNN assigns class membership based on similarity among
samples, calculating distances to k nearest neighbors. SVM draw
hyperplanes in feature space to maximize class separation. MLP
is a simple feed-forward neural network capable of learning
nonlinear models with at least three layers and nonlinear ac-
tivation functions [28]. The robustness of the trained model was
assessed by a subsequent 10 000-round bootstrapping validation
phase together with a tenfold cross validation, evaluated on
an equally distributed subset of data, and the accuracy of the
obtained models was evaluated in terms of F 1-score.

III. RESULTS AND DISCUSSION

The eight plants, divided between four plants exposed to the
complete nutrient solution (i.e., control) and four plants with
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Fig. 2. Time-series plot of normalized impedance at 10 kHz over a 1-month period. The shaded colored zones represent the range of magnitude changes over
time for both groups (blue shadow for control plants and red shadow for iron-stressed plants). (a) The median magnitude values of the control plants represented by
a blue line while the iron-stressed plants depicted by a red line. (b) Zoomed-in time-series plot showing stem impedance seasonal patterns between night conditions
(indicated by the moon symbol and dark shading) and light conditions (represented by the sun symbol and absence of shading).

iron-deficient nutrient solution, were exposed to the same en-
vironmental conditions, monitored by sensors inside the green-
house. The first symptoms of iron deficiency observed in this
work, characterized by a reduction in photosynthetic activity
and a tendency of the leaves to present a yellow coloration [5],
started toward the end of the experiment (i.e., on the 31st
August) and were noted following a visual observation. Such
timing and observation method is clearly not ideal, as it would
not allow a prompt intervention to mitigate the stress-induced
effects on the plant health and thus yield. For this reason, to
experimentally prove such behavior, as well as to anticipate
such diagnosis exploiting the potential use of the bioimpedance
technique for early stress detection, the data were subjected
to a comprehensive data analysis, comprising three subsequent
steps. Here, the measurement has been analyzed to investigate
the evolution overtime of first the raw impedance magnitude
and second the extracted equivalent circuit parameters. Finally,
based on the assumption of statistical difference among circuit
parameters between the two main conditions (i.e., control and
stress), different classification algorithms were used to identify
the state of the plant, whether in control state, early or late stress,
validating the potential employment of such technique within a
decision support system.

A. Time-Series Analysis

A first step in the exploration of the acquired dataset con-
sisted in the evaluation of the raw impedance data, investigating
approaches found in literature to monitor the plant behavior.
The evolution over time of the normalized bioimpedance mag-
nitude response at 10 kHz is depicted in Fig. 2(a). Such a
point was chosen based on the study of Garlando et al. [20],
which successfully employed this approach to monitor the
response to water stress of tobacco plants over a one-month
time span. Analyzing the normalized impedance magnitudes
over time sheds light on how iron stress affects the bioimpedance
properties of tomato plant stems. The data reveals a noticeable

difference in impedance trends shortly after iron is removed from
the nutrient solution, distinguishing the iron-deficient plants
from the control group. The control plants show a shift in
impedance magnitude (about 0.1 a.u. from the experiment’s
start), likely due to ionic changes during different growth stages
of the tomato plants [29]. In contrast, the impedance response
in iron-deprived plants can be attributed to an adaptation to iron
shortage, involving complex molecular signaling. This includes
variations in proteome profiles [30], metabolic changes [31],
transcriptomic adjustments [32], and alterations in ionic com-
position and structure [33]. While a clear correlation with such
changes appears to be challenging, such results highlight the
potential of utilizing impedance measurements for monitoring
iron stress in plants. Nevertheless, a deeper observation of the
trends observed in the acquired data offers food for thought for
further applications. In Fig. 2(b), a magnified view of a three-day
period is shown to clarify the discernible seasonal variations in
magnitude between the diurnal condition, represented by the sun
symbol, and the nocturnal condition, represented by the moon
symbol. This seasonality is consistently observed throughout
the whole experiment in both iron-stressed and control plants
and can be connected to the extensively documented circadian
rhythms in plants [20], [34], [35]. Such phenomenon can be
explained by plant transpiration, which involves the release of
water vapor through stomatal openings, subsequently driving
the uptake of water and nutrients from the roots to the shoots.
The rate of transpiration varies between day and night in tomato
plants due to the closure or partial closure of stomata during
dark conditions, wherein photosynthesis is absent. Here, the
flow of water and nutrients is opposite, going from the shoots to
the roots [36]. Such results effectively prove that bioimpedance
could be exploited as a potential alternative and low-cost tool to
monitor the plant sap flow trends, an important plant health status
indicator, which is commonly monitored using bulky and expen-
sive equipment. In order to summarize the information collected
through the bioimpedance measurements, the equivalent circuit
components were calculated by fitting the measured spectra on
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Fig. 3. Correlation matrix of the circuit parameters (Rp, Rs, CPE-T, CPE-P)
of the Cole model and the environmental monitoring parameters (temperatureT ,
relative humidity RH, and light intensity). The correlation values for the control
plants are in blue, whereas the corresponding values for iron-stressed plants are
in red. The legend is presented in terms of absolute values for clarity.

the single dispersion Cole model. Such a model was chosen due
to its wide employment as the simplest representation of the flow
of current in biological tissues, allowing to reduce the dataset
to a smaller set of interpretable variables (i.e., from 200 single-
frequency points to 4 circuit component values) while preserving
the majority of the representative information about the flow
current in the biological tissues. In this model, depicted in Fig. s2
(see Supplementary material), the bioimpedance resistive com-
ponents (i.e., Rs and Rp) are used to describe the resistance of
the extracellular and intracellular mediums, respectively, while
the CPE-T element is primarily associated with the pseudoca-
pacitance of the cell membrane and the CPE-P element is related
to the heterogeneity originating from variations in the size and
shape of the cells [37]. The study of such electrical parameters
can consequently be correlated with the plant’s physiological
responses, thus allowing to monitor the impact of disruptive
events such as iron deficiency on the plant structures. For this
reason, the obtained electrical parameters were then employed
in this study to determine the statistical difference between
control and iron-deficient plants. The equivalent circuit model
fitting resulted in an average RMSE, obtained by averaging the
values of all the considered plant spectra, of 466.3± 68.6Ω
and 464.5± 454.5Ω, in terms of impedance magnitude for the
control and the iron stress conditions, respectively. Given the
low error of the fitting results, it is possible to state that the Cole
model is a good approximation of the impedance of the tomato
plants, and that is thus possible to employ its resulting extracted
parameters in the evaluation of the plants’ response to iron stress.

The entire population of plants was exposed to the same
environmental conditions, in terms of temperature, relative hu-
midity, and light, as described in the previous section and whose
trends are presented in Fig. S1 (see Supplementary material).
To exclude the possibility that the evolution of the electrical
parameters, commonly dependent on both T and RH, was
solely representative of the changes occurring in the plants
and not of the environmental conditions, the linear correlation
coefficients between the circuit and the environmental parame-
ters were calculated. Fig. 3 presents the correlation coefficient

matrix between Cole’s circuit parameters and the environmental
parameters. Here, it is visible how the capacitive components
(i.e., CPE-P and CPE-T) are found to be completely unrelated
to environmental parameters, with correlation values close to
zero. The correlation values are slightly higher in the case of
the resistive components, which could be due to the fact that
they are representative of the current flowing in the intra- and
extra-cellular medium, which—being composed of ions—is af-
fected by temperature changes. Nevertheless, such correlations
are weak (less than 56%) and allow us to assume that the
measurements are indicative of a change in the composition of
the content within the plant stem, rather than to environmental
changes.

Once the dependence on the environmental conditions was ex-
cluded, a characterization of the equivalent circuit components
overall behavior over time was performed. The graphs in Fig. 4
depict the time-series evolution of the equivalent electrical com-
ponents Rs, Rp, CPE-T, and CPE-P during the stress time period
for control and stressed plants. In addition to the larger variance
visible as the plants pass between the two different conditions to
which they are subjected, the analysis of the individual circuit
parameters allows us to analyze the individual components that
can be traced back to physiological phenomena taking place in
the plant. A comparable behavior to the one observed in the
time analysis of fixed-frequency impedance presented in Fig. 2
is noticeable in the CPE-P component, presented in Fig. 4(c),
where a deviation over time between control and iron-stressed
plants is clearly visible. Such behavior is potentially due to the
metabolic variation of the plant to adapt to iron deficiency [38],
which affects the integrity of the cellular structures, and thus,
their ability to act as capacitors for the current flowing during
the bioimpedance measurement. In addition, from the graphs
in Fig. 4(a) and (b), it is evident how the circadian cycle, as
expected, is visible only in the trend of the resistive components
Rs and Rp, and not on the pseudocapacitive components. This is
due to the fact that the fluid in the plant vascular tissues (i.e., the
sap flow) is rich in electrically charged ions, which in turn are
the main contributors to the observed current flow. Here, from
the analysis of the time course of the Rp component, it can be
seen that as time progresses and thus the concentration of Fe+

ions decreases, the variation in resistance amplitude between
day and night presents a decreasing trend. This behavior could
be traced to a decrease in photosynthetic activity caused by iron
deficiency, as reported in other plants [39].

To assess the differences in circuit parameters between
stressed and control plants, as well as their changes over time, we
used the Cole model parameters and conducted an ANOVA. This
approach helped to identify statistically significant variations in
the parameters under the two conditions. As illustrated in Fig. 5,
the average values of the Cole model electrical parameters for
both stressed and control plants are presented, accompanied by
the ANOVA findings. In the figure, average values marked with
different letters indicate a statistical difference, as determined
by the HSD test (p ≤ 0.05). The statistical evaluation revealed
that all the extracted circuit parameters showed significant dif-
ferences, thus serving as important indicators in differentiating
the health conditions of the plants.
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Fig. 4. Time-series plot of normalized circuit parameters, namely Rs (a), Rp (b), CPE-P (c), and CPE-T (d), evolution over a 4-week period. The shaded colored
zones represent the range of amplitude changes over time for both groups (blue shadow for control plants and red shadow for iron-stressed plants). The median
magnitude values of the control plants represented by a blue line while the iron-stressed plants depicted by a red line.

B. Plant Status Classification

The employed equivalent circuit model, implementing only
few electrical components, represents an extreme simplification
of the plant physiology and is, therefore, not ideal to accu-
rately represent the complexity of the tissues of the stems. In
fact, from the direct interpretation of the extracted parameters
it is difficult to find indicators for the identification between
a healthy plant and a plant under nutrient stress. Even more
complicated would be to identify whether the plant is in early
stress condition so that nutrient supply can be intervened before
symptoms and consequent loss of yield arise. Nevertheless, the
significant difference in circuit parameters observed between
the considered classes demonstrates how such a model can be
used as a general indicator of the plant status and support the
employment of the circuit parameters as discriminant features
in the training of classification models, where nonapparent and
nonlinear relationships between bioimpedance data and plant
health status could be found. For this reason, based on the
previously extracted equivalent circuit components of the single
dispersion Cole model, various supervised machine learning
classification algorithms were trained, validated, and tested,
for the discrimination of three distinct classes, respectively

TABLE I
SUMMARY OF THE OPTIMIZED CLASSIFICATION MODELS F 1-SCORE

ACCURACY ON THE TRAINING AND TEST SETS, WITH % DIFFERENCE AMONG

THE TWO PHASES

representing the control, early stress, and late stress conditions
of iron deficiency in tomato plants.

The accuracy of the seven models developed to classify the
plant status is listed in Table I, in terms of F 1-score in training
and test, as well as for what concerns the % difference among
the two phases. Overall, the algorithms presenting the poorest
performance are linear methods such as DA and LM, achieving
an F 1-score of around 50%. Such results are expected since
the association between bioimpedance data and biological be-
haviors commonly follows nonlinear patterns. NBC and DT
algorithms, on the other hand, present the highest degree of
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Fig. 5. Comparison of normalized model values between control and
iron-stressed plants across various circuit parameters of the Cole model. The
horizontal axis depicts the Cole model circuit parameters (Rp, Rs, CPE-T,
CPE-P) while the vertical axis indicates the normalized model values over time.
Statistical analysis using ANOVA was performed, with significant statistical
differences denoted by the letters “a” and “b” above the box plots. If condi-
tions (control/stress) share the same letter, differences between groups are not
statistically significant. Outliers are denoted by the marker (“+”).

difference between training and testing phases, with a respective
performance reduction of 12.6% and 13.2%, thus indicating a
lack of generalization capability on unseen data. The algorithms
that provide the best performance are KNN, as already demon-
strated in the impedance measurement classification study [40]
and MLP, with training accuracy above 94% and 98%, respec-
tively, and a decrease of less than 5% in test accuracy. Overall, as
observed in a previous study [41], the MLP has been considered
to provide the best accuracy and stability, as depicted from the
bootstrapping validation F 1 scores in Fig. s3 (see Supplemen-
tary material). Fig. s4 (see Supplementary material) displays the
confusion matrix related to the developed MLP classification
algorithm. In the training phase, such a discrimination model
achieves 100% precision for identifying control plants and an
average of 97.6% for distinctly identifying early and late stress.
The model is able to classify, with high precision, the control
plants also in a test phase, with a precision above 99%, and as
expected, the precision decreases for the early and late stress
classification, decreasing to 91% and 89%, respectively. The
observed high accuracy makes MLP networks the best candidate
for an on-field application of this technique for tomato early
stress identification.

Future developments would potentially include the analysis
of plant response to different nutrient deficiency, as well as
the identification of time-dependent patterns, to finely tune the
developed stress prediction system. In addition, the integration
of such models with stand-alone and low-power measurement
systems [42], which shows to have a great potential for a real-
time and on-field plant health assessment and stress prediction,
would allow us to develop custom-made decision support sys-
tems able to timely identify the insurgence of nutrient stress in
plants. Such tools have the potential to greatly improve the crop
efficiency, in terms of time, yield, and quality of the harvested
products, as well as the profit margins of the producers and

the sustainability of the crops, finely tuning the application of
nutrients to the specific needs of the plants.

IV. CONCLUSION

This work focuses on the characterization of electrical
changes in eight tomato plants under iron starvation carried
out through continuous bioimpedance measurements over a
period of 38 days. Although a larger sample size could enhance
biological diversity capture, this study follows recent trends and
considers the technique’s early stage of development. In addi-
tion, unlike many prior studies, it was conducted in a controlled
glasshouse environment, enabling precise environmental moni-
toring. From an initial examination, it can be seen that through
the analysis of the seasonality of impedance measurements,
a cyclic pattern can be traced following the circadian cycle
of plants. Investigating further, results revealed a noticeable
divergence in the trend of impedance magnitude at a magnitude
of 10 kHz shortly after the elimination of iron from the nutrient
solution applied to the plant, indicating an effect of iron stress on
plant bioimpedance. In addition, this work proved how by em-
ploying the Cole model extracted parameters as a discriminating
feature; it is possible to both monitor the evolution of the plant
health status and to identify stress-induced patterns. First, this
was proved by an ANOVA analysis, where the extracted circuit
parameters resulted to be statistically different, between iron-
stressed and control plants. Second, based on this assumption,
the equivalent circuit components were successfully employed
for the training of various classification models to discriminate
plants in control, early, and late stress conditions. Here, the
MLP algorithm resulted to achieve the best training accuracy
(98%) and a precision to classify the early and late stress with a
precision of 91% and 89%, respectively.

The reported results, supported by both the ANOVA and
machine learning-based classification results, demonstrate the
validity of impedance measurements carried out in the plant
stem, as an indicator of the response of tomato plants to the
application of iron deficiency. These findings contribute to the
development of novel indicators for plant health status moni-
toring, resulting in benefits for both the optimization of crop
nutrient management and the increase in crop yields.
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