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1    Introduction

Hybrid flow shop (HFS) consists of at least two stages,
and  at  least  one  stage  is  composed  of  some  parallel
machines.  The  main  advantages  of  hybrid  flow  shop
are the effective balance among machine workload and
increasing  production  capacity.  Hybrid  flow  shop
possesses  a  variety  of  complex  conditions  and
constraints  such  as  no-wait,  batch  processing,
uncertainty,  reentrant,  multiprocessor  task,  sequence
dependent  setup  time,  blocking,  energy-efficient,  and
preventive  maintenance.  Hybrid  flow  shop  scheduling
problem  (HFSP)  with  these  complex  conditions  and
constraints  has  attracted  much  attention,  and  many
results are obtained[1–14].

For  HFSP  with  batch  processing,  researchers
presented  an  improved  cuckoo  algorithm  based  on
separate  superior  and  inferior  populations[2] and  an
efficient  genetic  algorithm  (GA)  with  adaptive
crossover  and  mutation[3].  Li  et  al.[4] solved  the  green
HFSP  with  fuzzy  processing  time  by  using  discrete

artificial  bee  colony  algorithm  (ABC).  Li  et  al.[5]

designed the multi-objective optimization algorithm by
selecting  related  neighborhood  structures  for  the
problem  with  setup  energy  consumptions.  Wang  et
al.[6] devised  a  novel  shuffled  frog-leaping  algorithm
(SFLA)  for  minimizing  makespan  and  total  tardiness
for  reentrant  problem.  Guan  et  al.[7] presented  an
improved  GA  with  multi-crossover-operator  for  the
problem with multiprocessor task and minimization of
makespan.  Wu  et  al.[8] applied  a  multi-objective
evolutionary  algorithm  with  adaptive  neighborhood
updating  strategy  to  solve  reentrant  problem  with  job
release.  Wang  and  Liu[9] solved  the  problem  with
preventive  maintenance  by  applying  multi-objective
tabu  search.  Wang  et  al.[10] handled  blocking  problem
and devised an improved iterative greedy algorithm. Li
et  al.[11] developed  a  two-level  imperialist  competitive
algorithm  to  solve  energy-efficient  problem  with
relative importance of objectives. Qin et al.[12] devised
an improved iterated greedy algorithm for the blocking
HFSP with energy-efficient.  Lei and Guo[13] presented
a  novel  SFLA  with  tournament  selection  based
population  division  to  solve  the  problem  with  two
agents.  Wang  et  al.[14] studied  green  HFSP  with
consistent  sublots  and  applied  a  multi-objective
discrete  ABC  algorithm.  Wu  and  Liu[15] proposed  an
improved memetic algorithm to solve green HFSP with
sequence dependent setup time and transportation time.
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HFSP with limited buffers is  solved by discrete whale
swarm  algorithm  (DWSA)  with  a  deduplication
strategy[16]. HFSP with device dynamic reconfiguration
is  also  solved  by  an  improved  whale  optimization
algorithm  (WOA)[17].  Marichelvam  et  al.[18] presented
improved  particle  swarm  optimization  algorithm  with
variable  neighborhood  search  for  HFSP with  effect  of
human factors.

As stated above, the previous works are mainly about
HFSP  with  various  conditions  and  constraints  such  as
no-wait,  batch  processing,  and  reentrance;  however,
some conditions in real-world manufacturing processes
are  seldom  considered,  for  example,  no  precedence
relation  between  some  stages  attracted  little  attention,
which exists in hot and cold casting shop. In this shop,
there are eight  stages,  Stages 2 and 3 are core making
and  mold  assembling,  and  there  is  no  precedence
relation  between  them,  that  is,  processing  sequence  of
job  on  Stages  2  and  3  can  be  (2,  3)  or  (3,  2).  This
constraint  will  lead  to  stage  determination  sub-
problem,  the  number  of  sub-problems  increases  and
optimization  difficulties  will  enlarge;  meanwhile,
HFSP with this constraint is refined from the real-word
casting  shop  and  the  corresponding  results  have  high
application  possibility,  thus,  it  is  necessary  to  handle
HFSP  with  no  precedence  relation  between  some
stages.

SFLA  is  a  metaheuristic[19] algorithm  with  some
remarkable  features  of  simple  concept,  the  fewer
parameters,  the  faster  computation  speed  and  strong
global optimization ability. There are some application
of  SFLA  to  scheduling  problems[6, 13, 20–29].  It  can  be
found  that  SFLA  has  been  used  to  solve  HFSP  with
complex  conditions  and  constraints[6, 13],  showing
significant  advantages  in  solving  HFSP[25, 26].  It  is
rarely used to solve HFSP with no precedence between
some stages, which is an extension of HFSP. There are
great  similarities  between  HFSP  and  HFSP  with  no
precedence.  However,  HFSP  with  no  precedence
between  some  stages  needs  consideration  on  the
visiting  sequence  of  each  job  at  stages  with  no
precedence.  The  successful  applications  of  SFLA  to
HFSP  show  that  SFLA  is  an  optimization  algorithm
with  potential  advantages  for  solving  HFSP  with  no
precedence between some stages.

In  this  study,  HFSP  with  no  precedence  between
some  stages  is  solved,  and  an  adaptive  shuffled  frog-
leaping  algorithm  (ASFLA)  is  used  to  optimize
makespan.  A  new  solution  representation  and
decoiding  are  proposed,  an  adaptive  memeplex  search

process  and  dynamical  population  shuffling  are
implemented  together.  Extensive  experiments  are
carried  out  to  test  the  performance  of  ASFLA  by
comparing  it  with  other  existing  algorithms.  The
effectiveness of new strategies are proved, and notable
search  advantages  of  ASFLA  are  validated  in  solving
HFSP with no precedence between some stages.

2    Problem Description

θl l: number of machines at stage .
Mlk k l: the -th machines at stage .
pilk Ji Mlk ∈ θl: processing time of  on .
Ci Ji: completion time of job .
Cmax : the maximum completion time of all jobs.
gen: the number of current generation.
μ: number of searches in each memeplex.
Ω: memory solution set.
β: number of solution selected to execuse memeplex

search.
meqi Mi: evolutionary quality of memeplex .
η: evaluation index of memeplex.
ϑ ϑ ∈ {1,2,3}: an integer, .
s: number of memeplexes.

n J1, J2, . . . , Jn H
l θl

θl = {Ml1,Ml2, . . . ,Ml|θl |} ∀1 � l � H |θl| > 1

Ji

H
σ σ+1 Ji

σ σ+1

1 � σ < H

HFSP,  with  no  precedence  between  some  stages
possesses,  consists  of  jobs  and 
processing stages. Each stage  has  unrelated parallel
machines, , , .

 is  processed  in  terms  of  production  flow:  Stage  1,
Stage  2,...,  Stage .  There  is  no  precedence  between
stages  and ,  each  job  can  be  processed  at
stage  then  at  stage ,  or  vice  versa,  where

.
In  some  real-life  hybrid  flow  shop  manufacturing

processes, there is no precedence between some stages.
For example, in a casting hybrid flow shop, there are 8
stages,  and  there  is  no  precedence  between  Stages  2
and 3. HFSP with no precedence between some stages
is seldom investigated.

σ σ+1

The problem can be divided into three sub-problems:
scheduling,  machine  assignment,  and  stage
determination.  Stage  determination  is  used  to  decide
the  visiting  sequence  between  stages  and  for
each job.

The following objective is minimized.
 

Cmax = max
i=1,2,...,n

{Ci}

Cmax

Ci Ji

where  indicates  the  maximum  completion  time
among all jobs, and  is the completion time of job .

Table  1 shows  an  illustrative  example  with  5  jobs
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and 4 stages. Stages 1 and 3 have two unrelated parallel
machines, Stages 2 and 4 have three unrelated parallel
machines and there is no precedence between Stages 2
and 3. A schedule of the example is listed in Fig. 1.

3    ASFLA  for  HFSP  with  No  Precedence
Between Some Stages

3.1    Encoding, decoding, and initialization

σ σ+1

[γ1,γ2, . . . ,γn]

[ϕ1,ϕ2, . . . ,ϕn]

γi ∈ {1,2, . . . ,n} ϕi ∈ {σ,σ+1} ϕi = σ

Ji σ σ+1

σ+1 σ

A  two-string  representation  and  a  heuristic  for  the
machine  assignment  is  proposed.  For  HFSP  with  no
precedence  between  stages  and ,  a  solution  is
denoted  by  a  scheduling  string  and  a
stage  determination  string ,  where

, ,  if ,  the  visiting
sequence  for  job  is  stages , ;  otherwise,  the
above sequence is stages , .

Decoding is done as follows:
l = 1 π1

πi

M1k

πi

Step  1: Let ,  start  with  the  first  job  from
scheduling string, for each job , determine a machine

 based on the  heuristic  and accomplish  processing
of  on the machine.

l > HStep 2: Repeat the following steps until .
1 < l < σ l > σ+2

γ′
1
,γ′

2
, . . . ,γ′n n

l−1 γ′
1

γ′i Mlk

γ′i

(1)  If  or ,  produce  permutation
 by  ranking  jobs  in  ascending  order  of

their  completion  time  at  stage ,  start  with  job .
For each , determine a machine  by the heuristic
and process  on the machine.

l = σ γ′
1
,γ′

2
, . . . ,γ′n
γ′

1

γ′i δ = ϕγi′

σ σ+1 ϕγi′

Mδk M(2σ+1−δ)k′
γ′i

(2)  If ,  obtain  a  job  permutation 
using the same process of Step (1), starting with job .
For  each  job ,  let ,  determine  the  visiting
sequence  of  stages ,  according  to ,  and
select a machine  and a machine  by the
heuristic and process  on them sequentially.

l = σ+2 n
2σ+1−ϕγi

γ′
1
,γ′

2
, . . . ,γ′n γ′

1

γ′i Mlk

γ′i

(3) If , sort  jobs in ascending order of their
completion  time  at  stage ,  and  obtain  a
permutation , starting with job . For each
job , select a machine  according to the heuristic
and process  on the machine sequentially.

l = l+1(4) 

Ji

Mlg g = 1,2, . . . , θl l Mlk

The  heuristic  for  machine  assignment  is  described
below.  For  each ,  calculate  the  earliest  beginning
time  on  each ,  at  stage ,  select 
with  the  smallest  beginning  time.  If  there  exist  more
than one machine with same beginning time, select one
with the smallest index number.

[3,4,2,1,5]

[2,3,2,3,2] l = 1

M11 M12 M11 M11 M12

l = 2

[3,2,4,5,1]

ϕ3 = 2

M21 M31

l = 4 [3,2,5,4,1]

For the example in Section 2, the solution consists of
 and  a  stage  determination  string
.  When ,  Jobs  3,  4,  2,  1,  and  5  are

assigned to machines , , , , and  by
the  heuristic  sequentially.  When ,  a  permutation

 is  obtained  by  ranking  their  completion
times at stage 1, take Job 3 as an example, ,  the
visiting sequence of job 3 is Stages 2 and 3, and Job 3
is processed sequentially on  and  based on the
heuristic.  When ,  a  permutation  is
formed. The related schedule is displayed in Fig. 1.

s M1,M2, . . . ,Ms

P
N

 memeplexes  are  produced  by
dividing a randomly generated initial population  with

 initial solutions[19].

3.2    Adaptive  memeplex  search  and  dynamical
population shuffling

xw xb

xg

β > 1

In  existing  SFLA[27, 28],  optimization  object  is , 
and  are used in memeplex search and other solutions
are  seldom  involved  with  memeplex  search.  In
ASFLA,  solutions  are  used  as  optimization
object,  and  adaptive  memeplex  search  and  dynamical
population shuffling are as shown in Algorithm 1.

gen = 1 Mi β

φ x ∈ φ μ/β

y ∈ φ y � x
GS(x,y) x

x

(1)  If ,  for  each  memeplex ,  determine 
solutions with the smallest makespan, and let them into
set ,  for  each ,  repeat  the  following  step 
times:  randomly  select  a  solution , ,  execute

,  if  is  not  updated,  conduct  multiple
neighborhood search on .

gen > 1(2) If , then
meqi � η(a) Sort all memeplexes with  in descending

 

Table 1    Data on pilk on the example.

Ji
Processing time (s)

M11 M12 M21 M22 M23 M31 M32 M41 M42 M43

1 5 8 7 8 6 4 2 4 5 8
2 4 3 6 4 4 1 3 7 6 8
3 1 3 8 5 3 4 5 3 7 9
4 8 5 3 7 4 3 6 5 3 4
5 6 4 5 4 3 2 5 4 6 3
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Fig. 1    Schedule of the example.
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meqi meq1 �meq2 � · · · �mequ

Mi

y
y ∈Ml ⊂ {Mg

∣
∣
∣meqg >meqi } y ∈Mi

{Mg
∣
∣
∣meqg >meqi } 1 � i � u 1 � g � u

order  of ,  suppose  that ,
for  each  memeplex ,  execute  global  search  and
multiple neighborhood as done in Step (1),  where  is
chosen:  or ,  if

 is empty,  and .
ϑ � 2 Mi meqi < η xb ∈Mi

y ∈M∗ GS(xb,y)

x μ

(b)  If ,  select  with .  For ,
randomly  select ,  and  multiple
neighborhood search on  are execute  times.

meqi

s meqi � η ϑ = 1

meqi � η ϑ = 2 s
meqi < η ϑ = 3

(3)  Compute  evolutionary  quality  of  each
memeplex, if  memeplexes have , ; if at
least  one  memeplex  has , ;  if 
memeplexes have , .

ϑ � 2 P′

meqi < η g meqi < η

P′ ∪Ω
g ϑ = 2

meqi M∗ ϑ = 3 M∗

P

(4) If , obtain population  by all memeplexes
with ,  suppose  memeplexes  with ,
and  execute  population  division  by  using  to
form  memeplexes. If , select memeplex with the
biggest  as .  If ,  consists  of  all
updated solutions in .
 

meqi = ESi/TSi

ESi TSi

Mi ESi = 1 TSi = 1

where  and  are  integers  and  computed  as
follows: when the search of  starts, , ,

z
x TSi = TSi+1

Cz
max <Cx

max ESi = ESi+1 x

when a solution  is given by global search or multiple
neighborhood  search  on , ;  if

, ,  that  is,  solution  is
updated.

GS(x′,y′)
x′

y′ z′ Cz
max

′ <Cx
max

′ Ω

x′ x′ z′ z
′′

x′ y′ Cz′′
max <Cx

max
′ Ω

x′ z
′′

x′

Global search  is described below. Conduct
order-based crossover[30] on the scheduling string of 
and ,  get  a  solution ,  if ,  update 
with  and  replace  with ;  otherwise,  produce 
by  performing  two-point  crossover  on  the  stage
determination string of  and . If ,  is
updated with  and  substitutes for .
Ω N/s Ω

x |Ω| N/s x
Ω x Ω

|Ω| < N/s x Ω

 has maximum capacity of . When  is updated
by , if  exceeds  and  is better than the worst
solution  in ,  put  into  to  replace  the  worst
solution; if , add  to  directly.

N1−N5

N1−N4 N1

γi γ j

N2 γi

γ j N3 N4 N1 N2

N3 N4 γi

i > j N5

h ∈ {σ,σ+1}
ϕi

ϕi = h ϕi = 2σ+1−h

Five  neighborhood  structures  are  used.
 are  related  to  scheduling  string,  is  the

swapping of two randomly chosen solutions  and .
 is used to generate solutions by inserting  into the

position of .  and  are similar to  and . In
 and , job  has the maximum completion time,

where .  acts on stage determination string and
is proposed for no precedence between some stages. It
is  described  below.  Determine  the  stage 
that  has  the  maximum load,  randomly  choose  with

, and let .

r = 1

r = 6 z′ ∈Nr(x′) Cz
max

′ <Cx
max

′

Ω x′ z′ x′ r = 6

r = r+1 Nr(x′)
x′ Nr

Multiple  neighborhood  search  is  described  as
follows. ,  execute  the  following  steps  repeatedly
until : produce , if , update

 with ,  substitutes  for , ;  otherwise,
.  is the set of neighbourhood solution of

 produced by using .

3.3    Algorithm description

ASFLA has simple structure and is given in Algorithm
2.  After  initial  population  being  randomly  generated,
population division, and adaptive memeplex search and
dynamical population shuffling are executed repeatedly
until the stopping condition is met.

Flow chart of ASFLA is given in Fig. 2.
βUnlike  existing  SFLA[6, 13, 20, 25, 26],  solutions  are

 

Algorithm 1 Adaptive memeplex search and dynamical
population shuffling

gen = 11: if  then
Mi2: for each memeplex  do

β φ3: put the first  solution into set 
x ∈ φ4: for each  do

y ∈ φ y � x
GS(x,y) x

5: randomly select a solution , , execute
 and multiple neighborhood search on 

6: end for
7: end for
8: end if

gen > 19: if  then
ϑ � 210: if  then

Mi meqi � η11: for each  with  do
GS(x,y)

x
12: execute  and multiple neighborhood

search on 
13: end for
14: end if

ϑ � 215: if  then
Mi meqi < η16: for each  with  do

y ∈M∗ GS(xb,y)

x μ

17: randomly select ,  and
multiple neighborhood search on  are execute  times

18: end for
P′ ∪Ω

g
19: execute population division by using  to

form  memeplexes
20: end if
21: end if

meqi22: Compute evolutionary quality  of each memeplex

 

Algorithm 2 ASFLA
P gen = 11: Randomly produce initial population , let 

P s2: Divide population  into  memeplexes
3: while stopping condition is not met do
4: Execute adaptive memeplex search and dynamical

population shuffling
gen = gen+15: 

6: end while
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μ/β meqi � η

meqi < η meqi � η

used as optimization object, and each of them is given
 times.  Memeplexes  with  are  given

different  search  strategies  from  memeplexes  with
. Moreover, memeplexes with  are not

used  for  population  division  to  sufficiently  use  the
good solution structure of these memeplexes.

4    Computational Experiment

All  experiments  are  implemented  by  using  Microsoft
Visual  C++  2022  and  run  on  8.0  GB  RAM  2.4  GHz
CPU PC.

4.1    Test instance and comparative algorithm

n×H n ∈ {10,20, . . . ,150}
H ∈ {2,4,6,8} pilk ∈ [50,100] |θl| ∈ {2,3} H = 2

σ = 1 H = 4 σ = 2 H = 6 σ = 5 H = 8 σ = 6

In this study, 60 instances are used. For each instance,
use  to  represent  it,  where ,

, ,  and .  If ,
; if , ; if , ; if , .

All of above data are integers.
Three  algorithms  are  selected,  which  are  improved

gravitational  search  algorithm  (IGSA)[31],  improved
particle swarm optimization algorithm (IPSOA)[18], and
hybrid  evolutionary  algorithm  (HEA)[32].  These
algorithms can provide promising results for HFSP and
can  be  applied  to  solve  the  HFSP with  no  precedence
between  some  stages,  so  they  are  chosen  as
comparative algorithm.

Stage  determination  string  of  ASFLA  is  directly
added  into  IGSA,  IPSOA,  and  HEA.  For  IGSA  and
IPSOA,  after  using  related  formulas  for  scheduling

N5

N5

string,  is applied for stage determination string. For
HEA,  after  using  its  neighborhood  structures  for
scheduling  string,  is  executed  for  stage
determination string.

Mi GS(xw, xb) z
xw z GS(xw, xg)

z′ xw z′

xw

To show the effect of adaptive memeplex search and
dynamical  population  shuffling,  ASFLA  is  compared
with  SFLA[19],  in  which  the  memeplex  search  is  as
follows: for each , execute , and obtain .
If  is not updated by , apply , and obtain

;  if  is  not  updated  by ,  conduct  multiple
neighborhood  search  on .  Random  initialization  is
also used.

4.2    Parameter setting

N s μ β η

0.25×n×H
0.25×n×H

ASFLA  has  the  following  parameters: , , , , ,
and the stopping condition. ASFLA can converge fully
when  s CPU time is used; moreover, when

 s  CPU  time  is  applied,  IGSA,  IPSOA,
HEA, and SFLA also converge fully, so the above CPU
time is given as stopping condition.

20×4

20×4 s/N
−10× log10(MIN2) MIN

Taguchi  method[33] on  instance  is  used  to
obtain settings on the remaining parameters of ASFLA.
Table  2 reveals  the  levels  of  each  parameter.  16
orthogonal  experiments  are  executed.  In  each
orthogonal  experiment,  ASFLA  randomly  runs  on
instance . Figure 3 gives related results.  ratio
is , where  indicates the solution
with the smallest makespan in 10 runs.

N = 96 s = 6 μ = 40 β = 4

η = 0.3 MIN

There  are  16  parameter  combinations  used.  The
computational  results  reveal  that  when  the  following
settings  are  used: , , , ,  and

,  ASFLA  yields  the  smallest ,  so  these
settings are adopted.

N = 96 s = 4 μ = 40, ,  and  are  given  to  SFLA.  After
giving  the  stopping  condition,  experiments  show  that
parameter settings of IGSA[33], IPSOA[20], and HEA[32]

are still effective, so they are still adopted.

4.3    Result and discussion

xg

MIN MAX xg

Each of ASFLA, SFLA, IGSA, IPSOA, and HEA runs
randomly 10 times for each instance.  is produced in
a run.  ( ) denotes the best (worst)  found in

 

Start

Generate initial 
population randomly

Adaptive memeplex search and
dynamical population shuffling

Population division

Termination condition?

End

No

Yes

Divide into s memeplexes

 
Fig. 2    Flow chart of ASFLA.

 

Table 2    Levels of each parameter.

Factor level
Parameter

N s μ β η

1 48 4 30 2 0.2
2 72 6 40 3 0.3
3 96 8 50 4 0.4
4 120 12 60 5 0.5
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AVG

xg

MAX, MIN, and AVG

50×4 70×6

10  runs,  and denotes  the  average  makespan  of
10 in  10  runs. Tables  3−5 reveal  their  results  on

. Figure  4 depicts  convergence
curves for and .

RPDMIN RPDMAX

RPDAVG

Figure  5 demonstrates  box  plots  of  ASFLA,  SFLA,
IGSA,  IPSOA,  and  HEA. , ,  and

are as follows:

RPDMIN =
MIN−MIN∗

MIN∗ ×100

MIN∗ MIN

RPDAVG RPDMAX

RPDMIN

where is  the  smallest produced  by  all
algorithms. and are  represented  in
the same way as .

t
t B1 B2

t
B1 B2

B1 B2 p

Table 6 reports the related data on pair-sample -test
with the significance level of 0.05. -test ( , ) means
that  a  paired -test  is  performed  to  judge  whether
algorithm gives  a  better  sample  mean  than .
Statistically  significant  difference  between  algorithms

and exists if the -value is less than 0.05.

MAX AVG

It  can  be  found  in Table  3 that  ASFLA  converges
better than SFLA. As shown in Tables 4 and 5, ASFLA
also  produces  better  results  on and than
SFLA  on  at  least  49  of  60  instances.  The  results  in
Table  6 and Figs.  4 and 5 also  demonstrate  the
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Fig. 3    Main effect plot for MIN and s/N ratio.

Table  3    Computational  results  of  ASFLA,  SFLA,  IGSA,
IPSOA, and HEA on MIN.

Instance
(s × H)

MIN
ASFLA SFLA IGSA IPSOA HEA

10×2 360 372 360 363 360
10×4 546 597 567 570 579
10×6 730 764 736 733 742
10×8 875 893 881 878 886
20×2 680 712 690 688 696
20×4 951 1023 968 943 985
20×6 1130 1232 1175 1211 1217
20×8 1257 1481 1308 1356 1410
30×2 1050 1237 1154 1094 1192
30×4 1299 1420 1352 1342 1325
30×6 1447 1665 1537 1491 1563
30×8 1633 1822 1750 1690 1794
40×2 1340 1534 1393 1379 1473
40×4 1754 1822 1727 1778 1750
40×6 1794 1926 1864 1817 1895
40×8 1976 2231 2110 2064 2161
50×2 1766 1782 1786 1723 1887
50×4 2307 2436 2471 2409 2492
50×6 2212 2426 2384 2314 2403

(to be continued)
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convergence advantage of ASFLA.
MINTable  3 reveals  that  ASFLA  generates  better 

than  IGSA,  IPSOA,  and  HEA  on  48  of  60  instances,

Table  3    Computational  results  of  ASFLA,  SFLA,  IGSA,
IPSOA, and HEA on MIN.

(continued)
Instance
(s × H)

MIN
ASFLA SFLA IGSA IPSOA HEA

50×8 2575 2758 2648 2624 2697
60×2 2017 2168 2085 2039 2137
60×4 2976 3093 3003 3035 3041
60×6 2681 2883 2742 2838 2868
60×8 3319 3539 3466 3454 3488
70×2 2384 2467 2425 2408 2478
70×4 3540 3665 3530 3612 3759
70×6 3450 3682 3489 3506 3577
70×8 3769 3953 3799 3884 3967
80×2 2695 2813 2746 2763 2854
80×4 4151 4382 4307 4101 4322
80×6 3856 4093 3957 3945 4088
80×8 4418 4672 4603 4569 4644
90×2 3186 3285 3134 3195 3242
90×4 4674 4895 4785 4736 4817
90×6 4678 4839 4752 4552 4808
90×8 5377 5547 5431 5401 5496

100×2 3531 3663 3604 3575 3637
100×4 5574 5747 5664 5627 5770
100×6 4843 4991 4887 4899 4943
100×8 6172 6402 6219 6324 6364
110×2 3881 4018 3926 3900 3953
110×4 6225 6375 6326 6284 6385
110×6 5409 5595 5492 5563 5542
110×8 6840 7046 6872 6922 7021
120×2 4172 4235 4193 4163 4116
120×4 7110 7320 7197 7187 7240
120×6 6241 6452 6348 6301 6376
120×8 7590 7792 7661 7498 7765
130×2 4405 4580 4496 4467 4521
130×4 7641 7839 7768 7669 7814
130×6 6965 7149 7016 6933 7071
130×8 8195 8388 8255 8213 8338
140×2 4959 5124 4988 4926 5048
140×4 8319 8506 8490 8476 8507
140×6 7312 7419 7398 7387 7482
140×8 9026 9211 9179 9103 9139
150×2 5191 5337 5225 5217 5272
150×4 9234 9367 9354 9209 9454
150×6 7906 8142 8081 8103 8099
150×8 9962 10 117 10 056 10 024 10 087

 

Table  4    Computational  results  of  ASFLA,  SFLA,  IGSA,
IPSOA, and HEA on MAX.

Instance
(s × H)

MAX
ASFLA SFLA IGSA IPSOA HEA

10×2 366 378 372 369 376
10×4 613 671 625 617 640
10×6 746 786 764 749 767
10×8 889 915 930 913 900
20×2 708 714 709 712 701
20×4 1029 1214 998 1050 1097
20×6 1168 1268 1331 1362 1322
20×8 1346 1565 1462 1427 1573
30×2 1069 1267 1169 1120 1214
30×4 1625 1751 1645 1612 1664
30×6 1527 1841 1622 1625 1617
30×8 1918 1989 1814 1849 1982
40×2 1368 1574 1422 1414 1502
40×4 2243 2373 2196 2185 2217
40×6 2054 2126 2085 2066 2093
40×8 2257 2348 2510 2475 2311
50×2 1753 1902 1816 1786 1851
50×4 2816 2930 2841 2852 2870
50×6 2593 2752 2637 2673 2713
50×8 3068 3293 3142 3224 3180
60×2 2067 2199 2119 2099 2083
60×4 3401 3365 3542 3625 3392
60×6 3080 3228 3028 3194 3211
60×8 3710 3899 3901 3821 3901
70×2 2416 2517 2426 2434 2524
70×4 4146 4497 4199 4243 4284
70×6 3592 3837 3796 3735 3882
70×8 4502 4774 4550 4598 4600
80×2 2740 2881 2774 2787 2880
80×4 4857 5047 4871 4901 4962
80×6 3856 4093 3957 3945 4088
80×8 4418 4672 4603 4569 4644
90×2 3186 3285 3134 3195 3242
90×4 4674 4895 4785 4736 4817
90×6 4852 5003 4875 4927 4962
90×8 6058 6415 6126 6211 6324
100×2 3562 3842 3642 3550 3690
100×4 6200 6461 6344 6406 6316
100×6 5385 5507 5410 5391 5460
100×8 6731 6950 6878 6896 7045
110×2 3934 4396 3995 4011 3980
110×4 7083 7268 6947 7214 7168
110×6 5691 6035 5825 5752 5929
110×8 7615 8172 7725 7694 7740
120×2 4158 4387 4188 4207 4234

(to be continued)
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120×2 MIN

40×4 70×4 90×2

MIN

MIN

moreover,  ASFLA  obtains  worse  than  HEA  just
on  instance ,  gets  bigger  than  IGSA  only
on  instances , ,  and ,  and  generates
worse  than  IPSOA  just  on  8  instances. Table  6
and Figs. 4 and 5 also reveal the significant advantage
of ASFLA on .

MAXWith  respect  to  in Table  4,  ASFLA performs
better  than  IGSA,  IPSOA,  and  HEA  on  49  instances.

Table  4    Computational  results  of  ASFLA,  SFLA,  IGSA,
IPSOA, and HEA on MAX.

(continued)
Instance
(s × H)

MAX
ASFLA SFLA IGSA IPSOA HEA

120×4 7875 8127 8019 7917 7837
120×6 6508 6842 6506 6621 6719
120×8 8306 8590 8448 8405 8503
130×2 4501 4843 4566 4532 4591
130×4 8431 8688 8501 8596 8669
130×6 7133 7311 7236 7181 7259
130×8 8964 9199 9084 9010 9045
140×2 4989 5179 5056 5003 5094
140×4 9473 9642 9585 9542 9498
140×6 7714 7959 7767 7785 7850
140×8 9751 10 027 9971 9871 9995
150×2 5252 5424 5280 5292 5343
150×4 9927 10 090 10 119 9985 10 206
150×6 8193 8418 8345 8271 8332
150×8 10 332 10 533 10 601 10 478 10 657

 

Table  5    Computational  results  of  ASFLA,  SFLA,  IGSA,
IPSOA, and HEA on AVG.

Instance
(s × H)

AVG
ASFLA SFLA IGSA IPSOA HEA

10×2 361 366 363 364 364
10×4 586 624 579 587 597
10×6 740 768 749 740 756
10×8 872 894 892 887 889
20×2 689 702 699 701 692
20×4 975 1077 986 994 990
20×6 1148 1246 1259 1291 1277
20×8 1282 1528 1359 1411 1485
30×2 1060 1243 1161 1109 1203
30×4 1403 1463 1449 1484 1490
30×6 1484 1664 1573 1564 1594
30×8 1760 1897 1790 1763 1856
40×2 1360 1566 1417 1395 1483
40×4 1926 2034 1996 1968 1917
40×6 1889 2082 1947 1929 1980
40×8 2103 2296 2281 2214 2234
50×2 1793 1894 1804 1774 1837
50×4 2528 2604 2642 2716 2687
50×6 2441 2528 2457 2477 2493
50×8 2860 2941 2978 2970 2930
60×2 2052 2186 2103 2076 2160
60×4 3218 3401 3305 3379 3268
60×6 2977 3146 2870 3001 2993
60×8 3528 3743 3590 3648 3693

(to be continued)

Table  5    Computational  results  of  ASFLA,  SFLA,  IGSA,
IPSOA, and HEA on AVG.

(continued)
Instance
(s × H)

AVG
ASFLA SFLA IGSA IPSOA HEA

70×2 2397 2494 2415 2423 2502
70×4 3782 3952 3820 3894 3908
70×6 3626 3766 3686 3532 3733
70×8 4246 4330 4247 4278 4315
80×2 2719 2857 2767 2784 2864
80×4 4621 4807 4692 4687 4742
80×6 4087 4275 4209 4165 4248
80×8 4911 5152 5006 5018 4971
90×2 3161 3308 3206 3209 3255
90×4 5162 5382 5239 5175 5376
90×6 4757 4931 4716 4842 4778
90×8 5746 5938 5684 5724 5934

100×2 3548 3767 3608 3627 3685
100×4 5963 5990 6081 6011 5932
100×6 5311 5453 5339 5303 5349
100×8 6473 6703 6587 6592 6632
110×2 3916 4163 3967 3987 3956
110×4 6693 6869 6726 6731 6719
110×6 5754 5872 5576 5651 5780
110×8 7475 7557 7350 7419 7355
120×2 4146 4264 4139 4180 4217
120×4 7656 7896 7756 7531 7602
120×6 6452 6641 6457 6440 6645
120×8 7877 8064 7967 7945 8087
130×2 4467 4679 4523 4483 4558
130×4 8172 8380 8296 8387 8355
130×6 7046 7249 7099 7049 7173
130×8 8768 8958 8796 8824 8867
140×2 4951 5149 5007 4983 5076
140×4 9045 9223 9073 9043 9121
140×6 7585 7742 7695 7650 7702
140×8 9397 9546 9496 9466 9565
150×2 5221 5376 5256 5258 5324
150×4 9686 9847 9697 9724 9808
150×6 8051 8243 8118 8195 8239
150×8 10 037 10 186 10 085 10 135 10 117
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20×2 120×4 MAX

MAX

MAX

AVG

Moreover, ASFLA gets worse than HEA just on
instance and ,  obtains  bigger than
IGSA  only  on  5  instances,  and  produces  worse
than IPSOA just  on 3  instances. Figure  5 and Table  6
also reveal the notable advantages of ASFLA on .
Similarly, Tables  5 and 6 and Fig.  5 also  show  the
significant advantages of ASFLA on .

meqi � η

In  ASFLA,  more  solutions  become  optimization
objects of memeplexes, and different memeplexes have
different search strategies. These features lead to strong
exploration  ability.  Moreover,  good  solution  structure
in some memeplexes with are used fully, thus,
ASFLA is a competitive method in solving HFSP with
no precedence between some stages.

5    Conclusion and Future Topic

σ σ+1

In this study, HFSP with no precedence between stages
and is  solved by using ASFLA. In  ASFLA, a

new  coding  and  decoding  are  used,  an  adaptive
memeplex  search  and  dynamical  population  shuffling
are  implemented  together.  The  effectiveness  of  new
strategies  in  ASFLA  is  first  tested  by  comparing
ASFLA  and  SFLA.  Then  the  search  advantages  of
ASFLA  on  HFSP  with  no  precedence  are  tested  by

comparing ASFLA with IGSA, IPSOA, and HEA.
In  the  future,  we  will  focus  on  HFSP  with  batch

processing  machine  in  casting  process  by  applying
some  new  optimization  strategies  such  as  learning  in
ABC  and  SFLA.  Adding  optimization  mechanisms
such  as  cooperation  or  feedback  into  metaheuristics  is
one of our future research topics.
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