T

= CSS

Received 12 February 2024; revised 14 May 2024; accepted 11 June 2024. Date of publication 24 June 2024;
date of current version 5 July 2024. Recommended by Guest Editor Ahmad Taha.

Digital Object Identifier 10.1109/0JCSYS.2024.3418306

Concurrent Learning of Control Policy and
Unknown Safety Specifications in
Reinforcement Learning

LUNET YIFRU ©1 AND ALI BAHERI 2

(Intersection of Machine Learning with Control)

"West Virginia University, Morgantown, WV 26505 USA
2Rochester Institute of Technology, Rochester, NY 14623 USA

CORRESPONDING AUTHOR: ALI BAHERI (e-mail: akbeme@rit.edu).

ABSTRACT Reinforcement learning (RL) has revolutionized decision-making across a wide range of
domains over the past few decades. Yet, deploying RL policies in real-world scenarios presents the crucial
challenge of ensuring safety. Traditional safe RL approaches have predominantly focused on incorporating
predefined safety constraints into the policy learning process. However, this reliance on predefined safety con-
straints poses limitations in dynamic and unpredictable real-world settings where such constraints may not be
available or sufficiently adaptable. Bridging this gap, we propose a novel approach that concurrently learns
a safe RL control policy and identifies the unknown safety constraint parameters of a given environment.
Initializing with a parametric signal temporal logic (pSTL) safety specification and a small initial labeled
dataset, we frame the problem as a bilevel optimization task, intricately integrating constrained policy opti-
mization, using a Lagrangian-variant of the twin delayed deep deterministic policy gradient (TD3) algorithm,
with Bayesian optimization for optimizing parameters for the given pSTL safety specification. Through
experimentation in comprehensive case studies, we validate the efficacy of this approach across varying
forms of environmental constraints, consistently yielding safe RL policies with high returns. Furthermore,
our findings indicate successful learning of STL safety constraint parameters, exhibiting a high degree of
conformity with true environmental safety constraints. The performance of our model closely mirrors that of
an ideal scenario that possesses complete prior knowledge of safety constraints, demonstrating its proficiency
in accurately identifying environmental safety constraints and learning safe policies that adhere to those con-
straints. A Python implementation of the algorithm can be found at https://github.com/SAILRIT/Concurrent-
Learning-of-Control-Policy-and- Unknown-Constraints-in-Reinforcement-Learning.git.

INDEX TERMS STL mining, safe learning, specification-guided reinforcement learning (RL).

I. INTRODUCTION

Reinforcement learning (RL) has risen as a key computa-
tional paradigm involving training intelligent agents to make
sequential decisions, aiming to maximize some notion of ex-
pected return [1]. It has been instrumental in solving complex
dynamic problems across a wide range of applications such as
autonomous driving, robotics, aviation, finance, etc. [2], [3],
[4], [5]. However, deploying RL in practical settings intro-
duces the critical concern of safety, especially in domains,
such as autonomous driving and healthcare, where unsafe

actions can lead to catastrophic outcomes. Safety refers to the
need for systems to operate within acceptable risk parameters,
and pertaining to RL, safety is defined by the system’s ability
to attain the environmental objectives while adhering to safety
constraints.

Traditionally, safe RL methods base policy design on ei-
ther modifying the optimality criterion to include cost as
one of the objectives or altering the exploration process [6].
For instance, a prominent approach is the integration of for-
mally defined safety constraints, such as STL, into reward

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see

266 https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 3, 2024

https://orcid.org/0000-0002-8805-8252
https://orcid.org/0000-0002-5613-0192
https://github.com/SAILRIT/Concurrent-Learning-of-Control-Policy-and-Unknown-Constraints-in-Reinforcement-Learning.git
https://github.com/SAILRIT/Concurrent-Learning-of-Control-Policy-and-Unknown-Constraints-in-Reinforcement-Learning.git

T

&

IEEE
_CSS

@

functions encapsulating critical limits within which RL agents
must operate. This approach is particularly appealing, be-
cause, unlike classical machine learning models, which are
often black-box and obscure, temporal logic formalism offers
a precise, human-interpretable language for system behavior.
Logically constraining RL has shown promise for generating
safe, high-performance policies, however, the effectiveness of
this approach hinges on the availability and quality of the
predefined safety constraints. Defining such safety constraints
can be effectively approached through the utilization of expert
knowledge, manually designed by domain experts, or derived
from data using computational techniques. However, the re-
liance on expert knowledge for defining safety constraints
can be restrictive and often infeasible, as experts are not
always readily available. Furthermore, given the dynamic na-
ture of environments, experts may have a limited perspective,
potentially leading to safety constraints that do not fully en-
capsulate the true environmental conditions resulting in either
overly conservative behavior or overlooked risks. On the other
hand, computational approaches for mining temporal logic
safety specifications depend on the availability of extensive
historical datasets, which may not always be accessible, or
its acquisition could pose significant risks in safety-critical
domains. Overall, specifying exact safety constraints in RL
environments is a challenging task, and static, predefined
constraints may not be sufficiently adaptable to address the
complexities of dynamic real-world environments.

Traditional safe RL methods fall short in designing safe

policies in the absence of predefined safety constraints, leav-
ing a critical gap that impedes the broader integration of safe
RL into areas lacking such predefined constraints. To bridge
this gap, we propose an approach that enables the learning of
safe control policies in environments where safety constraints
are not explicitly defined a priori. Our approach, given a
parametric STL (pSTL) specification and two categories of
small initial datasets, one populated with safe trajectories and
another populated with unsafe trajectories, concurrently iden-
tifies the pSTL safety parameters that accurately model the en-
vironmental constraints and derives an optimal safe RL policy
constrained by the learned STL. Our concurrent learning pro-
cess is facilitated through the input of a human expert who it-
eratively provides labels to rollout traces generated by execut-
ing the learned policy. This allows the extension of the small
initial dataset and efficient refining of the pSTL parameter
values, steering them towards the accurate constraints, in turn,
guiding the RL algorithm towards the optimal safe policy.

Our Contribution: Key contributions of our paper are:

1) We propose a novel framework for concurrently learn-
ing safe RL policies and STL safety constraint parame-
ters in an environment where safety constraints are not
defined a priori.

2) We modify the TD3-Lagrangian constrained RL algo-
rithm to use STL as a constraint specification during
policy synthesis.

3) Through extensive evaluations in various safety-critical
environments, and comparisons to baseline models, we

VOLUME 3, 2024

prove that our framework is able to obtain safe RL
policies that maximize rewards while upholding safety
constraints, performing comparably to baseline models
equipped with predefined safety constraints.

The remainder of this paper is structured as follows.
Section II provides a review of related work in the domain
of safe RL and STL synthesis, Section III outlines the foun-
dational concepts used in deriving our proposed approach.
The problem statement is articulated in Section IV and our
methodology is detailed in Section V. Section VII is dedicated
to the performance evaluation of our results as compared with
baselines and discussion of the implications of our findings as
well us the limitations of our work.

II. RELATED WORK

Our work is related to two key areas of research, namely safe
RL policy synthesis and formal safety specification learning
with additional emphasis on parameter synthesis of pSTL
specifications.

Safe RL: In recent years, a diverse range of approaches for
safe RL has been proposed, including constrained RL [7], [8],
safety layers or shielding [9], [10], [11], and formal meth-
ods [12]. A comprehensive overview of safe RL methods
is given in [13], [14], [15]. Primal-dual policy optimiza-
tion [16], [17], [18], a method prominent to our approach, is
based on the Lagrangian relaxation procedure and solves a
saddle-point problem to iteratively optimize the policy (pri-
mal) while adjusting the dual variable. Taking inspiration
from primal-dual methods, constrained policy optimization
methods outlined in [7], [19] develop trust region methods,
which approximately enforce constraints in every policy up-
date by evaluating the constraint based on samples collected
from the current policy.

Safe RL methods based on using safety certificates as con-
straints are also explored. An example of such methods is
to constrain the agent’s actions by applying the control law
of Lyapunov functions, mathematical approaches guarantee-
ing stability and safety, and then excluding unsafe actions
from the action set [20], [21]. Lyapunov method, however,
requires prior knowledge of a Lyapunov function, which can
be challenging to obtain. Another form of safety certificates
are Barrier functions that divide unsafe states and safe states
by finding a barrier and starting from a given initial state,
ensure that the system will not enter the unsafe set. Some
works use barrier certificates as constraints [22], [23].

Another direction explored in a safe RL framework is
utilizing Gaussian Process (GP) models. For instance, the
SNO-MDP framework optimizes costs within a safe region
and maximizes rewards in areas with undefined safety con-
straints by using GP models to predict unobserved states [24].
Similarly, some research have used GP models to approximate
unknown functions for safe exploration [25], and to represent
unknown reward and cost functions, ensuring safety with a
certain probability and optimizing reward [26].

Conversely, other approaches synthesize safe policies based
on reward shaping techniques informed by temporal logic

267

YIFRU AND BAHERI: CONCURRENT LEARNING OF CONTROL POLICY AND UNKNOWN SAFETY SPECIFICATIONS IN REINFORCEMENT LEARNING

formulae as constraints. For instance, a safe RL method us-
ing linear temporal logic (LTL) as a constraint during policy
generation has been suggested in [27], [28]. Signal temporal
logic (STL) has been widely used in this context due to its ex-
pressiveness in capturing complex time-dependent properties.
For example, one notable approach approach employs STL
to specify safety and performance requirements and utilizes
a constrained policy optimization technique to learn policies
that adhere to these requirements [29]. These works demon-
strate the effectiveness of using STL as a formal specification
language to encode safety constraints and guide the learning
of policies that satisfy them. Other methods of modifying
the reward function involve replacing the reward function in
RL environments with the robustness degree of an STL con-
straint [30], [31], partial signal rewarding mechanism based
on the robustness of a given safety STL specification [32],
the 7-CMDP approach that uses Lagrangian relaxation to
solve a constrained optimization by using an STL specifi-
cation as a constraint [33]. Although temporal logic-based
methods deliver impressive safety performance, the logi-
cal constraints need to be predetermined to ensure their
success.

Safety Specification Mining: The learning of STL speci-
fication can be divided into two categories: learning of the
formula template along with the parameters, and learning of
the parameters given the formula template/pSTL specifica-
tions.

Recently research directions have focused on mining com-
plete STL specifications (both template and parameters) from
data. The work in [34], by defining a partial order over the set
of reactive STL (rSTL), proposes a passive learning approach
that infers an STL specification which serves as a classi-
fier from positive and negative examples. This approach was
later extended to an online setting [35] and an unsupervised
approach [36]. The authors in [37] propose another passive
learning method that uses grid-based signal discretization,
clustering of similar signals by similarity of covered cells,
translating clusters into equivalent STL formulas, and con-
structing an STL at the disjunction of cluster STL formulas.
Decision trees are another widely explored alternative for STL
mining and they could be based on offline supervised learning
from positive and negative examples [38], [39], online super-
vised learning [40], and offline unsupervised learning [41]. An
approach for mining STL specifications from positive exam-
ples guided by robustness metrics is introduced by the work
in [42]. Evolutionary algorithms have also been explored in
this domain [42], [43], [44], using genetic operators to evolve
candidate formulas into effective classifiers.

Several approaches have been explored, specifically target-
ing the parameter synthesis of pSTL specifications. While the
computation of the exact validity domain of a pSTL specifica-
tion has been investigated to address parameter synthesis [45],
it is evident that this method incurs exponentially increasing
computational costs. To mitigate this, this method is extended
towards approximating validity domains using run-time ver-
ification methods in tandem with search techniques by the

268

same authors in [45]. The method outlined in [42] proposes a
passive learning of pSTL parameters from positive examples
by introducing the notion of a differentiable tightness metric
for STL specification satisfaction, and uses gradient-based
methods to search over the parameter space. The STLCG
framework bridges pSTL parameter mining with machine
learning by presenting a novel integration of computation
graphs from the machine learning domain to evaluate the
robustness of STL formulas and learn pSTL parameters [46].
Conversely, the works in [47], [48] adopt an active learning
strategy to mine pSTL parameters using signals generated by
dynamic models through an iterative process that computes
candidate STL specifications and utilizes falsification meth-
ods to search for counterexamples generated by the model.
This approach is limited in that it necessitates the availability
of a dynamic model capable of generating new signals. The
method of logical clustering combines pSTL parameter infer-
ence with unsupervised learning [49]. It projects signals to
template parameters within their validity domain, uses clus-
tering to group similar signals, and defines an STL formula
for each cluster. For our approach, we took inspiration from
the ROGE framework, where the parameter identification is
addressed using Bayesian optimization (BO) [43].

Recent research directions suggest methods for learning
safety certificates, and similarly to our proposed approach,
some simultaneously learn safe control policies and safety
certificates [22], [50]. However, to our knowledge, there are
no works on concurrently learning a temporal logic based
safety specification and a constrained RL control policy.

1Il. PRELIMINARIES

A. SIGNAL TEMPORAL LOGIC

STL is a formal language for specifying temporal properties of
real-valued signals. STL extends Boolean logic with temporal
operators, allowing the expression of complex requirements
and constraints on system behavior over time. The key opera-
tors in STL include negation (—), conjunction (A), disjunction
(V), until (Uj), eventually (Fy), and always (Gj), where [/
represents a time interval. For example, consider a robot with
position x(z) at time 7. We can express the following require-
ments using STL:

¢1 = Go,00)(x(t) = 0 A x(2) = 100))]

which means the robot’s position should always be within [0,
100], and

¢2 = Fo,10)(x(t) = 50) ()

which means the robot should eventually reach position 50
within 10 seconds. STL provides an expressive way to define
temporal specifications for complex systems, enabling the for-
mal verification and monitoring of system behavior.

STL can be interpreted using Boolean semantics (True/
False), as well as quantitative semantics (a real-value) [51].
The quantitative semantics of an STL formula introduces the
notion of a robustness value p(¢, s;) that quantifies the degree

VOLUME 3, 2024

 IEEE
— CSS

TABLE 1. STL quantitative semantics.

Formula Robustness value

P(St, >) Pmax

p(st, pc) p(xe) —

p(st, =¢1) —p(st,91)

p(st, ¢1 A ¢2) min(o(st, ¢1), 0(st, $2))

p(st, 1V $2) max(o(st, 1), p(st, ¢2))
p(st,¢1 = ¢2) max(—p(st, $1),p(st,¢2))
P(St/F[ab $1) maXy ety 4b) 05t P1)
p(st, Gla p)91) minye(yqr40) P(St,P1)

p(st, p1ljap)P2) MaAXpe(riq i) (mm{P(SMPz)r

minge ;¢ (st 4’1)})

to which a formula ¢ is violated or satisfied by signal s;, and
is given in Table 1.

Parametric Signal Temporal Logic (pSTL): pSTL is an
extension of STL where only the structure/template of the
STL formula is given, i.e., the STL formula is parameter-
ized and all the time-bounds [f1, ;] for temporal operators
and the constants p for inequality predicates are replaced by
free parameters [45]. Parameter valuation v(p) represents a
mapping that assigns values to all time and space parameters
p of the pSTL. For a given pSTL formula ¢, with parameters
p, the valuation of every parameter assignment v(p) results
with a corresponding STL formula ¢yp). In this paper, we
only consider unbounded temporal operators, those with time
bounds [0, co], and will thereby only be concerned with de-
riving valuations for space parameters.

B. REINFORCEMENT LEARNING

RL is an optimization problem on a Markov decision process
(MDP), a tuple M = (S, A, P, R, y) that defines an environ-
ment with states s € S, actions a € A, transition probabilities
P(s'|s, a) = P{S;+1 = 5'|S; =5, A; = a}, a reward function
R(s,a) = E[R;+1|S; = s,A; = a], and a discount factor y €
[0,1] prioritizing short term rewards [52]. An agent’s behavior
is defined by a policy = which maps states to a probability
distribution over the actions 7 : S — P(A), and its objective is
to maximize the total discounted return G, = Z}fo:o YEr .
The state-action value function Q (s, a) is defined as the
expected return starting from state s, taking action a and
thereafter following policy

0x(5.a) = Ex [G/IS, = 5.4 = a)

Q-Learning is a foundational value-based algorithm that oper-
ates by iteratively approximating the state-action value func-
tion Q(s, a) based on the Bellman optimality equation [53].

The update rule is given by
O(s, a) = O(s, a) + a [R(s, a) + y max(Q(si+1, ar+1))

—0(s, a)] “4)

VOLUME 3, 2024

For continuous control problems, deep Q-networks (DQN)
[54] incorporates neural networks to approximate the Q-value
Qp (s, a) parameterized by 6. The optimal parameter 6* can be
learned using stochastic gradient descent

0" = argmin E[(v — Qs (51, a))’] (5)
where y; = r(s;, a;) + y max, Qp(s¢+1, a) is the temporal dif-
ference (TD) target used to stabilize training and maintain a
fixed objective over multiple updates. Policy based methods
directly learn a policy 7y parameterized by 6, that maximizes
the expected return from a start state. The parameter 6 is
updated using gradient ascent

Or41 < 6; + aVoJ ()=, (6)

where « is the learning rate, and VyJ (719) is computed follow-
ing the policy gradient (PG) theorem [52]

VoJ(7t9) = Eq, [Qﬂ(stv a;)Vg log 770(01|Sr)] (7

TD3 [55], an algorithm relevant to our proposed approach, is
a class of actor-critic methods proposed to address the over-
estimation error caused by deep deterministic policy gradient
(DDPG) [56]. To achieve that, TD3 implements clipped dou-
ble Q-Learning, delayed policy and target network updates,
and target policy smoothing. With these updates, the TD target
to which both Q functions regress is given by

e = V(S;,at)+)/iIIllian@i/(St+1,7T¢/(S,+1)+E))

where Q| 2 are the critic networks, 7 is the actor network, 9{
and ¢’ are the target critic and target actor network parame-
ters, respectively, and i = 1, 2 represents the i-th target critic
networks, and € is the clipped Gaussian noise.

Constrained RL: 1t is a branch of RL that is concerned
with maximizing reward while also satisfying environmental
safety constraints. Safe RL is modeled as a constrained MDP
(CMDP) [57], which is an extension of the standard MDP
with an additional constraint set C. The optimal policy in
constrained RL is expressed as

7" = arg max JR () 9)
mwelle
where JR (1) is the objective function and Il. is a set of
constraint satisfying policies ITc = 7 : J(r) < d.

C. BAYESIAN OPTIMIZATION

BO is a powerful strategy for the optimization of black-box
functions that are intractable to analyze and are often non-
convex, nonlinear, and computationally expensive to evalu-
ate [58]. It has been widely applied across multiple fields, such
as hyperparameter tuning in machine learning models [59],
control and planning [60], [61], [62], robotics [63], and ma-
terials design [64]. BO offers a principled technique to direct
a search of the global optimum of an objective function by
building a probabilistic model of the objective function, called
the surrogate function, that is then searched efficiently guided
by an acquisition function. GPs are nonparametric models

269

YIFRU AND BAHERI: CONCURRENT LEARNING OF CONTROL POLICY AND UNKNOWN SAFETY SPECIFICATIONS IN REINFORCEMENT LEARNING

employed in BO to impose a prior over the objective function.
GP is used to maintain a belief over the design space simulta-
neously modeling the predicted mean (p) and the epistemic
uncertainty o (p) at any parameter set p in the input space.
GPs are defined by their mean function p(p), which is initially
assumed to be 0, and covariance function k(p, p’)

f(p) ~ GP(u(p), k(p, p"))

The covariance function k(p, p’) is also called the “kernel”,
and is often given by a squared exponential function

(10)

k(p, p') = exp (=llp — P'II?) (11)

For any new set of parameters p, for the pSTL, the GP model
provides a predictive distribution with mean and variance
given by [65]

w(pslp) = u(ps) + KIK ' (y — n(p))

o2 (p«lp) = Kuw — KTKT'K, (12)

where K = k(p, p), K« = k(p, ps), and Ky = k(px, ps).

Acquisition functions guide how the parameter space is
explored by observing the predicted mean and variance of a
sample parameter set from the GP model, given in (12). We
use the expected improvement (EI) as the acquisition function.
EI accounts for the size of improvement over the current
best observation when choosing the next candidate parameter
set. The utility of EI lies in its ability to explicitly encode a
trade-off between pursuing regions of high uncertainty (explo-
ration) and regions with a potential for high objective function
values (exploitation) by quantifying the expected amount of
improvement. The EI for a parameter set p, given the current
observations D, is defined as follows [65]

El(p) = E[max(0, fmin(p) — f(p)Ip, DI

where fuin is the minimum value observed so far. Through
iterative implementations of the acquisition function, the GP
model refines its predictions, steering the optimization process
towards the global optimum of the objective function.

13)

IV. PROBLEM STATEMENT AND FORMULATION

We consider the problem of safe RL policy synthesis in an en-
vironment where safety constraints are unknown a priori. Our
ultimate objective is to concurrently learn accurate parame-
ters of the pSTL specification that define the environmental
constraints and an optimal policy such that the policy adheres
to the learned STL safety constraint while achieving high
returns.

We initialize the problem with a small initial labeled
datasets, safe trajectories Dy and unsafe trajectories D,;, and
a pSTL safety specification template ¢,. Within the initial
labeled datasets Dy and D,;, we find 10 safe traces x; and 10
unsafe traces x,;, respectively, which are initially manually
selected by the human expert from historical safe and unsafe
runs within the given environment. The small size require-
ment (only 10 trajectories each for both the safe and unsafe
datasets) of these initial datasets relieves the difficulties of

270

acquiring a large pool of expressive historical datasets that
is required for learning of accurate pSTL parameters from
data, especially in safety-critical environments. Our approach,
instead, takes on a data-efficient strategy that starts with a
small initial dataset and iteratively adds to it additional expert-
labeled data as necessary to strategically acquire high-quality
parameter estimates using the smallest applicable volume of
labeled data.

The pSTL parameter learning process takes on a supervised
learning approach that requires obtaining parameter valua-
tions for the pSTL, such that the synthesized STL formula
is satisfied by safe trajectories and is not satisfied otherwise.
The goal is to learn sufficiently accurate set of parameters
of the pSTL with smallest viable dataset size. The parameter
synthesis problem focuses on solving a minimization problem
for a black-box objective function with the aim of finding
optimal parameters of the pSTL specification using a labeled
dataset.

The policy learning step requires solving the optimization
problem in CMDPs expressed as

max J ™ (7p)
9

s.t. J(mp) <d (14)

where J® is a reward-based objective function, JC is a cost-
based constraint function, and d is the threshold for safety.
Within our framework, we formulate the cost objective func-
tion JC by infinite-horizon, undiscounted expected cumulative
Costs

J¢(9) = Ernr, [Z c,] (15)

t=0

where ¢, is the cost at time-step ¢ and is computed using the
STL safety constraint. The choice to employ undiscounted
cumulative costs for the cost objective function in (15) is
motivated by the substantial real-world implications of actual
cost values within the algorithm. Specifically in our algorithm,
which will be described in detail throughout Section V, we use
the undiscounted sum of costs within each episode computed
by (15) to update the Lagrange multiplier. Therefore, opting
for a discounted sum would result in a reduced episodic cost
value for Lagrange multiplier updates, potentially compro-
mising their effectiveness in controlling constraint violations
within the cost limit.

The learned policy is considered optimal if achieves its
performance objectives while also generating rollout traces
that demonstrate constraint-abiding behavior. Rollouts are se-
quences of actions executed by an agent from a specific state
under the learned policy, thus serve as direct indicators of the
policy’s safety.

V. METHODOLOGY

In our proposed framework, the learning of a safe RL policy
in an environment with unknown safety constraint parame-
ters is separated into two components: optimization of the

VOLUME 3, 2024

IEEE

L css
Extract final
@ >0 > STL constraint
¢y~ and policy r*
Compare « Update Dg, D D. D BO for pSTL * .
a<éd $rous) p
with the — by appending SN parameter —> Refmte ST];
threshold 6 dg, dys refinement constrain
7'y
3
TD3- Lagrangian -
Compute Human expert 3
safe trace labeling > o —— 3
percentage) c‘;
t Rollout | Agent
7 d data under |« Tsees e a; [€
s»us * T
I <+—
Environment

FIGURE 1. Schematic representation of the integrated framework for concurrently learning STL constraint parameters and optimal policies. The
framework applies BO for STL parameter mining, TD3-Lagrangian for policy learning, and incorporates human expert for labeling rollout traces to be used
in refining the learned constraint parameters and policy. Once the percentage of safe traces in a rollout dataset « is higher than the threshold value s,

convergence is achieved, and the final policy and STL constraint are extracted.

parameters for the given pSTL safety constraint using labeled
data, and safe RL policy optimization with logical constraints.
These two components are integrated through the assistance
of a human expert, who contributes by labeling rollout traces
derived from an RL policy. The labeling process involves the
human expert designating each rollout trace as “safe” or “un-
safe” based on whether each trace adheres to or violates safety
constraints in an environment. In other words, a trajectory is
labeled “safe” if and only if all the states in the trajectory are
safe as deemed by the human expert, and labeled “unsafe”
otherwise. This labeling process is crucial, as it yields the
labeled dataset required for the iterative refinement of the
pSTL parameters.

We frame this concurrent learning problem as a bilevel op-
timization, an optimization approach that contains two levels
of optimization tasks where one optimization task, the lower
level, is nested within the other, the upper level [66]. These
two levels of optimization each address one each of the two
learning components in our framework: the upper level is
dedicated to the pSTL parameter synthesis while the lower
level is dedicated to the constrained RL policy optimization.
The mathematical representation of this bilevel optimization
task is given by

arg m}}n f((pv(p)v n*(d)v(p)))v

st 78 (Bu(p) € arg max JR(7wg(du(p))) (16)
77061-[(:

VOLUME 3, 2024

where f is the upper-level objective function with optimiza-
tion variable p, which is a set of parameter values to the pSTL
¢p, and 7 is the lower-level optimization objective with op-
timization variable 6. 7*(¢,(p)) represents the optimal policy
under the given STL constraint ¢, p), and ¢y,+) represents the
complete STL after the valuation of pSTL ¢, with optimal
parameters p*. In (16), the upper-level objective f depends
on both the pSTL parameters p, and the solution 7*(¢y(p))
of the lower-level objective. A schematic of our framework is
illustrated in Fig. 1.

A. STL CONSTRAINT PARAMETER LEARNING

The upper-level of the bilevel optimization framework, a BO
process, is designed to obtain the optimal parameters p* of a
given pSTL formula ¢, (an STL formula template) through
the minimization of an objective function f. The parameter
learning process initiates with the pSTL formula ¢, and the
two initial safe and unsafe datasets Dy, D,. Using these la-
beled datasets, BO is carried out to learn the best parameter
configuration for pSTL ¢, such that the final STL best clas-
sifies between D; and D, in terms of robustness degree. The
rationale behind designing the objective function for learning
the optimal parameters of the pSTL specification ¢, is as
follows: if a candidate STL ¢,y represents the true envi-
ronmental constraints, any trace labeled “safe” by the human
expert x; should have a positive robustness value and any trace
labeled “unsafe” x,; should have a negative robustness value

271

YIFRU AND BAHERI: CONCURRENT LEARNING OF CONTROL POLICY AND UNKNOWN SAFETY SPECIFICATIONS IN REINFORCEMENT LEARNING

with respect to ¢y(p). Under this consideration, the objective
function used for pSTL parameter optimization f is mathe-
matically defined by

Np (¢v(p))~ |xs
Ny,

Np(¢v(p))+|xus) (17)

1
F(@up) = 3 (N,

where ¢, () is the STL formula obtained after the parameter
valuation v(p) of pSTL ¢, x; and x,, are traces sampled
from the datasets containing safe and unsafe traces, respec-
tively. Ny, and N, are the total number of safe and unsafe
traces within their respective datasets. The first term within
Ny)~ xs

Ny

Xs

the parenthesis in (17) represents the ratio of

safe traces x; with a negative robustness value p~ with re-
spect to ¢y(p) (false negative rate), and the second term
Ny) s
Ny
itive robustness value p* with respect to ¢,y (false positive
rate). This essentially computes the balanced misclassification
rate, derived from the complement of the balanced accuracy
score [67], a metric that computes classification accuracy in
datasets with imbalanced distribution between classes. It is
important to note that in scenarios with extremely small initial
datasets or highly imbalanced data, there is a potential for
division by zero in (17) if the denominators become zero. To
mitigate this issue, a small constant value can be added to the
denominators to ensure numerical stability.

Upon convergence, this optimization process will identify
the optimal set of parameters p* for the pSTL that minimize
the objective function, f in (17), yielding the final STL safety
constraint ¢y(p+), which we denote ¢, the output of the
upper-level optimization. The relationship between ¢, and
the objective function given in (17) is expressed as

represents the ratio of unsafe traces x,; with a pos-

Peost = Pu(pr) = arg mgn f(¢v(p)) (18)
Peost 18 of type G(—(VYeosr)) Where .,y characterizes un-
safe behavior, and ¢, conveys “always-not-unsafe” i.e.
G(—(Yeost)), signifying that ¢..s universally opposes the oc-
currence of VYo .

The pSTL format used in our studies is of the form
G—(Yeosr) Where o5 varies with each case-study. As men-
tioned in Section III-A, we only consider the unbounded
temporal operator G with time bounds [0, co]. While we rec-
ognize that the format simplifies the STL representation and
a simple Boolean formula could suffice in capturing safety
constraints in this case, the introduction of STL into our
problem definition is pivotal for several reasons. Firstly, it
enables parameterization of safety constraints and facilitates
learning of unknown parameters from data by sharing the
same template across a variety of STL safety constraints.
Additionally, it offers quantitative semantics through robust-
ness metrics providing a continuous and informative guiding
parameter optimization, and smoothly integrating into the pol-
icy optimization framework. Finally, although we employ an
unbounded temporal operator, it maintains the interpretability

272

of the STL safety constraint for humans by conclusively indi-
cating that the predicate under the temporal operator must be
universally satisfied.

B. POLICY LEARNING

The lower-level of the bilevel optimization framework con-
sists of a logically-constrained, safe RL policy optimization.
This phase follows the process of pSTL parameter optimiza-
tion, detailed in Section V-A, and uses the STL generated
therein as its input. For this stage, we solve the optimiza-
tion problem for CMDP introduced in (14) by utilizing the
Lagrangian-variant of the twin delayed deep deterministic
policy gradient (TD3) algorithm, TD3-Lagrangian. The back-
ground for the TD3 algorithm is given in Section III-B,
and throughout this section, we provide an overview of La-
grangian methods, later discussing the development of the
TD3-Lagrangian algorithm.

Lagrange multiplier method is used to transform a con-
strained optimization problem into an equivalent uncon-
strained optimization problem through Lagrangian relaxation
procedure that introduces adaptive penalty coefficients to en-
force constraints [68]. Using this method, (14) is transformed
into the equivalent unconstrained min-max optimization prob-
lem

meaxrggz:(e,x) = JR(mp) — MJC(my) — d) (19)

where A is the Lagrange penalty coefficient, J® is the reward
objective function, J C is the constraint objective function, and
d is the maximum allowable cumulative cost. Eq 19 is then
solved by gradient ascent on 6 and descent on A to result with
the optimal values 6* and A*.

An adaptation of the Lagrange multiplier method to the
TD3 algorithm is given in [69], deriving TD3-Lagrangian.
TD3-Lagrangian incorporates an additional cost critic net-
work to the original TD3 architecture to estimate the cost
value function QF, and alters the loss function to incorporate
a constraint satisfaction component using a Lagrangian multi-
plier

L=—-0"(ny,s)+ 10y, 5) (20)

where OV is the minimum value of the two reward critic
network outputs, QC is the value of cost critic network, and
is the policy network. The penalty coefficient X is updated by
minimizing the penalty loss A" = A + n(JC (9) — d), where n
is the learning rate. When J¢ exceeds the constraint threshold
d, A is increased to prioritize cost minimization.

In our approach, we propose a novel modification to the
TD3-Lagrangian architecture. While retaining the classical
definition of the reward function for each environment, we
redefine the cost function logically, using an STL specification
Peost - As stated prior, ¢, is the STL safety specification de-
rived through the process outlined in Section V-A and within it
1S Yeost» the STL specification describing the unsafe behavior
at each given time step. Using v,y as the safety constraint,

VOLUME 3, 2024

 IEEE
_CSS

T

@

we compute the cost at each step c(s;, ar), using the quantita-
tive semantics of STL given in Section III-A, as follows

1, ifﬁ(—'(lﬂmz), 51) <0
0, if p(=(Pcost), s1) =0

where p(—(¥cost), 8¢) 1s the robustness value of the current
state s; with respect to the STL —(.0s). This equation is
interpreted as follows. The cost c(s;, a;) is assigned to 1 if
p(—(Yeost), 8¢) < 0, indicating the safety constraint has been
violated at state s;, and to O otherwise. The usage of —=(cos)
instead of ¢ at this stage is deliberate as the former de-
scribes behavior at a specific time step without employing
temporal operators, while the latter incorporates the “always”
temporal operator to characterize behavior across the entire
duration of an episode. We use this STL robustness-based
cost values to compute JC, which is then used in the policy
optimization process by minimizing the loss function in (20).
Once we have identified an optimal policy 7*, we generate
a dataset of rollout traces R by executing the learned policy,
which we then pass on R to the human expert for labeling.

c(srar) = 2y

C. HUMAN FEEDBACK MECHANISM

A crucial role is played by a human expert who provides
labels to the rollout traces generated through the execution
of the RL policy optimized through the process outlined in
Section V-B. This labelling process is essential to our frame-
work in gradually and iteratively refining the parameter
assignment for the pSTL. The quality of the parameters as-
signed is reliant on the volume of labeled dataset, and while
the richness of data facilitates this process, extensive hu-
man labeling effort to amass large datasets is impractical.
Hence, our strategy focuses on attaining sufficiently accurate
pSTL parameters with the minimal necessary data. This is
achieved by the human expert labeling only a small number
of traces at each iteration, which are then incrementally added
to the existing dataset of labeled data from previous iterations.
The phased acquisition of data across different iterations of
RL policy rollouts ensures that each new rollout data set is
attained from a unique policy and contributes unique and
essential information to the learning process, enhancing the
overall quality and diversity of the dataset used for pSTL
parameter learning.

During our experiments, we have implemented an auto-
mated process for labeling the rollout traces, which involves
of computing the robustness value of each trace within the
rollout set with respect to the True STL safety constraint ¢y .,e.
The human labeling process is given using the the satisfaction
relation = between a trace from the rollout dataset x and an
STL formula ¢y, as follows

if'x ': ¢true

L
L(x) - {O, if x I?é ¢true

where L(x) is the label assigned to trace x sampled from the
rollout dataset, ¢;rue = Go.71(—(¥1rue)) 18 the general tem-
plate we use for any STL safety constraint in which ¢y i

(22)

VOLUME 3, 2024

the true environment-specific STL formula exhibiting unsafe
behaviour. Eq 22 states that a label of 1 is assigned if a
trace from the rollout dataset x satisfies (=) the True STL
safety constraint @ e, i.6. p(¢rrue, x) > 0, and a label of O is
assigned otherwise.

It is important to note that the use of the True STL
safety constraint for automation purposes is not to be con-
fused with the algorithm having the knowledge of this True
STL environmental constraint beforehand. In real-world ap-
plications, as per the basis of our problem statement, the
actual safety constraint remains unknown to the algorithm
and is only used for rapid and efficient experimentation of
our framework across various case studies, to which we do
not have an actual human expert in those areas to label the
traces. Therefore, due to the unavailability of the True en-
vironmental constraint in practical implementations of our
framework, the involvement of the human expert in manu-
ally labeling the traces is integral. After traces are labeled,
those identified as safe by the human expert are allocated
in the safe dataset d;, whereas those labeled as unsafe are
allocated to the unsafe dataset d,. Finally, the percentage of
safe rollout traces @ within the rollout dataset R is computed

by
a=—">"—
Na, + Ny,

where « is the percentage of safe traces, Ny, and Ny, are the
respective number of traces in the safe dataset d; and unsafe
dataset d,s. The sum Ny + Ny, is equal to the total number
of traces in the rollout dataset N.

Our framework is outlined in Algorithm 1. The algorithm
requires as input initial datasets, Dy and D,;, populated with
safe traces and unsafe traces, respectively, and the pSTL
specification ¢, along with the number of rollout traces at
each iteration ng, the total RL training steps ny, and the user-
specified threshold for the minimum satisfactory percentage
of safe traces within a rollout dataset §. The algorithm initiates
by using BO to optimize parameters to the pSTL from the
initial dataset, then optimizes a policy using TD3-Lagrangian
algorithm constrained by the learned STL. It then proceeds
to generate rollout traces from this policy, which are subse-
quently labeled by a human expert. A key metric, «, is then
calculated representing the percentage of “safe” rollout traces
as labeled by the human expert amongst the entire rollout
dataset and is compared to § at every iteration.

This iterative process is repeated until convergence, which
is achieved when « is greater than the user-specified, mini-
mum threshold for the percentage of safe rollout traces § i.e.
a > §. If the convergence criteria has not been met, d; and dys
are appended to the initial datasets Dy and D, respectively, to
then serve as inputs for the next iteration to generate new and
refined STL parameters. If the convergence criteria has been
met, the outputs of the algorithm, an STL with optimal param-
eter values ¢,(,+), and the optimal policy 7* with respect to
the learned STL, are extracted.

(23)

273

YIFRU AND BAHERI: CONCURRENT LEARNING OF CONTROL POLICY AND UNKNOWN SAFETY SPECIFICATIONS IN REINFORCEMENT LEARNING

Algorithm 1: Joint Learning of Policy With Constraints.
Input: Dy, Dy, ¢p, nr, ng, 8
Output: p*, 7*
1: Compute « from initial datasets Dy, D, using Eq. (23)
2: while ¢ < 6 do

3: p* < Employ BO to find optimal parameters of
¢p using Dy, D,,; by minimizing Eq. (17)

4: @u(p*) < pSTL valuation using optimal
parameters p*

5: for i < 1ton,;do

6: 7* < Employ TD3-Lagrangian to optimize

safe policy under STL constraint ¢, ,+)
7: end for
8: R < Generate ng rollout traces under 7* and
generate dataset of the traces
9: for Trace € R do

10: Human expert provides a “safe”/“unsafe” label
to Trace

11: if Trace is labeled safe then

12: Store in safe dataset d,

13: else if Trace is labeled unsafe then

14: Store in unsafe dataset d;

15: end if

16: end for

17: a < Compute percentage of safe traces in R from

datasets d;, d,;; following Eq. (23)

18: Append d;, ds to D, D, < Extend initial
dataset with new labeled rollout traces

19: end while

VI. CASE STUDIES

We implement our concurrent learning framework across a
series of case studies described throughout this section. The
case studies are presented with progressively increasing lev-
els of complexity resulting from the corresponding number
of learnable parameters. All case studies were performed on
Safety-Gymnasium environments [70], a safe RL benchmark
that comprises of several safety-critical tasks in continuous
control environments where agents and tasks are inherited
from safety-gym [71] and MuJoCo physics simulator [72].!

A. CASE STUDY 1: SAFE VELOCITY - HALF CHEETAH

The Half Cheetah environment provided by [72], [73] features
a two-dimensional, half-body of a cheetah consisting of 9
body parts and 8 joints connecting them as shown in 2. The
state space of this environment includes the positions, angles,
velocities, and angular velocities of the cheetah’s joints and
segments whereas the action space is defined by the torques
applied to these joints. The primary objective for this agent
is to apply torque on the joints to make the cheetah run in
the forward direction to achieve maximum speed, u. There is,

'Our implementation for this research is available at our GitHub repos-
itory: https://github.com/SAILRIT/Concurrent-Learning-of-Control-Policy-
and- Unknown- Constraints-in-Reinforcement- Learning. git

274

FIGURE 2. Safe velocity test environment with the half cheetah agent.

however, a control cost penalty applied to restrict the agent
from taking too large actions. Overall, the reward allocated
to the agent is based on the forward movement and control
cost penalty, which is calculated as the weighted sum of the
squares of the actions (torques)

(o) o 5
t

where w; if the forward reward weight, x; | and x; are the
x-coordinates of the agent before and after applying action
as, respectively, d; is the time between actions, and w, is the
control cost weight. A refined adaptation of the Half Cheetah
environment is detailed in [70], introducing an additional con-
straint on the agent’s maximum allowable x-velocity. We use
this adaptation for our experimentation on this environment
with a the pSTL safety constraint given by

(24)

Gcost = G (= (ug > Umax)) (25)

where u, is the agent’s x-velocity, and uy,,, is the the max-
imum allowable (safe) x-velocity for the agent. The pSTL
given in (25) provides one parameter to be learned using our
framework, ;4.

B. CASE STUDY 2: SAFE NAVIGATION - CIRCLE

Safety navigation-circle offers a scenario in which an agent
is situated randomly within a given x and y bounds at the
start of an episode. The objective of the agent is to move in
a circular motion within the circle area, while also attempting
to stay at the outermost circumference of the circle. In doing
so, the agent must also avoid going outside safety boundaries
that intersect with the circle area as depicted in Fig. 3. We use
level 1 of this environment as given by [70], which consists of
2 boundaries, situated on the left and right side of the of the
center, respectively, and the point agent [71], a simple robot
constrained to a 2D plane with two actuators, one for rotation
and the other for forward/backward movement. The reward
function for this environment is given as [70]

B 1 (mu-y+v-x)
14 |rg —
where r; is the current time-step reward, u, v, are the x —y

axis velocity components of the agent, x, y are the x — y axis
coordinates of the agent, r, is the Euclidean distance of the

(26)

It
rel Ta

VOLUME 3, 2024

https://github.com/SAILRIT/Concurrent-Learning-of-Control-Policy-and-Unknown-Constraints-in-Reinforcement-Learning.git
https://github.com/SAILRIT/Concurrent-Learning-of-Control-Policy-and-Unknown-Constraints-in-Reinforcement-Learning.git

IEEE
—CSS

7

¥

FIGURE 3. Circular navigation environment with 2 boundaries in the x
direction (in yellow) and the safe navigation area (in green).

agent from the origin, r, is the radius of the circle geometry.
Intuitively, the agent moves as far out as it can in outermost
circumference of the circle, and the faster the speed, the higher
the reward. The predefined pSTL that represents the STL
safety constraint template of this environment is given by

Geost = G (_‘((xa <x7-)V (Xg > X7+))) (27)

where x, represents the agent’s x position, x7+ and x;- rep-
resent the x threshold locations where the boundaries in the
positive and negative x directions, respectively, are located,
measured from the center.

The pSTL specification in (27), intuitively describes that
the agent’s x location should never move past the boundaries
in either direction of the center. The (initially unknown) safety
constraint parameters for this environment are the threshold
values x7+ and x7—, which provides us with two learning pa-
rameters for this pSTL to obtain an STL safety specification.

C. CASE STUDY 3: SAFE NAVIGATION - GOAL

Safe Navigation-Goal is another environment introduced
in [70] that offers a scenario in which an agent is randomly
positioned at the start of an episode, with the objective of nav-
igating to a designated goal location within the environment
while circumventing circular hazard locations. Upon reach-
ing the designated target location, this location is reassigned
randomly to a new goal location and the agent continues to
navigate towards the updated target. This process continues
until the maximum episode steps is reached. We implement
level 1 of this environment, which comprises of 8 hazard
locations and one goal location. Similarly to Section VI-B,
we use the “point” agent within this environment. A snapshot
of the environment is shown in Fig. 4. The reward function for
this environment is defined as [70]

1y = (dp1 —dy).B

where r; represents the reward at the current time step, di
and d, represent Euclidean distances between the agent a and
the goal g at the previous time step — 1 and the current time
step ¢, respectively, and B is a discount factor. When d;| > di,
it indicates that the agent is moving closer to the goal, and
r; > 0 as a result and vice versa.

(28)

VOLUME 3, 2024

FIGURE 4. Goal navigation environment with eight hazards (in blue), and
one goal location (in green).

The pSTL safety constraint that is provided for this envi-
ronment is given by

8
Peost = G (_‘ (\/ <\/(Xa —x,i)* + 0o = yn,i)* < Vh)))

i=1
(29)
where i = 1,2, ..., 8 represents each of the 8 hazards, xj, ;
and yj; are the x and y coordinates of hazard i’s centroid,
respectively, x, and y, are the agent’s current x and y location,
respectively, and r;, represents the radius of the hazards.

The pSTL expression provided in (29) can be interpreted
as follows. The Euclidean distance between the agent and any
of the eight hazards should never be less than the hazard’s
radius. The initially unknown safety constraint parameters for
this environment are the x and y coordinates of the centroids
of the hazards: x;, ; and yj ;, where i = 1,2, ..., 8 represents
each of the 8 hazards, adding up to 16 unknown parameters to
learn.

We evaluate key performance metrics of our approach
through the two primary tasks: 1) optimization of safe poli-
cies, and 2) synthesis of pSTL parameters. In regards to safe
policy optimization, we first show convergence during pol-
icy optimization for all case-studies alongside a comparative
analysis of cumulative rewards and costs per episode at the
end of training against established baselines. Furthermore, we
rigorously evaluate the policies by examining the safety of
rollout traces generated under each policy. Pertaining to the
synthesis of pSTL formula parameters, our evaluation focuses
on comparing the learned parameters against the True envi-
ronmental safety parameters, which are unknown a priori to
the algorithm. We also evaluate the classification accuracy of
the learned STL safety constraints with respect to labeled data.
We compare our algorithm with:

® Baseline 1: Unconstrained RL policy optimization In

this baseline, we perform RL policy optimization with-
out any explicit consideration of safety constraints. The
objective is to maximize the expected cumulative re-
ward, and the agent is allowed to freely explore the
environment and learn a policy that achieves this goal.

® Baseline 2: Constrained RL policy optimization with

known STL safety constraints In this baseline, we

275

YIFRU AND BAHERI: CONCURRENT LEARNING OF CONTROL POLICY AND UNKNOWN SAFETY SPECIFICATIONS IN REINFORCEMENT LEARNING

TABLE 2. Training hyper-parameters.

Hyper-parameter Value
Actor learning rate 5.10°°
Critic learning rate 103
Discount factor 0.9
Batch size 256
Policy update delay 2
Exploration noise 0.1
Policy noise 0.2
Policy noise clip 0.5
Actor/Critic activation function ReLU

Total steps (case-study 1,2,3) 10°,1.5 - 106, 10°
Steps per epoch (case-study 1,2,3) 5-102,10%,10°
Cost limit 0.0
A learning rate 5-1077
A optimizer Adam

perform constrained reinforcement learning policy op-
timization with a priori knowledge of the true envi-
ronmental STL safety constraints. The objective is to
maximize the expected cumulative reward while satis-
fying the given STL safety constraints.

The rationale behind the selection of these two baseline
approaches to compare to ours is as follows: baseline 1, in-
volving unconstrained policy optimization, underscores the
criticality of clearly defining safety constraints and elucidates
the safety risks associated with deploying algorithms trained
in the absence of appropriate safety constraints. In contrast,
baseline 2 represents an optimal scenario wherein all envi-
ronmental safety constraint parameters are known a priori,
facilitating a comparative analysis to gauge the proximity of
our framework’s results to this ideal benchmark.

We chose to consider « as the principal convergence metric
because it evaluates success in both the upper and lower level
optimization problems, i.e. it serves as a qualitative indicator
of the effectiveness of the learned STL safety specification
in guiding the cost assignment during policy optimization
as judged by the human expert and the ability of the RL
algorithm to generate a policy that adheres to STL safety
constraints.

We implemented our proposed algorithm and the two base-
line methods to optimize a policy within the each of the
specified case studies. The experiments were conducted under
consistent environmental settings, with the primary distinction
being in the computation of costs for each method at each step.
The training parameters used are given in Table 2.

Specifically for our algorithm, the cost assignment during
policy optimization is based on a learned STL safety con-
straint following the process detailed in Section V-B. This
contrasts with baseline 2, where the cost assignment stems di-
rectly from the actual STL safety constraint, a value which, in
practice, is unknown. Finally, baseline 1, an unconstrained op-
timization approach, does not incorporate cost considerations
due to the absence of known safety constraints in the context.
For experimentation within our framework, the convergence

276

threshold, §, was set to 75% for case study 1 and to 90% for
case studies 2 and 3, indicating the algorithm terminates once
the rollout trace from a policy attains the specified percentage
of safe traces. These numbers were decided based on the
complexity of the environment, specifically in relation to the
quantity of safety parameters required for learning. Conver-
gence was attained when implementing our framework, on
average, after 6 iterations on case study 1, 9 iterations for
case study 2, and 17 iterations for case study 3. The initial
dataset of labeled data contained 10 safe traces and 10 unsafe
traces in Dy and D,;, respectively, and 50 rollout samples are
provided to the human expert for labeling at each iteration.
With this setup, the human ultimately ended up labeling 300,
450, and 850 datasets for case studies 1, 2, and 3, respectively.
Though these quantities are still substantial, we have found
through our experiments that labeling 50 rollout traces per
iteration effectively manages the human expert’s workload
while ensuring that the learning process remains unimpeded.
However, further experimentation is necessary to identify the
optimal number of datasets a human should label at each iter-
ation to balance expert workload and convergence speed. The
safety threshold (cost limit) in the constrained optimization
setting is set to O for all of our case studies, indicating that no
violations of safety constraints are permissible at any point in
the trajectory for it to be deemed safe.

VII. RESULTS AND DISCUSSION
We first delve into the results obtained from the BO process
employed for pSTL parameter learning. To illustrate these
outcomes, we have included a average learning curve of the
BO from the final iteration of our algorithm across the three
random seeds, which is depicted in Fig. 5 and we present the
learned STL safety specification, valuated with the optimal
parameters obtained through the BO process averaged across
the three random seeds, alongside the True STL specifications
for easy comparison in Table 3. Using the Learned STLs
given in Table 3 as a constraint, the policy learning curve
of the TD3-Lagrangian RL algorithm is shown in Fig. 6.
Supplementary to Fig. 6, we provide numeric values of key
performance metrics: cumulative reward per episode and the
cumulative cost per episode in Table 4. These metrics are de-
rived from the data collected at the conclusion of the training
phase averaged over three runs with three random seeds.
Subsequently, we display a graphical illustration depicting
the percentage of safe traces within a set of rollout traces
generated by executing the trained policy across each case
study. This analysis includes a comparison between baseline
1, baseline 2, and our implementation on the various case
studies and is depicted in Fig. 7. The primary objective of this
evaluation is to provide a quantifiable measure of safety for
policies generated through each approach, effectively gauging
the potential rate of unsafe incidents that might occur if any of
these policies were to be deployed in the respective case stud-
ies. Such a visual and statistical comparison is instrumental in
assessing the relative safety efficacy of each approach.

VOLUME 3, 2024

IEEE

50 eommm *
50 —l : 50 :
1 H |
“0 : “ ‘: 4011
1)
' 0 : -
-4 1 O 30 1 [3) ‘
g ¥ = = oy A I
: % \ %
o ']
L i g i gl %
! ey -
— 1 1
10
! 10 —. 10
1
0 == H
0 20 4b 60 80 100 0 20 40 60 80 100 0 25 50 75 100 125 150 175 200
Iteration Iteration Iteration
(a) Half Cheetah Velocity (b) Point Circle (c) Point Goal

FIGURE 5. BO learning curve for parameter learning of pSTL specifications provided in case studies. 5(a) depicts the learning curve for optimizing one
parameter, 5(b) depicts the learning curve for optimizing two parameters, and 5(c) shows the learning curve for optimizing 16 parameters. The
minimization metric is given as the balanced misclassification rate (MCR) of the STL at sequentially generated candidate points.

TABLE 3. Learned STL specifications alongside true environmental safety constraint for each case study.

Learned STL Specification (¢cost) True STL Specification (¢r.,0)
Safe Veloci
Half Cheoton G (= (s > 3.3521))) G (= (g > 3.209)))
S oo on G (= ((xa < -0.93) V (x4 > 1.064))) G (~((xa < -120) V (xa > 1.0))

G <ﬂ (<\/ (xa —-0.714)2 4 (y, — 0.91)2 < 0.4) G <ﬂ < (\/ (xg — -0.75)2 + (ya — 1.0)2 < 0.4)

v (\/(xa —1.07)2 + (ya — 0.04)2 < 0.4) v (\/(x,; —1.0)2 + (yo — 02)2 < 0.4)
v (\/(xa —151)2 4 (y, — 0.11)2 < o,4> v (\/(x,z — 142+ (y, — 07)2 < 04
Safe Navigation v (\/(x“ ~058)% + (v = 031)% < 0'4) Y (\/(x” T (e —03)7 < 0'4)
Goal v (\/ (xo — 0.43)2 + (yo — 0.87)2 < 0.4) v (\/ (xq — 0.25)2 + (Y4 — 0.9)2 < o.4>
v (\/(xa —0.16)2 + (ya — -1.79)2 < 0.4> v (\/(xa —0.0)2+ (v —-15)2 < 0.4)
v (\/(xa — 2324 (yg — 1.04)2 < 0.4) v (\/(xa — 192+ (s — 1.0)2 < o.4>
7 <04)

% (\/(xu —0.83)2 + (y, —-1.01)% < 0.4))) v (\/(xa —1.0)2+ (ya —-1.0)2 < 04))

TABLE 4. Metrics from the conclusion of training averaged over three In our final analysis, we conduct a comprehensive eval-
random seeds per environment. uation focusing on the performance of the upper-level op-
timization, specifically the learning of the STL constraint
parameters. This evaluation entails calculating the misclassi-

Jr Je Jr Je¢ Jr Jc fication rate of the STL post-training against a labeled data
Safe Velocity set to assess the accuracy of our learned STL. In order to
Half Cheetah 10371.1957.6 2676.1 1.67 2114.7 0.62 establish a benchmark for this metric, we compare it with that
of the MCR of STL constraint used in baseline 2, which is
111.3 3903 5490 1.41 57.02 8.39 the true environmental constraint, against the same dataset. A
close alignment in these rates would indicate a high degree
7282 488 115 49 16,5 243 of accuracy of our learned parameters relative to the frue
parameters.

Baseline 1 Baseline 2 Ours

Safe Navigation
Circle

Safe Navigation
Goal

VOLUME 3, 2024 277

YIFRU AND BAHERI: CONCURRENT LEARNING OF CONTROL POLICY AND UNKNOWN SAFETY SPECIFICATIONS IN REINFORCEMENT LEARNING

=== Baseline 1 === Baseline 2 mms OQUIS
1000
10000 d
800 ‘ \
8000 ‘
4 {\
E 6000 H g 900 \
g @ \ 8 | |
& 4000 A O 400 ||
2000 e — — o 200 \
W/ \
0 o J
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Steps le6 Steps le6
(a) Safe Velocity - Half Cheetah
120
800
100
80 600
B 0
- -
g 60 & 400
& 40 »
20 200
0 v T 2 * T T 0 r "v\L - r .2
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.8 1.0
Steps le6 Steps le6
(b) Safe Navigation - Circle
30
20
» 10
o
g 0
5
& —-10
-20
-30
00 02 04 06 08 1.0 12 14 00 02 04 06 08 1.0 1.2 14
Steps le6 Steps 1le6

(c) Safe Navigation - Goal

FIGURE 6. Policy learning curve for our algorithm and baselines 1 and 2 over

1e6 total environment interactions for 6(a) and 6(b) and 1.5e6 total

environment interactions for 6(c). The plots on the right display the cumulative rewards per episode, while those on the left display the cumulative costs
(quantified as the total number of constraint violations) per episode throughout the training.

In the analysis presented in Fig. 6, a trade-off between
rewards and costs is observed across all case studies. This
observation substantiates that the tasks in all of the case stud-
ies are not “trivially-safe”, i.e., maximizing rewards in these
settings consistently leads to constraint violations to some
degree. Notably, baseline 1 achieves the highest reward in
all case studies, yet it concurrently incurs the highest cost

278

at the end of training. This pattern suggests that the agent
continues to engage in unsafe actions, prioritizing only reward
maximization. In contrast, our algorithm exhibits a reduction
in rewards compared to baseline 1; however, it succeeds in
reducing costs substantially across all case studies, and even
achieves the threshold of zero violations per episode by the
end of training in two out of the three case studies. This

VOLUME 3, 2024

 IEEE
— CSS

T

mm Baseline 1 mm Baseline 2 mm Ours

—
(=}
(=}

(o]
(=]

(2]
o

>
o

[3~)
o

Percentage of safe traces

0 d
Safe Velocity
Half Cheetah

Safe Navigation
Circle

Safe Navigation
Goal

FIGURE 7. Percentage of safe traces in final policy rollouts across different
case-studies implementing proposed and baseline algorithms.

improvement upon baseline 1 is a direct result of apply-
ing our algorithm in scenarios with initially unknown safety
constraints by allowing the learning and adhering to safety
constraints, even in the absence of prior knowledge of the
constraints. Baseline 2 represents an ideal training scenario,
assuming complete availability of STL safety constraint infor-
mation. The performance of our algorithm closely mirrors that
of baseline 2, a result that indicates close similarity between
the learned STL in our approach and the true STL.

The data provided in Table 4 offers a quantitative coun-
terpart to the results depicted in Fig. 6. This tabular repre-
sentation offers a more detailed numerical articulation of the
result metrics at the end of training, complementing the plots
displayed in the figure. Consequently, the interpretation of
the results in the table aligns closely with that of Fig. 6, i.e.
while baseline 1 achieves the highest cumulative rewards per
episode at the conclusion of training, it also incurs the high-
est number of constraint violation per episode. In contrast,
the adoption of our proposed method demonstrates a signif-
icant improvement in cost-efficiency by efficiently directing
the agent to act in accordance to the learned environmental
constraints, which closely mirror the actual environmental
constraints.

In Fig. 7, it is evident that the policy optimized under
baseline 1 fails to produce safe trajectories in case studies 2
and 3, with only a few safe trajectories in case study 2. In
contrast, the policy optimized through our framework yields
a number of safe trajectories comparable to baseline 2, which
had complete knowledge of the safety constraints from the
start. This demonstrates the effectiveness of our approach
in learning the safety constraints and ensuring safety during
policy deployment, even with less initial information on safety
constraints.

In Table 5, we exhibit results that underscore the quality of
the learned STL using our approach. We assessed the STL’s
quality by its ability to accurately classify labeled data, and
then benchmarked these results against the performance of
the True STL used in baseline 2. While the True STL safety

VOLUME 3, 2024

TABLE 5. MCR comparison between the learned STL (ours) and the true
STL (baseline 2).

MCR
Baseline 2 Ours
Safe Velocity
Half Cheetah 0.0 00
Safe Navigation 0.0 0.0251
Circle
Safe Navigation 0.0 0.0534

Goal

specification, by definition, should classify all traces with a
misclassification rate (MCR) of zero, it is noteworthy that
the MCR of the STL derived through our algorithm closely
parallels this standard. In scenarios such as case studies 1 and
3, characterized by a limited number of learning parameters
for the pSTL, the MCR is close to zero, mirroring the perfor-
mance of the True STL, whereas in more complex settings,
such as that of case study 2 with 16 learning parameters, the
MCR, while higher, still remains within reasonable bounds
considering the large number of learning parameters. This not
only highlights the precision of our STL learning process but
also indicates that the parameters we derived are remarkably
close to the real environmental constraints. Overall, our results
demonstrate the precision of our algorithm in adapting to
and respecting the environmental safety constraints, thereby
offering a balanced approach in terms of performance and cost
during training and implementation.

Limitations: Despite the successful results, there are limi-
tations to our approach which must be acknowledged. Firstly,
our approach relies on pre-existing datasets of safe and un-
safe trajectories, however small, as well as an STL safety
specification template. The availability of these elements is
required for the initialization of our process and the overall
performance. The second limitation is the requirement for
human expert manual labeling of trajectories. While human
expertise is invaluable for providing a better understanding
of safety, this requirement imposes considerable demands on
human resources.

VIIl. CONCLUSION

This research tackles the challenge of ensuring safety in
RL, particularly when predefined safety constraints are un-
available. Traditional methods in safe RL often rely heavily
on static, predefined safety constraints, thus limiting their
applicability. To address this limitation, we proposed an ap-
proach that concurrently learns an optimal control policy and
identifies the STL safety constraint parameters of a given
environment. Our approach implements a bilevel optimization
framework, where the upper level is dedicated to optimizing
parameters of pSTL safety constraint, and the lower level aims
to find an optimal safe policy, constrained by the learned STL
safety specification. Our process also leverages input from

279

YIFRU AND BAHERI: CONCURRENT LEARNING OF CONTROL POLICY AND UNKNOWN SAFETY SPECIFICATIONS IN REINFORCEMENT LEARNING

human experts who assign safety labels to the RL policy
rollout traces to be used to refine safety specification param-
eters. Various case studies demonstrate the efficacy of our
approach, showing that our algorithm substantially reduces
constraint violations compared to traditional unconstrained re-
ward maximization methods, while maintaining similar levels
of performance. Additionally, it closely mirrors the results of
scenarios with complete initial knowledge of true environ-
mental constraints, thereby underscoring the close alignment
of our learned STL parameters with actual safety parameters.
We believe our approach takes a step closer towards under-
standing the “unknown unknown” uncertainty in RL, referring
to unforeseen safety requirements not initially specified in the
template, which may emerge during interactions or through
human feedback.

Future directions of our work include conducting a compre-
hensive analysis to determine how we can minimize the total
number of rollout traces to be labeled without significantly
impacting the convergence speed, as well as incorporating ac-
tive learning techniques to select the most informative traces
for labeling to optimize human efforts. In addition, extending
our methodology to encompass the synthesis of the entire STL
safety constraint, which includes both the structural formula
and its parameters, is of great importance. Finally, assessing
the scalability and efficiency of our framework through further
testing, especially in environments characterized by a large
number of safety parameters, will yield valuable insights.

REFERENCES

[1]1 R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[2] B. R. Kiran et al., “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909—4926, Jun. 2021.

[3] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238-1274,
2013.

[4] P. Razzaghi et al., “A survey on reinforcement learning in aviation
applications,” 2022, arXiv:2211.02147.

[5] B. Hambly, R. Xu, and H. Yang, “Recent advances in reinforcement
learning in finance,” Math. Finance, vol. 33, no. 3, pp. 437-503, 2023.

[6] J.Garcia and F. Fernandez, “A comprehensive survey on safe reinforce-
ment learning,” J. Mach. Learn. Res., vol. 16, no. 42, pp. 1437-1480,
2015.

[7] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 22-31.

[8] Y. Liu, J. Ding, and X. Liu, “IPO: Interior-point policy optimiza-
tion under constraints,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 4940-4947.

[9] M. Alshiekh, R. Bloem, R. Ehlers, B. Konighofer, S. Niekum, and U.
Topcu, “Safe reinforcement learning via shielding,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 2669-2678.

[10] A. Baheri, S. Nageshrao, H. E. Tseng, I. Kolmanovsky, A. Girard,
and D. Filev, “Deep reinforcement learning with enhanced safety for
autonomous highway driving,” in Proc. IEEE Intell. Veh. Symp., 2020,
pp. 1550-1555.

[11] A. Baheri, “Safe reinforcement learning with mixture density network,
with application to autonomous driving,” Results Control Optim., vol. 6,
2022, Art. no. 100095.

[12] S. Bansal, “Specification-guided reinforcement learning,” in Proc. Int.
Static Anal. Symp., 2022, pp. 3-9.

[13] S. Guet al., “A review of safe reinforcement learning: Methods, theory
and applications,” 2022, arXiv:2205.10330.

280

[14] Y.Liu, A. Halev, and X. Liu, “Policy learning with constraints in model-
free reinforcement learning: A survey,” in Proc. 30th Int. Joint Conf.
Artif. Intell., 2021, pp. 4508-4515.

[15] W.Zhao, T. He, R. Chen, T. Wei, and C. Liu, “State-wise safe reinforce-
ment learning: A survey,” 2023, arXiv:2302.03122.

[16] D. Ding, X. Wei, Z. Yang, Z. Wang, and M. Jovanovic, “Provably
efficient safe exploration via primal-dual policy optimization,” in Proc.
Int. Conf. Artif. Intell. Statist., 2021, pp. 3304-3312.

[17] S. Qiu, X. Wei, Z. Yang, J. Ye, and Z. Wang, “Upper confidence primal-
dual reinforcement learning for CMDP with adversarial loss,” in Proc.
Adv. Neural Inf. Process. Syst., 2020, pp. 15277-15287.

[18] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,” J.
Mach. Learn. Res., vol. 18, no. 167, pp. 1-51, 2018.

[19] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, ‘“Projection-
based constrained policy optimization,” 2020, arXiv:2010.03152.

[20] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M.
Ghavamzadeh, “Lyapunov-based safe policy optimization for contin-
uous control,” 2019, arXiv:1901.10031.

[211 Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
Lyapunov-based approach to safe reinforcement learning,” in Proc.
32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 8103-8112.

[22] Y.Luo and T. Ma, “Learning barrier certificates: Towards safe reinforce-
ment learning with zero training-time violations,” in Proc. Adv. Neural
Inf. Process. Syst., 2021, pp. 25621-25632.

[23] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li, “Model-free safe
reinforcement learning through neural barrier certificate,” IEEE Robot.
Automat. Lett., vol. 8, no. 3, pp. 1295-1302, Mar. 2023.

[24] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained
Markov decision processes,” in Proc. 37th Int. Conf. Mach. Learn.,
2020, pp. 9797-9806.

[25] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite
markov decision processes with Gaussian processes,” in Proc. 30th Int.
Conf. Neural Inf. Process. Syst., 2016, pp. 4312-4320.

[26] A. Wachi, Y. Sui, Y. Yue, and M. Ono, “Safe exploration and optimiza-
tion of constrained MDPs using Gaussian processes,” Proc. AAAI Conf.
Artif. Intell., vol. 32, no. 1, 2018.

[27] M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” in Proc. 19th Int. Conf. Auton. Agents
MultiAgent Syst., 2020, pp. 483-491.

[28] M. Cai, S. Xiao, J. Li, and Z. Kan, “Safe reinforcement learning under
temporal logic with reward design and quantum action selection,” Sci.
Rep., vol. 13, no. 1, 2023, Art. no. 1925.

[29] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning
for robust satisfaction of signal temporal logic specifications,” in Proc.
IEEE 55th Conf. Decis. Control, 2016, pp. 6565-6570.

[30] N. Hamilton, P. K. Robinette, and T. T. Johnson, “Training agents to
satisfy timed and untimed signal temporal logic specifications with re-
inforcement learning,” in Proc. Int. Conf. Softw. Eng. Formal Methods,
2022, pp. 190-206.

[31] X.Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 3834-3839.

[32] A.Balakrishnan and J. V. Deshmukh, “Structured reward shaping using
signal temporal logic specifications,” in Proc. Int. Conf. Intell. Robots
Syst., 2019, pp. 3481-3486.

[33] J. Ikemoto and T. Ushio, “Deep reinforcement learning under signal
temporal logic constraints using lagrangian relaxation,” IEEE Access,
vol. 10, pp. 114814-114828, 2022.

[34] Z. Kong, A. Jones, A. M. Ayala, E. A. Gol, and C. Belta, “Temporal
logic inference for classification and prediction from data,” in Proc. 17th
Int. Conf. Hybrid Syst.: Comput. Control, 2014, pp. 273-282.

[35] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and
detection of anomalous behavior,” IEEE Trans. Autom. Control, vol. 62,
no. 3, pp. 1210-1222, Mar. 2017.

[36] A.Jones, Z. Kong, and C. Belta, “Anomaly detection in cyber-physical
systems: A formal methods approach,” in Proc. IEEE 53rd Conf. Decis.
Control, 2014, pp. 848-853.

[37] P. Vaidyanathan et al., “Grid-based temporal logic inference,” in Proc.
56th Annu. Conf. Decis. Control, 2017, pp. 5354-5359.

[38] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A
decision tree approach to data classification using signal temporal
logic,” in Proc. 19th Int. Conf. Hybrid Syst.: Comput. Control, 2016,

pp. 1-10.

VOLUME 3, 2024

 IEEE
— CSS

(@

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(511

[52]
[53]
[54]

[55]

G. Bombara and C. Belta, “Offline and online learning of signal tempo-
ral logic formulae using decision trees,” ACM Trans. Cyber-Phys. Syst.,
vol. 5, pp. 1-23, Mar. 2021.

G. Bombara and C. Belta, “Online learning of temporal logic for-
mulae for signal classification,” in Proc. Eur. Control Conf., 2018,
pp. 2057-2062.

G. Bombara and C. Belta, “Signal clustering using temporal logics,” in
Proc. 17th Int. Conf. Runtime Verification, 2017, pp. 121-137.

S.Jha, A. Tiwari, S. Seshia, T. Sahai, and N. Shankar, “TeLEx: Learning
signal temporal logic from positive examples using tightness metric,”
Formal Methods Syst. Des., vol. 54, no. 3, pp. 364-387, 2019.

L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi, “A robust genetic
algorithm for learning temporal specifications from data,” in Proc. 15th
Int. Conf. Quantitative Eval. Syst., 2018, pp. 323-338.

F. Pigozzi, E. Medvet, and L. Nenzi, “Mining road traffic rules with
signal temporal logic and grammar-based genetic programming,” Appl.
Sci., vol. 11, no. 22, 2021, Art. no. 10573.

E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identifi-
cation of temporal properties,” in Proc. Int. Conf. Runtime Verification,
2012, pp. 147-160.

K. Leung, N. Arechiga, and M. Pavone, “Back-propagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” in Proc. 14th Workshop Algorithmic Found.
Robot., 2021, pp. 432-449.

X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining require-
ments from closed-loop control models,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 34, no. 11, pp. 1704-1717, Nov. 2015.
H. Yang, B. Hoxha, and G. Fainekos, “Querying parametric temporal
logic properties on embedded systems,” in Proc. Int. Conf. Testing
Softw. Syst., 2012, pp. 136-151.

M. Vazquez-Chanlatte, J. V. Deshmukh, X. Jin, and S. A. Seshia, “Log-
ical clustering and learning for time-series data,” in Proc. Int. Conf.
Comput. Aided Verification, 2016, pp. 305-325.

H. Ma, C. Liu, S. E. Li, S. Zheng, and J. Chen, “Joint synthesis of
safety certificate and safe control policy using constrained reinforce-
ment learning,” in Proc. 4th Annu. Learn. Dyn. Control Conf., 2022,
pp. 97-109.

O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proc. Int. Symp. Formal Techn. Real-Time Fault-
Tolerant Syst., 2004, pp. 152-166.

R. S. Sutton et al., Introduction to Reinforcement Learning, vol. 2.
Cambridge, MA, USA: MIT Press, 1998.

R. Bellman, “On the theory of dynamic programming,” Proc. Nat. Acad.
Sci., vol. 38, no. 8, pp. 716-719, 1952.

T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxima-
tion error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587-1596.

VOLUME 3, 2024

[56]
[571
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]
[70]

[71]

[72]

[73]

T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

E. Altman, Constrained Markov Decision Processes. London, U.K.:
Chapman and Hall, 1999.

P. 1. Frazier, “A tutorial on Bayesian optimization,”
arXiv:1807.02811.

A. H. Victoria and G. Maragatham, “Automatic tuning of hyperparame-
ters using Bayesian optimization,” Evolving Syst., vol. 12, pp. 217-223,
2021.

A. Baheri and C. Vermillion, “Waypoint optimization using Bayesian
optimization: A case study in airborne wind energy systems,” in Proc.
Amer. Control Conf., 2020, pp. 5102-5017.

A. Baheri, S. Bin-Karim, A. Bafandeh, and C. Vermillion, “Real-time
control using Bayesian optimization: A case study in airborne wind
energy systems,” Control Eng. Pract., vol. 69, pp. 131-140, 2017.

A. Baheri and C. Vermillion, “Combined plant and controller design
using batch Bayesian optimization: A case study in airborne wind
energy systems,” J. Dyn. Syst., Meas., Control, vol. 141, no. 9, 2019,
Art. no. 091013.

R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Ann. Math. Artif.
Intell., vol. 76, no. 1, pp. 5-23, 2016.

Y. Zhang, D. W. Apley, and W. Chen, “Bayesian optimization for mate-
rials design with mixed quantitative and qualitative variables,” Sci. Rep.,
vol. 10, no. 1, 2020, Art. no. 4924.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. D. Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proc. IEEE, vol. 104, no. 1, pp. 148175, Jan. 2016.

A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From
classical to evolutionary approaches and applications,” IEEE Trans.
Evol. Comput., vol. 22, no. 2, pp. 276-295, Apr. 2018.

V. Garcia, R. A. Mollineda, and J. S. Sdnchez, “Index of balanced
accuracy: A performance measure for skewed class distributions,” in
Proc. Iberian Conf. Pattern Recognit. Image Anal., 2009, pp. 441-448.
D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods. New York, NY, USA: Academic, 2014.

J. Ji et al., “Omnisafe: An infrastructure for accelerating safe reinforce-
ment learning research,” 2023, arXiv:2305.09304.

J. Ji et al., “Safety-gymnasium: A unified safe reinforcement learning
benchmark,” 2023, arXiv:2310.12567.

A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration
in deep reinforcement learning,” 2019. [Online]. Available: https://cdn.
openai.com/safexp-short.pdf

E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in Proc. Int. Conf. Intell. Robots Syst., 2012,
pp. 5026-5033.

G. Brockman et al., “Open Al gym,” 2016, arXiv:1606.01540.

2018,

281

https://cdn.openai.com/safexp-short.pdf
https://cdn.openai.com/safexp-short.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

