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ABSTRACT Autonomous navigation has become a topic of immense interest in robotics in recent years.
Light detection and ranging (LiDAR) can perceive the environment in 3-D by creating the point cloud
data that can be used in constructing a 3-D or high-definition (HD) map. Localization can be performed
on the 3-D map created using a LiDAR sensor in real-time by matching the current point cloud data
on the prebuilt map, which is useful in the GPS-denied areas. GPS data is inaccurate in indoor or
obstructed environments, and achieving centimeter-level accuracy requires a costly real-time kinematic
(RTK) connection in GPS. However, LiDAR produces bulky data with hundreds of thousands of points
in a frame, making it computationally expensive to process. The localization algorithm must be very fast
to ensure the smooth driving of autonomous vehicles. To make the localization faster, the point cloud is
downsampled and filtered before matching, and subsequently, the Newton optimization is applied using the
normal distribution transform to accelerate the convergence of the point cloud data on the map, achieving
localization at 6 ms per frame, which is 16 times less than the data acquisition rate of LiDAR at 10 Hz
(100ms per frame). The performance of optimized localization is also evaluated on the Kitti odometry
benchmark dataset. With the same localization accuracy, the localization process is made five times faster.
LiDAR map-based autonomous driving on an electric vehicle is tested in the TiHAN testbed at the IIT
Hyderabad campus in real-time. The complete system runs on the robot operating system (ROS). The
code will be released at https://github.com/abhishekt711/Localization-Nav.

INDEX TERMS Autonomous navigation, light detection and ranging (LiDAR), localization, mapping,
point cloud, robot operating system (ROS).

I. INTRODUCTION

AUTONOMOUS vehicles are the pivotal aspects of the
intelligent transportation systems (ITSs) and future

mobility. Autonomous vehicles are one of the emerging
research topics revolutionizing the future of ground vehicles.
An autonomous driving assistance system provides the nec-
essary safety features to the vehicle, which can reduce fatal
accidents. Perception, localization and mapping, planning,
and control constitute the four basic building blocks of the
autonomous vehicles, as shown in Fig. 1. Perception is the
process by which multiple sensors, such as light detection
and ranging (LiDAR), cameras, and radars are used to

perceive the environment by acquiring the image and point
cloud data [1]. Maps are created using the data obtained
from the sensor. On the built map, localization is a process
of determining vehicle position and orientation.
LiDAR is one of the most widely used sensors in

autonomous vehicles and it is used for environment percep-
tion, mapping, localization, and navigation [2], [3], [4]. The
LiDAR emits laser pulses, which are reflected by various
objects and then absorbed by LiDAR. It creates the 3-D
point cloud data with x, y, and z coordinates and intensity
values of each point. The depth of each point is calculated
using the time difference between the emitted and received
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FIGURE 1. Block diagram of the autonomous navigation system.

pulse [5], [6]. Point cloud data creates a highly detailed and
accurate 3-D map of an environment [7], [8]. Vision-based
loop closure detection presents significant challenges due to
changes in appearance and field of view. Additionally, cam-
era sensors are susceptible to variations in seasons, weather,
and lighting conditions. In contrast, LiDAR is less affected
by lighting conditions (day and night) [9]. Localization of
an autonomous vehicle is a crucial aspect of navigation, as it
provides accurate and reliable information about the vehicle’s
position in 3-D space. The normal distribution transform
(NDT) algorithm has been widely used for estimating the
position and orientation of an autonomous vehicle in 3-D
space by comparing the LiDAR scan data with a prebuilt
3-D map [10], [11]. Matching time is one of the essential
parameters in the localization algorithm, and it means the
time taken to match the current input scan frame on the map
to determine the current position and orientation of the ego-
vehicle. In this article, we adopted a probabilistic approach
to match the LiDAR points on a 3-D point cloud map,
which is independent of color or intensity information. This
probabilistic approach significantly improved localization
speed. However, integrating the camera and LiDAR fusion
for high-definition (HD) map creation could greatly enhance
autonomous vehicle capabilities, enabling the detection of
lanes, road signs, and traffic signs, tasks that LiDAR

alone cannot accomplish. LiDAR map-based navigation on
autonomous vehicles is suitable for controlled environments
and GPS-denied scenarios. Path-tracking algorithms, such
as the pure pursuit algorithm, are commonly used in
autonomous navigation. It allows a vehicle or robot to follow
a desired path by continuously adjusting its steering angle
to track a target point on the path ahead [12]. The LiDAR
map-based localization and autonomous navigation are useful
in the GPS-denied areas or areas where the GPS data is
inaccurate. The significant contributions of this article are
as follows.
1) A lightweight map of a long stretch is created using

the key-frames and increasing the edge and plane
resolution parameters to ensure smooth functionality
within the robot operating system (ROS) platform.
An optimized NDT localization algorithm for the
LiDAR map is proposed. Point cloud filtering and
downsampling reduce computational load, while the
Newton nonlinear optimization method accelerates
convergence on the map. This reduces matching time
per frame to 6 ms, 16 times faster than the LiDAR’s
data acquisition rate at 10 Hz (100 ms per frame),
enhancing the autonomous vehicle navigation.

2) The integration of localization and navigation algo-
rithms onto a 3-D map to demonstrate the reliable
autonomous navigation of a shuttle vehicle in real-
time using only a LiDAR sensor. The localization
performance is compared and evaluated on the
Kitti odometry benchmark dataset. Our approach
achieved faster localization with the same localization
accuracy.

In Section II, the related work in this domain is discussed.
The methodology of the proposed navigation system is
discussed in Section III. The results and their analysis are
done in Section IV.

II. RELATED WORK
Although autonomous navigation is one of the trending
research topics, most of the research related to navigation in
this area is limited to robots or based on GPS. Integrating
mapping, localization, and navigation algorithms to demon-
strate autonomous navigation on a large vehicle using the
LiDAR is an area to be explored extensively. In [13], a
method related to 3-D scan matching using an improved
3-D NDT for the mobile robotic mapping is discussed.
The matching time per frame is 0.09 s (90 ms), nearly
equal to the frame rate of the LiDAR data at 10 Hz.
Ort et al. [14], [15] addressed the challenge of autonomous
vehicle navigation in rural environments where detailed prior
maps may not be available. It presents a navigation system
that relies on the onboard sensors and perception algorithms
to enable autonomous driving. This article used an open
street map (OSM) for localization. Muñoz-Bañón et al. [16]
proposed a navigation framework for autonomous vehicles
based on the OSM data and LiDAR-based naive-valley-
path obstacle avoidance. The framework leverages OSM
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road information and LiDAR point cloud data to enable
safe and efficient navigation in complex urban environments.
Still, in many countries in rural areas, a detailed OSM
map is not available, and getting a centimeter-level GPS
position is a challenging task without a real-time kinematic
(RTK) connection. Thus, the localization error will affect
navigation accuracy. Zhang and Singh [17] proposed the
LiDAR odometry and mapping algorithm (LOAM). The
algorithm focuses on robustly estimating the motion of
the sensor platform and concurrently building a 3-D map
of the environment. There is a need for improvement in
matching time per frame so that the vehicle can navigate in
real time. Saarinen et al. [18] proposed the NDT Monte–
Carlo localization (NDT-MCL) algorithm, which combines
the NDT scan matching technique with the MCL framework
for localization in autonomous robotics. The NDT scan
matching algorithm efficiently aligns the robot’s sensor mea-
surements with a prebuilt map, while the MCL framework
handles the probabilistic localization using a particle filter.
Zhou et al. [19] proposed the NDT-Transformer algorithm,
which leverages the NDT representation for the large-scale
3-D point cloud localization. The algorithm utilizes the
transformer network architecture to process and align the
3-D point clouds with a prebuilt NDT map. The matching
time per frame in [19] is relatively high, affecting the real-
time navigation when the algorithm takes a few iterations
to match the point cloud with the map. Wang et al. [20]
proposed an improved version of the pure pursuit algorithm
for path tracking in autonomous driving.

III. METHODOLOGY
A. SYSTEM OVERVIEW
LiDAR map-based navigation system includes the following
steps as shown in Fig. 1. First, the 3-D Map or the HD Map is
constructed by stitching the point cloud data of LiDAR. After
that, real-time localization of the autonomous vehicles is done
on theprebuiltmapbymatching the current point cloudwith the
map. The localization algorithm gives the current position and
orientation of the vehicle in real-time, with respect to the map
frame. The path-tracking algorithm is used for the navigation
process. The mapping, localization, and navigation processes
will be explained in detail in the upcoming section. The vehicle
used in this experiment is a 14-seater electric vehicle powered
by a 72 V/DC battery and propelled by a 7.2 kW motor.
Steering and throttle control are managed by a MicroAutoBox
controller. A Velodyne HDL-64 LiDAR sensor is mounted
on the top of the vehicle for mapping and localization. The
vehicle is equipped with an NVIDIA Jetson AGX Orin 32 GB
computational board running on the UBUNTU 20 operating
system, as shown in Fig. 2.

B. LIDAR MAPPING
The LiDAR creates the 3-D point cloud data which is used
to construct the 3-D map of an environment, as shown in
Fig. 3. The point cloud registration process constructs the

FIGURE 2. E-vehicle mounted with Velodyne HDL-64 LiDAR, NVIDIA Jetson AGX
Orin computing platform, and MicroAutoBox vehicle controller.

FIGURE 3. Map created by Velodyne 64 channel LiDAR at IIT Hyderabad campus.

FIGURE 4. Block diagram of the mapping algorithm to create a lightweight map.

map. Point cloud registration aims to align the different sets
of points in the different coordinate systems into the same
coordinate system. The drift error in matching is minimized
by finding the accurate transformation between the points.
We have created the map by extracting the feature and
matching the current LiDAR frame to the cloud map. The
edge and plane resolution is increased and the key-frames
are chosen based on the rotational and translational changes
to create a lightweight map as shown in Fig. 4. Also, a map
is validated on the Kitti ground truth dataset and verified
using the loop closure method in our previous work in [21].
The steps followed to create the map on our point cloud
data are as follows.
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1) FEATURE EXTRACTION

LiDAR captures the data at the rate of 5–20 Hz. LiDAR
data rate is kept at 10 HZ in this experiment, but the
mapping algorithm runs at 1 Hz to minimize the size of
the map. The point cloud is segmented into smaller parts,
and features, such as the edges and planes are extracted.
Edges in LiDAR data correspond to points with a significant
change in the surface orientation or height. Edge extraction
algorithms typically search for the points with high local
curvature [17], [21]. Planar surfaces in the LiDAR data
correspond to regions with approximately constant surface
normal vectors. Let’s suppose Lk is the kth frame of the
point cloud data and Lm(k,i) is the ith point from the mth ring
of LiDAR. In scan ring m, let Sm(k,i) is the set of neighboring
point adjacent to L(k,i). The feature points are selected as the
edge or planar points based on the curvature value, which
is determined by [17]
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Here, L(k,j) denotes the adjacent points of L(k,i) in Sm(k,i) and
Ns is the number of points in Sm(k,i). Each LiDAR frame is
divided into eight identical subregions. From each subregion,
a maximum of two edge points and four planar points are
selected. Edge points are typically defined as points on the
boundary between the two surfaces, such as the edges of
buildings, cars, or trees. In general, edge points have high
curvature values and are characterized by sharp changes in
depth or intensity. Once these regions are identified, the edge
points (Ek) are those points that have curvature value larger
than the threshold value (Cth). Planar points lie on a flat
surface, such as the ground, walls, or roofs of buildings.
Planar points (Pk) generally have low curvature and are
characterized by a consistent depth or intensity value. Planar
points are selected when the curvature value exceeds the
threshold (Cth).

2) LIDAR ODOMETRY

LiDAR odometry is estimated by finding the transformation
between the consecutive LiDAR frames of the point cloud
data. LiDAR odometry minimizes the distance between the
edge line and the planar surface between the two consecutive
frames. Yaw rotation and translation in the ground frame are
considered to determine the motion of the ground vehicle.
Odometry can be estimated by finding the correspondence
in feature points. Once the transformation matrix is found
between the consecutive LiDAR frame, which consists of
the rotational and translational parameters [17], [21], [22].
Each point in the current LiDAR frame can be rotated and
translated to accumulate in the reference of the map axis,
which is the map’s origin.

3) LIDAR MAPPING

The mapping algorithm runs at a lower frequency at 1 Hz as
compared to the odometry algorithm, which runs at 10 Hz.

The feature points extracted are matched in subsequent
frames to create a 3-D map of an environment. Edge and
plane features are filtered by increasing resolution parame-
ters. The feature points are updated based on the keyframes
to make the mapping algorithm faster. The keyframes are
selected based on the rotational and translational changes
greater than the predefined threshold to reduce the size of
the map. The mapping algorithm matches the current frame
of the LiDAR data Lk+1 to the mapped cloud Mk. Mk is the
map formed by matching all the point cloud frames up to
Lk by transforming the points in the current LiDAR frame
onto the map’s origin
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Any feature points (x, y, z) in point cloud can be transformed
on the map axis using transformation matrix which consist
of the rotational (R ∈ R

3×3) and translational parameter
(T ∈ R

3×1) to (mx,my,mz) to form the map cloud Mk as
given in (2). Also, the map is downsampled by a voxel grid
filter to reduce the computational load. We have achieved
the same localization accuracy tested on the Kitti odometry
ground truth data by reducing the computational load in
our work [21]. Also, the map accuracy can be tested using
the loop closure method. Loop closure detects previously
visited locations to correct the drift errors in pose estimation.
Factors like rapidly changing surroundings or ambiguous
features may challenge the algorithm’s ability to detect
loop closures accurately. IMU data can also be utilized in
loop closure detection in a dynamic environment, which
helps identify previously visited locations. IMU data, which
includes measurements, such as acceleration and angular
velocity, can be integrated with the LiDAR data during
mapping. By fusing these sensor inputs, the system can
better estimate the vehicle’s motion over time and the
system can detect loop closures and correct accumulated
drift errors, thereby improving the overall accuracy of the
LiDAR mapping process [23]. Loop closure is performed
based on the keyframes, which are selected according to
the rotational and translational thresholds [22]. Loop closure
is also initiated when the drift error exceeds the threshold
required to match the selected keyframes. Point clouds
are iteratively aligned by minimizing the distance between
their corresponding points, a process known as point cloud
registration. This process depends entirely on the dynamics
of an environment, including how frequently significant
transformations (rotational and translational changes) occur
between the point cloud frames. So, once the point cloud
data is stitched by compensating for the distortion and drift
errors, an environment map is created. We store the map
in.pcd format, used while navigating the vehicle on the given
map, by localizing the vehicle. All the points stored in the
pcd files of the map have coordinates values (x, y, and z) with
respect to the map’s origin. The map’s origin is the starting
point when we start collecting the data to create a map.
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FIGURE 5. Block diagram of the localization algorithm.

C. LOCALIZATION ON PREBUILT MAP
Localization is done by matching the current point cloud
data on the 3-D map generated by LiDAR. The localization
algorithm gives the current position and orientation of the
vehicle which is used for autonomous navigation. GPS-
based localization is not reliable in an indoor or obstructed
environment where a vehicle is parked inside the parking
area. Also, a costly RTK connection is required in a GPS-
based system to get the centimeter-level accuracy. So, we
have used LiDAR only for localizing the vehicle on the
given map. The localization algorithm is made faster by
downsampling the point cloud using a voxel grid filter
and subsequently applying a nonlinear Newton optimization
which converges the point cloud on the map quickly, so
multiple iterations can be performed before the next frame
of point cloud data arrives. The block diagram of the
localization algorithm is shown in Fig. 5.
Normal distribution parameters of points are used to

calculate the matching score to localize the vehicle accurately
and determine the position and orientation of the vehicle
on the given map. Most of the time, localization fails when
the current point cloud mismatches with the 3-D map of
an environment. Also, the algorithm should perform the
matching task in fewer iterations. We have optimized the
traditional NDT algorithm by reducing the matching time per
frame for the smooth navigation of the autonomous vehicle.
To reduce the matching time, the map point cloud and the
input point cloud are filtered before matching instead of
matching the complete point cloud data, which takes more
time to process. First, the point cloud is filtered using a voxel
grid with a larger leaf size to reduce the number of points
to match with the map to reduce the matching time. The
normal distribution parameter mean (μk) and the covariance
matrix (�k) is given as [13], [24]

μk = 1

Nk
=

Nk∑

i=1

x(k,i) (3)

�k = 1

Nk

Nk∑

i=j

(

x(k,i) − μk
)(

x(k,i) − μk
)�

. (4)

Here, (x1, x2, . . . , xk . . . , xN) is the mapped cloud with the N
points and xk is the kth normal distribution voxel with the Nk

points. Similarly, the input point cloud data is filtered using
the voxel grid filter as discussed above and transformed into
map coordinates using the 3-D coordinate transformation

x′i = Rxi + T. (5)

R and T are the rotational and translational parameters that
transform the input point cloud xi into the map frame. The
current LiDAR scan is matched with the NDT grid by finding
the grid cells that correspond to the observed points in
the LiDAR scan. The likelihood of similarity is computed
between the points in the scan and the map and the statistical
information stored in the grid cells. Each filtered point
is transformed and compared to the statistical information
stored in the corresponding grid cell. The similarity between
the point and the cell’s distribution calculated is known as the
NDT score. The NDT score is calculated by matching the
transformed point cloud and map point cloud given by

Ns =
N
∑

i

exp
−(x′i − μi

)�
�−1
i

(

x′i − μi
)

2
. (6)

A higher NDT score (Ns) value means the input point
cloud and reference map are well matched. While navigating,
we kept the NDT score threshold so that the navigation
starts when the NDT score is above the threshold value.
Transformation probability is the NDT score of a point
obtained by dividing the number of points in the input scan
to be matched. After an initial guess of the vehicle’s location
on the map, a few iterations are performed to align the
input point cloud on the map. The best pose (position and
orientation) estimate is obtained by optimizing the vehicle’s
pose parameters using the Newton’s nonlinear optimization
algorithm.
Newton’s method aims to address this issue by generating

a sequence x′i starting from an initial guess. This sequence
converges toward a minimizer x′∗ of the function f through
the use of a series of the second-order Taylor approximations.
The second-order Taylor expansion of f at x′i is then applied
in this process

f
(

x′i + k
) ≈ f

(

x′i
)+ f ′

(

x′i
)

k + 1

2
f ′′
(

x′i
)

k2. (7)

The subsequent iteration x′i+1 is determined to minimize
this quadratic approximation in terms of k, and it is set as
x′i + k. When the second derivative is positive, the quadratic
approximation forms a convex function of k, and finding
its minimum involves setting the derivative to zero. As the
minimum is attained for

d

dk

(
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Putting everything together, the Newton’s method
performs the iteration

x′i+1 = x′i + k = x′i −
f ′
(

x′i
)

f ′′(xi)
. (11)

This optimization step aims to find the pose that maxi-
mizes the likelihood or similarity between the LiDAR scan
and the NDT grid. Once the negative of the NDT score
is minimum, the transformation parameters are calculated,
which provides the rotation and translation of the current
LiDAR axis from the origin of the map axis. Rotation
parameters, such as roll, pitch, and yaw give the orientation
of the ego-vehicle and the translation parameters give the
current position of the ego-vehicle.

D. NAVIGATION AND PATH TRACKING
The localization algorithm gives the current position and
orientation of the vehicle. The vehicle’s current position
is given with the (cx, cy, cz) coordinates with respect to
the map coordinate, and the origin belongs to the map’s
starting point. The center of the LiDAR sensor considered the
vehicle’s current position with respect to the map’s origin.
Orientation of the vehicle is calculated in the quaternion form
(qx, qy, qz, qw) using the localization algorithm. Navigation
requires the rotation of vehicles in the x-y plane with respect
to the z-axis. So, we need to calculate the current heading,
i.e., yaw (yθ ) using quaternion by

yθ = arctan

(

2qwqz + qxqy
1 − 2

(

qy2 + qz2
)

)

. (12)

The waypoints are recorded using the localization algorithm
by driving the vehicle on the desired path on the LiDAR map.
Waypoints array contains the x and y coordinates [wx,wy].
In autonomous navigation, the ego vehicle’s current position
and yaw rotation using the localization algorithm is called
in the callback function in the navigation code continuously
at the rate of 10 Hz. The required offset (xo) and (yo)
are calculated as the difference between the next waypoint
and the vehicle’s current position in the x and y directions,
respectively. The vehicle’s current position (cx, cy) is the
center of LiDAR from the map’s origin

yo = wy − cy (13)

xo = wx − cx. (14)

The bearing angle (θ) from the current position of the
vehicle with respect to the next waypoint in an anti-clockwise
direction is calculated in degrees as

θ = arctan

(
yo
xo

)(
180

π

)

. (15)

To keep the value of θ positive, 360 is added when θ < 0◦

θ = θ + 360◦; ( If θ < 0◦). (16)

The required bearing is the angle between the vehicle’s
heading and the target waypoint is the difference between

the bearing angle and heading of the vehicle (yaw) derived
in (12) and (15)

α = θ − yθ . (17)

Now, let us consider a case in which the vehicle is moving
along the positive x-axis, then the vehicle heading yθ will
fluctuate as 1◦ and 359◦, and θ is small, so to keep the alpha
in between [−180◦,+180◦]

α = α + 360◦; (If α < −180◦) (18)

α = α − 360◦; (If α > 180◦). (19)

The steering input which is given to the actuator is calculated
after fine tuning the vehicle dynamics using the pure pursuit
controller algorithm [12], [25] as

Sip = k ∗ arctan

(

2 ∗ L ∗ sin
(

π∗α
180◦

)

Ld

)

. (20)

Here, Ld is the distance between the rear axle and the target
points and L = 3.5 is the length from the rear axle to
the front axle of the 14-seater campus shuttle vehicle used
in this experiment. k is the fine-tuning parameter. dSpace’s
MicroAutoBox is used as a controller that controls the
vehicle’s acceleration and steering.

IV. RESULTS AND ANALYSIS
In this experiment, Velodyne HDL-64 LiDAR, Jetson AGX
Orin developer kit is a computational board on the 14-seater
electric vehicle. MicroAutoBox controller is used to control
the actuators in the vehicle. ROS Noetic is used as the
computing platform. LiDAR map-based autonomous navi-
gation is tested in three different routes inside the campus
of the Indian Institute of Technology Hyderabad, India (IIT
Hyderabad). Route 1 covers the indoor and outdoor area
of TiHAN (Technology Innovation Hub on Autonomous
Navigation) testbed of 250 m. Routes 2 and 3 cover an area
of around 2.5 km each inside the campus. The accuracy of
the mapping and localization algorithm is also tested on the
standard KITTI dataset in our previous work in [21], and
the localization accuracy was 2.13 cm on the Kitti odometry
dataset. As discussed in Section III-B, a map of all the
routes is created. The map of all the routes is shown in
Figs. 7(a), 8(a), and 9(a). The line and plane resolution
parameter is increased, which does not affect the localization
algorithm and also reduces the size of the pcd file, which
stores the point of the mapped cloud. Mapping results are
shown in Table 1. Creating a LiDAR map for a long stretch
is computationally expensive, but we have also created a map
of a 2.5 km path in real-time by selecting the key-frames
based on the rotational and translational threshold. As the
number of point cloud frames increases, the computational
time per frame for stitching the map increases. For the route
of 2.5 km, the average computational time per frame is
93.54 ms, which is less than the LiDAR data acquisition
rate, i.e., 10 Hz (100 ms per frame). For route 1, which is
250 m, the mapping time per frame is 33.85 ms. The graph
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(a) (b) (c)

(d) (e) (f)

FIGURE 6. Localization on the different routes. (a)–(c) are the point cloud matching on the map and (d)–(f) are the filtered point cloud matching on the map. (a) Route 1.
(b) Route2. (c) Route 3. (d) Route 1 (filtered points). (e) Route2 (filtered points). (f) Route 3 (filtered points).

for frame-wise mapping time is shown in Figs. 7(b), 8(b),
and 9(b). Thus, the map can be created in real-time. The
map file size is very small, which can be loaded into ROS
and used for localization and navigation.
While localizing, instead of matching the whole points

in the point cloud data, the point cloud is filtered and
the optimized NDT localization algorithm is applied as
mentioned in Section III-C. The average number of points in
the point cloud data of Velodyne HDL-64 is roughly around
120 000 per frame when the data is acquired at 10 Hz. Point
cloud data is filtered using a voxel grid filter of leaf size 3
to reduce the number of points to perform NDT matching.
In Table 2, the number of points per frame in the filtered

point cloud is given. The number of points to be matched
with the map is very less. The average number of points in
a filtered point cloud is 1500–1600 per frame. This reduces
the points to be matched in a current scan by around 80
times. Also, the point cloud data converges quickly on the
map by applying the nonlinear Newton optimization using
(11). Thus, the localization algorithm became very fast.
Localization on the LiDAR map in different routes is shown
in Fig. 6. The filtered point cloud is matched with the map
shown in Fig. 6(d)–(f). In the filtered point cloud, the graph
for the frame-wise number of points is shown in Figs. 7(c),
8(c), and 9(c). The average matching time per frame is
around 5 and 6 ms for the localization algorithm. While
matching initially, the input point cloud will converge faster
and match with the map. The frame-wise matching time is
shown in Figs. 7(d), 8(d), and 9(d). In all the routes, the
vehicle is localized accurately with the map without failure.

Transformation probability is around more than 50% in all
the dynamic routes. The score reduces with the increase in
dynamic obstacles. The navigation algorithm runs only when
the transformation probability is greater than the threshold
value (0.3). The frame-wise transformation probability graph
is shown in Figs. 7(e), 8(e), and 9(e).

The localization algorithm obtains the vehicle’s current
position and orientation. The steering input is calculated
as discussed in Section III-D to track the waypoints. The
average velocity of the vehicle is around 10–13 km/hr
in different routes during localization and autonomous
navigation. Route 1 is a mix of outdoor and indoor
navigation. LiDAR map-based autonomous navigation works
perfectly in both the indoor and outdoor navigation. GPS-
based localization does not provide high accuracy in indoor
environments. The localization and navigation algorithms are
integrated via rostopics. Navigation drift is calculated by
finding the deviation of the navigation trajectory from the
waypoint trajectory. Navigation trajectory is the trajectory
of the vehicle in autonomous mode. An average navigation
deviation of 4 and 5 cm is found. The waypoint trajectory
and navigation trajectory for all the routes are shown in
Figs. 7(f), 8(f), and 9(f).

The point cloud is filtered and downsampled to decrease
the computational load, as matching time relies on the
number of points in a point cloud frame, as it calculates
and optimizes the probability distribution for each point.
Additionally, the Newton nonlinear optimization method is
employed to accelerate the convergence of the point cloud
on the map. The average matching time per frame of 5 and

VOLUME 3, 2024 85002



Thakur and Rajalakshmi: LiDAR-BASED OPTIMIZED NORMAL DISTRIBUTION TRANSFORM LOCALIZATION

(a)

(d) (e) (f)

(b) (c)

FIGURE 7. (a) Map. (b) Mapping time per frame. (c) Number of points in the filtered point cloud. (d) Matching time per frame during localization. (e) Transformation probability.
(f) Mapping and localization trajectory of Route 1.

(a)

(d) (e) (f)

(b) (c)

FIGURE 8. (a) Map. (b) Mapping time per frame. (c) Number of points in the filtered point cloud. (d) Matching time per frame during localization. (e) Transformation probability.
(f) Mapping and localization trajectory of Route 2.

6 ms is achieved. Also, the matching time drops when the
vehicle is stationary after reaching the destination point, as
shown in Fig. 7(d) because the current position is the same

in the consecutive frames, and there is no transformation
between the consecutive frames. ROS clock is used in the
algorithm to calculate the matching time per frame.
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(d) (e) (f)

(a) (b) (c)

FIGURE 9. (a) Map. (b) Mapping time per frame. (c) Number of points in the filtered point cloud. (d) Matching time per frame during localization. (e) Transformation probability.
(f) Mapping and localization trajectory of Route 3.

TABLE 1. Mapping results on different routes at IIT hyderabad campus using
velodyne HDL-64 LiDAR.

A. DISCUSSION AND COMPARISON
In Table 3, we have compared the matching time per point
cloud frame on the map with the work done in [13] and
[19]. Our optimized algorithm localizes the vehicle fifteen
times faster than [13] and five times faster than [19]. Also,
the work done in [11], [18], and [24] and other research
work on the LiDAR-based localization did not mention the
matching time per frame in their work.
Also, the experiment is performed on the Kitti odometry

dataset sequence number 7 [26], which has ground truth
trajectories. The experiment is performed using an HP i7-
1165G7 system equipped with 16 GB of RAM. The map
of the dataset is created, as shown in Fig. 10, and then the
data is played back, evaluating the localization algorithm
with the ground truth trajectory. The red trajectory represents
the ground truth position of the vehicle during the data
recording, the green trajectory depicts the position estimated
by the traditional NDT algorithm, and the blue trajectory

TABLE 3. Comparison of matching time per frame of the localization algorithm.

illustrates the optimized NDT algorithm using our approach.
The results were assessed in terms of localization accuracy
by comparing the trajectories in the root mean-square error
and matching time per frame (ms), which is the time taken
to match the point cloud data on a 3-D map per frame,
as outlined in Table 4. We achieved a similar level of
localization accuracy while achieving a five times faster
localization process, as shown in Table 4.

The localization algorithm needs to outpace the data
acquisition rate of the LiDAR sensor to run in real-time,
which operates at 10 Hz (100 ms/frame). Also, the GPS
sensors publish the data at 100 Hz (10 ms/frame). To achieve
equivalency in competency with the GPS localization, the
LiDAR-based localization algorithm should aim to localize
under 10 ms/frame.
The demonstration of LiDAR-based optimized localization

on 3-D map for autonomous navigation can be seen using
this link: https://youtu.be/hPdYkcmbKTY.

V. CONCLUSION AND FUTURE WORK
This article proposes an optimized NDT localization algo-
rithm on a 3-D map for an autonomous navigation system
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TABLE 2. Localization and navigation results on different routes at IIT Hyderabad campus using Velodyne HDL-64 LiDAR.

FIGURE 10. Localization algorithm is evaluated on Kitti odometry dataset
sequence 7.

TABLE 4. Localization evaluation on kitti odometry dataset sequence 7.

using a LiDAR sensor. Mapping, localization, and navigation
are tested on different routes at the IIT-Hyderabad campus.
The mapping algorithm is made faster by updating the feature
points based on the keyframes and increasing the edge and
plane resolution. Mapping a large area of up to 2.5 km is
done in real-time. The size of the pcd file of the map is very
small, around 25 MB for a 2.5 km route. The lightweight map
enabled smooth functionality of the localization algorithm
within the ROS platform. In localization, the matching time
depends on the number of points to be matched and how
fast the point cloud converges and matches with the map.
Point cloud data is filtered to reduce the matching time. The
point cloud is filtered using a voxel grid filter of a leaf size
of 3 to reduce the number of points to be matched. The
localization algorithm is optimized, and the average matching
time is found to be 5 and 6 ms per frame experimentally,
which is much less than the data acquisition rate of

LiDAR at 10 Hz, i.e., 100 ms per frame. The localization
algorithm is made faster while achieving similar localization
accuracy as evaluated on the Kitti odometry benchmark
dataset. Hence, the localization algorithm is optimized and
made faster for the smooth navigation of the autonomous
vehicle.
The limitation of this method is in adverse weather

conditions, such as rain or snow where the LiDAR data is
affected. Multisensor fusion is a prospective area for further
investigation in this project in the future. We intend to extend
this research by fusing the LiDAR, camera, and IMU sensors
to create an HD map and dynamically plan the path of
the autonomous vehicle, incorporating obstacle tracking and
avoidance.
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