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Abstract—The emerging Learned Compression (LC) replaces
the traditional codec modules with Deep Neural Networks (DNN),
which are trained end-to-end for rate-distortion performance. This
approach is considered as the future of image/video compression,
and major efforts have been dedicated to improving its compres-
sion efficiency. However, most proposed works target compression
efficiency by employing more complex DNNS, which contributes
to higher computational complexity. Alternatively, this paper pro-
poses to improve compression by fully exploiting the existing DNN
capacity. To do so, the latent features are guided to learn a richer
and more diverse set of features, which corresponds to better re-
construction. A channel-wise feature decorrelation loss is designed
and is integrated into the LC optimization. Three strategies are
proposed and evaluated, which optimize (1) the transformation
network, (2) the context model, and (3) both networks. Experimen-
tal results on two established LC methods show that the proposed
method improves the compression with a BD-Rate of up to 8.06%,
with no added complexity. The proposed solution can be applied as
a plug-and-play solution to optimize any similar LC method.

Index Terms—Learned compression, image coding, feature
diversity, latent space, rate-distortion optimization.

I. INTRODUCTION

THE emerging Learned Compression (LC) replaces tra-
ditional codec modules with a parametric model such

as Deep Neural Networks (DNNs), which is trained to learn
compression. This is in response to the ever-increasing demand
for multimedia content, which motivates innovations for more
efficient compression schemes [1]. Although LC is a rather
new direction and is still finding its shape, recent LC methods
[2], [3], [4], [5], [6] have shown great potential and achieved
high compression efficiency, overtaking the state-of-the-art tra-
ditional codecs such as HEVC [7] and VVC [8].

Pioneering work of Ballé et al. [9], [10] and Theis et al.
[11] were among the early LC methods, which formulate com-
pression as Rate-Distortion Optimization (RDO), and solve it
iteratively. CNN and RNN architectures are used to transform
the image into a latent feature representation, which is then
compressed with entropy coding, using a context model.
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To improve the compression, great efforts have been dedicated
to designing advanced (and usually more complex) network
architectures [12], [5], and context models [3], [10], [13], [4].
Ballé et al. [10] proposed an auxiliary hyperprior network that
extracts scale parameters to capture spatial dependencies in
latent representation. Minnen et al. [13] presented an autore-
gressive and hierarchical context model, to better capture the
dependencies. Cheng et al. [3] extends this by modeling the
context with discretized Gaussian mixtures. Several works build
on these context models to propose improved compression.
Operational neural networks with built-in non-linearity [12],
transformer-based architecture [5], and diffusion-based models
[6] are among novel architectures. Flexible bitrate LC [14], [15],
compression for machine vision [16], latent-space analysis [17],
and advances in learned video compression [18], [19], [20] are
other developments and applications of LC.

A main downside of LC methods is its high computational
complexity which can be tens to hundreds of times more than
traditional codecs [21]. Most of this complexity comes from us-
ing complex DNNs for the codec, and complex context models.
To mitigate the complexity, recent proposals suggested network
pruning [22], [23] to reduce the computations, or channel group-
ing [24] and checkerboard context modeling [25] for improved
parallelization. Using mask decay and sparsity to reduce the
number of parameters is another similar approach [26]. Although
these works reduce the complexity, the reduction is not enough
for real-time or energy efficient codecs, and this reduction is
compensated by the emerging research proposing more compli-
cated DNNs.

To mitigate this issue, we set to enhance the compression
efficiency by better training the existing LC architectures and
fully exploiting the DNN capacity. Recent research has shown
that learning a divers set of features leads to higher performance
[27]. This issue has been studied in the context of learning
diverse parameters [28], and more recently diverse features [29],
[30], with the latter showing more promising results.

Inspired by above mentioned works, we propose an opti-
mization approach for LC, which further exploits the existing
DNN capacity without adding to the computational complexity.
We argue that the existing feature diversity methods are not
efficient for LC, as (1) diversifying information within each
feature channel complicates image reconstruction and is not
effective, and (2) the large latent size of LC makes it ineffi-
cient to decorrelate all features. Hence, we propose to improve
feature diversity in codec, by decorrelating feature channels at
the encoder bottlenecks. The RDO is modified to include the
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Fig. 1. (a) Learned compression architecture and (b) visualization of latent
features.

proposed decorrelation loss as a regularization term. We propose
three strategies for the proposed method which (1) optimize
the transformation network via decorrelating transformed image
features, (2) optimize the context (auxiliary) network by decor-
relating context features, and (3) optimize both networks. The
proposed optimization method can be applied to any LC which is
optimized for Rate-Distortion (R-D) performance. Experimental
results confirm that an improved compression performance can
be achieved with no added complexity. Contributions of this
work are:
� We propose to improve compression by improving feature

diversity at the LC’s latent representation. This exploits the
existing network capacity without adding complexity.

� We design a new loss function and reformulate the Rate-
Distortion Optimization towards more diverse features.

� We propose three strategies to optimize the transformation
network, context network, and both.

� We evaluate the proposed method and provide detailed
experimental results on two established LC methods.

II. PROPOSED METHOD

Fig. 1(a) depicts a generic architecture for LC compression
method. The input image x is transformed into a latent repre-
sentation y, which is quantized into ŷ and transmitted to the
decoder after Arithmetic Encoding (AE). A side bitstream is
formed by further processing y with a hyper-encoder, to extract
context parameters used for entropy coding. Fig. 1(b) visualizes
an example for latent representations y and z. These represen-
tations include feature channels which capture different signal
patterns and help reconstructing a robust image. However, the
usual optimization of LC methods leads to correlated features,
which cannot fully benefit from the DNN capacity. In following
subsections, we formulate the optimization problem and detail
the proposed method.

A. Learned Image Compression Framework.

We start formulating the problem using a similar framework
as in [3]. Given an input image x, a transformation (or analysis)
network ga(.) is used to derive latent representation y. This latent
is then quantized and transmitted to decoder after entropy cod-
ing. At decoder, a synthesis network gs(.) is used to reconstruct
the image, x̂. This is given below, where φ and θ are the learned
parameters of analysis and synthesis networks.

y = ga (x;φ) (1)

ŷ = Q (y) (2)

x̂ = gs (ŷ; θ) (3)

As quantization is not differentiable, during training it is
replaced with uniform noise U(−0.5, 0.5). To capture the de-
pendencies in representation ŷ, a set of auxiliary analysis and
synthesis networks, ha and hs are used, which model the feature
distribution pŷ|ẑ(ŷ|ẑ), to derive the entropy parameters for AE.
For ẑ a factorized prior is used [10]. This process is given as:

z = ha (y;φh) (4)

ẑ = Q (z) (5)

pŷ|ẑ(ŷ|ẑ)← hs (ẑ; θh) (6)

To train the encoder and decoder, an RDO loss is defined,
where the rate, R, is approximated by entropy of feature ele-
ments, R(ŷ) = E[−log2pŷ|ẑ(ŷ|ẑ)], while distortion, D, is mea-
sured as a distance such as Mean Square Error (MSE). This is
given in (7), where λd balances between rate and distortion.

L = R (ŷ) +R (ẑ) + λdD (x, x̂) (7)

B. Rate-Distortion Optimization With Feature Decorrelation

As discussed earlier, the RDO process given by (7) tends to
learn correlated features, which cannot fully exploit the network
capacity. To mitigate this, we propose to decorrelate the latent
features, to guide the encoder to learn more diverse features.
Hence, we modify the R-D loss to diversify features for improved
performance. The modified RDO loss is given in (8).

L = R (ŷ) +R (ẑ) + λdD (x, x̂) + λfdLfd = R (ŷ) +R (ẑ)

+ λd (D (x, x̂) + αLfd) (8)

Here, λfd is the weight of feature decorrelation loss. Directly
optimizing for the first part of (8) tends to shift the RD curves and
complicates the rate allocation. Hence, we reformulate the loss
as the second term of (8), such that λfd = αλd, which bounds
the effect of the added term to the selected λd (corresponding to
the selected rate). Next subsection details the calculation of the
feature decorrelation loss.

C. Channel-Wise Feature Decorrelation

This section details the feature decorrelation loss. Decorrelat-
ing all features is not suitable for image compression, as (1) the
latent size in compression can be very large, and calculating
correlation or covariance matrix for such a large number of
elements is often infeasible, (2) our experiments show that
decorrelating features within each feature channel hurts the
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R-D performance and not effective for compression. Hence, we
propose to diversify the features along the channels.

Given a latent feature representation, F ∈ RN×W×H×C , the
feature decorrelation lossC(F ) for each spatial element is given
as (9), where F̄ indicates the mean feature value. The loss
sums up the pairwise correlation among all channel elements
(C channels) in a spatial position in the W ×H plane, over a
batch of N image samples.

C (F ) =
∑

u,v∈C |Cov (Fu, F v)| =
∑

u,v∈C

∣∣∣∣∣
∑

i∈N

(
Fu
i − F̄u

) (
F v
i − F̄ v

)
∣∣∣∣∣ (9)

Accumulating C(F ) over all spatial locations, the feature
correlation loss Lfd is achieved as (10).

Lfd =
∑

W×H C (F ) (10)

To apply the proposed feature diversity loss on LC, we propose
three strategies, which optimize the transformation networks
ga/gs, hyper (auxiliary) networks ha/hs, and both. To do so,
for the first variant (named Proposed y), we apply Lfd on
F = y, and for the second variant (named Proposed z), we
apply Lfd on F = z. For the third variant (named Proposed
y+z), we calculate the sum of loss on both y and z; this is
Lfd =

∑
W×H for y C(y) +

∑
w×h for z C(z).

Moreover, the feature diversity loss can be applied either on
the feature representations, or on the quantized features. Al-
though both cases were tested successfully, we found empirically
that applying directly on features (e.g., on y instead of ŷ) achieves
slightly improved results. This can be justified by the fact that
in training, ŷ is approximated by added noise and it does not
correspond to actual quantized values.

III. EXPERIMENTAL RESULTS

The proposed method is implemented and tested using Com-
pressAI library [31] in PyTorch. As the proposed method can be
used to optimize any LC method, we implemented and tested
it on two established LC methods, Cheng’s method [3] and
the scale hyperprior method [10]. For evaluations, we train the
proposed methods and the corresponding baselines ([3], [10])
with similar configurations. All methods are trained over patches
of 256×256 random samples from the JPEG-AI dataset [32], for
100 epochs and over 30K iterations, and a batch size of 16. MSE
loss is used forD. The λd is set to 0.0018, 0.0035, 0.0067, 0.013,
0.025, and 0.0483 to train six models corresponding to different
rates. All models use 128 channels. The α for each model is
selected from a range of [10-8, 10-5]. Models are trained on an
Nvidia Tesla V100, and tested on a system with Intel Core i7
11850H and Nvidia T1200.

A. Rate-Distortion Performance

Fig. 2. Compares the R-D performance of the proposed
methods with their corresponding baseline [3], using PSNR
and MS-SSIM, on Kodak dataset. It can be observed that all
three variants of the proposed method consistently outperform
the baseline, leading to bitrate saving in similar qualities. To

Fig. 2. R-D curves on Kodak, based on PSNR (top), and MS-SSIM (Down).

TABLE I
BD-RATES COMPARED WITH THE BASELINE [3]

TABLE II
BD-RATES COMPARED WITH THE BASELINE [10]

quantify the performance gain, we measure Bjøntegaard Delta
Rate (BD-Rate) [33] of each proposed method against baseline,
based on PSNR and MS-SSIM. Table I summarizes the BD-
Rates, which are in line with the curves. It can be observed
that the Proposed y achieves slightly higher bitrate reduction
compared to the Proposed z. Merging the two methods, Proposed
y+z outperforms both individual variants, however, the bitrate
savings from the two does not accumulate. When measured by
MS-SSIM, the gains are lower than the PSNR based measure-
ments. This is justified as the models are trained based on MSE,
which is closely correlated to PSNR. The best variant, Proposed
y+z, achieves a considerable BD-Rate gains of -8.06% based
on PSNR, and -2.74% based on MS-SSIM.

To further evaluate the performance, we also implement
the Proposed y method for hyperprior method [10], and com-
pare the results with the hyperprior baseline. Table II shows
that the proposed method succeeds in improving the base-
line results by 1.17%. The achieved gain is lower compared
to models developed based on Cheng’s method [3]. This
is justified as hyperprior method uses a much simpler net-
work, with only around 0.4 the number of parameters [21]
of Cheng, and a simpler context model. Hence, the more so-
phisticated Cheng has more capacity to benefit from feature
decorrelation.

Finally, Table III compares the proposed and [26] against
baseline [3]. It is observed that the proposed achieves a higher
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Fig. 3. Comparing visual quality of the proposed y+z method, with its Cheng [3] baseline and the original image. Values are bpp/PSNR/MS-SSIM, respectively.

Fig. 4. Feature representations (sum of all y channels) for the baseline and the proposed y+z method.

TABLE III
COMPARING THE PROPOSED AND [26], BOTH AGAINST [3]

compression performance. However, [26] reduces parameters,
while the proposed does not affect this. Unlike [26], the proposed
can be applied to other methods as plug & play.

B. Visual Quality

To further assess the proposed method, we compare its visual
quality with the baseline [3], and original images in Fig. 3.
Examples were selected to have similar bpps. It can be observed
that the proposed y+z has a higher visual quality and preserves
more details, for instance in building structures or on window
blinds. Analyzing the learned features in Fig. 4 reveals that
the feature maps (sum of all y channels) of the two methods
show similar structure, while the proposed method exhibits
slightly more details in complex areas. However, measuring the
correlation among feature channels reveals that the proposed
method indeed learns more distinct features, which is the main
cause for its higher R-D performance. Sum of correlation among
all channels for the proposed method are 0.51 and 0.42 those of
Cheng, for examples of kodim07 and kodim08 images.

C. Computational Complexity

As discussed in Section I, the proposed method does not
change the network architecture or the context model. Hence,

TABLE IV
TRAINING TIME INCREASE (%) COMPARED TO BASELINE

it improves the R-D performance without adding to the encod-
ing/decoding complexity. However, as summarized in Table IV,
the proposed methods take 5.32% to 9.97% longer in training.
This overhead corresponds to computing the feature decorrela-
tion loss. Although the loss is simple, computing it over the large
latent sums up to the reported overheads (Table IV also shows
larger overhead for a larger latent, such as y).

IV. CONCLUSION

This paper proposed a method for training learned image
compression, which improves the compression performance by
learning more diverse features in encoder latent. It was pointed
that traditional rate-distortion optimization does not fully exploit
the network’s capacity, due to high correlation among learned
features. To remedy this, a channel-wise feature decorrelation
loss was designed that aims to guide the training to diversify
feature channels. Moreover, the designed loss was integrated
into the Rate-Distortion Optimization, to design three variants.
Experimental results confirmed that all variants consistently
improve the compression performance, while optimizing both
transformation and context networks achieves the best results.
The proposed method does not affect the encoder/decoder com-
plexity after training.
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