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Guest Editorial
Special Issue on Self-Powered Sensors and

Wearable Electronic Systems
WEARABLE sensing has recently been highly preferred

due to its quick and accurate measurement of
physiological parameters. These sensors have been devised
using various polymers [1], [2] and nanomaterials [3], [4]
suited for the chosen application. With the exponential growth
of wearable electronics [5], [6], [7], there is a need to broaden
their capabilities in terms of functionality and availability.
Commercializing these wearable electronics needs further
encouragement to use these sensors as point-of-care devices.
Self-powered sensors [8], [9] are one of the growing aspects in
the sector of wearable sensing. With the growing requirement
for energy usage, self-powered sensing systems need to be
developed to generate and harvest energy ubiquitously [10],
[11]. This Special Issue highlights some of the published
papers that work on using smart textiles and self-powered
devices for efficient and sustainable sensing applications.

A comprehensive review by Majumder et al. [A1] illustrates
the compelling usage of smart-textile-based sensors for
in-home health care. The review highlights using textile-
based wearables to monitor health and activities in a smart
home. A thorough review is provided to showcase the current
state of research and development on smart textiles and
textile-based sensors, focusing on their application in the
smart home environment. It is estimated that the smart-
textile-based industry is expected to grow to over U.S.
$4 billion by 2030. Certain factors, such as cost-effectiveness,
manufacturing scalability, device performance, environmental
and safety concerns, and privacy issues, may impede the
market penetration of smart textiles.

Min et al. [A2] show us the fabrication and utilization
of triboelectric nanogenerators (TENGs) for a wide range
of self-powered flexible pressure sensors. The developed
prototypes exhibited sensing of a wide pressure range of
3.2–1176 kPa. It should also have variable sensitivities in
three different pressure ranges of low (1–10 kPa), medium-to-
high (10–500 kPa), and ultra-high (>500 kPa). Sensitivities
of 3.16, 0.023, and 0.031 V/kPa were obtained for these
three pressure ranges. The sensors also obtained stable and
repeatable responses for all the applied pressure ranges. The
performances of these sensors highlighted their potential to be
used for certain applications in the field of wearable devices,
human–machine interfaces, and biomedical and automotive
sectors. The real-time functionality of the sensors was shown
by demonstrating the use of the device in the detection of
human and robot finger tapping, collection of human gait
information, and detection of impact forces.
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The work by Toral et al. [A3] highlights developing and
utilizing graphene-enabled sensors for monitoring physiolog-
ical parameters. The graphene-based sensors were formed by
developing laser-induced graphene (LIG) and laser-induced
graphene oxide (LrGO) materials. Following the optical
characterization of the LIG materials, they were used as
micro-supercapacitors (MSCs) to detect dual physiological
parameters, including temperature and heart rate. Due to
the porous nature of the sensors, they performed well
when operated as electrochemical and electrocardiogram
(ECG) electrodes. The body temperature sensing of these
prototypes was based on the temperature dependency of the
electrical conductivity of LrGO. After the prototypes were
encapsulated with polydimethylsiloxane (PDMS) for enhanced
protection and increased linearity, they showed a sensitivity of
−1.23 k�·

◦C−1. The real-time application of these sensors
was carried out by attaching them to a rigid-flex printed
circuit board (PCB). The sensing system was wirelessly
operated by integrating it with a Bluetooth low energy (BLE)
microcontroller. The power consumption of these systems was
optimized for extended battery life when used for wireless
transmission of physiological data to external monitoring
devices. This allows the system to operate wirelessly for
prolonged periods.
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