An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop Scheduling with No Precedence Between Some Stages

Zhenghui Yin, Deming Lei*, and Bo Yang

Abstract: Hybrid flow shop scheduling problem (HFSP) has been extensively considered, however, some reallife conditions are seldom investigated. In this study, HFSP with no precedence between some stages is solved and an adaptive shuffled frog-leaping algorithm (ASFLA) is developed to optimize makespan. A new solution representation and a decoding procedure are presented, an adaptive memeplex search and dynamical population shuffling are implemented together. Many computational experiments are implemented. Computational results prove that the new strategies of ASFLA are effective and ASFLA is very competitive in solving HFSP with no precedence between some stages.

Key words: hybrid-flow shop scheduling; shuffled frog-leaping algorithm; precedence

1 Introduction

Hybrid flow shop (HFS) consists of at least two stages, and at least one stage is composed of some parallel machines. The main advantages of hybrid flow shop are the effective balance among machine workload and increasing production capacity. Hybrid flow shop possesses a variety of complex conditions and constraints such as no-wait, batch processing, uncertainty, reentrant, multiprocessor task, sequence dependent setup time, blocking, energy-efficient, and preventive maintenance. Hybrid flow shop scheduling problem (HFSP) with these complex conditions and constraints has attracted much attention, and many results are obtained^[1–14].

For HFSP with batch processing, researchers presented an improved cuckoo algorithm based on separate superior and inferior populations^[2] and an efficient genetic algorithm (GA) with adaptive crossover and mutation^[3]. Li et al.^[4] solved the green HFSP with fuzzy processing time by using discrete

artificial bee colony algorithm (ABC). Li et al.^[5] designed the multi-objective optimization algorithm by selecting related neighborhood structures for the problem with setup energy consumptions. Wang et al.^[6] devised a novel shuffled frog-leaping algorithm (SFLA) for minimizing makespan and total tardiness for reentrant problem. Guan et al.^[7] presented an improved GA with multi-crossover-operator for the problem with multiprocessor task and minimization of makespan. Wu et al.^[8] applied a multi-objective evolutionary algorithm with adaptive neighborhood updating strategy to solve reentrant problem with job release. Wang and Liu^[9] solved the problem with preventive maintenance by applying multi-objective tabu search. Wang et al.^[10] handled blocking problem and devised an improved iterative greedy algorithm. Li et al.^[11] developed a two-level imperialist competitive algorithm to solve energy-efficient problem with relative importance of objectives. Oin et al.^[12] devised an improved iterated greedy algorithm for the blocking HFSP with energy-efficient. Lei and Guo^[13] presented a novel SFLA with tournament selection based population division to solve the problem with two agents. Wang et al.^[14] studied green HFSP with consistent sublots and applied a multi-objective discrete ABC algorithm. Wu and Liu^[15] proposed an improved memetic algorithm to solve green HFSP with sequence dependent setup time and transportation time.

[•] Zhenghui Yin, Deming Lei, and Bo Yang are with the School of Automation, Wuhan University of Technology, Wuhan 430070, China. E-mail: 334932@whut.edu.cn; deminglei11@163.com; byang@whut.edu.cn.

^{*} To whom correspondence should be addressed.

^{*} This article was recommended by Associate Editor Xinyu Li Manuscript received: 2024-01-23; revised: 2024-05-17; accepted: 2024-06-06

[©] The author(s) 2024. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

HFSP with limited buffers is solved by discrete whale swarm algorithm (DWSA) with a deduplication strategy^[16]. HFSP with device dynamic reconfiguration is also solved by an improved whale optimization algorithm (WOA)^[17]. Marichelvam et al.^[18] presented improved particle swarm optimization algorithm with variable neighborhood search for HFSP with effect of human factors.

As stated above, the previous works are mainly about HFSP with various conditions and constraints such as no-wait, batch processing, and reentrance; however, some conditions in real-world manufacturing processes are seldom considered, for example, no precedence relation between some stages attracted little attention, which exists in hot and cold casting shop. In this shop, there are eight stages, Stages 2 and 3 are core making and mold assembling, and there is no precedence relation between them, that is, processing sequence of job on Stages 2 and 3 can be (2, 3) or (3, 2). This constraint will lead to stage determination subproblem, the number of sub-problems increases and optimization difficulties will enlarge; meanwhile, HFSP with this constraint is refined from the real-word casting shop and the corresponding results have high application possibility, thus, it is necessary to handle HFSP with no precedence relation between some stages.

SFLA is a metaheuristic^[19] algorithm with some remarkable features of simple concept, the fewer parameters, the faster computation speed and strong global optimization ability. There are some application of SFLA to scheduling problems^[6, 13, 20-29]. It can be found that SFLA has been used to solve HFSP with complex conditions and constraints^[6, 13], showing significant advantages in solving HFSP^[25, 26]. It is rarely used to solve HFSP with no precedence between some stages, which is an extension of HFSP. There are great similarities between HFSP and HFSP with no precedence. However, HFSP with no precedence between some stages needs consideration on the visiting sequence of each job at stages with no precedence. The successful applications of SFLA to HFSP show that SFLA is an optimization algorithm with potential advantages for solving HFSP with no precedence between some stages.

In this study, HFSP with no precedence between some stages is solved, and an adaptive shuffled frogleaping algorithm (ASFLA) is used to optimize makespan. A new solution representation and decoiding are proposed, an adaptive memeplex search process and dynamical population shuffling are implemented together. Extensive experiments are carried out to test the performance of ASFLA by comparing it with other existing algorithms. The effectiveness of new strategies are proved, and notable search advantages of ASFLA are validated in solving HFSP with no precedence between some stages.

2 **Problem Description**

 θ_l : number of machines at stage *l*.

 M_{lk} : the k-th machines at stage l.

 p_{ilk} : processing time of J_i on $M_{lk} \in \theta_l$.

 C_i : completion time of job J_i .

 C_{max} : the maximum completion time of all jobs.

gen: the number of current generation.

 μ : number of searches in each memeplex.

 Ω : memory solution set.

 β : number of solution selected to execuse memeplex search.

meq_{*i*}: evolutionary quality of memeplex M_i .

 η : evaluation index of memeplex.

 ϑ : an integer, $\vartheta \in \{1, 2, 3\}$.

s: number of memeplexes.

HFSP, with no precedence between some stages possesses, consists of *n* jobs $J_1, J_2, ..., J_n$ and *H* processing stages. Each stage *l* has θ_l unrelated parallel machines, $\theta_l = \{M_{l1}, M_{l2}, ..., M_{l|\theta_l|}\}, \forall 1 \le l \le H, |\theta_l| > 1.$ J_i is processed in terms of production flow: Stage 1, Stage 2,..., Stage *H*. There is no precedence between stages σ and $\sigma + 1$, each job J_i can be processed at stage σ then at stage $\sigma + 1$, or vice versa, where $1 \le \sigma < H$.

In some real-life hybrid flow shop manufacturing processes, there is no precedence between some stages. For example, in a casting hybrid flow shop, there are 8 stages, and there is no precedence between Stages 2 and 3. HFSP with no precedence between some stages is seldom investigated.

The problem can be divided into three sub-problems: scheduling, machine assignment, and stage determination. Stage determination is used to decide the visiting sequence between stages σ and σ +1 for each job.

The following objective is minimized.

$$C_{\max} = \max_{i=1,2,\dots,n} \{C_i\}$$
(1)

where C_{max} indicates the maximum completion time among all jobs, and C_i is the completion time of job J_i .

Table 1 shows an illustrative example with 5 jobs

I.	Processing time (s)											
J_i	M_{11}	M_{12}	M_{21}	M_{22}	M_{23}	M_{31}	M_{32}	M_{41}	M_{42}	M_{43}		
1	5	8	7	8	6	4	2	4	5	8		
2	4	3	6	4	4	1	3	7	6	8		
3	1	3	8	5	3	4	5	3	7	9		
4	8	5	3	7	4	3	6	5	3	4		
5	6	4	5	4	3	2	5	4	6	3		

Table 1Data on p_{ilk} on the example.

and 4 stages. Stages 1 and 3 have two unrelated parallel machines, Stages 2 and 4 have three unrelated parallel machines and there is no precedence between Stages 2 and 3. A schedule of the example is listed in Fig. 1.

3 ASFLA for HFSP with No Precedence Between Some Stages

3.1 Encoding, decoding, and initialization

A two-string representation and a heuristic for the machine assignment is proposed. For HFSP with no precedence between stages σ and σ +1, a solution is denoted by a scheduling string $[\gamma_1, \gamma_2, ..., \gamma_n]$ and a stage determination string $[\varphi_1, \varphi_2, ..., \varphi_n]$, where $\gamma_i \in \{1, 2, ..., n\}, \ \varphi_i \in \{\sigma, \sigma + 1\}, \text{ if } \varphi_i = \sigma, \text{ the visiting sequence for job } J_i \text{ is stages } \sigma, \sigma$ +1; otherwise, the above sequence is stages σ +1, σ .

Decoding is done as follows:

Step 1: Let l = 1, start with the first job π_1 from scheduling string, for each job π_i , determine a machine M_{1k} based on the heuristic and accomplish processing of π_i on the machine.

Step 2: Repeat the following steps until l > H.

(1) If $1 < l < \sigma$ or $l > \sigma + 2$, produce permutation $\gamma'_1, \gamma'_2, \dots, \gamma'_n$ by ranking *n* jobs in ascending order of their completion time at stage l-1, start with job γ'_1 . For each γ'_i , determine a machine M_{lk} by the heuristic and process γ'_i on the machine.

Fig. 1 Schedule of the example.

(2) If $l = \sigma$, obtain a job permutation $\gamma'_1, \gamma'_2, ..., \gamma'_n$ using the same process of Step (1), starting with job γ'_1 . For each job γ'_i , let $\delta = \varphi_{\gamma_i'}$, determine the visiting sequence of stages σ , $\sigma + 1$ according to $\varphi_{\gamma_i'}$, and select a machine $M_{\delta k}$ and a machine $M_{(2\sigma+1-\delta)k'}$ by the heuristic and process γ'_i on them sequentially.

(3) If $l = \sigma + 2$, sort *n* jobs in ascending order of their completion time at stage $2\sigma + 1 - \varphi_{\gamma_i}$, and obtain a permutation $\gamma'_1, \gamma'_2, \dots, \gamma'_n$, starting with job γ'_1 . For each job γ'_i , select a machine M_{lk} according to the heuristic and process γ'_i on the machine sequentially.

(4) l = l + 1

The heuristic for machine assignment is described below. For each J_i , calculate the earliest beginning time on each M_{lg} , $g = 1, 2, ..., \theta_l$ at stage l, select M_{lk} with the smallest beginning time. If there exist more than one machine with same beginning time, select one with the smallest index number.

For the example in Section 2, the solution consists of [3,4,2,1,5] and a stage determination string [2,3,2,3,2]. When l = 1, Jobs 3, 4, 2, 1, and 5 are assigned to machines M_{11} , M_{12} , M_{11} , M_{11} , and M_{12} by the heuristic sequentially. When l = 2, a permutation [3,2,4,5,1] is obtained by ranking their completion times at stage 1, take Job 3 as an example, $\varphi_3 = 2$, the visiting sequence of job 3 is Stages 2 and 3, and Job 3 is processed sequentially on M_{21} and M_{31} based on the heuristic. When l = 4, a permutation [3,2,5,4,1] is formed. The related schedule is displayed in Fig. 1.

s memeplexes $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_s$ are produced by dividing a randomly generated initial population *P* with *N* initial solutions^[19].

3.2 Adaptive memeplex search and dynamical population shuffling

In existing SFLA^[27, 28], optimization object is x_w , x_b and x_g are used in memeplex search and other solutions are seldom involved with memeplex search. In ASFLA, $\beta > 1$ solutions are used as optimization object, and adaptive memeplex search and dynamical population shuffling are as shown in Algorithm 1.

(1) If gen = 1, for each memeplex \mathcal{M}_i , determine β solutions with the smallest makespan, and let them into set ϕ , for each $x \in \phi$, repeat the following step μ/β times: randomly select a solution $y \in \phi$, $y \neq x$, execute GS(*x*,*y*), if *x* is not updated, conduct multiple neighborhood search on *x*.

(2) If gen > 1, then

(a) Sort all memeplexes with $meq_i \ge \eta$ in descending

Algorithm 1 Adaptive memeplex search and dynamical
population shuffling
1: if gen = 1 then
2: for each memeplex \mathcal{M}_i do
3: put the first β solution into set ϕ
4: for each $x \in \phi$ do
5: randomly select a solution $y \in \phi$, $y \neq x$, execute
GS(x, y) and multiple neighborhood search on x
6: end for
7: end for
8: end if
9: if gen > 1 then
10: if $\vartheta \leq 2$ then
11: for each \mathcal{M}_i with $\operatorname{meq}_i \ge \eta$ do
12: execute $GS(x, y)$ and multiple neighborhood
search on x
13: end for
14: end if
15: if $\vartheta \ge 2$ then
16: for each \mathcal{M}_i with $\operatorname{meq}_i < \eta$ do
17: randomly select $y \in \mathcal{M}^*$, $GS(x_b, y)$ and
multiple neighborhood search on x are execute μ times
18: end for
19: execute population division by using $P' \cup \Omega$ to
form g memeplexes
20: end if
21: end if
22: Compute evolutionary quality meq_i of each memeplex
order of meq _i , suppose that meq ₁ \ge meq ₂ $\ge \cdots \ge$ meq _i .

order of meq_i, suppose that meq₁ \ge meq₂ \ge $\dots \ge$ meq_u, for each memeplex \mathcal{M}_i , execute global search and multiple neighborhood as done in Step (1), where y is chosen: $y \in \mathcal{M}_l \subset \{\mathcal{M}_g | \text{meq}_g > \text{meq}_i\}$ or $y \in \mathcal{M}_i$, if $\{\mathcal{M}_g | \text{meq}_g > \text{meq}_i\}$ is empty, $1 \le i \le u$ and $1 \le g \le u$.

(b) If $\vartheta \ge 2$, select \mathcal{M}_i with $\operatorname{meq}_i < \eta$. For $x_b \in \mathcal{M}_i$, randomly select $y \in \mathcal{M}^*$, $\operatorname{GS}(x_b, y)$ and multiple neighborhood search on *x* are execute μ times.

(3) Compute evolutionary quality meq_i of each memeplex, if *s* memeplexes have meq_i $\ge \eta$, $\vartheta = 1$; if at least one memeplex has meq_i $\ge \eta$, $\vartheta = 2$; if *s* memeplexes have meq_i $< \eta$, $\vartheta = 3$.

(4) If $\vartheta \ge 2$, obtain population P' by all memeplexes with meq_i < η , suppose *g* memeplexes with meq_i < η , and execute population division by using $P' \cup \Omega$ to form *g* memeplexes. If $\vartheta = 2$, select memeplex with the biggest meq_i as \mathcal{M}^* . If $\vartheta = 3$, \mathcal{M}^* consists of all updated solutions in *P*.

$$meq_i = ES_i / TS_i$$
 (2)

where ES_i and TS_i are integers and computed as follows: when the search of M_i starts, $ES_i = 1$, $TS_i = 1$,

when a solution *z* is given by global search or multiple neighborhood search on *x*, $TS_i = TS_i + 1$; if $C_{\max}^z < C_{\max}^x$, $ES_i = ES_i + 1$, that is, solution *x* is updated.

Global search GS(x', y') is described below. Conduct order-based crossover^[30] on the scheduling string of x'and y', get a solution z', if $C_{\max}^z < C_{\max}^x'$, update Ω with x' and replace x' with z'; otherwise, produce z''by performing two-point crossover on the stage determination string of x' and y'. If $C_{\max}^{z''} < C_{\max}^x'$, Ω is updated with x' and z'' substitutes for x'.

 Ω has maximum capacity of N/s. When Ω is updated by x, if $|\Omega|$ exceeds N/s and x is better than the worst solution in Ω , put x into Ω to replace the worst solution; if $|\Omega| < N/s$, add x to Ω directly.

Five neighborhood structures $N_1 - N_5$ are used. $N_1 - N_4$ are related to scheduling string, N_1 is the swapping of two randomly chosen solutions γ_i and γ_j . N_2 is used to generate solutions by inserting γ_i into the position of γ_j . N_3 and N_4 are similar to N_1 and N_2 . In N_3 and N_4 , job γ_i has the maximum completion time, where i > j. N_5 acts on stage determination string and is proposed for no precedence between some stages. It is described below. Determine the stage $h \in \{\sigma, \sigma + 1\}$ that has the maximum load, randomly choose φ_i with $\varphi_i = h$, and let $\varphi_i = 2\sigma + 1 - h$.

Multiple neighborhood search is described as follows. r = 1, execute the following steps repeatedly until r = 6: produce $z' \in \mathcal{N}_r(x')$, if $C_{\max}^{z} < C_{\max}^{x}$, update Ω with x', z' substitutes for x', r = 6; otherwise, r = r + 1. $\mathcal{N}_r(x')$ is the set of neighbourhood solution of x' produced by using \mathcal{N}_r .

3.3 Algorithm description

ASFLA has simple structure and is given in Algorithm 2. After initial population being randomly generated, population division, and adaptive memeplex search and dynamical population shuffling are executed repeatedly until the stopping condition is met.

Flow chart of ASFLA is given in Fig. 2.

Unlike existing SFLA^[6, 13, 20, 25, 26], β solutions are

Algorithm 2 ASFLA

1:	Rand	omly	produce	initial	popul	lation	Ρ,	let	gen =	1
----	------	------	---------	---------	-------	--------	----	-----	-------	---

- 2: Divide population *P* into *s* memeplexes
- 3: while stopping condition is not met do
- 4: Execute adaptive memeplex search and dynamical population shuffling

5: gen = gen + 1

6: end while

Fig. 2 Flow chart of ASFLA.

used as optimization object, and each of them is given μ/β times. Memeplexes with $\text{meq}_i \ge \eta$ are given different search strategies from memeplexes with $\text{meq}_i < \eta$. Moreover, memeplexes with $\text{meq}_i \ge \eta$ are not used for population division to sufficiently use the good solution structure of these memeplexes.

4 Computational Experiment

All experiments are implemented by using Microsoft Visual C++ 2022 and run on 8.0 GB RAM 2.4 GHz CPU PC.

4.1 Test instance and comparative algorithm

In this study, 60 instances are used. For each instance, use $n \times H$ to represent it, where $n \in \{10, 20, ..., 150\}$, $H \in \{2, 4, 6, 8\}$, $p_{ilk} \in [50, 100]$, and $|\theta_l| \in \{2, 3\}$. If H = 2, $\sigma = 1$; if H = 4, $\sigma = 2$; if H = 6, $\sigma = 5$; if H = 8, $\sigma = 6$. All of above data are integers.

Three algorithms are selected, which are improved gravitational search algorithm (IGSA)^[31], improved particle swarm optimization algorithm (IPSOA)^[18], and hybrid evolutionary algorithm (HEA)^[32]. These algorithms can provide promising results for HFSP and can be applied to solve the HFSP with no precedence between some stages, so they are chosen as comparative algorithm.

Stage determination string of ASFLA is directly added into IGSA, IPSOA, and HEA. For IGSA and IPSOA, after using related formulas for scheduling string, N_5 is applied for stage determination string. For HEA, after using its neighborhood structures for scheduling string, N_5 is executed for stage determination string.

To show the effect of adaptive memeplex search and dynamical population shuffling, ASFLA is compared with SFLA^[19], in which the memeplex search is as follows: for each \mathcal{M}_i , execute GS(x_w, x_b), and obtain z. If x_w is not updated by z, apply GS(x_w, x_g), and obtain z'; if x_w is not updated by z', conduct multiple neighborhood search on x_w . Random initialization is also used.

4.2 Parameter setting

ASFLA has the following parameters: *N*, *s*, μ , β , η , and the stopping condition. ASFLA can converge fully when $0.25 \times n \times H$ s CPU time is used; moreover, when $0.25 \times n \times H$ s CPU time is applied, IGSA, IPSOA, HEA, and SFLA also converge fully, so the above CPU time is given as stopping condition.

Taguchi method^[33] on instance 20×4 is used to obtain settings on the remaining parameters of ASFLA. Table 2 reveals the levels of each parameter. 16 orthogonal experiments are executed. In each orthogonal experiment, ASFLA randomly runs on instance 20×4 . Figure 3 gives related results. *s*/*N* ratio is $-10 \times \log_{10}(\text{MIN}^2)$, where MIN indicates the solution with the smallest makespan in 10 runs.

There are 16 parameter combinations used. The computational results reveal that when the following settings are used: N = 96, s = 6, $\mu = 40$, $\beta = 4$, and $\eta = 0.3$, ASFLA yields the smallest MIN, so these settings are adopted.

N = 96, s = 4, and $\mu = 40$ are given to SFLA. After giving the stopping condition, experiments show that parameter settings of IGSA^[33], IPSOA^[20], and HEA^[32] are still effective, so they are still adopted.

4.3 Result and discussion

Each of ASFLA, SFLA, IGSA, IPSOA, and HEA runs randomly 10 times for each instance. x_g is produced in a run. MIN (MAX) denotes the best (worst) x_g found in

Table 2 Levels of each parameter.

Easter laval		ŀ	'arameter		
racioi level	Ν	S	μ	β	η
1	48	4	30	2	0.2
2	72	6	40	3	0.3
3	96	8	50	4	0.4
4	120	12	60	5	0.5

Fig. 3 Main effect plot for MIN and *s*/*N* ratio.

10 runs, and AVG denotes the average makespan of $10x_g$ in 10 runs. Tables 3–5 reveal their results on MAX, MIN, and AVG. Figure 4 depicts convergence curves for 50×4 and 70×6 .

Figure 5 demonstrates box plots of ASFLA, SFLA, IGSA, IPSOA, and HEA. RPD_{MIN}, RPD_{MAX}, and RPD_{AVG} are as follows:

$$RPD_{MIN} = \frac{MIN - MIN^*}{MIN^*} \times 100$$
(3)

where MIN^{*} is the smallest MIN produced by all algorithms. RPD_{AVG} and RPD_{MAX} are represented in the same way as RPD_{MIN} .

Table 6 reports the related data on pair-sample *t*-test with the significance level of 0.05. *t*-test (B_1 , B_2) means that a paired *t*-test is performed to judge whether algorithm B_1 gives a better sample mean than B_2 . Statistically significant difference between algorithms B_1 and B_2 exists if the *p*-value is less than 0.05.

It can be found in Table 3 that ASFLA converges better than SFLA. As shown in Tables 4 and 5, ASFLA also produces better results on MAX and AVG than SFLA on at least 49 of 60 instances. The results in Table 6 and Figs. 4 and 5 also demonstrate the

Table 3 Computational results of ASFLA, SFLA, IGSA,IPSOA, and HEA on MIN.

Instance			MIN		
$(s \times H)$	ASFLA	SFLA	IGSA	IPSOA	HEA
10×2	360	372	360	363	360
10×4	546	597	567	570	579
10×6	730	764	736	733	742
10×8	875	893	881	878	886
20×2	680	712	690	688	696
20×4	951	1023	968	943	985
20×6	1130	1232	1175	1211	1217
20×8	1257	1481	1308	1356	1410
30×2	1050	1237	1154	1094	1192
30×4	1299	1420	1352	1342	1325
30×6	1447	1665	1537	1491	1563
30×8	1633	1822	1750	1690	1794
40×2	1340	1534	1393	1379	1473
40×4	1754	1822	1727	1778	1750
40×6	1794	1926	1864	1817	1895
40×8	1976	2231	2110	2064	2161
50×2	1766	1782	1786	1723	1887
50×4	2307	2436	2471	2409	2492
50×6	2212	2426	2384	2314	2403

(to be continued)

_

 Table 3 Computational results of ASFLA, SFLA, IGSA, IPSOA, and HEA on MIN.
 (continued)

Table 4	Computational	results	of	ASFLA,	SFLA,	IGSA,
IPSOA, a	nd HEA on MAX	X.				

				((continued)						
Instance			MIN			Instance			MAX		
$(s \times H)$	ASFLA	SFLA	IGSA	IPSOA	HEA	$(s \times H)$	ASFLA	SFLA	IGSA	IPSOA	HEA
50×8	2575	2758	2648	2624	2697	10×2	366	378	372	369	376
60×2	2017	2168	2085	2039	2137	10×4	613	671	625	617	640
60×4	2976	3093	3003	3035	3041	10×6	746	786	764	749	767
60×6	2681	2883	2742	2838	2868	10×8	889	915	930	913	900
60×8	3319	3539	3466	3454	3488	20×2	708	714	709	712	701
70×2	2384	2467	2425	2408	2478	20×4	1029	1214	998	1050	1097
70×4	3540	3665	3530	3612	3759	20×6	1168	1268	1331	1362	1322
70×6	3450	3682	3489	3506	3577	20×8	1346	1565	1462	1427	1573
70×8	3769	3953	3799	3884	3967	30×2	1069	1267	1169	1120	1214
80×2	2695	2813	2746	2763	2854	30×4	1625	1751	1645	1612	1664
80×4	4151	4382	4307	4101	4322	30×6	1527	1841	1622	1625	1617
80×6	3856	4093	3957	3945	4088	30×8	1918	1989	1814	1849	1982
80×8	4418	4672	4603	4569	4644	40×2	1368	1574	1422	1414	1502
90×2	3186	3285	3134	3195	3242	40×4	2243	2373	2196	2185	2217
90×4	4674	4895	4785	4736	4817	40×6	2054	2126	2085	2066	2093
90×6	4678	4839	4752	4552	4808	40×8	2257	2348	2510	2475	2311
90×8	5377	5547	5431	5401	5496	50×2	1753	1902	1816	1786	1851
100×2	3531	3663	3604	3575	3637	50×4	2816	2930	2841	2852	2870
100×4	5574	5747	5664	5627	5770	50×6	2593	2752	2637	2673	2713
100×6	4843	4991	4887	4899	4943	50×8	3068	3293	3142	3224	3180
100×8	6172	6402	6219	6324	6364	60×2	2067	2199	2119	2099	2083
110×2	3881	4018	3926	3900	3953	60×4	3401	3365	3542	3625	3392
110×4	6225	6375	6326	6284	6385	60×6	3080	3228	3028	3194	3211
110×6	5409	5595	5492	5563	5542	60×8	3710	3899	3901	3821	3901
110×8	6840	7046	6872	6922	7021	70×2	2416	2517	2426	2434	2524
120×2	4172	4235	4193	4163	4116	70×4	4146	4497	4199	4243	4284
120×4	7110	7320	7197	7187	7240	70×6	3592	3837	3796	3735	3882
120×6	6241	6452	6348	6301	6376	70×8	4502	4774	4550	4598	4600
120×8	7590	7792	7661	7498	7765	80×2	2740	2881	2774	2787	2880
130×2	4405	4580	4496	4467	4521	80×4	4857	5047	4871	4901	4962
130×4	7641	7839	7768	7669	7814	80×6	3856	4093	3957	3945	4088
130×6	6965	7149	7016	6933	7071	80×8	4418	4672	4603	4569	4644
130×8	8195	8388	8255	8213	8338	90×2	3186	3285	3134	3195	3242
140×2	4959	5124	4988	4926	5048	90×4	4674	4895	4785	4736	4817
140×4	8319	8506	8490	8476	8507	90×6	4852	5003	4875	4927	4962
140×6	7312	7419	7398	7387	7482	90×8	6058	6415	6126	6211	6324
140×8	9026	9211	9179	9103	9139	100×2	3562	3842	3642	3550	3690
150×2	5191	5337	5225	5217	5272	100×4	6200	6461	6344	6406	6316
150×4	9234	9367	9354	9209	9454	100×6	5385	5507	5410	5391	5460
150×6	7906	8142	8081	8103	8099	100×8	6731	6950	6878	6896	7045
150×8	9962	10117	10056	10024	10087	110×2	3934	4396	3995	4011	3980
						110×4	7083	7268	6947	7214	7168
						110×6	5691	6035	5825	5752	5929

 110×8

 120×2

7615

4158

convergence advantage of ASFLA.

Table 3 reveals that ASFLA generates better MIN than IGSA, IPSOA, and HEA on 48 of 60 instances,

(to be continued)

7740

4234

7694

4207

7725

4188

8172

4387

_

Table 4Computational	results	of	ASFLA,	SFLA,	IGSA,
IPSOA, and HEA on MAX	Κ.			(cor	tinued)

 Table 5
 Computational results of ASFLA, SFLA, IGSA, IPSOA, and HEA on AVG.

 (continued)
 (continued)

				(continued
Instance			MAX		
$(s \times H)$	ASFLA	SFLA	IGSA	IPSOA	HEA
120×4	7875	8127	8019	7917	7837
120×6	6508	6842	6506	6621	6719
120×8	8306	8590	8448	8405	8503
130×2	4501	4843	4566	4532	4591
130×4	8431	8688	8501	8596	8669
130×6	7133	7311	7236	7181	7259
130×8	8964	9199	9084	9010	9045
140×2	4989	5179	5056	5003	5094
140×4	9473	9642	9585	9542	9498
140×6	7714	7959	7767	7785	7850
140×8	9751	10027	9971	9871	9995
150×2	5252	5424	5280	5292	5343
150×4	9927	10090	10119	9985	10206
150×6	8193	8418	8345	8271	8332
150×8	10332	10533	10601	10478	10657

Table 5 Computational results of ASFLA, SFLA, IGSA,IPSOA, and HEA on AVG.

Instance			AVG		
$(s \times H)$	ASFLA	SFLA	IGSA	IPSOA	HEA
10×2	361	366	363	364	364
10×4	586	624	579	587	597
10×6	740	768	749	740	756
10×8	872	894	892	887	889
20×2	689	702	699	701	692
20×4	975	1077	986	994	990
20×6	1148	1246	1259	1291	1277
20×8	1282	1528	1359	1411	1485
30×2	1060	1243	1161	1109	1203
30×4	1403	1463	1449	1484	1490
30×6	1484	1664	1573	1564	1594
30×8	1760	1897	1790	1763	1856
40×2	1360	1566	1417	1395	1483
40×4	1926	2034	1996	1968	1917
40×6	1889	2082	1947	1929	1980
40×8	2103	2296	2281	2214	2234
50×2	1793	1894	1804	1774	1837
50×4	2528	2604	2642	2716	2687
50×6	2441	2528	2457	2477	2493
50×8	2860	2941	2978	2970	2930
60×2	2052	2186	2103	2076	2160
60×4	3218	3401	3305	3379	3268
60×6	2977	3146	2870	3001	2993
60×8	3528	3743	3590	3648	3693

Instance			AVG		
$(s \times H)$	ASFLA	SFLA	IGSA	IPSOA	HEA
70×2	2397	2494	2415	2423	2502
70×4	3782	3952	3820	3894	3908
70×6	3626	3766	3686	3532	3733
70×8	4246	4330	4247	4278	4315
80×2	2719	2857	2767	2784	2864
80×4	4621	4807	4692	4687	4742
80×6	4087	4275	4209	4165	4248
80×8	4911	5152	5006	5018	4971
90×2	3161	3308	3206	3209	3255
90×4	5162	5382	5239	5175	5376
90×6	4757	4931	4716	4842	4778
90×8	5746	5938	5684	5724	5934
100×2	3548	3767	3608	3627	3685
100×4	5963	5990	6081	6011	5932
100×6	5311	5453	5339	5303	5349
100×8	6473	6703	6587	6592	6632
110×2	3916	4163	3967	3987	3956
110×4	6693	6869	6726	6731	6719
110×6	5754	5872	5576	5651	5780
110×8	7475	7557	7350	7419	7355
120×2	4146	4264	4139	4180	4217
120×4	7656	7896	7756	7531	7602
120×6	6452	6641	6457	6440	6645
120×8	7877	8064	7967	7945	8087
130×2	4467	4679	4523	4483	4558
130×4	8172	8380	8296	8387	8355
130×6	7046	7249	7099	7049	7173
130×8	8768	8958	8796	8824	8867
140×2	4951	5149	5007	4983	5076
140×4	9045	9223	9073	9043	9121
140×6	7585	7742	7695	7650	7702
140×8	9397	9546	9496	9466	9565
150×2	5221	5376	5256	5258	5324
150×4	9686	9847	9697	9724	9808
150×6	8051	8243	8118	8195	8239
150×8	10037	10186	10085	10135	10117

moreover, ASFLA obtains worse MIN than HEA just on instance 120×2 , gets bigger MIN than IGSA only on instances 40×4 , 70×4 , and 90×2 , and generates worse MIN than IPSOA just on 8 instances. Table 6 and Figs. 4 and 5 also reveal the significant advantage of ASFLA on MIN.

With respect to MAX in Table 4, ASFLA performs better than IGSA, IPSOA, and HEA on 49 instances.

(to be continued)

Fig. 4 Convergence curves on 50×4 and 70×6 .

Moreover, ASFLA gets worse MAX than HEA just on instance 20×2 and 120×4 , obtains bigger MAX than IGSA only on 5 instances, and produces worse MAX than IPSOA just on 3 instances. Figure 5 and Table 6 also reveal the notable advantages of ASFLA on MAX. Similarly, Tables 5 and 6 and Fig. 5 also show the significant advantages of ASFLA on AVG.

In ASFLA, more solutions become optimization objects of memeplexes, and different memeplexes have different search strategies. These features lead to strong exploration ability. Moreover, good solution structure in some memeplexes with $meq_i \ge \eta$ are used fully, thus, ASFLA is a competitive method in solving HFSP with no precedence between some stages.

5 Conclusion and Future Topic

In this study, HFSP with no precedence between stages σ and σ +1 is solved by using ASFLA. In ASFLA, a new coding and decoding are used, an adaptive memeplex search and dynamical population shuffling are implemented together. The effectiveness of new strategies in ASFLA is first tested by comparing ASFLA and SFLA. Then the search advantages of ASFLA on HFSP with no precedence are tested by

Table 6 Paired sample *t*-test on ASFLA, SFLA, IGSA, IPSOA, and HEA.

,			
Paired sample <i>t</i> -test	MIN	MAX	AVG
t-test (ASFLA, SFLA)	0	0	0
t-test (ASFLA, IGSA)	0	0	0
t-test (ASFLA, IPSOA)	0	0	0
t-test (ASFLA, HEA)	0	0	0

comparing ASFLA with IGSA, IPSOA, and HEA.

In the future, we will focus on HFSP with batch processing machine in casting process by applying some new optimization strategies such as learning in ABC and SFLA. Adding optimization mechanisms such as cooperation or feedback into metaheuristics is one of our future research topics.

References

[1] M. Rabiee, F. Jolai, H. Asefi, P. Fattahi, and S. Lim, A biogeography-based optimisation algorithm for a realistic

no-wait hybrid flow shop with unrelated parallel machines to minimise mean tardiness, *Int. J. Comput. Integr. Manuf.*, vol. 29, no. 9, pp. 1007–1024, 2016.

- [2] X. Li, X. Guo, H. Tang, R. Wu, and J. Liu, An improved cuckoo search algorithm for the hybrid flow-shop scheduling problem in sand casting enterprises considering batch processing, *Comput. Ind. Eng.*, vol. 176, p. 108921, 2023.
- [3] H. Lu and F. Qiao, An efficient adaptive genetic algorithm for energy saving in the hybrid flow shop scheduling with batch production at last stage, *Expert Syst.*, vol. 39, no. 2, p. e12678, 2022.
- [4] M. Li, G. G. Wang, and H. Yu, Sorting-based discrete artificial bee colony algorithm for solving fuzzy hybrid flow shop green scheduling problem, *Mathematics*, vol. 9, no. 18, p. 2250, 2021.
- [5] J. Q. Li, H. Y. Sang, Y. Y. Han, C. G. Wang, and K. Z. Gao, Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions, *J. Clean. Prod.*, vol. 181, pp. 584–598, 2018.
- [6] K. Wang, L. M. Xu, and C. Lv, A novel SFLA for reentrant hybrid flow shop scheduling, presented at the 3rd Int. Conf. Electrical, Mechanical and Computer Engineering, Guizhou, China, 2019.
- [7] Y. Guan, Y. Chen, Z. Gan, Z. Zou, W. Ding, H. Zhang, Y. Liu, and C. Ouyang, Hybrid flow-shop scheduling in collaborative manufacturing with a multi-crossover-operator genetic algorithm, *J. Ind. Inf. Integr.*, vol. 36, p. 100514, 2023.
- [8] X. Wu, X. Yan, and L. Wang, Optimizing job release and scheduling jointly in a reentrant hybrid flow shop, *Expert Syst. Appl.*, vol. 209, p. 118278, 2022.
- [9] S. Wang and M. Liu, Two-stage hybrid flow shop scheduling with preventive maintenance using multiobjective tabu search method, *Int. J. Prod. Res.*, vol. 52, no. 5, pp. 1495–1508, 2014.
- [10] Y. Wang, Y. Wang, Y. Han, J. Li, K. Gao, and Y. Nojima, Intelligent optimization under multiple factories: Hybrid flow shop scheduling problem with blocking constraints using an advanced iterated greedy algorithm, *Complex System Modeling and Simulation*, vol. 3, no. 4, pp. 282–306, 2023.
- [11] M. Li, D. Lei, and J. Cai, Two-level imperialist competitive algorithm for energy-efficient hybrid flow shop scheduling problem with relative importance of objectives, *Swarm Evol. Comput.*, vol. 49, pp. 34–43, 2019.
- [12] H. X. Qin, Y. Y. Han, B. Zhang, L. L. Meng, Y. P. Liu, Q. K. Pan, and D. W. Gong, An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem, *Swarm Evol. Comput.*, vol. 69, p. 100992, 2022.
- [13] D. Lei and X. Guo, A shuffled frog-leaping algorithm for hybrid flow shop scheduling with two agents, *Expert Syst. Appl.*, vol. 42, no. 23, pp. 9333–9339, 2015.
- [14] W. Wang, B. Zhang, and B. Jia, A multiobjective optimization approach for multiobjective hybrid flowshop green scheduling with consistent sublots, *Sustainability*,

vol. 15, no. 3, p. 2622, 2023.

- [15] S. Wu and L. Liu, Green hybrid flow shop scheduling problem considering sequence dependent setup times and transportation times, *IEEE Access*, vol. 11, pp. 39726–39737, 2023.
- [16] C. Zhang, J. Tan, K. Peng, L. Gao, W. Shen, and K. Lian, A discrete whale swarm algorithm for hybrid flow-shop scheduling problem with limited buffers, *Robot. Comput. Integr. Manuf.*, vol. 68, p. 102081, 2021.
- [17] Y. Wang, S. Wang, D. Li, C. Shen, and B. Yang, An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes, *Expert Syst. Appl.*, vol. 174, p. 114793, 2021.
- [18] M. K. Marichelvam, M. Geetha, and Ö. Tosun, An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors—A case study, *Comput. Oper. Res.*, vol. 114, p. 104812, 2020.
- [19] M. M. Eusuff and K. E. Lansey, Optimization of water distribution network design using the shuffled frog leaping algorithm, *J. Water Resour. Plann. Manage.*, vol. 129, no. 3, pp. 210–225, 2003.
- [20] J. Cai and D. Lei, A cooperated shuffled frog-leaping algorithm for distributed energy-efficient hybrid flow shop scheduling with fuzzy processing time, *Complex Intell. Syst.*, vol. 7, no. 5, pp. 2235–2253, 2021.
- [21] L. Wang and D. Li, Fuzzy distributed hybrid flow shop scheduling problem with heterogeneous factory and unrelated parallel machine: A shuffled frog leaping algorithm with collaboration of multiple search strategies, *IEEE Access*, vol. 8, pp. 214209–214223, 2020.
- [22] M. Kong, X. Liu, J. Pei, P. M. Pardalos, and N. Mladenovic, Parallel-batching scheduling with nonlinear processing times on a single and unrelated parallel machines, *J. Glob. Optim.*, vol. 78, no. 4, pp. 693–715, 2020.
- [23] H. Zhang, S. Liu, S. Moraca, and R. Ojstersek, An effective use of hybrid metaheuristics algorithm for job shop scheduling problem, *Int. J. Simul. Model.*, vol. 16, no. 4, pp. 644–657, 2016.
- [24] Q. K. Pan, L. Wang, L. Gao, and J. Li, An effective shuffled frog-leaping algorithm for lot-streaming flow shop scheduling problem, *Int. J. Adv. Manuf. Technol.*, vol. 52, no. 5, pp. 699–713, 2011.
- [25] Y. Xu, L. Wang, G. Zhou, and S. Wang, An effective shuffled frog leaping algorithm for solving hybrid flowshop scheduling problem, in *Advanced Intelligent Computing*, D. Huang, Y. Gan, V. Bevilacqua, and J. C. Figueroa, eds. Berlin, Germany: Springer, 2011, pp. 560–567.
- [26] Y. Xu, L. Wang, S. Wang, and M. Liu, An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines, *Eng. Optim.*, vol. 45, no. 12, pp. 1409–1430, 2013.
- [27] L. Kong, T. Li, K. Wang, H. Zhu, T. Makoto, and B. Yu, An improved shuffled frog-leaping algorithm for flexible job shop scheduling problem, *Algorithms*, vol. 8, no. 1, pp.

Complex System Modeling and Simulation, September 2024, 4(3): 292–302

19-31, 2015.

- [28] Z. J. Gao, J. Y. Peng, Z. H. Han and M. Q. Jia, Flow shop scheduling with variable processing times based on differential shuffled frog leaping algorithm, *Int. J. Model. Identif. Contr.*, vol. 33, no. 2, pp. 179–187, 2019.
- [29] J. Cai, R. Zhou, and D. Lei, Dynamic shuffled frogleaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks, *Eng. Appl. Artif. Intell.*, vol. 90, p. 103540, 2020.
- [30] D. Lei, B. Su, and M. Li, Cooperated teaching-learningbased optimisation for distributed two-stage assembly flow shop scheduling, *Int. J. Prod. Res.*, vol. 59, no. 23, pp.

Zhenghui Yin is currently pursuing the master degree at the School of Automation, Wuhan University of Technology, Wuhan, China. His current research interest includes manufacturing systems intelligent optimization and scheduling.

Bo Yang received the bachelor and PhD degrees from Huazhong University of Science and Technology, China in 2003 and 2008, respectively. His primary research areas include machine learning, smart grids, complex systems modeling and control, and traffic information processing and control. As the first

author/corresponding author, he has published more than 20 papers in top and significant academic journals both domestically and internationally, including *IEEE Transactions* and *Automatica*.

7232-7245, 2021.

- [31] C. Cao, Y. Zhang, X. Gu, D. Li, and J. Li, An improved gravitational search algorithm to the hybrid flowshop with unrelated parallel machines scheduling problem, *Int. J. Prod. Res.*, vol. 59, no. 18, pp. 5592–5608, 2021.
- [32] J. Fan, Y. Li, J. Xie, C. Zhang, W. Shen, and L. Gao, A hybrid evolutionary algorithm using two solution representations for hybrid flow-shop scheduling problem, *IEEE Trans. Cybern.*, vol. 53, no. 3, pp. 1752–1764, 2023.
- [33] G. Taguchi, *Introduction to Quality Engineering:* Designing Quality into Products and Processes. Tokyo, Japan: Asian Productivity Organization, 1986.

Deming Lei received the MS degree in applied mathematics from Xi'an Jiaotong University, Xi'an, China in 1996, and the PhD degree in automation science and engineering from Shanghai Jiao Tong University, Shanghai, China in 2005. He is currently a professor at the School of Automation, Wuhan University of

Technology, Wuhan, China. He has authored or coauthored more than 50 journal papers. His research interests include intelligent system optimization and control, production scheduling, etc.

302