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Abstract—The performance of deep neural network-based
speech enhancement systems typically increases with the training
dataset size. However, studies that investigated the effect of training
dataset size on speech enhancement performance did not con-
sider recent approaches, such as diffusion-based generative models.
Diffusion models are typically trained with massive datasets for
image generation tasks, but whether this is also required for speech
enhancement is unknown. Moreover, studies that investigated the
effect of training dataset size did not control for the data diversity.
It is thus unclear whether the performance improvement was due to
the increased dataset size or diversity. Therefore, we systematically
investigate the effect of training dataset size on the performance of
popular state-of-the-art discriminative and diffusion-based speech
enhancement systems in matched conditions. We control for the
data diversity by using a fixed set of speech utterances, noise
segments and binaural room impulse responses to generate datasets
of different sizes. We find that the diffusion-based systems perform
the best relative to the discriminative systems in terms of objective
metrics with datasets of 10 h or less. However, their objective
metrics performance does not improve when increasing the training
dataset size as much as the discriminative systems, and they are
outperformed by the discriminative systems with datasets of 100 h
or more.

Index Terms—Speech enhancement, training data, discrimina-
tive models, diffusion models.

I. INTRODUCTION

UNDERSTANDING speech in noisy and reverberant en-
vironments can be challenging for both normal-hearing

and hearing-impaired listeners [1], [2]. Therefore, speech en-
hancement, which aims to improve the intelligibility and quality
of speech signals corrupted by noise and reverberation, is an
integral part of many technical applications, such as hearing aids
and communication systems. The majority of newly-proposed
speech enhancement systems are based on deep neural networks
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(DNNs) due to their superior performance over traditional ap-
proaches [3], [4]. These systems are commonly trained in a su-
pervised manner with a large number of noisy and clean speech
signals. As the number of trainable parameters increases, DNNs
have the potential to capture more details in the probability
distribution of the training data, but this requires training them
with larger datasets. For example, diffusion models [5], [6], [7],
which have been recently applied to speech enhancement [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
are typically trained with huge datasets in image generation
literature [21]. However, whether this is also required for speech
enhancement is unknown.

Few studies have investigated the effect of training dataset
size on the performance of state-of-the-art speech enhancement
systems in a systematic way. In [22], a feedforward neural
network (FFNN) was trained with an increasing number of
noises and utterances, which improved the classification per-
formance of individual time-frequency units into speech and
noise. However, the dataset size increased with the number
of noises and utterances used to generate the mixtures. As a
consequence, the effects of the size and diversity of the training
data were entangled. In [3], a FFNN was trained with datasets
of different sizes generated from a fixed number of noises and
utterances, i.e. fixed diversity. Speech quality results increased
with the training dataset size, but since the utterances were
selected from TIMIT [23], whose training split is only 4 h-long,
the performance saturated for datasets larger than 100 h due
to the increased redundancy in the training data. In [24], a
FFNN was trained with a fixed number of mixtures, i.e. fixed
dataset size, using either 100 or 10000 noises. The system
strongly benefited from the increased number of noises and
matched the performance of a noise-specific system, but the
effect of training dataset size was not investigated. In [25], a
bidirectional gated recurrent unit (GRU) network was trained
with datasets of different sizes generated using an increasing
range of signal-to-noise ratios (SNRs), and the performance of a
downstream speech recognition system improved consequently.
However, by increasing the range of SNRs seen during training,
the acoustic mismatch between training and testing was reduced.
The performance improvement was thus attributed to the re-
duced mismatch rather than the increased dataset size. In [26], a
FFNN and a recurrent long short-term memory (LSTM) network
were trained with 100 h-long datasets generated from different
noise databases. The systems performed the best when trained
with datasets generated from large and diverse noise databases.
While the study differentiated between the size and diversity
of the data, it referred to the size of the noise databases used
to generate the mixtures, rather than the amount of mixtures
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generated to train the systems, which was kept constant. In
summary, most studies have not investigated the effect of the
training dataset size independently of its diversity, and have
considered outdated FFNNs or recurrent neural networks.

In this study, we systematically investigate the effect of train-
ing dataset size on the performance of popular state-of-the-art
speech enhancement systems in matched conditions. We con-
sider three discriminative systems, namely Conv-TasNet [27],
DCCRN [28] and MANNER [29], and three diffusion-based
approaches, namely SGMSE+ [11], SGMSE+M [30] and the
system from [17], [18]. To control for the data diversity, we
generate mixture datasets of different sizes using a fixed set of
speech utterances, noise segments and binaural room impulse
responses (BRIRs). This way, the training distribution is fixed,
and only the number of training examples is changed. Code and
audio examples are available online.1

II. SIGNAL MODEL

Let s denote a clean speech signal and {ni}Ni=1 a set of noise
signals where N is the number of noise sources in the acoustic
scene. The mixture xL at the left ear of a binaural receiver in the
acoustic scene can be expressed as follows,

xL = s ∗ hs,L +

N∑

i=1

ni ∗ hni,L, (1)

where hs,L is the left channel of the BRIR between the receiver
and the speech source, and hni,L is the left channel of the BRIR
between the receiver and the i-th noise source. Defining the
target signal for the speech enhancement system requires choos-
ing a reflection boundary b beyond which speech reflections are
considered detrimental to speech intelligibility [31], [32]. Let
1[a,b[ denote the indicator function of a time interval [a, b]. By

denoting hearly
s,L =hs,L ·1[0,b] the part of hs,L up to time instant

b and hlate
s,L=hs,L ·1[b,∞[ the part of hs,L beyond time instant b,

the target signal yL for the speech enhancement system at the
left ear is

yL = s ∗ hearly
s,L , (2)

while the interfering signal nL at the left ear includes the late
speech reflections and the reverberant noise,

nL = s ∗ hlate
s,L +

N∑

i=1

ni ∗ hni,L. (3)

Note that since hs,L=hearly
s,L +hlate

s,L, we have xL=yL+nL due
to the linearity of the convolution operator. Similar expressions
are obtained for the right ear signals xR, yR and nR.

As the speech enhancement systems considered in this study
are single-channel, we average the left and right channels of the
different signals. We denote the single-channel mixture, target
and interfering signals asx= xL+xR

2 ,y= yL+yR

2 andn= nL+nR

2
respectively. Even though the channels are averaged, a binaural
model allows to simulate realistic mixtures where the position
of the sources contributes to the acoustic diversity.

1[Online]. Available: https://github.com/philgzl/brever and https://philgzl.
github.io/lst

TABLE I
CORPORA AND DATABASES DETAILS

III. DATASET GENERATION

We generate noisy and reverberant mixtures at 16 kHz using
speech utterances, noise segments and BRIRs from multiple
corpora and databases. The speech utterances are selected from
TIMIT [23], LibriSpeech (100-hour version) [33], WSJ SI-
84 [34], Clarity [35] and VCTK [36]. The noises are selected
from TAU [37], NOISEX [38], ICRA [39], DEMAND [40] and
ARTE [41]. The BRIRs are selected from Surrey [42], ASH [43],
BRAS [44], CATT [45] and AVIL [46]. Details about each
corpus and database are provided in Table I. Each acoustic scene
is simulated by placing one speech source and N ∈{1, 2, 3}
noise sources at random spatial locations in the same room,
uniformly distributed in [−90 ◦, 90 ◦] in front of the receiver. The
reflection boundary is set to b=50ms to include early reflections
in the target signal y as suggested in [31], [32]. The target and
interfering signals y andn are mixed at a random SNR uniformly
distributed in [−5 dB, 10 dB].

To generate a training dataset, we randomly select speech ut-
terances, noise segments and BRIRs from a subset of each speech
corpus, noise database and BRIR database respectively. For the
speech, this subset is constructed by randomly selecting 80%
of the utterances from each corpus. For the noise, we sample
segments within 80% of the length of each file. For the BRIRs,
we select every other BRIR in each room. The validation dataset
uses the same subset of speech utterances, noise segments and
BRIRs as the training dataset, but consists of different random
mixture realizations. The test dataset is generated using the
remaining set of speech utterances, noise segments and BRIRs.
Note that utterances from the same speaker, segments from the
same noise file and BRIRs from the same room can be used
for training and testing. This is deliberate, as we are interested
in evaluating the system in matched conditions, such that
distribution shifts between training and testing are minimized
and only the effect of the number of training examples is
captured. We generate five training datasets with sizes of 3 h,
10 h, 30 h, 100 h and 300 h respectively. The number of mixtures
in each dataset is 2595 , 8660 , 25930 , 86074 and 258259
respectively. The validation and test datasets are both fixed to
30min. They consist of 305 and 310 mixtures respectively.

When randomly selecting a corpus from which to pick a utter-
ance to form a mixture, one option is to use equal probabilities
for each corpus. While this would result in a similar number of
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TABLE II
PERCENTAGE OF MIXTURES USING REPEATED SPEECH UTTERANCES IN EACH

TRAINING DATASET IN TERMS OF DURATION

utterances from each corpus, it would result in a large imbalance
in terms of duration, since the five considered speech corpora
have very different utterance length distributions as shown in
Table I. To avoid this, we weight the probability of selecting
a corpus by the inverse of its average utterance length. This is
only done for the training dataset, as the systems are evaluated
on the validation and test datasets on a per-mixture basis. This
is not an issue when selecting noise segments and BRIRs, since
the mixture length is defined by the speech utterance length. We
thus use equal probabilities for selecting the noise and BRIR
databases.

The speech utterances, noise segments and BRIRs are ran-
domly drawn with replacement. This means that the same speech
utterance can be used to generate multiple mixtures in the same
dataset, and the number of repetitions increases with the dataset
size. Moreover, as the number of utterances in each corpus varies
substantially, utterances are more or less likely to be repeated
depending on which corpus they are selected from. Note that
the mixtures are still unique, as the chances of selecting the
same speech utterance, noise segment, BRIR, SNR and spatial
locations twice are very low. Table II shows the percentage
of mixtures using repeated speech utterances in each training
dataset, and the corpus they are selected from. A similar analysis
can be made for the noise segments and the BRIRs, but is not
shown here for brevity.

IV. SYSTEMS, TRAINING AND OBJECTIVE METRICS

We evaluate three different discriminative speech enhance-
ment systems, namely Conv-TasNet [27], DCCRN [28] and
MANNER [29]. They have 4.9M, 3.7M and 21.2M param-
eters respectively. We also evaluate three diffusion-based sys-
tems, namely SGMSE+ [11], SGMSE+M [30] and the system
from [17], [18], which we denote as SGMSE+Mcos

Heun. These
three systems all use the NCSN++ architecture from [6] for the
score network. SGMSE+M and SGMSE+Mcos

Heun use a smaller
version of NCSN++ (27.8M parameters) compared to SGMSE+
(66.1M parameters), as this was reported to reduce the compu-
tational cost without degrading performance [30]. Compared
to SGMSE+M, SGMSE+Mcos

Heun uses a cosine noise schedule,
a Heun-based sampler and a different preconditioning [17],
[18]. The number of sampling steps is fixed to 64. Technical
details about the implementation of both discriminative and
diffusion-based systems can be found in [17].

The systems are trained with the different datasets for the
same number of neural network parameter updates. That is,
as the dataset size increases, the number of training epochs is
proportionally reduced. This allows for a fair comparison, since
the systems are trained for the same amount of time. The number
of epochs is set to 1000 for the 3 h dataset, 300 for the 10 h
dataset, 100 for the 30 h dataset, 30 for the 100 h dataset and

10 for the 300 h dataset. The experiment is repeated three times
with different random neural network parameter initializations,
and the metrics are averaged across repetitions.

The systems are evaluated in terms of perceptual evaluation
of speech quality (PESQ) [47], extended short-term objective
intelligibility (ESTOI) [48] and SNR. The results are reported
in terms of average objective metric improvement from the input
mixture to the enhanced output. The improvements are denoted
as ΔPESQ, ΔESTOI and ΔSNR respectively.

V. RESULTS

Fig. 1 shows the performance on the test dataset as training
progresses for each system and each dataset size. It can be seen
that the discriminative systems, i.e. Conv-TasNet, DCCRN and
MANNER, strongly benefit from increasing the training dataset
size, despite the increasing amount of utterance repetitions
reported in Table II. More specifically, these systems heavily
overfit when training with the 3 h dataset for too many epochs.
As the training dataset size increases, they stop overfitting
and benefit from longer training. Performance improvements
with the dataset size can be observed until 300 h. Meanwhile,
the diffusion-based systems, i.e. SGMSE+, SGMSE+M and
SGMSE+Mcos

Heun, show a very different behavior. With the 3 h
dataset, they overfit less severely and show substantially higher
results compared to the discriminative systems. While the perfor-
mance of SGMSE+Mcos

Heun improves when increasing the dataset
size to 10 h, they show very similar curves when further in-
creasing the dataset size beyond 10 h. Despite having more pa-
rameters, SGMSE+ shows similar performance to SGMSE+M,
which is in line with [30].

The best model for each training run is selected based on the
validation loss. The performance of the selected model on the
test dataset is plotted as a function of the training dataset size
in Fig. 2. Similar to the previous results, the performance of the
discriminative systems substantially improves with the dataset
size. However, while the diffusion-based systems outperform the
discriminative systems with the 3 h and 10 h datasets, they do
not improve when further increasing the dataset size. With the
100 h and 300 h datasets, they are outperformed by Conv-TasNet
and MANNER in terms of ΔPESQ, and by Conv-TasNet and
DCCRN in terms of ΔSNR. Since SGMSE+ shows the same
behavior as SGMSE+M, these results cannot be explained by a
lack of model capacity.

VI. DISCUSSION

The results suggest that diffusion-based speech enhancement
systems are remarkably suited when a small amount of training
data is available, as SGMSE+, SGMSE+M and SGMSE+Mcos

Heun
perform the best relative to the discriminative systems when
trained with the 3 h and 10 h datasets. Our results are in con-
trast to image generation literature, where diffusion models are
typically trained with datasets of billions of images [21]. We
hypothesize on possible explanations for our results:
� The speech enhancement task is very different from the

image generation task. In image generation, the model
is tasked with generating coherent images from scratch
given a text prompt, and multiple valid yet very different
images can be generated from the same prompt. In speech
enhancement, the model is provided with a mixture that
has the same modality and dimensionality as the clean
speech, and can thus leverage a lot of information from the
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Fig. 1. ΔPESQ, ΔESTOI and ΔSNR results on the test dataset as a function of the number of epochs × the training dataset size in hours.

Fig. 2. ΔPESQ, ΔESTOI and ΔSNR results as a function of the training
dataset size.

input to generate the output. While multiple versions of
the clean speech can be generated from the same mixture,
these versions should not be very different from each other,
as the output speech should be coherent with the mixture.

� The stochastic nature of the diffusion process acts as a
strong regularizer, which allows the model to perform well
despite being trained with a small amount of data. Indeed,
the neural network is presented with training examples
mixed with random Gaussian noise realizations at different
levels during training. This is in line with [49], which
showed that the diffusion model objective is equivalent to
the evidence lower bound (ELBO) with data augmentation

consisting of Gaussian noise perturbation. This also ex-
plains the similar curves in Fig. 1 for the 10 h, 30 h, 100 h
and 300 h datasets.

� While SGMSE+Mcos
Heun shows superior performance com-

pared to SGMSE+M thanks to the updated noise schedule,
sampler and preconditioning, there might be other design
aspects that prevent the system from scaling. E.g. the
NCSN++ architecture, which was borrowed from image
generation literature, might not be optimal for speech pro-
cessing.

VII. CONCLUSION

We investigated the effect of training dataset size on the
performance of three discriminative and three diffusion-based
speech enhancement systems in matched conditions. We found
that the diffusion-based systems performed the best relative to
the discriminative systems in terms of objective metrics with
datasets of 10 h or less, but they were outperformed by the
discriminative systems with datasets of 100 h or more. This
suggests that diffusion-based approaches are remarkably suited
when a small amount of training data is available. However,
this also suggests that they do not benefit from increasing
the training dataset size as much as discriminative systems.
Future work should investigate if the conclusions generalize
to unseen speaker, noise and room conditions. In addition, a
formal listening test should be conducted to investigate if the re-
ported differences in terms of objective metrics are perceptually
relevant.
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