
An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop
Scheduling with No Precedence Between Some Stages

Zhenghui Yin, Deming Lei*, and Bo Yang

Abstract:

Key words:

1 Introduction

Hybrid flow shop (HFS) consists of at least two stages,
and at least one stage is composed of some parallel
machines. The main advantages of hybrid flow shop
are the effective balance among machine workload and
increasing production capacity. Hybrid flow shop
possesses a variety of complex conditions and
constraints such as no-wait, batch processing,
uncertainty, reentrant, multiprocessor task, sequence
dependent setup time, blocking, energy-efficient, and
preventive maintenance. Hybrid flow shop scheduling
problem (HFSP) with these complex conditions and
constraints has attracted much attention, and many
results are obtained[1–14].

For HFSP with batch processing, researchers
presented an improved cuckoo algorithm based on
separate superior and inferior populations[2] and an
efficient genetic algorithm (GA) with adaptive
crossover and mutation[3]. Li et al.[4] solved the green
HFSP with fuzzy processing time by using discrete

artificial bee colony algorithm (ABC). Li et al.[5]

designed the multi-objective optimization algorithm by
selecting related neighborhood structures for the
problem with setup energy consumptions. Wang et
al.[6] devised a novel shuffled frog-leaping algorithm
(SFLA) for minimizing makespan and total tardiness
for reentrant problem. Guan et al.[7] presented an
improved GA with multi-crossover-operator for the
problem with multiprocessor task and minimization of
makespan. Wu et al.[8] applied a multi-objective
evolutionary algorithm with adaptive neighborhood
updating strategy to solve reentrant problem with job
release. Wang and Liu[9] solved the problem with
preventive maintenance by applying multi-objective
tabu search. Wang et al.[10] handled blocking problem
and devised an improved iterative greedy algorithm. Li
et al.[11] developed a two-level imperialist competitive
algorithm to solve energy-efficient problem with
relative importance of objectives. Qin et al.[12] devised
an improved iterated greedy algorithm for the blocking
HFSP with energy-efficient. Lei and Guo[13] presented
a novel SFLA with tournament selection based
population division to solve the problem with two
agents. Wang et al.[14] studied green HFSP with
consistent sublots and applied a multi-objective
discrete ABC algorithm. Wu and Liu[15] proposed an
improved memetic algorithm to solve green HFSP with
sequence dependent setup time and transportation time.

 Zhenghui Yin, Deming Lei, and Bo Yang are with the School of

Automation, Wuhan University of Technology, Wuhan 430070,
China. E-mail: 334932@whut.edu.cn; deminglei11@163.com;
byang@whut.edu.cn.

 * To whom correspondence should be addressed.
�※�This article was recommended by Associate Editor Xinyu Li
 Manuscript received: 2024-01-23; revised: 2024-05-17;

accepted: 2024-06-06

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 05/06 pp 292−302
Volume 4, Number 3, September 2024
DOI: 10 .23919 /CSMS.2024 .0014

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

HFSP with limited buffers is solved by discrete whale
swarm algorithm (DWSA) with a deduplication
strategy[16]. HFSP with device dynamic reconfiguration
is also solved by an improved whale optimization
algorithm (WOA)[17]. Marichelvam et al.[18] presented
improved particle swarm optimization algorithm with
variable neighborhood search for HFSP with effect of
human factors.

As stated above, the previous works are mainly about
HFSP with various conditions and constraints such as
no-wait, batch processing, and reentrance; however,
some conditions in real-world manufacturing processes
are seldom considered, for example, no precedence
relation between some stages attracted little attention,
which exists in hot and cold casting shop. In this shop,
there are eight stages, Stages 2 and 3 are core making
and mold assembling, and there is no precedence
relation between them, that is, processing sequence of
job on Stages 2 and 3 can be (2, 3) or (3, 2). This
constraint will lead to stage determination sub-
problem, the number of sub-problems increases and
optimization difficulties will enlarge; meanwhile,
HFSP with this constraint is refined from the real-word
casting shop and the corresponding results have high
application possibility, thus, it is necessary to handle
HFSP with no precedence relation between some
stages.

SFLA is a metaheuristic[19] algorithm with some
remarkable features of simple concept, the fewer
parameters, the faster computation speed and strong
global optimization ability. There are some application
of SFLA to scheduling problems[6, 13, 20–29]. It can be
found that SFLA has been used to solve HFSP with
complex conditions and constraints[6, 13], showing
significant advantages in solving HFSP[25, 26]. It is
rarely used to solve HFSP with no precedence between
some stages, which is an extension of HFSP. There are
great similarities between HFSP and HFSP with no
precedence. However, HFSP with no precedence
between some stages needs consideration on the
visiting sequence of each job at stages with no
precedence. The successful applications of SFLA to
HFSP show that SFLA is an optimization algorithm
with potential advantages for solving HFSP with no
precedence between some stages.

In this study, HFSP with no precedence between
some stages is solved, and an adaptive shuffled frog-
leaping algorithm (ASFLA) is used to optimize
makespan. A new solution representation and
decoiding are proposed, an adaptive memeplex search

process and dynamical population shuffling are
implemented together. Extensive experiments are
carried out to test the performance of ASFLA by
comparing it with other existing algorithms. The
effectiveness of new strategies are proved, and notable
search advantages of ASFLA are validated in solving
HFSP with no precedence between some stages.

2 Problem Description

θl l: number of machines at stage .
Mlk k l: the -th machines at stage .
pilk Ji Mlk ∈ θl: processing time of on .
Ci Ji: completion time of job .
Cmax : the maximum completion time of all jobs.
gen: the number of current generation.
μ: number of searches in each memeplex.
Ω: memory solution set.
β: number of solution selected to execuse memeplex

search.
meqi Mi: evolutionary quality of memeplex .
η: evaluation index of memeplex.
ϑ ϑ ∈ {1,2,3}: an integer, .
s: number of memeplexes.

n J1, J2, . . . , Jn H
l θl

θl = {Ml1,Ml2, . . . ,Ml|θl |} ∀1 � l � H |θl| > 1

Ji

H
σ σ+1 Ji

σ σ+1

1 � σ < H

HFSP, with no precedence between some stages
possesses, consists of jobs and
processing stages. Each stage has unrelated parallel
machines, , , .

 is processed in terms of production flow: Stage 1,
Stage 2,..., Stage . There is no precedence between
stages and , each job can be processed at
stage then at stage , or vice versa, where

.
In some real-life hybrid flow shop manufacturing

processes, there is no precedence between some stages.
For example, in a casting hybrid flow shop, there are 8
stages, and there is no precedence between Stages 2
and 3. HFSP with no precedence between some stages
is seldom investigated.

σ σ+1

The problem can be divided into three sub-problems:
scheduling, machine assignment, and stage
determination. Stage determination is used to decide
the visiting sequence between stages and for
each job.

The following objective is minimized.

Cmax = max
i=1,2,...,n

{Ci}

Cmax

Ci Ji

where indicates the maximum completion time
among all jobs, and is the completion time of job .

Table 1 shows an illustrative example with 5 jobs

 Zhenghui Yin et al.: An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop Scheduling... 293

and 4 stages. Stages 1 and 3 have two unrelated parallel
machines, Stages 2 and 4 have three unrelated parallel
machines and there is no precedence between Stages 2
and 3. A schedule of the example is listed in Fig. 1.

3 ASFLA for HFSP with No Precedence
Between Some Stages

3.1 Encoding, decoding, and initialization

σ σ+1

[γ1,γ2, . . . ,γn]

[ϕ1,ϕ2, . . . ,ϕn]

γi ∈ {1,2, . . . ,n} ϕi ∈ {σ,σ+1} ϕi = σ

Ji σ σ+1

σ+1 σ

A two-string representation and a heuristic for the
machine assignment is proposed. For HFSP with no
precedence between stages and , a solution is
denoted by a scheduling string and a
stage determination string , where

, , if , the visiting
sequence for job is stages , ; otherwise, the
above sequence is stages , .

Decoding is done as follows:
l = 1 π1

πi

M1k

πi

Step 1: Let , start with the first job from
scheduling string, for each job , determine a machine

 based on the heuristic and accomplish processing
of on the machine.

l > HStep 2: Repeat the following steps until .
1 < l < σ l > σ+2

γ′
1
,γ′

2
, . . . ,γ′n n

l−1 γ′
1

γ′i Mlk

γ′i

(1) If or , produce permutation
 by ranking jobs in ascending order of

their completion time at stage , start with job .
For each , determine a machine by the heuristic
and process on the machine.

l = σ γ′
1
,γ′

2
, . . . ,γ′n
γ′

1

γ′i δ = ϕγi′

σ σ+1 ϕγi′

Mδk M(2σ+1−δ)k′
γ′i

(2) If , obtain a job permutation
using the same process of Step (1), starting with job .
For each job , let , determine the visiting
sequence of stages , according to , and
select a machine and a machine by the
heuristic and process on them sequentially.

l = σ+2 n
2σ+1−ϕγi

γ′
1
,γ′

2
, . . . ,γ′n γ′

1

γ′i Mlk

γ′i

(3) If , sort jobs in ascending order of their
completion time at stage , and obtain a
permutation , starting with job . For each
job , select a machine according to the heuristic
and process on the machine sequentially.

l = l+1(4)

Ji

Mlg g = 1,2, . . . , θl l Mlk

The heuristic for machine assignment is described
below. For each , calculate the earliest beginning
time on each , at stage , select
with the smallest beginning time. If there exist more
than one machine with same beginning time, select one
with the smallest index number.

[3,4,2,1,5]

[2,3,2,3,2] l = 1

M11 M12 M11 M11 M12

l = 2

[3,2,4,5,1]

ϕ3 = 2

M21 M31

l = 4 [3,2,5,4,1]

For the example in Section 2, the solution consists of
 and a stage determination string
. When , Jobs 3, 4, 2, 1, and 5 are

assigned to machines , , , , and by
the heuristic sequentially. When , a permutation

 is obtained by ranking their completion
times at stage 1, take Job 3 as an example, , the
visiting sequence of job 3 is Stages 2 and 3, and Job 3
is processed sequentially on and based on the
heuristic. When , a permutation is
formed. The related schedule is displayed in Fig. 1.

s M1,M2, . . . ,Ms

P
N

 memeplexes are produced by
dividing a randomly generated initial population with

 initial solutions[19].

3.2 Adaptive memeplex search and dynamical
population shuffling

xw xb

xg

β > 1

In existing SFLA[27, 28], optimization object is ,
and are used in memeplex search and other solutions
are seldom involved with memeplex search. In
ASFLA, solutions are used as optimization
object, and adaptive memeplex search and dynamical
population shuffling are as shown in Algorithm 1.

gen = 1 Mi β

φ x ∈ φ μ/β

y ∈ φ y � x
GS(x,y) x

x

(1) If , for each memeplex , determine
solutions with the smallest makespan, and let them into
set , for each , repeat the following step
times: randomly select a solution , , execute

, if is not updated, conduct multiple
neighborhood search on .

gen > 1(2) If , then
meqi � η(a) Sort all memeplexes with in descending

Table 1 Data on pilk on the example.

Ji
Processing time (s)

M11 M12 M21 M22 M23 M31 M32 M41 M42 M43

1 5 8 7 8 6 4 2 4 5 8
2 4 3 6 4 4 1 3 7 6 8
3 1 3 8 5 3 4 5 3 7 9
4 8 5 3 7 4 3 6 5 3 4
5 6 4 5 4 3 2 5 4 6 3

M43

M42

M41

M32

M31

M23

M22

M21

M12

M11

0 5 10
1051

1 7 9 14

8 12

10

7 11 14

14

14
3 4

12

5

17 2211

12 18

1916

20 25

85
2 4

16 20

16
2

1

153

17

123

4 5

3 5 4

0

0 5 9

15
Completion time (s)

20 25 30

Fig. 1 Schedule of the example.

 294 Complex System Modeling and Simulation, September 2024, 4(3): 292−302

meqi meq1 �meq2 � · · · �mequ

Mi

y
y ∈Ml ⊂ {Mg

∣
∣
∣meqg >meqi } y ∈Mi

{Mg
∣
∣
∣meqg >meqi } 1 � i � u 1 � g � u

order of , suppose that ,
for each memeplex , execute global search and
multiple neighborhood as done in Step (1), where is
chosen: or , if

 is empty, and .
ϑ � 2 Mi meqi < η xb ∈Mi

y ∈M∗ GS(xb,y)

x μ

(b) If , select with . For ,
randomly select , and multiple
neighborhood search on are execute times.

meqi

s meqi � η ϑ = 1

meqi � η ϑ = 2 s
meqi < η ϑ = 3

(3) Compute evolutionary quality of each
memeplex, if memeplexes have , ; if at
least one memeplex has , ; if
memeplexes have , .

ϑ � 2 P′

meqi < η g meqi < η

P′ ∪Ω
g ϑ = 2

meqi M∗ ϑ = 3 M∗

P

(4) If , obtain population by all memeplexes
with , suppose memeplexes with ,
and execute population division by using to
form memeplexes. If , select memeplex with the
biggest as . If , consists of all
updated solutions in .

meqi = ESi/TSi

ESi TSi

Mi ESi = 1 TSi = 1

where and are integers and computed as
follows: when the search of starts, , ,

z
x TSi = TSi+1

Cz
max <Cx

max ESi = ESi+1 x

when a solution is given by global search or multiple
neighborhood search on , ; if

, , that is, solution is
updated.

GS(x′,y′)
x′

y′ z′ Cz
max

′ <Cx
max

′ Ω

x′ x′ z′ z
′′

x′ y′ Cz′′
max <Cx

max
′ Ω

x′ z
′′

x′

Global search is described below. Conduct
order-based crossover[30] on the scheduling string of
and , get a solution , if , update
with and replace with ; otherwise, produce
by performing two-point crossover on the stage
determination string of and . If , is
updated with and substitutes for .
Ω N/s Ω

x |Ω| N/s x
Ω x Ω

|Ω| < N/s x Ω

 has maximum capacity of . When is updated
by , if exceeds and is better than the worst
solution in , put into to replace the worst
solution; if , add to directly.

N1−N5

N1−N4 N1

γi γ j

N2 γi

γ j N3 N4 N1 N2

N3 N4 γi

i > j N5

h ∈ {σ,σ+1}
ϕi

ϕi = h ϕi = 2σ+1−h

Five neighborhood structures are used.
 are related to scheduling string, is the

swapping of two randomly chosen solutions and .
 is used to generate solutions by inserting into the

position of . and are similar to and . In
 and , job has the maximum completion time,

where . acts on stage determination string and
is proposed for no precedence between some stages. It
is described below. Determine the stage
that has the maximum load, randomly choose with

, and let .

r = 1

r = 6 z′ ∈Nr(x′) Cz
max

′ <Cx
max

′

Ω x′ z′ x′ r = 6

r = r+1 Nr(x′)
x′ Nr

Multiple neighborhood search is described as
follows. , execute the following steps repeatedly
until : produce , if , update

 with , substitutes for , ; otherwise,
. is the set of neighbourhood solution of

 produced by using .

3.3 Algorithm description

ASFLA has simple structure and is given in Algorithm
2. After initial population being randomly generated,
population division, and adaptive memeplex search and
dynamical population shuffling are executed repeatedly
until the stopping condition is met.

Flow chart of ASFLA is given in Fig. 2.
βUnlike existing SFLA[6, 13, 20, 25, 26], solutions are

Algorithm 1 Adaptive memeplex search and dynamical
population shuffling

gen = 11: if then
Mi2: for each memeplex do

β φ3: put the first solution into set
x ∈ φ4: for each do

y ∈ φ y � x
GS(x,y) x

5: randomly select a solution , , execute
 and multiple neighborhood search on

6: end for
7: end for
8: end if

gen > 19: if then
ϑ � 210: if then

Mi meqi � η11: for each with do
GS(x,y)

x
12: execute and multiple neighborhood

search on
13: end for
14: end if

ϑ � 215: if then
Mi meqi < η16: for each with do

y ∈M∗ GS(xb,y)

x μ

17: randomly select , and
multiple neighborhood search on are execute times

18: end for
P′ ∪Ω

g
19: execute population division by using to

form memeplexes
20: end if
21: end if

meqi22: Compute evolutionary quality of each memeplex

Algorithm 2 ASFLA
P gen = 11: Randomly produce initial population , let

P s2: Divide population into memeplexes
3: while stopping condition is not met do
4: Execute adaptive memeplex search and dynamical

population shuffling
gen = gen+15:

6: end while

 Zhenghui Yin et al.: An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop Scheduling... 295

μ/β meqi � η

meqi < η meqi � η

used as optimization object, and each of them is given
 times. Memeplexes with are given

different search strategies from memeplexes with
. Moreover, memeplexes with are not

used for population division to sufficiently use the
good solution structure of these memeplexes.

4 Computational Experiment

All experiments are implemented by using Microsoft
Visual C++ 2022 and run on 8.0 GB RAM 2.4 GHz
CPU PC.

4.1 Test instance and comparative algorithm

n×H n ∈ {10,20, . . . ,150}
H ∈ {2,4,6,8} pilk ∈ [50,100] |θl| ∈ {2,3} H = 2

σ = 1 H = 4 σ = 2 H = 6 σ = 5 H = 8 σ = 6

In this study, 60 instances are used. For each instance,
use to represent it, where ,

, , and . If ,
; if , ; if , ; if , .

All of above data are integers.
Three algorithms are selected, which are improved

gravitational search algorithm (IGSA)[31], improved
particle swarm optimization algorithm (IPSOA)[18], and
hybrid evolutionary algorithm (HEA)[32]. These
algorithms can provide promising results for HFSP and
can be applied to solve the HFSP with no precedence
between some stages, so they are chosen as
comparative algorithm.

Stage determination string of ASFLA is directly
added into IGSA, IPSOA, and HEA. For IGSA and
IPSOA, after using related formulas for scheduling

N5

N5

string, is applied for stage determination string. For
HEA, after using its neighborhood structures for
scheduling string, is executed for stage
determination string.

Mi GS(xw, xb) z
xw z GS(xw, xg)

z′ xw z′

xw

To show the effect of adaptive memeplex search and
dynamical population shuffling, ASFLA is compared
with SFLA[19], in which the memeplex search is as
follows: for each , execute , and obtain .
If is not updated by , apply , and obtain

; if is not updated by , conduct multiple
neighborhood search on . Random initialization is
also used.

4.2 Parameter setting

N s μ β η

0.25×n×H
0.25×n×H

ASFLA has the following parameters: , , , , ,
and the stopping condition. ASFLA can converge fully
when s CPU time is used; moreover, when

 s CPU time is applied, IGSA, IPSOA,
HEA, and SFLA also converge fully, so the above CPU
time is given as stopping condition.

20×4

20×4 s/N
−10× log10(MIN2) MIN

Taguchi method[33] on instance is used to
obtain settings on the remaining parameters of ASFLA.
Table 2 reveals the levels of each parameter. 16
orthogonal experiments are executed. In each
orthogonal experiment, ASFLA randomly runs on
instance . Figure 3 gives related results. ratio
is , where indicates the solution
with the smallest makespan in 10 runs.

N = 96 s = 6 μ = 40 β = 4

η = 0.3 MIN

There are 16 parameter combinations used. The
computational results reveal that when the following
settings are used: , , , , and

, ASFLA yields the smallest , so these
settings are adopted.

N = 96 s = 4 μ = 40, , and are given to SFLA. After
giving the stopping condition, experiments show that
parameter settings of IGSA[33], IPSOA[20], and HEA[32]

are still effective, so they are still adopted.

4.3 Result and discussion

xg

MIN MAX xg

Each of ASFLA, SFLA, IGSA, IPSOA, and HEA runs
randomly 10 times for each instance. is produced in
a run. () denotes the best (worst) found in

Start

Generate initial
population randomly

Adaptive memeplex search and
dynamical population shuffling

Population division

Termination condition?

End

No

Yes

Divide into s memeplexes

Fig. 2 Flow chart of ASFLA.

Table 2 Levels of each parameter.

Factor level
Parameter

N s μ β η

1 48 4 30 2 0.2
2 72 6 40 3 0.3
3 96 8 50 4 0.4
4 120 12 60 5 0.5

 296 Complex System Modeling and Simulation, September 2024, 4(3): 292−302

AVG

xg

MAX, MIN, and AVG

50×4 70×6

10 runs, and denotes the average makespan of
10 in 10 runs. Tables 3−5 reveal their results on

. Figure 4 depicts convergence
curves for and .

RPDMIN RPDMAX

RPDAVG

Figure 5 demonstrates box plots of ASFLA, SFLA,
IGSA, IPSOA, and HEA. , , and

are as follows:

RPDMIN =
MIN−MIN∗

MIN∗ ×100

MIN∗ MIN

RPDAVG RPDMAX

RPDMIN

where is the smallest produced by all
algorithms. and are represented in
the same way as .

t
t B1 B2

t
B1 B2

B1 B2 p

Table 6 reports the related data on pair-sample -test
with the significance level of 0.05. -test (,) means
that a paired -test is performed to judge whether
algorithm gives a better sample mean than .
Statistically significant difference between algorithms

and exists if the -value is less than 0.05.

MAX AVG

It can be found in Table 3 that ASFLA converges
better than SFLA. As shown in Tables 4 and 5, ASFLA
also produces better results on and than
SFLA on at least 49 of 60 instances. The results in
Table 6 and Figs. 4 and 5 also demonstrate the

1
950

960

970

980

990

M
IN

1000

1010

1020

2
N s

3 4 1 2 3 4 1 2

(a) MIN

(b) s/N ratio of MIN

3 4 1 2 3 4 1 2 3 4

1

s/
N

 ra
tio

 o
f M

IN

2
N s

3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

950

960

970

980

990

M
IN

1000

1010

1020

s/
N

 ra
tio

 o
f M

IN

1
950

960

970

980

990

M
IN

1000

1010

1020

s/
N

 ra
tio

 o
f M

IN

950

960

970

980

990

M
IN

1000

1010

1020

s/
N

 ra
tio

 o
f M

IN

950

960

970

980

990

M
IN

1000

1010

1020

s/
N

 ra
tio

 o
f M

IN

Fig. 3 Main effect plot for MIN and s/N ratio.

Table 3 Computational results of ASFLA, SFLA, IGSA,
IPSOA, and HEA on MIN.

Instance
(s × H)

MIN
ASFLA SFLA IGSA IPSOA HEA

10×2 360 372 360 363 360
10×4 546 597 567 570 579
10×6 730 764 736 733 742
10×8 875 893 881 878 886
20×2 680 712 690 688 696
20×4 951 1023 968 943 985
20×6 1130 1232 1175 1211 1217
20×8 1257 1481 1308 1356 1410
30×2 1050 1237 1154 1094 1192
30×4 1299 1420 1352 1342 1325
30×6 1447 1665 1537 1491 1563
30×8 1633 1822 1750 1690 1794
40×2 1340 1534 1393 1379 1473
40×4 1754 1822 1727 1778 1750
40×6 1794 1926 1864 1817 1895
40×8 1976 2231 2110 2064 2161
50×2 1766 1782 1786 1723 1887
50×4 2307 2436 2471 2409 2492
50×6 2212 2426 2384 2314 2403

(to be continued)

 Zhenghui Yin et al.: An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop Scheduling... 297

convergence advantage of ASFLA.
MINTable 3 reveals that ASFLA generates better

than IGSA, IPSOA, and HEA on 48 of 60 instances,

Table 3 Computational results of ASFLA, SFLA, IGSA,
IPSOA, and HEA on MIN.

(continued)
Instance
(s × H)

MIN
ASFLA SFLA IGSA IPSOA HEA

50×8 2575 2758 2648 2624 2697
60×2 2017 2168 2085 2039 2137
60×4 2976 3093 3003 3035 3041
60×6 2681 2883 2742 2838 2868
60×8 3319 3539 3466 3454 3488
70×2 2384 2467 2425 2408 2478
70×4 3540 3665 3530 3612 3759
70×6 3450 3682 3489 3506 3577
70×8 3769 3953 3799 3884 3967
80×2 2695 2813 2746 2763 2854
80×4 4151 4382 4307 4101 4322
80×6 3856 4093 3957 3945 4088
80×8 4418 4672 4603 4569 4644
90×2 3186 3285 3134 3195 3242
90×4 4674 4895 4785 4736 4817
90×6 4678 4839 4752 4552 4808
90×8 5377 5547 5431 5401 5496

100×2 3531 3663 3604 3575 3637
100×4 5574 5747 5664 5627 5770
100×6 4843 4991 4887 4899 4943
100×8 6172 6402 6219 6324 6364
110×2 3881 4018 3926 3900 3953
110×4 6225 6375 6326 6284 6385
110×6 5409 5595 5492 5563 5542
110×8 6840 7046 6872 6922 7021
120×2 4172 4235 4193 4163 4116
120×4 7110 7320 7197 7187 7240
120×6 6241 6452 6348 6301 6376
120×8 7590 7792 7661 7498 7765
130×2 4405 4580 4496 4467 4521
130×4 7641 7839 7768 7669 7814
130×6 6965 7149 7016 6933 7071
130×8 8195 8388 8255 8213 8338
140×2 4959 5124 4988 4926 5048
140×4 8319 8506 8490 8476 8507
140×6 7312 7419 7398 7387 7482
140×8 9026 9211 9179 9103 9139
150×2 5191 5337 5225 5217 5272
150×4 9234 9367 9354 9209 9454
150×6 7906 8142 8081 8103 8099
150×8 9962 10 117 10 056 10 024 10 087

Table 4 Computational results of ASFLA, SFLA, IGSA,
IPSOA, and HEA on MAX.

Instance
(s × H)

MAX
ASFLA SFLA IGSA IPSOA HEA

10×2 366 378 372 369 376
10×4 613 671 625 617 640
10×6 746 786 764 749 767
10×8 889 915 930 913 900
20×2 708 714 709 712 701
20×4 1029 1214 998 1050 1097
20×6 1168 1268 1331 1362 1322
20×8 1346 1565 1462 1427 1573
30×2 1069 1267 1169 1120 1214
30×4 1625 1751 1645 1612 1664
30×6 1527 1841 1622 1625 1617
30×8 1918 1989 1814 1849 1982
40×2 1368 1574 1422 1414 1502
40×4 2243 2373 2196 2185 2217
40×6 2054 2126 2085 2066 2093
40×8 2257 2348 2510 2475 2311
50×2 1753 1902 1816 1786 1851
50×4 2816 2930 2841 2852 2870
50×6 2593 2752 2637 2673 2713
50×8 3068 3293 3142 3224 3180
60×2 2067 2199 2119 2099 2083
60×4 3401 3365 3542 3625 3392
60×6 3080 3228 3028 3194 3211
60×8 3710 3899 3901 3821 3901
70×2 2416 2517 2426 2434 2524
70×4 4146 4497 4199 4243 4284
70×6 3592 3837 3796 3735 3882
70×8 4502 4774 4550 4598 4600
80×2 2740 2881 2774 2787 2880
80×4 4857 5047 4871 4901 4962
80×6 3856 4093 3957 3945 4088
80×8 4418 4672 4603 4569 4644
90×2 3186 3285 3134 3195 3242
90×4 4674 4895 4785 4736 4817
90×6 4852 5003 4875 4927 4962
90×8 6058 6415 6126 6211 6324
100×2 3562 3842 3642 3550 3690
100×4 6200 6461 6344 6406 6316
100×6 5385 5507 5410 5391 5460
100×8 6731 6950 6878 6896 7045
110×2 3934 4396 3995 4011 3980
110×4 7083 7268 6947 7214 7168
110×6 5691 6035 5825 5752 5929
110×8 7615 8172 7725 7694 7740
120×2 4158 4387 4188 4207 4234

(to be continued)

 298 Complex System Modeling and Simulation, September 2024, 4(3): 292−302

MIN

120×2 MIN

40×4 70×4 90×2

MIN

MIN

moreover, ASFLA obtains worse than HEA just
on instance , gets bigger than IGSA only
on instances , , and , and generates
worse than IPSOA just on 8 instances. Table 6
and Figs. 4 and 5 also reveal the significant advantage
of ASFLA on .

MAXWith respect to in Table 4, ASFLA performs
better than IGSA, IPSOA, and HEA on 49 instances.

Table 4 Computational results of ASFLA, SFLA, IGSA,
IPSOA, and HEA on MAX.

(continued)
Instance
(s × H)

MAX
ASFLA SFLA IGSA IPSOA HEA

120×4 7875 8127 8019 7917 7837
120×6 6508 6842 6506 6621 6719
120×8 8306 8590 8448 8405 8503
130×2 4501 4843 4566 4532 4591
130×4 8431 8688 8501 8596 8669
130×6 7133 7311 7236 7181 7259
130×8 8964 9199 9084 9010 9045
140×2 4989 5179 5056 5003 5094
140×4 9473 9642 9585 9542 9498
140×6 7714 7959 7767 7785 7850
140×8 9751 10 027 9971 9871 9995
150×2 5252 5424 5280 5292 5343
150×4 9927 10 090 10 119 9985 10 206
150×6 8193 8418 8345 8271 8332
150×8 10 332 10 533 10 601 10 478 10 657

Table 5 Computational results of ASFLA, SFLA, IGSA,
IPSOA, and HEA on AVG.

Instance
(s × H)

AVG
ASFLA SFLA IGSA IPSOA HEA

10×2 361 366 363 364 364
10×4 586 624 579 587 597
10×6 740 768 749 740 756
10×8 872 894 892 887 889
20×2 689 702 699 701 692
20×4 975 1077 986 994 990
20×6 1148 1246 1259 1291 1277
20×8 1282 1528 1359 1411 1485
30×2 1060 1243 1161 1109 1203
30×4 1403 1463 1449 1484 1490
30×6 1484 1664 1573 1564 1594
30×8 1760 1897 1790 1763 1856
40×2 1360 1566 1417 1395 1483
40×4 1926 2034 1996 1968 1917
40×6 1889 2082 1947 1929 1980
40×8 2103 2296 2281 2214 2234
50×2 1793 1894 1804 1774 1837
50×4 2528 2604 2642 2716 2687
50×6 2441 2528 2457 2477 2493
50×8 2860 2941 2978 2970 2930
60×2 2052 2186 2103 2076 2160
60×4 3218 3401 3305 3379 3268
60×6 2977 3146 2870 3001 2993
60×8 3528 3743 3590 3648 3693

(to be continued)

Table 5 Computational results of ASFLA, SFLA, IGSA,
IPSOA, and HEA on AVG.

(continued)
Instance
(s × H)

AVG
ASFLA SFLA IGSA IPSOA HEA

70×2 2397 2494 2415 2423 2502
70×4 3782 3952 3820 3894 3908
70×6 3626 3766 3686 3532 3733
70×8 4246 4330 4247 4278 4315
80×2 2719 2857 2767 2784 2864
80×4 4621 4807 4692 4687 4742
80×6 4087 4275 4209 4165 4248
80×8 4911 5152 5006 5018 4971
90×2 3161 3308 3206 3209 3255
90×4 5162 5382 5239 5175 5376
90×6 4757 4931 4716 4842 4778
90×8 5746 5938 5684 5724 5934

100×2 3548 3767 3608 3627 3685
100×4 5963 5990 6081 6011 5932
100×6 5311 5453 5339 5303 5349
100×8 6473 6703 6587 6592 6632
110×2 3916 4163 3967 3987 3956
110×4 6693 6869 6726 6731 6719
110×6 5754 5872 5576 5651 5780
110×8 7475 7557 7350 7419 7355
120×2 4146 4264 4139 4180 4217
120×4 7656 7896 7756 7531 7602
120×6 6452 6641 6457 6440 6645
120×8 7877 8064 7967 7945 8087
130×2 4467 4679 4523 4483 4558
130×4 8172 8380 8296 8387 8355
130×6 7046 7249 7099 7049 7173
130×8 8768 8958 8796 8824 8867
140×2 4951 5149 5007 4983 5076
140×4 9045 9223 9073 9043 9121
140×6 7585 7742 7695 7650 7702
140×8 9397 9546 9496 9466 9565
150×2 5221 5376 5256 5258 5324
150×4 9686 9847 9697 9724 9808
150×6 8051 8243 8118 8195 8239
150×8 10 037 10 186 10 085 10 135 10 117

 Zhenghui Yin et al.: An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop Scheduling... 299

MAX

20×2 120×4 MAX

MAX

MAX

AVG

Moreover, ASFLA gets worse than HEA just on
instance and , obtains bigger than
IGSA only on 5 instances, and produces worse
than IPSOA just on 3 instances. Figure 5 and Table 6
also reveal the notable advantages of ASFLA on .
Similarly, Tables 5 and 6 and Fig. 5 also show the
significant advantages of ASFLA on .

meqi � η

In ASFLA, more solutions become optimization
objects of memeplexes, and different memeplexes have
different search strategies. These features lead to strong
exploration ability. Moreover, good solution structure
in some memeplexes with are used fully, thus,
ASFLA is a competitive method in solving HFSP with
no precedence between some stages.

5 Conclusion and Future Topic

σ σ+1

In this study, HFSP with no precedence between stages
and is solved by using ASFLA. In ASFLA, a

new coding and decoding are used, an adaptive
memeplex search and dynamical population shuffling
are implemented together. The effectiveness of new
strategies in ASFLA is first tested by comparing
ASFLA and SFLA. Then the search advantages of
ASFLA on HFSP with no precedence are tested by

comparing ASFLA with IGSA, IPSOA, and HEA.
In the future, we will focus on HFSP with batch

processing machine in casting process by applying
some new optimization strategies such as learning in
ABC and SFLA. Adding optimization mechanisms
such as cooperation or feedback into metaheuristics is
one of our future research topics.

References

M. Rabiee, F. Jolai, H. Asefi, P. Fattahi, and S. Lim, A
biogeography-based optimisation algorithm for a realistic

[1]

ASFLA
0

SFLA IGSA
(a) RPD of MIN

IPSO HEA

1

2

3

R
PD

M
IN

4

5

ASFLA
0

SFLA IGSA
(b) RPD of MAX

IPSO HEA

1

2

3

R
PD

M
AX

4

5

ASFLA
0

SFLA IGSA
(C) RPD of AVG

IPSO HEA

1

2

3

R
PD

AV
G

4

5

Fig. 5 Box plots of five algorithms.

Table 6 Paired sample t-test on ASFLA, SFLA, IGSA,
IPSOA, and HEA.

tPaired sample -test MIN MAX AVG

t-test (ASFLA, SFLA) 0 0 0
t-test (ASFLA, IGSA) 0 0 0

t-test (ASFLA, IPSOA) 0 0 0
t-test (ASFLA, HEA) 0 0 0

100
2200

20
Completion time (s)

(a) n×H=50×4

C
om

pl
et

io
n

tim
e

(s
)

C
om

pl
et

io
n

tim
e

(s
)

(b) n×H=70×6

30 40 50

2400

2600

2800

ASFLA
IPSOA
IGSA
HEA
SFLA3000

3200

3400

100

3500

40
Completion time (s)

60 80 105100

4000

4500

5000

ASFLA
IPSOA
IGSA
HEA
SFLA

5500

Fig. 4 Convergence curves on 50 × 4 and 70 × 6 .

 300 Complex System Modeling and Simulation, September 2024, 4(3): 292−302

no-wait hybrid flow shop with unrelated parallel machines
to minimise mean tardiness, Int. J. Comput. Integr.
Manuf., vol. 29, no. 9, pp. 1007−1024, 2016.
 X. Li, X. Guo, H. Tang, R. Wu, and J. Liu, An improved
cuckoo search algorithm for the hybrid flow-shop
scheduling problem in sand casting enterprises considering
batch processing, Comput. Ind. Eng., vol. 176, p. 108921,
2023.

[2]

 H. Lu and F. Qiao, An efficient adaptive genetic algorithm
for energy saving in the hybrid flow shop scheduling with
batch production at last stage, Expert Syst., vol. 39, no. 2,
p. e12678, 2022.

[3]

 M. Li, G. G. Wang, and H. Yu, Sorting-based discrete
artificial bee colony algorithm for solving fuzzy hybrid
flow shop green scheduling problem, Mathematics, vol. 9,
no. 18, p. 2250, 2021.

[4]

 J. Q. Li, H. Y. Sang, Y. Y. Han, C. G. Wang, and K. Z.
Gao, Efficient multi-objective optimization algorithm for
hybrid flow shop scheduling problems with setup energy
consumptions, J. Clean. Prod., vol. 181, pp. 584−598,
2018.

[5]

 K. Wang, L. M. Xu, and C. Lv, A novel SFLA for
reentrant hybrid flow shop scheduling, presented at the 3rd
Int. Conf. Electrical, Mechanical and Computer
Engineering, Guizhou, China, 2019.

[6]

 Y. Guan, Y. Chen, Z. Gan, Z. Zou, W. Ding, H. Zhang, Y.
Liu, and C. Ouyang, Hybrid flow-shop scheduling in
collaborative manufacturing with a multi-crossover-
operator genetic algorithm, J. Ind. Inf. Integr., vol. 36, p.
100514, 2023.

[7]

 X. Wu, X. Yan, and L. Wang, Optimizing job release and
scheduling jointly in a reentrant hybrid flow shop, Expert
Syst. Appl., vol. 209, p. 118278, 2022.

[8]

 S. Wang and M. Liu, Two-stage hybrid flow shop
scheduling with preventive maintenance using multi-
objective tabu search method, Int. J. Prod. Res., vol. 52,
no. 5, pp. 1495−1508, 2014.

[9]

 Y. Wang, Y. Wang, Y. Han, J. Li, K. Gao, and Y. Nojima,
Intelligent optimization under multiple factories: Hybrid
flow shop scheduling problem with blocking constraints
using an advanced iterated greedy algorithm, Complex
System Modeling and Simulation, vol. 3, no. 4, pp.
282−306, 2023.

[10]

 M. Li, D. Lei, and J. Cai, Two-level imperialist
competitive algorithm for energy-efficient hybrid flow
shop scheduling problem with relative importance of
objectives, Swarm Evol. Comput., vol. 49, pp. 34−43,
2019.

[11]

 H. X. Qin, Y. Y. Han, B. Zhang, L. L. Meng, Y. P. Liu, Q.
K. Pan, and D. W. Gong, An improved iterated greedy
algorithm for the energy-efficient blocking hybrid flow
shop scheduling problem, Swarm Evol. Comput., vol. 69,
p. 100992, 2022.

[12]

 D. Lei and X. Guo, A shuffled frog-leaping algorithm for
hybrid flow shop scheduling with two agents, Expert Syst.
Appl., vol. 42, no. 23, pp. 9333−9339, 2015.

[13]

 W. Wang, B. Zhang, and B. Jia, A multiobjective
optimization approach for multiobjective hybrid flowshop
green scheduling with consistent sublots, Sustainability,

[14]

vol. 15, no. 3, p. 2622, 2023.
 S. Wu and L. Liu, Green hybrid flow shop scheduling
problem considering sequence dependent setup times and
transportation times, IEEE Access, vol. 11, pp.
39726−39737, 2023.

[15]

 C. Zhang, J. Tan, K. Peng, L. Gao, W. Shen, and K. Lian,
A discrete whale swarm algorithm for hybrid flow-shop
scheduling problem with limited buffers, Robot. Comput.
Integr. Manuf., vol. 68, p. 102081, 2021.

[16]

 Y. Wang, S. Wang, D. Li, C. Shen, and B. Yang, An
improved multi-objective whale optimization algorithm
for the hybrid flow shop scheduling problem considering
device dynamic reconfiguration processes, Expert Syst.
Appl., vol. 174, p. 114793, 2021.

[17]

 M. K. Marichelvam, M. Geetha, and Ö. Tosun, An
improved particle swarm optimization algorithm to solve
hybrid flowshop scheduling problems with the effect of
human factors—A case study, Comput. Oper. Res., vol.
114, p. 104812, 2020.

[18]

 M. M. Eusuff and K. E. Lansey, Optimization of water
distribution network design using the shuffled frog leaping
algorithm, J. Water Resour. Plann. Manage., vol. 129, no.
3, pp. 210−225, 2003.

[19]

 J. Cai and D. Lei, A cooperated shuffled frog-leaping
algorithm for distributed energy-efficient hybrid flow shop
scheduling with fuzzy processing time, Complex Intell.
Syst., vol. 7, no. 5, pp. 2235−2253, 2021.

[20]

 L. Wang and D. Li, Fuzzy distributed hybrid flow shop
scheduling problem with heterogeneous factory and
unrelated parallel machine: A shuffled frog leaping
algorithm with collaboration of multiple search strategies,
IEEE Access, vol. 8, pp. 214209−214223, 2020.

[21]

 M. Kong, X. Liu, J. Pei, P. M. Pardalos, and N.
Mladenovic, Parallel-batching scheduling with nonlinear
processing times on a single and unrelated parallel
machines, J. Glob. Optim., vol. 78, no. 4, pp. 693−715,
2020.

[22]

 H. Zhang, S. Liu, S. Moraca, and R. Ojstersek, An
effective use of hybrid metaheuristics algorithm for job
shop scheduling problem, Int. J. Simul. Model., vol. 16,
no. 4, pp. 644−657, 2016.

[23]

 Q. K. Pan, L. Wang, L. Gao, and J. Li, An effective
shuffled frog-leaping algorithm for lot-streaming flow
shop scheduling problem, Int. J. Adv. Manuf. Technol.,
vol. 52, no. 5, pp. 699−713, 2011.

[24]

 Y. Xu, L. Wang, G. Zhou, and S. Wang, An effective
shuffled frog leaping algorithm for solving hybrid flow-
shop scheduling problem, in Advanced Intelligent
Computing, D. Huang, Y. Gan, V. Bevilacqua, and J. C.
Figueroa, eds. Berlin, Germany: Springer, 2011, pp.
560−567.

[25]

 Y. Xu, L. Wang, S. Wang, and M. Liu, An effective
shuffled frog-leaping algorithm for solving the hybrid
flow-shop scheduling problem with identical parallel
machines, Eng. Optim., vol. 45, no. 12, pp. 1409−1430,
2013.

[26]

 L. Kong, T. Li, K. Wang, H. Zhu, T. Makoto, and B. Yu,
An improved shuffled frog-leaping algorithm for flexible
job shop scheduling problem, Algorithms, vol. 8, no. 1, pp.

[27]

 Zhenghui Yin et al.: An Adaptive Shuffled Frog-Leaping Algorithm for Hybrid-Flow Shop Scheduling... 301

19−31, 2015.
 Z. J. Gao, J. Y. Peng, Z. H. Han and M. Q. Jia, Flow shop
scheduling with variable processing times based on
differential shuffled frog leaping algorithm, Int. J. Model.
Identif. Contr., vol. 33, no. 2, pp. 179−187, 2019.

[28]

 J. Cai, R. Zhou, and D. Lei, Dynamic shuffled frog-
leaping algorithm for distributed hybrid flow shop
scheduling with multiprocessor tasks, Eng. Appl. Artif.
Intell., vol. 90, p. 103540, 2020.

[29]

 D. Lei, B. Su, and M. Li, Cooperated teaching-learning-
based optimisation for distributed two-stage assembly flow
shop scheduling, Int. J. Prod. Res., vol. 59, no. 23, pp.

[30]

7232−7245, 2021.
 C. Cao, Y. Zhang, X. Gu, D. Li, and J. Li, An improved
gravitational search algorithm to the hybrid flowshop with
unrelated parallel machines scheduling problem, Int. J.
Prod. Res., vol. 59, no. 18, pp. 5592−5608, 2021.

[31]

 J. Fan, Y. Li, J. Xie, C. Zhang, W. Shen, and L. Gao, A
hybrid evolutionary algorithm using two solution
representations for hybrid flow-shop scheduling problem,
IEEE Trans. Cybern., vol. 53, no. 3, pp. 1752−1764, 2023.

[32]

 G. Taguchi, Introduction to Quality Engineering:
Designing Quality into Products and Processes. Tokyo,
Japan: Asian Productivity Organization, 1986.

[33]

Zhenghui Yin is currently pursuing the
master degree at the School of
Automation, Wuhan University of
Technology, Wuhan, China. His current
research interest includes manufacturing
systems intelligent optimization and
scheduling.

Deming Lei received the MS degree in
applied mathematics from Xi’an Jiaotong
University, Xi’an, China in 1996, and the
PhD degree in automation science and
engineering from Shanghai Jiao Tong
University, Shanghai, China in 2005. He is
currently a professor at the School of
Automation, Wuhan University of

Technology, Wuhan, China. He has authored or coauthored
more than 50 journal papers. His research interests include
intelligent system optimization and control, production
scheduling, etc.

Bo Yang received the bachelor and PhD
degrees from Huazhong University of
Science and Technology, China in 2003
and 2008, respectively. His primary
research areas include machine learning,
smart grids, complex systems modeling
and control, and traffic information
processing and control. As the first

author/corresponding author, he has published more than 20
papers in top and significant academic journals both
domestically and internationally, including IEEE Transactions
and Automatica.

 302 Complex System Modeling and Simulation, September 2024, 4(3): 292−302

