
12542 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 11, NOVEMBER 2024

Lynx: An Efficient and Flexible Communication
Schema for On-Chip and Off-Chip Applications

in Distributed Static Industrial Networks
Hipólito Guzmán-Miranda , Senior Member, IEEE, and Abraham Marquez Alcaide , Member, IEEE

Abstract—In this article, an efficient and flexible commu-
nication schema for on-chip and off-chip communication is
presented. With a reduced header size, the proposal can
achieve high communication efficiency among the devices
of a distributed static network or the internal components
in a system-on-chip. In addition, the proposal is very versa-
tile in terms of network configurations and topologies. An
FPGA implementation of the proposal has been developed
and thoroughly verified, both in simulation and when im-
plemented in two different FPGA devices. The prototypes
are exhibiting good results which validate the expected
performance, with an efficient use of device resources. As
a result, the proposed schema can both improve existing
applications whose performance is affected by communica-
tion overhead and enable new industrial applications that
require efficient communications in distributed static net-
works.

Index Terms—Efficient communications, FPGA, indus-
trial networks, network on chip, system on chip.

I. INTRODUCTION

IN MODERN industrial applications, communication proto-
cols play a crucial role in enabling efficient and reliable data

exchange between distributed devices and systems. Tradition-
ally, complex control systems are based on one main controller
that manages many secondary controllers, which act over the
rest of the subsystems. In this sense, it is possible to affirm that
the data flow is unidirectional, that is, from the main controller to
secondary controllers and vice versa, but no interaction between

Manuscript received 24 November 2023; revised 1 March 2024 and
10 June 2024; accepted 17 June 2024. Date of publication 17 July
2024; date of current version 5 November 2024. This work was sup-
ported in part by the MCIN/AEI/10.13039/501100011033 under Grant
PID2020-115561RB-C31 and Grant TED2021-130613B-I00, in part by
the 2021 Call for Grants aimed at research and development projects
in artificial intelligence and other digital technologies and their inte-
gration into value chains from the Recovery and Resilience Facility,
European Recovery Instrument (Next Generation EU), within the frame-
work of the “PS/DS” project under Grant C005/21-ED, in part by the
Andalusian Technological Corporation (CTA), and in part by ANID under
Grant ANID/FONDAP/1523A0006 SERC Chile. Paper no. TII-23-4717.
(Corresponding author: Hipólito Guzmán-Miranda.)

The authors are with the Department of Electronic Engineering, Uni-
versidad de Sevilla, 41092 Sevilla, Spain (e-mail: hguzman@us.es;
amarquez@ieee.org).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2024.3422373.

Digital Object Identifier 10.1109/TII.2024.3422373

secondary controllers is allowed. A good example of this is the
electrical grid where at the beginning the commands and orders
were given from the energy sources to the loads, but with the
inrush of the smart-grid paradigm, this frontier is not so clear
anymore [1], [2]. In this scenario, academia and industry support
and explore the use of decentralized and coordinated control
schemes where the communication protocol plays an essential
role [3], [4], [5].

With the advent of Industry 4.0, the importance of such
communication protocols has only increased, as smart factories
and automated supply chains become increasingly common-
place [6], [7]. One of the key challenges in Industry 4.0 is
the need for active maintenance and prognosis, which requires
continuous monitoring and analysis of various data streams to
detect anomalies and predict potential failures [8]. To this end,
the digital twins and cyberphysical systems artifacts are used.
This, in turn, requires a highly efficient and flexible communi-
cation protocol that can support real-time data transmission and
processing across distributed networks [9].

In addition to these challenges, there is also a growing
trend toward modularization and standardization of industrial
systems. A good example is found in the power electronics
field where the main manufacturers are investing time and
resources to develop power converters following the modular
power electronics building block paradigm [10]. This paradigm
advocates the use of standardized power electronics modules
that can be easily integrated and reconfigured to meet specific
industrial requirements, allowing greater flexibility in industrial
systems [11], [12], [13]. Fig. 1 shows a modern electric vehicle
charging station (EVCS), which is an example application of
this new power electronics design paradigm.

Also, with programmable system-on-chip devices and solu-
tions appearing across many different industries and fields [14],
the necessity of having efficient communication between dif-
ferent modules extends also to the inside of the chips [15].
Efficient and minimalist network-on-chip protocols are typi-
cally niche-specific and limited in practice, for example the
SocWire Protocol [16] is tailored to the usage of reconfigurable
modules in space applications, but is limited to a maximum of
three switches per network, with a maximum of 16 ports per
switch [16], [17].

The technical literature and the market portfolio present an
extensive catalog of communication techniques based on the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2896-5897
https://orcid.org/0000-0003-1647-7527
mailto:hguzman@us.es
mailto:amarquez@ieee.org
https://doi.org/10.1109/TII.2024.3422373


GUZMÁN-MIRANDA AND MARQUEZ ALCAIDE: LYNX: AN EFFICIENT AND FLEXIBLE COMMUNICATION SCHEMA 12543

Fig. 1. Example of complex industrial system where the proposal
would have a positive impact. DC-coupled EVCS including solar pho-
tovoltaic harvesting and energy storage system.

OSI stack, as well as the Internet stack [6]. For instance, com-
munication methods, such as CAN [18], [19], Modbus [20], and
TCP/IP, are very popular communication mechanisms in many
industrial applications [6], [21], [22]. These protocols are very
flexible since they allow multiple communication modes as well
as other features, such as data integrity and data dispatching
order, among others.

A. Common Extra Features in Industrial
Communications

Each communication technique has its advantages and draw-
backs from an industrial application point of view, and the
selection of a communication schema for a specific environment
is not a trivial task. In general, because of their extra features,
these protocols and communication stacks present long header
fields that limit the communication bandwidth as well as the data
exchange efficiency.

Real-time communication protocols are designed to en-
sure timely and reliable data transmission in applications
where timeliness is critical, such as control systems, robotics,
and automation. These communication protocols are designed
to transmit data in a specific time frame by time-division
multiplexing or by using a priority-based system to ensure
that high-priority data are transmitted first [21], [22], [23],
[24].

In addition, low-latency communication is also a required
feature in real-time communication. This is achieved through
techniques, such as data compression, packet prioritization, and
low-level optimizations to reduce processing time [23], [24].

Real-time communication protocols often incorporate fault-
tolerant mechanisms to ensure that data transmission is reliable,
even in the presence of network failures or other disruptions. This
may include techniques, such as redundancy, error correction,
and retransmission of lost packets [23], [24], [25].

Finally, these communication protocols should be scalable to
support a large number of devices and high data rates. This is
achieved through techniques, such as multicast communication,
where data are transmitted to multiple devices simultaneously,
and by using protocols that can handle large amounts of data
traffic without degrading performance [21], [24].

In the case of [21], [22], [23], and [24], these protocols
possess the mentioned characteristics, although one of them is
proprietary [24] and only accessible under expensive licensing
terms, and two of them require expensive hardware to be im-
plemented [23], [24]. In the case of [24], its usage is intended
for laboratory experiments and demonstrators, but not for actual
deployment of industrial applications.

B. Need for an Efficient Communication Schema

While the aforementioned features are of interest for many
applications, their implementation typically requires increasing
the overhead of the protocols, which in turn increases communi-
cation delays and reduces their efficiency in utilizing the physical
mediums, while also increasing their general complexity, their
difficulty of implementation, and the resources they occupy in
FPGA or ASIC devices. Also, some of the solutions mentioned
in the previous section require specific hardware, such as optical
fiber transceivers to reach the desired data transmission rates. In
some cases, the selection of protocol forces a specific topology
which may not be the desired one or may insert additional delays
in the intended application. Moreover, some topologies such
as ring, daisy-chain, or any topology that depends on a single
master agent are especially vulnerable to failures.

For smaller, ad hoc networks, for example the ones that
naturally appear inside a distributed power converter, all the
aforementioned features introduce so much overhead that the
feasibility of the network to be able to send the required data
through it during a critical time interval (for example, the
sampling time of the power converter) is put into question.
Thus, it would be desirable to have a protocol with a very
reduced overhead that could be quickly deployed for these ad
hoc distributed static networks.

On the one hand, distributed computing may reduce the band-
width requirements of specific applications due to the reduction
of the quantity of information to be sent, since there is no central
controller that needs to receive all the raw data because the
processing capability is distributed among the agents. But, on
the other hand, latency will always be a problem when real-time
control is desired due to it depending exclusively on the path,
the processing capability of the intermediate routing devices,
and the amount of data to transmit, including protocol headers.
This article presents a communication schema that solves the
aforementioned issues, and its FPGA implementation. Since the
schema is designed for static networks, its protocol overhead is
automatically optimized according to the network parameters
selected by the user.

Furthermore, the proposed communication protocol can also
be used in on-chip communication applications, where efficient
and reliable communication is essential to ensure the perfor-
mance and reliability of complex systems-on-chip [26]. By
utilizing a lightweight header format and a decentralized routing
mechanism, the proposed protocol offers a highly efficient and
flexible solution to transmit data within and between different
components of a system-on-chip.

Through a series of experimental evaluations and simu-
lations, the effectiveness and performance of the proposed



12544 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 11, NOVEMBER 2024

Fig. 2. Possible implementation of the EVCS of Fig. 1 using the proposed approach.

protocol in both industrial on-chip and off-chip communications
are also demonstrated. Specifically, it is shown that the pro-
posed protocol can enable efficient and reliable communication
between different components of a distributed network or a
system-on-chip, even under challenging network conditions and
topologies.

Fig. 2 shows how the proposed approach could be used to
implement the next-generation EVCS shown in Fig. 1. Lynx
switch devices are drawn in blue, whereas power converters with
their corresponding control platforms are drawn in red. Complex
control platforms based on multicore CPU, FPGA, and/or SoC
are drawn in green. In the figure, several examples where the
proposed communication approach could be successfully used
are illustrated. It must be noted that the communication networks
shown could be, or not, isolated (this would depend on the final
application). The isolation of the communication network allows
to provide extra features to the industrial application, such as
security, firewalling, or fault tolerance. In addition, the proposal
also enables the communication of the devices inside networks-
on-chip (NoC) or networks-on-board (NoB) with other modules
outside the chip or board.

In summary, the proposed communication scheme is multi-
purpose and versatile. In particular, the proposal enables effec-
tive communications in the following scenarios, as shown in
Fig. 2 (from highest to lowest communication level).

1) Communication exchange among different systems in a
network. Off-chip communication by using the appro-
priate frontend (off-chip communication protocol, see
Section III-A). This is the case of a conventional static
industrial network.

2) Communication exchange among different elements
within the same board by using the appropriate frontend.
This is the case of the NoB.

3) Communication exchange in a hybrid context that means
some agents are located inside the SoC and other agents
are located outside of the SoC. This case can be found in
NoB for instance.

4) Communication exchange on-chip. All the agents in-
volved in the network are located inside the same SoC
or NoC.

In general, the proposed communication schema offers a
promising solution for addressing the challenges of communica-
tion in modern industrial and on-chip applications. With its high
efficiency, flexibility, and scalability, the proposed protocol has
the potential to significantly improve the efficiency, reliability,
and performance of distributed systems in a wide range of
domains.

II. PROPOSED APPROACH

In general, communication protocols usually have long head-
ers, containing the multiple fields required for the implemen-
tation of the selected communication schema and other fea-
tures that the protocol may provide, such as those discussed
in Section I. However, such long headers are often not practical
for distributed applications that send small amounts of data a
high number of times per second, for example, in distributed
power converters [27], [28]. For these kinds of applications,
it commonly occurs that the header itself greatly exceeds the
size of the useful data of the message, which wastes available
bandwidth capacity and makes real-time communications diffi-
cult or impossible when the number of elements in the network
increases.

In this article, an efficient and flexible communication proto-
col specifically designed to reduce overhead size is proposed.
This communication protocol targets communication in stati-
cally defined networks, meaning networks with constant topol-
ogy. Flexibility is achieved by making the protocol configurable
according to the size of the network. Efficiency is achieved
by reducing overhead to the minimum necessary to route the
information within the specific network. Depending on the
chosen configuration, the protocol headers have a size that varies
between a minimum of 2 (for smaller networks) and a maximum
of 5 bytes (for bigger networks).



GUZMÁN-MIRANDA AND MARQUEZ ALCAIDE: LYNX: AN EFFICIENT AND FLEXIBLE COMMUNICATION SCHEMA 12545

The protocol defines the following terms.
Frame: A frame is the basic unit of information that can

be transmitted by the protocol. This means that no less than
a frame can be transmitted. Frame size is measured in bytes,
which means that the number of total bits in each frame must
always be a multiple of 8.

Module: A module is an end agent in the communication.
This means that modules are the only devices who produce and
consume data during normal operation.

Switch: A switch is an agent that routes frames. A switch
routes frames by sending them to other elements in the network
(either switches or modules). During normal operation, a switch
can neither produce nor consume data: it must always output the
exact same number of bytes it receives.

Network: A network is a group of agents that will send frames
between them following this protocol.

Source: The source of a frame is the module from which a
frame originates.

Destination: The destination of a frame is the module to which
a frame should go.

Jump: A jump happens when a frame goes from one agent to
another. For example, a jump occurs when a frame goes from
a module to a switch, from a switch to a different switch, and
finally when it goes from a switch to its destination.

Path: A path consists of a sequence of jumps. A path is used
to route a frame through the network from a specific source to
the desired destination. From a given source, a given path will
always lead to the same destination. The same path, if starting
on a different source, is not guaranteed to lead to the same
destination. This means that paths are not absolute addresses to
specific modules: they are relative to the position of the source
in the network.

It should be noted that this protocol does not use addresses,
but instead uses paths. This is by design, as this simplifies the
computing cost of routing frames, making the switches and
modules both simpler and faster. Since this protocol does not
have absolute addresses, this means that the same module will
have different paths leading to it, depending on who is sending
the data to it. In networks with any kind of redundancy, there
could be more than one possible path between a source and a
destination. Since networks are static, this makes no difference
for each source module: instead of storing an address for each
of the modules to which it wants to send data, the module must
store a path.

A. Frame Fields

The frame structure of the proposed protocol can be seen in
Fig. 3. A frame in this protocol consists of two fields: the header,
which contains the information to route the frame through the
network, and the data, which is the information the modules
want to transmit and receive. The size of the header is statically
fixed, which means that it depends on the specific configuration
of the protocol and cannot be changed after synthesis. This
allows optimizing the header size to the minimum size necessary
to properly route frames in the specific configured network. The

Fig. 3. Frame structure. The fields take the smallest necessary size to
represent the possible jumps in the network, according to the number of
ports of each switch and the maximum number of jumps a frame may
perform.

size of the data field is dynamic, since it is specified in a sub-field
of the header, so different frames may carry data of different
sizes in the same network.

At the same time, the header contains itself two fields: path,
which contains the jump-by-jump route that the frame should
follow, and data length, which is the length, in bytes, of the data
field.

The path itself is also further subdivided into three fields:
unused bits, which just pad the size of path to a multiple of 8 bits,
current jump, which is used to keep score of how many switches
the frame has passed through, and chain of jumps, which contains
the sequence of jumps the frame should perform to arrive at its
destination.

In this way, a switch does not need to know any information
about the network to route a received frame: it can just read the
current jump field, then use it as an index to select a specific jump
from the chain of jumps field. The value of the selected jump
contains which output port the switch should send the frame to.
This also allows for very fast processing of the frames, increasing
switch throughput.

It should be noted that a frame does not need to perform
all jumps allowed by the chain of jumps field, if it reaches its
destination before performing all possible jumps. For example,
if two modules are connected to the same switch, these two
modules can reach each other in a couple of jumps, even if the
network allows for more.

B. Return Path

The reader may have noticed that the frame does not have
any fields in which to note the source of the frame. In this case,
how would the destination know which module originated the
transmission? How would it know where to send its response,
if the user application needs one to be sent? A naive solution to
this problem would be to just add another field to the header that
would identify the source of the frame, but that would impose a
very inconvenient overhead: the header would almost duplicate
its size, since we would need to add another field with the same
size as path.

For this work, it is proposed that the information to identify the
source is stored in the path, overwriting it, since the destination



12546 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 11, NOVEMBER 2024

does not need to know how other modules actually reach it. The
most important condition that must be met for this approach to
be valid is to never overwrite any information that will be needed
to route the frame towards the destination. This is achieved by
overwriting the jumps that have already been performed. Each
switch knows from which of its ports a frame came, so after
getting the value of the output port to which to send the frame
(determined by the jump in position current jump inside the
chain of jumps), it can just overwrite that jump with the index of
the input port from where the frame came. Since the switch will
also increment the frame’s current jump by one, the overwritten
jump will never be used by the switches that follow.

This modified path, that the destination sees in the received
frame, is called the return path. The destination could now
reverse this return path to determine which is the source of
the frame, but it is typically more convenient to just store
both the path to and the return path from the modules from
which it expects to communicate with. If the data are correctly
structured (for example, in a table), the module can look up
the received return path to get the direct path for the same
network element. Since increasing the header size would in-
crease overhead throughout all the network, but duplicating path
storage in the modules should be no issue, this is considered an
acceptable tradeoff in this context. In the general case, each
module must store two 1-to-4 byte paths per each module it
wants to communicate with.

Of course, switches do not need to store any paths, since all the
information needed to route frames through the correct output
port is contained in the header.

Fig. 4 shows a network with four four-port switches, over
which an example is illustrated. The example assumes a max-
imum number of jumps of 4, since four jumps are enough to
route a frame between each pair of modules in the diagram. In
the figure, path 0 is the path to route a frame from module 7
to module 3, while paths 1, 2, and 3 show the modifications
of the original path as the frame traverses the network. Finally,
reversing path 3, which is the return path in this example, results
in path 0’ which allows module 3 to send data back to the sender
if required. As it will be explained in Section III-A, only three
jumps appear in the paths since the initial jump from module 7
to switch 3 does not need to be encoded.

A high number of agents would lead to an increase in trans-
mission delays across the network and longer overheads to
store very long paths, which is why the protocol limits the
header size to 5 bytes (4 bytes of path and 1 byte of data
length). Nevertheless, it must be noted that, when configured
for example with eight-port switches and ten maximum jumps,
a network could have thousands of modules, depending on the
exact topology.

C. Impact of Header Size on the Communication
Mechanism

It is possible to model a switch as a network of queues, as it
is shown in Fig. 5. Let λi be the frame arrival rate for each
input port, and μj be the service rate for each output port,
whereas μa represents the service rate of the arbiter. The arbiter

Fig. 4. Network with four-port switches. Four jumps are enough to
route a frame between each pair of modules.

Fig. 5. Switch modeled as a network of queues. The arbiter processes
just the header of every frame and then connects the input queue to the
relevant output queue.

processes just the header of every frame and then connects the
input queue to the relevant output queue, but from a queuing
standpoint it is possible to consider that the complete message
is quickly processed and sent to an output queue. From this
queuing point of view, the arbiter splits the input flows according
to the probability, pj , that a frame is destined to a specific output
port j.

While service times are commonly modeled using exponential
probability distributions, the arbiter service time Ta for the
proposed approach depends only on the clock frequency and
the header size, and thus is deterministic, as will be shown in
Section IV. Thus, Ta = 1/μa. In contrast, the service times Tj

of the output queues will depend on the clock frequency and the
full frame size, so they are not deterministic. A typical assump-
tion is to consider that frame sizes are exponentially distributed,



GUZMÁN-MIRANDA AND MARQUEZ ALCAIDE: LYNX: AN EFFICIENT AND FLEXIBLE COMMUNICATION SCHEMA 12547

and thus Tj will also follow an exponential distribution, with
service rate parameter μj , and mean service time 1/μj .

Assuming the input arrivals can be modeled as independent
Poisson processes, we can calculate the total arrival rate to the
arbiter as

λtotal =
∑

i

λi. (1)

Since the arrivals are determined by a Poisson process and
the service time of the arbiter is deterministic, it is possible to
consider the first part of the switch as an M/D/1 queue (Markov
arrivals, deterministic service time, single server), with input
arrival rate λtotal and service rate μa. Defining the utilization
factor as ρa = λtotal/μa, the average time spent by a frame in
the first part of the switch is

T1 =
1
μa

+
ρa

2μa(1 − ρa)
. (2)

When the utilization ρa is high, the output of this first part
of the switch can be approximated to a Poisson distribution,
which is then split by the arbiter into N flows, according to the
probabilities pj . The resulting flows will also be approximate
Poisson processes with arrival rates λj = pjλtotal. Each of those
flows goes to an M/M/1 queue (Markov arrivals, Markov service
time, single server), where the average time spent by a frame is
as follows:

T2 =
1

(μj − λj)
. (3)

These two times can be combined to estimate the average time
a frame spends inside the switch, assuming it is is routed to the
output queue j

T = T1 + T2 =
1
μa

+
λtotal/μa

2μa(1 − λtotal
µa

)
+

1
μj − pj ∗ λtotal

. (4)

The header size affects multiple elements of the previous equa-
tion: a smaller header size increases the rate at which the arbiter
can process frames, increasing μa, which appears in the denom-
inator of the two first terms of (4). The first term expresses the
actual time spent by the arbiter processing the frame headers;
whereas the second term expresses the time the frame spends
waiting in the input queues for the arbiter to process it. But
also, a smaller header size affects the rate at which the output
queues can process frames—since these output queues must also
transmit the full headers—, thus increasing μj , the service rate
of the output queues.

On the other hand, the required transmission time in a real-
time communication scheme is determined by the amount of
data to be transmitted and the baud-rate of the physical links. For
the sake of simplicity, an example is illustrated in the following
paragraphs.

Assuming the need for a real-time communication procedure
between two machines, A and B, in a network connected by a
switch device, as shown in Fig. 6, and considering a target com-
munication time constraint Tobj, the required communication
time to send a message from A to B can be expressed as

TB
A = TA

b (HA +DA) + TA
b (HA) + δ1

Fig. 6. Example of communication topology used to determine the
minimum transfer for a real-time application.

+ TB
b (HA +DA) + TB

b (HA) + δ2 (5)

where terms TA
b (HA +DA) + TA

b (HA) + δ1 represent the
time to transmit from A and the computation time required
in the switch device to decide the next step. In a similar way,
the terms TB

b (HA +DA) + TB
b (HA) + δ2 represent the data

transmission from the switch device to the final destination
and the computation time required to process the message. HA

and DA represent the header and data size expressed in bytes,
respectively. TX

b is the byte-time in the physical link and δx is
a guard time to ensure real-time communication.

In a similar way, the required communication time for the
response from B to A can be expressed as

TA
B = TB

b (HB +DB) + TB
b (HB) + δ3

+ TA
b (HB +DB) + TA

b (HB) + δ4 (6)

following the same notation.
Then, to guarantee real-time communications, the complete

communication process should be completed inside the target
time constraint, that is

TB
A + TA

B ≤ Tobj. (7)

In addition, for the sake of simplicity, we can assume header
sizes are the same (HA = HB = H), and that the transmission
time in both links can be considered equal (TA

b = TB
b = Tb), as

well as the computational times δx = δ, then it follows:

Tb(8H + 2(DA +DB)) + 4δ ≤ Tobj

Tb ≤ Tobj − 4δ
8H + 2(DA +DB)

. (8)

It is clear from (8) that to fulfill the communication time (Tobj)
for a particular industrial application only two actions can be
performed: either increase the transmission rate or reduce as
much as possible the data to transmit. Assuming the data to
transmit is already optimized, only the header size could be
reduced.

This discussion is general, but does not include the details of
any particular communication protocol. For instance, in CAN-
bus the size of the frame is set to 8 bytes, where the payload is
limited to 48 bits.

III. FPGA IMPLEMENTATION

A. Design Architecture

A key decision in the architecture has been to define a clear
separation between the on-chip and off-chip functionalities. For
this, a simple data/valid/ready entity interface has been defined
for internal communication purposes. In this way, the proposal



12548 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 11, NOVEMBER 2024

Fig. 7. Constants for protocol configuration are set in a single VHDL
file which is just four lines long. All internal constants for the specific
protocol configuration are automatically derived, from these ones, in
synthesis time.

Fig. 8. Protocol header when configured for a maximum of four jumps
and four-port switches. In this case, the size of the header is the mini-
mum possible, 2 bytes.

can be used for on-chip communications, where a network-
on-chip could be implemented by instancing and connecting
one or more switches in a single FPGA device, while off-chip
communication requires the use of frontends, which convert
from the internal data/valid/ready interface to a protocol more
suitable for communicating with the outside of a chip, such as
UART or SPI. By defining a standardized interface, frontends
can be swapped without modifying the internal behavior of
the switch entities. Also, new frontends can be developed in
order to support different off-chip communication protocols, and
the only requirement is that they support the data/valid/ready
interface.

Another key decision in the architecture has been to make the
protocol as easy as possible to configure. To configure the size
of the network, the user just has to decide how many jumps can
a frame perform through the network, and how many ports each
switch in the network will have. While using VHDL generics
would be the default strategy to achieve this configurability,
the complexity of the design, which requires defining custom
datatypes with sizes that depend on the number of jumps and
ports, implies that using VHDL generics would require the code
to be written in VHDL-2008 [29]. Due to the status of the current
landscape of both proprietary and free and open-source (FOSS)
tools for FPGA design and verification [14], [30], it is clear that,
in order to achieve maximum portability of the design, it is much
desirable to code the design in the VHDL’93 [31] version of the
standard. Thus, the decision was made of defining a package
with only the user-settable constants, which can be very easily
modified by the user, without requiring any knowledge of the
VHDL language.

Fig. 7 shows the contents of this package. This approach does
not cause any loss of generality, because all elements in the same
network will use the same value for Max_Number_of_Jumps and
Number_of_Ports.

From these two user-defined constants, all other sizes and
internal constants are statically derived in synthesis time. In the
case that the user specifies constants that would result in a header
longer than 5 bytes, an assertion warns the user and prevents
simulation and implementation.

Fig. 9. Protocol header when configured for a maximum of six jumps
and four-port switches.

Fig. 10. Protocol header when configured for a maximum of ten jumps
and eight-port switches. In this case, the size of the header is the
maximum allowed, 5 bytes.

In Figs. 8–10, it is shown how the header changes for different
configurations. It must be noted that the initial jump that occurs
from the source to the first switch in the network does not need
to be encoded in the header, since there is no possible ambiguity
in that operation: the module is directly connected to the switch
and it decides to send the frame to it. Even in the case of a
module being connected to more than one switch (for example,
a module that acted as a bridge between two Lynx networks),
there is still no ambiguity since it would be connected to each
switch through a different interface. By sending data through one
or other interface the module is implicitly selecting that initial
jump in the path.

The connection with the frontends is straightforward: a switch
can send data to one of its frontends if the frontend’s ready
signal is active, and the switch must assert its valid signal to
the frontend so it knows that it should capture the data that
comes from the switch. Another set of ready, valid, and
data signals allows a frontend to send data to the switch to
which it is connected.

A network-on-chip implementation may connect multiple
switches inside the same chip. Two adjacent switches, meaning
that they are directly connected through one or more of their
ports, can communicate using their ready, valid, and data
signals, without the need for any frontends.

B. Switch Architecture

The switch has been designed so all of its channels work
independently and in parallel. This allows data channels to be



GUZMÁN-MIRANDA AND MARQUEZ ALCAIDE: LYNX: AN EFFICIENT AND FLEXIBLE COMMUNICATION SCHEMA 12549

Fig. 11. Internal architecture of the switch. Note that the multiple com-
munication channels can process data simultaneously: data can go, for
example, from port 0 to port 2 at the same time that data goes from port
1 to port 3. Furthermore, ports are full duplex: each input port can work
simultaneously and independently from its corresponding output port.

established between different pairs of ports without impacting
the performance of other channels that may also be established.
Furthermore, all ports are full duplex, with their input and output
logic being independent, so it makes sense in this section to
differentiate between input ports and output ports for clarity.
Fig. 11 shows the architecture of a four-port switch, which has
four input ports and four output ports. Each input port has a
finite state machine (FSM) that, for each received frame, decodes
the path inside the header and decides to which output port it
should send the frame. When the FSM knows which output port
it will send the data to, it petitions the arbiter for access to that
specific output port. If the port is free, the arbiter immediately
grants the FSM its ownership, but if it is not, the arbiter uses a
round robin system for granting access to the output ports, so a
single input port cannot exclusively monopolize an output port:
before sending a second frame, it must wait until all the other
input ports which want to send to that specific output port have
finished sending one frame each. After the FSM finishes sending
the frame, it releases the output port so the arbiter is free to assign
it to another FSM if needed. It must be noted that, in order to
avoid bottlenecks, the data to be transmitted does not cross the
arbiter: the arbiter is only used to establish a communication
channel between an input port and an output port.

On the other hand, each output port has a multiplexer (MUX
in Fig. 11), which selects between the output of all FSMs in the
switch, according to which FSM the arbiter has determined is
the current owner of the output port.

C. Verification Procedure and Results

The system has been thoroughly verified by simulation and
FPGA testing. Self-checking testbenches have been developed

for the switch and also for the transmitter and receiver modules
of each of the implemented frontends. These self-checking
testbenches include a test sequencer, protocol drivers for the
inputs, protocol monitors for the outputs, predictors to predict
the expected outputs, and checkers to verify that the actual out-
puts match the expected ones. VUnit [32] has been used for test
management and transaction message passing, and constrained
random testing has been performed using the constrained ran-
dom features of OSVVM [33]. Using VUnit, the different tests
have been parameterized for different values of the VHDL
generics of the modules under test, and also for multiple values
of the total number of transactions processed in each test.

The testbench for the switch adapts to the protocol config-
uration chosen by the user, so the switch is always stimulated
with frames that comply with the protocol, with the exact values
from the header and data fields selected randomly, with different
constraints depending on the specific test case. Furthermore,
all the tests for the switch store all input and output frames in
.csv files, so the exact same stimuli can be used in field tests
over an FPGA device. A script has been developed that reads
all the stimuli generated by the tests, sends them to the FPGA
board, and afterwards checks that the FPGA outputs match the
simulation outputs.

The complete set of switch tests has been run multiple times,
automatically rewriting the User_Constants.vhd file for all
possible configurations between [Max_Number_of_Jumps=2,
Number_of_Ports=2] and [Max_Number_of_Jumps=12,
Number_of_Ports=12], to ensure functionality is preserved
when changing the configuration of the network. Unsupported
configurations, meaning those that result in a header longer
than 5 bytes, are marked as such and thus the testbenches are
not executed.

Line coverage for the synthesizable sources, as reported by
GHDL [34] version 2.0.0-dev (1.0.0.r144.g68a7f85c) is 93.4%.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The switch has been implemented for two different FPGA
boards: the LX9 Microboard (using Xilinx ISE 14.7) and the
PYNQ-Z2 (using Xilinx Vivado 2020.2). Two switch configu-
rations have been implemented for each device: six jumps and
four ports, and ten jumps and eight ports. For ease of testing,
UART frontends have been used. The UART frontends have
been configured with a speed of 1 Mbaud, with 1 stop bit and no
parity, which is equivalent to 100 KB/s, although slower speeds
can be used if needed. The functionality of the implemented
designs has been checked using the inputs and outputs generated
by the testbenches and it matches the expected behavior in all
cases.

Both simulation and measurement over the FPGA imple-
mentations show that the switch, in absence of any contention,
requires two clock cycles to send a single byte, plus an extra two
clock cycles per header byte to begin processing a frame. This
result is summarized in the following:

Tframe=2 · Tclk · (2 · size_header+data_length). (9)

By contention we mean when a frame has to be routed through
a port that is currently being used and thus it has to wait until the



12550 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 11, NOVEMBER 2024

TABLE I
MAXIMUM CLOCK FREQUENCIES (IN MHZ) FOR DIFFERENT

CONFIGURATIONS OF THE SWITCH IN THE SPARTAN-6 AND ZYNQ-7000
FAMILIES

previous frame has been fully transmitted. Equation (9) suggests
that, as the data_length of the frame increases, the maximum
throughput in bytes per second becomes approximately half the
clock frequency at which the switch operates. For example, if a
switch operates at 50 MHz, the upper bound for its throughput
per port will be around 25 MB/s, which is a good rule of thumb
to approximate the maximum capacity for a single switch port.
The goodput (useful throughput) in bytes per second is actually
given by the following:

Goodput=
1
2
Fclk · data_length

2 · size_header+data_length
. (10)

The leftmost fraction of (10) is fixed, but the right fraction
of that equation will take different values depending on both
the protocol configuration (which determines size_header) and
the size of the specific data that is sent in each frame. When
the size of the payload is not zero, the value for that fraction
is bounded between its minimum, 0.09 (1/11), which happens
when sending frames that only contain 1 byte of data in networks
with 5-byte headers, and its maximum, 0.98 (255/259), which
occurs when header_size is 2 and data_length is 255.

It must be noted that this capacity is per port, so for example
and in the absence of contention, all ports of an eight-port switch
with a 50 Mhz clock could be running at 0.98 × 25 MB/s, which
would result in a total goodput of almost 200 MB/s.

Table I shows the maximum clock frequencies the switch can
have at different configurations, for two different FPGA families,
using two different implementation toolchains (Spartan-6 family
with Xilinx ISE 14.7, and Zynq-7000 family with Xilinx Vivado
2020.2, respectively). Data have been obtained from the post-
place and route timing analyses for each of the implementations.
Configurations marked with a hyphen (–) are unsupported due
to the header being longer than 5 bytes. In Table I, the config-
urations with ten and 12 ports do not fit inside the lx9 device
that the LX9 Microboard includes, so a different device from
the same family and the same speed factor (–2) has been used
for those. For the Zynq-7000, all the implementations have been
made for the same device, specifically the xc7z020-1clg400c.

Fig. 12. Oscilloscope capture of the transmission of two frames (per
port) with data_length = 8 in the switch configured for ten jumps and
eight ports, on the Pynq-z2 development board. The measured time to
send the 5 + 8 byte frame is 660 ns.

Fig. 13. Oscilloscope capture of the transmission of two frames (per
port) with data_length = 255 in the switch configured for ten jumps and
eight ports, on the Pynq-z2 development board. The measured time to
send the 5 + 255 byte frame is 9.69 us.

FPGA resource utilization for different switch configurations
is also shown in Table II. It must be noted that the implemen-
tations contain an UART frontend for each switch port. The
resource utilization table shows that the switch implementations
occupy a small percentage of a modern FPGA such as the
Zynq-7020. The designs have a reasonable resource utilization
even in the Spartan-6 lx9, which is the second smallest device
of a low cost FPGA family first released in 2009. In the case
of the Zynq-7020, many switches can be implemented in the
FPGA, so a network-on-chip with multiple switches can be
easily implemented in the device. Since the results suggest that
the main limitation is the Block RAM (BRAM) capacity of
the FPGA devices, an optimization that can be performed is
to reduce the size of the internal FIFOs so they are synthesized
into distributed memories instead of BRAMs.

Figs. 12 and 13 show four ports of an eight-port, ten-max-
jumps switch outputting data in parallel. The pulsing signals



GUZMÁN-MIRANDA AND MARQUEZ ALCAIDE: LYNX: AN EFFICIENT AND FLEXIBLE COMMUNICATION SCHEMA 12551

TABLE II
DEVICE UTILIZATION FOR DIFFERENT SWITCH CONFIGURATIONS IN THE TWO TESTED FPGA DEVICES

TABLE III
COMPARISON TABLE BETWEEN DIFFERENT COMMUNICATION SCHEMAS

are the valid signal of the output of each channel, which is
activated once each two clock cycles. In this case, the clock of
the switch is running at 54.67 MHz.

Table III presents a comparison between different commu-
nication schemas. The table compares different characteristics
of the approaches, such as overhead, speed, minimum payload
ratios, and maximum number of devices in the network, among
others. The minimum payload ratio is the effective ratio, between
user data and total frame size that corresponds to a frame that
only sends a single data byte. Maximum payload ratios have not
been included, since all protocols tend to achieve a payload ratio
close to 1 when sending frames full of information. Profinet and
EtherCAT are Internet-based protocols, while PESnet, SyCCo
Bus, and RealSync are specifically designed for modular power
converters. It must be noted that SyCCo and RealSync require
specialized hardware (such as optical fiber connections) to
achieve the specified communication rates. For the proposed
approach, maximum capacity per port has been approximated
as explained before: to check how the number of ports and
jumps affects capacity, the reader can check Table I, divide the
frequency by two, and multiply it by 8 to obtain the speed, in
Mbps, per port.

V. CONCLUSION

A flexible communications protocol that enables effi-
cient communications in distributed static networks has been

proposed, implemented and verified both in simulation and when
implemented in two different FPGAs. Single switches can be
implemented in inexpensive FPGA devices, or multiple switches
can be implemented in bigger, midrange FPGAs to easily create
complex NoC. The endpoints of the communication can be either
FPGAs or microprocessors, since the only condition they need
to meet is to use the same physical communications layer that is
implemented in the frontend connected to the specific port of the
switch they are connected to. The protocol header size is auto-
matically optimized to the minimum number of bytes necessary
to establish effective communications, and the switches have
been verified and characterized for many configurations. This
allows the user to decide which network topology will be better
suited for their application, according to their application needs
and the maximum available throughput of the specific switch
configurations they may be considering.

It must be noted that the limitation of a maximum of 5 bytes
per header is a self-imposed restriction, which was adopted to
guarantee that the headers do not grow too much, ensuring that
the reduction of header sizes achieved by the proposed protocol
is effective. If required, this self-imposed restriction could be
removed for specific communication scenarios, at the cost of
bigger header sizes.

The design is flexible so a single switch could have different
frontends on different ports: in the case of distributed networks
with one module acting clearly as a main module that directs the
operation of other, secondary modules, having a faster frontend



12552 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 11, NOVEMBER 2024

for the main module (such as optical communication link) and
slower frontends for the secondary modules (such as UART
or SPI) optimizes deployment costs and ensures that the main
module has enough bandwidth to communicate with all the
secondary modules.

Finally, although the main target of the proposed communica-
tion schema are static industrial networks which have typically
small to medium sizes, when the protocol is configured with
a high number of jumps and ports per switch, networks with
hundreds or even thousands of modules can be implemented,
depending on the specific network topology. Network traffic
control, which would probably be needed in that case, could
be deployed at a higher level network protocol, which we are
currently considering as future work.

In summary, the authors believe that the minimalist commu-
nication protocol proposed in this work is a good candidate for
static industrial communication networks, for several reasons
given as follows.

1) The payload ratio is high due to the minimalist header
length, which is automatically optimized depending on
network configuration.

2) The return path mechanism allows receivers to identify
the senders and send responses back to them without
requiring space to store an origin address in the frame,
reducing the frame space necessary to store addresses by
a factor of two.

3) The decentralized routing mechanism prevents extra in-
formation exchange between modules.

4) The decentralized routing mechanism allows to share the
loads between communication switches. In this sense,
communication does not depend on a single element in
the network.

5) The minimalist communication proposal is independent
of the network topology structure.

The authors expect that this communication protocol, with
its FPGA implementation, will enable both the improvement
of existing applications that currently suffer from performance
issues due to communication overhead and the creation of new
distributed applications in various industrial settings. The pro-
posal does not intend to replace well-established state-of-the-art
protocols: it strives instead to solve a very specific problem
which is the overhead introduced by communication protocols
in the case of static industrial networks.

Future work will include development of frontends of higher
capacity, implementing error detection and correction, and de-
veloping higher level network functionalities by building over
the ones provided by the switch. In order to achieve that, two
main approaches can be combined: a) reserving space in the
payload to implement control values, and b) adding new types
of blocks to the network, connected to the switches. For example,
independent network discovery and management blocks could
be connected to each switch, and these blocks could talk between
themselves to implement self-discovery of the network and con-
gestion awareness. In addition, communication control blocks
could be inserted between frontends and switches to implement
error detection and correction, message retransmission when

unrecoverable errors are detected, and tolerance to misbehav-
ing modules. Extra security features, such as encryption or
frame tampering detection, could be implemented peer-to-peer
in higher communication layers.

ACKNOWLEDGMENT

The authors would like to thank Mario Ríos Pérez for his
contributions to the first VHDL implementation of the system.
The authors would also like to thank the Xilinx University
Program (XUP) for kindly providing ISE and Vivado licenses.
The authors would also like to thank the developers of the
FOSS software they have used for this article: Tristan Gingold
and the rest of the contributors to the GHDL simulator, Lars
Asplund and the rest of the contributors to the VUnit HDL
test framework, and Olof Kindgren and the rest of contributors
to the Fusesoc package manager and build abstraction tool;
your work makes the FPGA world more awesome, accessible,
and fun. The Spartan-6 LX9 microboards were procured back
in the day by the teaching innovation project “Integración de
herramientas y procesos típicos de la educacion online para la
mejora de asignaturas presenciales centradas en el aprendizaje
basado en proyectos,” funded by “II Plan Propio de Docencia
(Acuerdo 5/Consejo de Gobierno de la Universidad de Sevilla
de 20/12/12), en su Accion 1.3.1.1. (Ayudas de Innovación y
Mejora Docente)” of Universidad de Sevilla.

REFERENCES

[1] H. Farhangi, “The path of the smart grid,” IEEE Power Energy Mag., vol. 8,
no. 1, pp. 18–28, Jan./Feb. 2010.

[2] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid - the new and
improved power grid: A survey,” IEEE Commun. Surv. Tut., vol. 14, no. 4,
pp. 944–980, Oct.–Dec. 2012.

[3] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla,
“Hierarchical control of droop-controlled AC and DC microgrids - a
general approach toward standardization,” IEEE Trans. Ind. Electron.,
vol. 58, no. 1, pp. 158–172, Jan. 2011.

[4] V. C. Gungor et al., “Smart grid technologies: Communication technolo-
gies and standards,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529–539,
Nov. 2011.

[5] Z. Li and Q. Liang, “Performance analysis of multiuser selection scheme
in dynamic home area networks for smart grid communications,” IEEE
Trans. Smart Grid, vol. 4, no. 1, pp. 13–20, Mar. 2013.

[6] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the Internet of Things
and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27,
Mar. 2017.

[7] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
Internet of Things: Challenges, opportunities, and directions,” IEEE Trans.
Ind. Informat., vol. 14, no. 11, pp. 4724–4734, Nov. 2018.

[8] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry: State-
of-the-art,” IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2405–2415,
Apr. 2019.

[9] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on In-
ternet of Things: Architecture, enabling technologies, security and privacy,
and applications,” IEEE Internet Things J., vol. 4, no. 5, pp. 1125–1142,
Oct. 2017.

[10] C. Burgos-Mellado, J. Pereda, A. Mora, R. Cardenas-Dobson, and T. Drag-
icevic, “Distributed control for modular multilevel cascaded converters:
Toward a fully modular topology,” IEEE Ind. Electron. Mag., vol. 18,
no. 1, pp. 32–45, Mar. 2024.

[11] V. G. Monopoli et al., “Applications and modulation methods for modular
converters enabling unequal cell power sharing: Carrier variable-angle
phase-displacement modulation methods,” IEEE Ind. Electron. Mag.,
vol. 16, no. 1, pp. 19–30, Mar. 2022.



GUZMÁN-MIRANDA AND MARQUEZ ALCAIDE: LYNX: AN EFFICIENT AND FLEXIBLE COMMUNICATION SCHEMA 12553

[12] F. Flores-Bahamonde, H. Renaudineau, A. M. Llor, A. Chub, and S. Kouro,
“The DC transformer power electronic building block: Powering next-
generation converter design,” IEEE Ind. Electron. Mag., vol. 17, no. 1,
pp. 21–35, Mar. 2023.

[13] C. Restrepo, C. González-Castaño, and R. Giral, “The versatile buck-
boost converter as power electronics building block: Changes, techniques,
and applications,” IEEE Ind. Electron. Mag., vol. 17, no. 1, pp. 36–45,
Mar. 2023.

[14] J. She et al., “A cross-disciplinary outlook of directions and challenges
in industrial electronics,” IEEE Open J. Ind. Electron. Soc., vol. 3,
pp. 375–391, May 2022.

[15] J. Silva, V. Sklyarov, and I. Skliarova, “Comparison of on-chip com-
munications in Zynq-7000 all programmable systems-on-chip,” IEEE
Embedded Syst. Lett., vol. 7, no. 1, pp. 31–34, Mar. 2015.

[16] H. Michel et al., “The socwire protocol (socp): A flexible and minimal
protocol for a network-on-chip,” in Proc. NASA/ESA Conf. Adaptive
Hardware Syst., 2012, pp. 1–8.

[17] H. Michel, “Integration of SRAM-FPGAs for hardware acceleration of
a data processing module for space instruments,” Ph.D. dissertation,
Inst. Comput. Netw. Eng., Technische Universität Braunschweig, Braun-
schweig, Germany, 2017.

[18] Bosch, “Communication area network FD,” 2012. [Online]. Available:
https://web.archive.org/web/20151211125301/http://www.bosch-semi
conductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can_fd_
spec.pdf

[19] Bosch, “Communication area network XL,” 2022. [Online]. Available:
https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-
xl/

[20] Bosch, “Modbus reference guide,” 1996. [Online]. Available: https://www.
modbus.org/docs/PI_MBUS_300.pdf

[21] H. Büttner, D. Janssen, and M. Rostan, “Ethercat - the ethernet fieldbus,”
PC Control Mag., vol. 3, pp. 14–19, 2003.

[22] “Profinet description,” 2014. [Online]. Available: http://us.profinet.com/
wp-content/uploads/2012/11/PROFINET_SystemDescription_ENG_
2014_web.pdf

[23] “Sycco communication protocol,” 2022. [Online]. Available: https://hpe.
ee.ethz.ch/research/syyco-bus.html#info

[24] “Realsync protocol by imperix,” 2021. [Online]. Available: https://
imperix.com/technology/low-latency-communication/

[25] I. Milosavljevic, “Power electronics system communications,” Master
thesis, Virginia Power Electron. Center, Virginia Tech, Blacksburg, VA,
USA, 1999.

[26] L. Benini and G. De Micheli, “Networks on chips: A new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, 2002.

[27] S. Huang, R. Teodorescu, and L. Mathe, “Analysis of communication
based distributed control of MMC for HVDC,” in Proc. 15th Eur. Conf.
Power Electron. Appl., 2013, pp. 1–10.

[28] L. Mathe, P. D. Burlacu, and R. Teodorescu, “Control of a modular
multilevel converter with reduced internal data exchange,” IEEE Trans.
Ind. Informat., vol. 13, no. 1, pp. 248–257, Feb. 2017.

[29] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-
2008 (Revision of IEEE Standard 1076-2002), pp. 1–640, Jan. 6, 2009,
doi: 10.1109/IEEESTD.2009.4772740.

[30] B. Marshall, “Hardware verification in an open source context,” in Proc. 1st
Worskhop Open Source Des. Automat., 10th Workshop Des. Automat. Test
Europe Conf., 2019. [Online]. Available: https://osda.gitlab.io/19/1.2.pdf

[31] IEEE Standard VHDL Language Reference Manual, ANSI/IEEE Std
1076-1993, pp. 1–288, Jun. 6, 1994, doi: 10.1109/IEEESTD.1994.121433.

[32] VUnit, a test framework for HDL, 2014. [Online]. Available: https://vunit.
github.io/

[33] J. Lewis et al., “Open source VHDL verification methodology (OSVVM),”
2020. [Online]. Available: https://github.com/OSVVM

[34] T. Gingold et al., “GHDL: Free and open-source analyzer, compiler,
simulator and (experimental) synthesizer,” 2002. [Online]. Available:
https://ghdl.github.io/ghdl/

[35] B. Kim, Y. Kim, D. Lee, and S. Tak, “A reconfigurable noc platform incor-
porating real-time task management technique for H/W-S/W codesign of
network protocols,” in Proc. Int. Symp. Ubiquitous Multimedia Comput.,
2008, pp. 238–243.

[36] A. Ben Achballah and S. Ben Saoud, “The design of a network-on-chip
architecture based on an avionic protocol,” in Proc. World Symp. Comput.
Appl. Res., 2014, pp. 1–5.

[37] T. Lange, B. Fiethe, H. Michel, H. Michalik, K. Albert, and J. Hirzberger,
“On-board processing using reconfigurable hardware on the solar orbiter
phi instrument,” in Proc. NASA/ESA Conf. Adaptive Hardware Syst., 2017,
pp. 186–191.

[38] Bosch, “Communication area network FD,” 2008. [Online]. Available:
https://www.eecs.umich.edu/courses/eecs461/doc/CAN_notes.pdf

[39] D. Jansen, “Real-time ethernet: The ethercat solution,” Comput. Control
Eng., vol. 15, pp. 16–21, Feb. 2004. [Online]. Available: https://digital-
library.theiet.org/content/journals/10.1049/cce_20040104

[40] C. Carstensen, R. Christen, H. Vollenweider, R. Stark, and J. Biela, “A
converter control field bus protocol for power electronic systems with a
synchronization accuracy of NS,” in Proc. 17th Eur. Conf. Power Electron.
Appl., 2015, pp. 1–10.

Hipólito Guzmán-Miranda (Senior Member,
IEEE) received the degree in telecommunica-
tions engineering with a specialization in elec-
tronics and the Ph.D. degree in telecommuni-
cation engineering (with Hons. and European
mention) through the Doctorate Program in
electronic engineering, signal processing, and
communications from Universidad de Sevilla,
Seville, Spain, in 2006 and 2010, respectively.

He is an Associate Professor (Professor Titu-
lar de Universidad) with Universidad de Sevilla,

where he teaches undergraduate and master’s subjects mainly related
to FPGA design and verification, system-on-chip, and project manage-
ment applied to electronics. He has authored or coauthored more than
15 JCR journal papers and more than 40 conference contributions.
His research interests include programmable logic applications, high-
throughput visual classification systems, wireless for critical applica-
tions, and emulation and mitigation of radiation effects in digital devices.

Dr. Guzmán-Miranda has been Chair of the IEEE IES Technical Com-
mittee on Electronic Systems on Chip (term 2020–2021), and Cluster
Delegate for IEEE IES Cluster 4 (Cross-Disciplinary Cluster, term 2021–
2022).

Abraham Marquez Alcaide (Member, IEEE)
was born in Huelva, Spain, in 1985. He received
the B.S., M.S., and Ph.D. degrees in telecom-
munications engineering from Universidad de
Sevilla, Seville, Spain in 2014, 2016, and 2019,
respectively.

He has coauthored more than 60 journal ar-
ticles and participated in more than 25 R&D
projects. His research interests include ad-
vanced modulation techniques, multilevel con-
verters, modular converters, model-based pre-

dictive control of power converters and drives, renewable energy
sources, thermal modeling of power converters, and power device life-
time extension.

Dr. Marquez Alcaide was the recipient as coauthor of the 2015, 2021,
and 2023 Best Paper Award of the IEEE Industrial Electronics Magazine.

https://web.archive.org/web/20151211125301/http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can_fd_spec.pdf
https://web.archive.org/web/20151211125301/http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can_fd_spec.pdf
https://web.archive.org/web/20151211125301/http://www.bosch-semiconductors.de/media/ubk_semiconductors/pdf_1/canliteratur/can_fd_spec.pdf
https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/
https://www.bosch-semiconductors.com/ip-modules/can-protocols/can-xl/
https://www.modbus.org/docs/PI_MBUS_300.pdf
https://www.modbus.org/docs/PI_MBUS_300.pdf
http://us.profinet.com/wp-content/uploads/2012/11/PROFINET_SystemDescription_ENG_2014_web.pdf
http://us.profinet.com/wp-content/uploads/2012/11/PROFINET_SystemDescription_ENG_2014_web.pdf
http://us.profinet.com/wp-content/uploads/2012/11/PROFINET_SystemDescription_ENG_2014_web.pdf
https://hpe.ee.ethz.ch/research/syyco-bus.html#info
https://hpe.ee.ethz.ch/research/syyco-bus.html#info
https://imperix.com/technology/low-latency-communication/
https://imperix.com/technology/low-latency-communication/
https://dx.doi.org/10.1109/IEEESTD.2009.4772740
https://osda.gitlab.io/19/1.2.pdf
https://dx.doi.org/10.1109/IEEESTD.1994.121433
https://vunit.github.io/
https://vunit.github.io/
https://github.com/OSVVM
https://ghdl.github.io/ghdl/
https://www.eecs.umich.edu/courses/eecs461/doc/CAN_notes.pdf
https://digital-library.theiet.org/content/journals/10.1049/cce_20040104
https://digital-library.theiet.org/content/journals/10.1049/cce_20040104


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


