
 

Adaptive Memetic Algorithm with Dual-Level Local
Search for Cooperative Route Planning of

Multi-Robot Surveillance Systems
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Abstract: The  heightened  autonomy  and  robust  adaptability  inherent  in  a  multi-robot  system  have  proven

pivotal  in  disaster  search  and  rescue,  agricultural  irrigation,  and  environmental  monitoring.  This  study

addresses the coordination of multiple robots for the surveillance of various key target positions within an area.

This  involves  the  allocation  of  target  positions  among  robots  and  the  concurrent  planning  of  routes  for  each

robot. To tackle these challenges, we formulate a unified optimization model addressing both target allocation

and  route  planning.  Subsequently,  we  introduce  an  adaptive  memetic  algorithm  featuring  dual-level  local

search  strategies.  This  algorithm  operates  independently  among  and  within  robots  to  effectively  solve  the

optimization  problem  associated  with  surveillance.  The  proposed  method’s  efficacy  is  substantiated  through

comparative  numerical  experiments  and  simulated  experiments  involving  diverse  scales  of  robot  teams  and

different target positions.
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1    Introduction

The flourishing development of unmanned systems has
led  to  the  liberation  of  an  increasing  number  of
individuals  from  various  complex,  dangerous,  and
unsanitary  activities[1–5].  For  instance,  robots  are  now
employed to consistently and periodically visit specific
target  points  in  designated  areas,  replacing  human
surveillance  behavior  for  monitoring  unexpected
events.  Moreover,  a multi-robot system, as opposed to
a  single  robot,  not  only  reduces  task  completion  time
and  enhances  efficiency  but  also  demonstrates
heightened  robustness.  However,  leveraging  the

potential  of  a  multi-robot  system  to  achieve
performance  improvements  necessitates  not  only
behavioral  planning  for  individual  robots  but  also  the
implementation  of  sophisticated  strategies  to
coordinate  interactions  between  robots.  In  addressing
the  multi-robot  surveillance  problem,  the  primary
challenge lies in coordinating and planning the paths of
individual  robots  to  traverse  all  points  of  interest  or
cover the entire designated area while minimizing task
completion  time  or  reducing  the  total  path  length  to
conserve energy.

Numerous scholars have delved into the intricacies of
the  multi-robot  surveillance  problem,  and  the
prevailing approach is the adoption of a partition-based
hierarchical  planning strategy.  Initially,  the  target  area
undergoes  division  into  multiple  disjoint  subareas  or
subsets  through  decomposition  or  clustering  methods.
Subsequently,  algorithms  designed  for  single-robot
path  planning  are  applied  to  formulate  an  optimal
feasible  route  within  each  sub-area.  Zhang  et  al.[6]

introduced  the  MSTC*  algorithm  for  multi-robot
coverage path planning,  incorporating constraints such
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as terrain traversability and workload capacity through
balanced  cut  and  spiral  spanning  tree  coverage.  Chen
et  al.[7] explored  the  coverage  path  planning  of
autonomous  heterogeneous  unmanned  aerial  vehicles
(UAVs).  To  comprehensively  explore  the  solution
space,  they  initially  formulated  the  problem  into  a
mixed-integer  linear  programming  model  aimed  at
minimizing  task  completion  time.  A  density-based
clustering  method  was  then  proposed  to  categorize
regions  into  separate  clusters  and  provide  an
approximate  optimal  flight  path  for  each  UAV.  Tang
and Ma[8] pioneered the proposition of a mixed integer
programming  (MIP)  model  to  optimally  address  the
NP-hard  rooted  min-max  tree  cover  (RMMTC)
problem and proved the optimality ratio of the resulting
solution  can  be  4.  Additionally,  they  introduced  two
suboptimal  heuristics  to  streamline  the  model  within
specified  constraints  of  runtime  and  memory.  Xie  et
al.[9] initially  employed  the  k-means  clustering
algorithm to  partition  surveillance  points  with  varying
importance  levels  into  subsets,  ensuring  workload
balance  among  partitions.  Subsequently,  an  enhanced
particle  swarm algorithm (PSO) was utilized to  plan a
visit  sequence  of  surveillance  points,  minimizing  the
total  distance  traveled  for  each  unmanned  surface
vehicle (USV). Feng et al.[10] investigated the problem
of  minimizing  the  number  of  robots  used  or
maximizing  the  probabilistic  guarantee  for  sweep-line
coverage.  They  proposed  a  max-flow  based  algorithm
building  on  boustrophedon  decomposition[11] for
solving  the  allocation  task,  completing  it  in  less  than
2 s for polygonal environments with over 105 vertices.
The  partition-based  hierarchical  strategy  adeptly
coordinates  cooperation  between  robots,  preventing
conflicts.  Furthermore,  the  transformation  of  multi-
robot  path  planning  into  single-robot  path  planning
within  each  sub-area  effectively  diminishes  the
dimensionality  of  path  planning.  However,  in  a  multi-
robot  system,  task  allocation  and  path  planning  are
inherently  complementary.  Path  planning  must  align
with task allocation, and the outcomes of path planning
can  reciprocally  reflect  the  quality  of  task  allocation.
Regrettably,  the  hierarchical  planning  strategy  lacks
interaction between these two integral components.

Additionally,  through  extensive  pre-computing  and
training,  learning-based  methods  can  rapidly  attain
effective solutions when confronted with new instances
of  problems.  Din  et  al.[12] introduced  a  dual  deep  Q-

learning  (DDQN)  based  centralized  convolutional
neural network (CNN) to address the area surveillance
problem  in  agriculture.  A  custom  reward  function  is
devised,  incentivizing  the  exploration  of  unvisited
areas  while  penalizing  undesirable  behavior.  In  cases
where the deep Q-network (DQN) is susceptible to the
curse  of  dimensionality,  Jana  et  al.[13] proposed  a
formulation  of  the  markov  decision  process  (MDP)
with  a  state  representation  applicable  in  deep
reinforcement  learning  (DRL)  methods  such  as  the
DQN.  DRL  agents  can  collaboratively  devise
strategies,  showcasing  scalability  concerning  the
number  of  nodes  in  the  field.  Moreover,  for  unknown
dynamic  environmental  factors  like  agent  failures  or
wind,  Tong  et  al.[14] introduced  a  distributed
reinforcement  learning  architecture  capable  of
tolerating  agent  failures  and  accommodating  the
addition of supplementary agents to replace failed ones.
All  agents  act  independently  based  on  local
observations  and  shared  location  information.  While
learning-based  methods  have  demonstrated
commendable  performance  in  terms  of  scalability  and
time  efficiency,  their  solutions’ quality  and  stability
still lag behind traditional methods.

This  paper  addresses  the challenges posed by multi-
robot  surveillance  problems,  where  a  team  of  robots
collaboratively  covers  all  designated  target  positions
continuously.  Diverging  from  a  hierarchical  approach
that  initially  focuses  on  task  planning  (i.e.,  assigning
surveillance  targets  to  different  robots)  and
subsequently  on  route  planning  (i.e.,  determining  the
visit  sequence  of  surveillance  targets  for  each  robot),
we  propose  a  novel  methodology  that  concurrently
tackles  task  planning  and  route  planning.  Specifically,
we  employ  an  encoding  strategy  to  ensure  a  solution
encompassing  both  surveillance  target  allocation  and
route planning information. Additionally, we introduce
an  adaptive  dual-level  memetic  algorithm  (DL-AMA)
tailored  for  this  encoding  strategy.  DL-AMA  is
designed  to  minimize  the  total  length  traversed  by  all
robots,  simultaneously  maintaining  a  low  workload
difference  among  robots  to  ensure  balanced  task  load
distribution.  The  key  contributions  of  this  paper  are
outlined as follows:

(1)  Formulation  of  the  multi-robot  surveillance
problem into a single integrated optimization model to
minimize  the  total  travel  distance  of  all  robots  for
energy conservation. The model also seeks to minimize
the  maximum  surveillance  length  among  robots  to
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reduce the period required for the surveillance mission.
Furthermore,  we  impose  constraints  on  the  workload
difference  among  robots,  ensuring  it  remains  below  a
defined threshold to balance task load distribution.

(2)  Introduction  of  a  solution  encoding  strategy  that
jointly  optimizes  task  allocation  and  route  planning.
Subsequently,  we  propose  an  adaptive  memetic
algorithm  method  featuring  dual-level  local  search
strategies.  These  strategies  operate  independently,
addressing  task  allocation  among  robots  and  route
planning  within  each  robot  to  yield  an  enhanced
solution.

(3)  The  efficacy  and  superiority  of  our  proposed
method  are  validated  through  simulations  involving
diverse team sizes and varying numbers of surveillance
targets.  Comparative  experiments  demonstrate  the
effectiveness of our approach over alternative methods.

The remainder of this paper is structured as follows.
In Section 2, we commence with a detailed depiction of
the  multi-robot  surveillance  scenario,  followed  by  an
in-depth  analysis  of  the  objectives  and  constraints
associated  with  both  task  assignment  and  route
planning.  Section  3  provides  a  comprehensive
description  of  the  proposed  encoding  strategy  and  the
adaptive  dual-level  local  search  memetic  algorithm.
The  numerical  and  simulation  results  stemming  from
our approach are presented and discussed in Sections 4
and  5.  Finally,  Section  6  encapsulates  concluding
remarks and outlines avenues for future work.

2    Problem Formulation

In  this  section,  we  will  give  a  detailed  description  of
the  scenario  of  multi-robot  surveillance,  and  analyze
the  objectives  and  constraints  that  contributed  to
establishing a mathematical optimization model for this
problem.

2.1    Environment description

V =
{v1,v2, . . . ,vM}

M
vi (xi,yi)

U = {u1,u2, . . . ,uN}

N

Pi

Pi∩P j = ∅,∀1 ⩽ i, j ⩽ N V = P1∪P2∪ · · ·∪PN

We  consider  a  set  of  surveillance  targets 
 statically  distributed  in  a  certain  given

area,  where  is  the  number  of  surveillance  targets,
and the coordinates of the target  is . A team of
robots  is  mandated  to
collaboratively  visit  all  designated  target  positions
continuously for surveillance purposes, where  is the
number of robots. A schematic representation of multi-
robot  surveillance  is  shown  in Fig.  1.  Each  robot  is
assigned  a  distinct  set  of  disjoint  targets ,  where

,  and .
Subsequently,  each  robot  traverses  a  path  that  covers
all the assigned targets.

2.2    Goal for task assignment

C

C

Concentration  within  single  robot  for surveillance
targets assignment ( ): This criterion emphasizes that
the allocated surveillance targets for each robot should
exhibit  a  high  degree  of  concentration.  In  practical
terms,  this  implies  minimizing  the  distances  between
surveillance  points  assigned  to  the  same  robot.  The
objective is to reduce the overall  length of robot paths
required  to  cover  all  surveillance  points  effectively.
The  concentration  of  target  assignment  can  be
expressed as follows:
 

C =
1

Ndmax

N∑
u=1

Ju

|Pu|
(1)

 

Ju =

|Pu |∑
i=1

|Pu |∑
j=1

dist(vi,v j),u = 1,2, . . . ,N (2)

|Pu|
u dist(vi,v j)

dmax

where  is  the  number  of  surveillance  targets  for
robot ,  is  the  Euclidean  distance  between
two  targets,  and  is  the  distance  between  the
farthest two points among all surveillance targets in the

 

Target

Surveillance 
path

Robot

 
Fig. 1    Schematic diagram of multi-robot surveillance.
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area:
 

dist(vi,v j) =
√

(xi− x j)2+ (yi− y j)2,∀vi,v j ∈ Pu (3)
 

dmax =max
vi,v j

dist(vi,v j),∀vi,v j ∈ V (4)

Dispersion  among  robots  for  surveillance  targets
assignment (D): In contrast to the concentration within
a  single  robot,  the  dispersion  criterion  focuses  on
allocating  the  set  of  surveillance  points  among  robots
in a dispersed manner. The aim is to minimize conflicts
arising  from  the  intersection  of  surveillance  routes
between robots. To quantify this dispersion, we employ
the  distance  between  the  center  points  of  each  robot’s
allocated  surveillance  targets.  The  dispersion  of
surveillance  points  allocation  among  robots  to  be
maximized is represented as follows:
 

D =
1

Ndmax

N∑
m=1

N∑
n=1

dist(vm
c ,v

n
c) (5)

vm
c

m (xvm
c ,yvm

c )
where  is the center of the assigned targets for robot

, and its coordinate  can be computed as Eq.
(6):
 

xvm
c =

1
|Pu|

|Pu |∑
i=1

xi,m = 1,2, . . . ,N;

yvm
c =

1
|Pu|

|Pu |∑
i=1

yi,m = 1,2, . . . ,N

(6)

Td

Th

Ju

Td

Task  load  difference  for  surveillance  targets
assignment  ( ): This  criterion  underscores  the
importance  of  maintaining  a  task  load  difference  for
each  robot  below  a  specified  threshold .  The
objective  is  to  achieve  a  balanced  distribution  of  the
task  load  among  robots,  preventing  the  overuse  of
some  robots  and  optimizing  the  utilization  of  others.
The  task  load  for  a  robot  is  defined  as  the
summation  of  distances  between  two  targets  assigned
to  that  robot,  as  represented  by  Eq.  (2).  The  task  load
difference  is mathematically expressed as follows:
 

Td =

√√√ N∑
u=1

(Ju− J̄)2

MNdmax
(7)

 

J̄ =
1
N

N∑
u=1

Ju (8)

2.3    Goal for route planning

L
Total  length  of  all  surveillance  paths  for  route
planning ( ): This  criterion  emphasizes  that  each

robot  should  plan  a  path  traversing  the  assigned
surveillance  points  as  efficiently  as  possible  to
conserve  energy.  The  surveillance  path  length  for  a
single  robot  is  calculated  by  using  Eq.  (9).
Subsequently,  the  total  surveillance  length  for  all
robots is computed through Eq. (10):
 

|lu| =
|Pu |∑
i=1

|Pu |∑
j=1

dist(vi,v j)Xi, j,u = 1,2, . . . ,N (9)

 

L =
1

Mdmax

N∑
u=1

|lu| (10)

Xi, j Xi, j = 1
vi v j

Xi, j = 0

where  is  a  binary  indicator,  and  indicates
that a robot moves from  to  during its surveillance,
otherwise, .

Lmax

Maximum  surveillance  length  among  all  robots
(Lmax): Given the constant and consistent speed of the
robots,  the  completion  time  of  the  surveillance  task  is
contingent  on  the  robot  with  the  longest  surveillance
route. Therefore, minimizing the maximum path length
of  surveillance  is  crucial  to  reduce  task
completion time and enhance surveillance efficiency:
 

Lmax =max
u
|lu| ,u = 1,2, . . . ,N (11)

2.4    Optimization model

lu

In  summary,  the  primary  objective  of  the  multi-robot
surveillance  problem  addressed  in  this  paper  is  to
devise  a  surveillance  path  for  each  robot,  ensuring
comprehensive  coverage  of  all  surveillance  points
within  a  specified  area.  The  paths  are  strategically
separated  to  minimize  conflicts  between  robots.
Additionally, the overarching goals include minimizing
the  total  surveillance  length  to  conserve  energy  and
reducing  the  maximum  path  length  to  enhance  task
completion  efficiency.  The  mathematical  description
can be summarized as follows:
 

Find {l1, l2, . . . , lN},
Minimize f = w1L+w1Lmax+w2C−w2D,
Subject to Td ⩽ Th

(12)

w1,w2 ∈ (0,1) w1+w2 = 1where ,  and  are  objective
weights  for  route  planning  and  surveillance  targets
assignment, respectively.

3    Proposed Method

In  this  section,  we  commence  by  providing  a
comprehensive  description  of  the  encoding  strategy,
designed  to  enable  a  solution  to  encompass  both  task
allocation  and  route  planning  information.
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Subsequently,  we  introduce  an  adaptive  memetic
algorithm  incorporating  a  dual-level  local  search
strategy,  tailored  to  enhance  the  effectiveness  of
solving this problem.

3.1    Encoding strategy

M
N +1

M N

For continuous algorithms like genetic algorithms (GA)
and differential  evolution  (DE),  the  solutions  obtained
are  inherently  continuous.  Thus  we  introduce  a  novel
strategy to  address  this  characteristic  in  the  context  of
the  multi-robot  surveillance  problem.  Initially,  the
dimension  of  the  algorithm  solution  is  set  to  with
the  value  of  each  dimension  ranging  from  1  to ,
where  and  represent the numbers of surveillance
targets  and  robots,  respectively.  As  an  illustration,
consider the case of 2 robots and 8 surveillance targets;
an  example  algorithm solution  is  presented  in Fig.  2a.
Subsequently,  floor  rounding  is  applied  to  each
dimension  of  the  solution  vector  to  obtain  an  integer
solution  vector.  Each  surveillance  target,  represented
by  each  dimension,  is  then  allocated  to  the
corresponding  robot  based  on  these  integers.  As
depicted in Fig. 2b, the surveillance points assigned to
each  robot  are  1,  2,  4,  5,  6,  8  and  3,  7,  respectively.
Finally,  the  surveillance  points  assigned  to  each  robot
are  sorted  based  on  their  original  values  in  the
algorithm  solution,  resulting  in  a  visiting  sequence  of
surveillance  points  for  each  robot,  which  also
constitutes  the  surveillance  paths. Figure  2c illustrates
the  final  surveillance  paths  obtained  by  encoding  the
example continuous solution vector as 6-2-8-1-5-4 and
7-3.

3.2    DL-AMA algorithm

GA[15] is  an  evolutionary  optimization  technique
inspired by the process of natural selection. It is used to
find  approximate  solutions  to  complex  optimization
and search problems.  In GA, a  population of  potential
solutions  evolves  over  generations  through  selection,
crossover,  and  mutation  operations,  mimicking  the

process  of  survival  of  the  fittest.  Through  repeated
iterations,  GA gradually converges towards optimal or
near-optimal solutions by favoring the best-performing
individuals  in  the  population.  Building  upon  this
foundation,  Moscato  and  Norman[16] introduced  the
memetic  algorithm  framework,  combining  the  global
exploration  ability  of  GA  with  the  exploitation  power
of  a  local  search  strategy.  This  innovative  approach
enhances  the  algorithm’s  capability  to  explore  a  wide
search  space  and  effectively  handle  large-scale
problems.  As  a  result,  memetic  algorithms  find  wide
applications  across  various  domains,  including
engineering, economics, and computer science[17–22].

In  this  study,  we  introduced  an  adaptive  memetic
algorithm  with  dual-level  local  search  strategies  (DL-
AMA),  addressing  both  task  assignment  and  route
planning levels. The algorithm, outlined in Algorithm 1,
is  primarily  implemented  through  the  following  six
steps:

Pop_size
N

(1)  Initialization: randomly  generate 
number of solutions with values range from 1 to ;

(2)  Selection: choose  outstanding  individuals  as
parents through the tournament selection[23];

(3)  Genetic  operation: two-point  crossover
strategy[24] is adapted in this paper. Firstly, two integers
 

Algorithm 1    Framework of DL-AMA
Input: Population size: Pop_size; max generation: Max_gen;

number of robots: N; solution dimension (number of
surveillance targets): M; crossover probability: Pc

Output: Surveillance paths of all robots: {l1, l2,..., lN}
1 Initialize Population Pop
2 for gen = 1 to Max_gen do
3 for i = 1 to Pop_size/2 do
4 dad, mom = Tournament_selection(Pop)
5 if random() <Pc then

/ * Two-point crossover */
6 cut1, cut2 = random_int(1, M−1)
7 child1 = concatenate(dad(0:cut1),

mom(cut1:cut2), dad(cut2:M))
8 child2 = concatenate(mom(0:cut1),

dad(cut1:cut2), mom(cut2:M))
9 end

10 child ← child1,child2
11 end
12 for j = 1 to Pop_size do
13 tm = task_level_local_search(child(j,:),Ptm)
14 pm(j,:) = path_level_local_search(tm, Ppm)
15 end
16 Pop = Population_Update(pm, Pop)
17 Ptm, Ppm = Adaptive_scheme(gen, Max_gen)
18 end
 

 

(1) Solution of continuous algorithms
Point 1

1 2 4 5 6 8 1.1 1.2 1.5 1.6 1.7 1.9

2.23 7 2.4

2 3 4 5 6 7 8
Value 1.6 1.2 2.4 1.9 1.7 1.1

1

2 2 37

1 1 1 1 1 6 2 8 1 5 4

2.2 1.5

Path

Path

Round value

Round value

Point

Point

Original value

Original value

(2) Assign by round value (3) Sort by original value
Robot 1

Robot 2 Robot 2

Robot 1

 
Fig. 2    Encoding strategy for multi-robot surveillance.
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cut1 cut2
M−1

cut1 cut2

 and  are randomly generated from the range of
1  to  as  two  intersection  points,  and  then  the
fragments  of  to  from  the  father  and  mother
are  exchanged  with  each  other,  while  the  rest  remains
unchanged;

Ptm

N

5-th

(4)  Task-level  local  search: The  task  assignment
level local search is as shown in Algorithm 2, for each
dimension  of  the  solution  vector,  a  probability 
exists  to  randomly  generate  a  new  value  within  the
range of 1 to . If the newly generated random number
differs from the original value after floor rounding, the
corresponding  surveillance  target  allocation  will
change.  This  process  leads  to  a  reassignment  of
surveillance  targets  among  the  robots,  aiming  to
explore  more  potential  surveillance  target  allocation
schemes.  An  example  operation  is  shown  in Fig.  3,
where the value 1.7 in the  position of the solution
vector  is  replaced by a  randomly generated new value
2.3, consequently, the corresponding surveillance target
is reassigned from being allocated to Robot 1 to being
allocated to Robot 2.

(5) Path-level local search: The path planning level
local  search  is  as  shown  in  Algorithm  3.  The  local
search strategy begins by decoding the solution vector
to obtain the surveillance paths of each robot. Then, for

li Ppm

cut1 cut2 |li| |li|

cut1 cut2

each path , there is a probability  to generate two
random integers  and  from 1 to ,  where 
is the number of targets in the surveillance path of the
robot.  Subsequently,  the  sequence  between  positions

 and  in  the  solution  vector  is  reversed,
resulting in a new visiting sequence. This process aims
to  explore  better  surveillance  paths  for  each  robot
without  altering  the  surveillance  point  allocation
scheme. An example is illustrated in Fig. 4, the path of
Robot  1  is  mutated,  where  the  sequence  between
Position  2  and  Position  5  is  reversed,  after  the  local
search  operation,  the  surveillance  path  of  Robot  1  is
changed from {6-2-8-1-4} to {6-4-1-8-2};

(6) Population update: The survivor process selects
the  worst  individual  out  of k-way  individuals
(tournament  selection)  and  compares  it  with  child
individuals.  The  better  individual  will  be  kept  for  the
next generation.

(7)  Adaptive  scheme: The  above  local  search
probability  significantly  influences  the  final  solution.
In  the  task  assignment  level  local  search  strategy,  the
local search probability should be increased in the early
stages  to  explore  more  promising  task  assignment

 

Algorithm 2    Task-level local search strategy
Input: Child solution after crossover: child; number of

robots: N; solution dimension (number of
surveillance targets): M

Output: Operated solution tm
1 for i =1 to M do
2 if random() < Ptm then
3 tm(i) = random_int(1, N)
4 else
5 tm(i) = child(i)
6 end
7 end

 

 

Algorithm 3    Path-level local search strategy
Input: Solution after task level local search: tm; number

of robots: N; solution dimension (number of
surveillance targets): M

Output: Operated solution pm
1 l1, l2,..., lN = decoding(tm)
2 for i =1 to N do
3 if random() <Ppm then
4 cut1, cut2 = random_int(1, |li|)
5 invert_path = invert(tm(cut1, cut2))
6 li′ = concatenate(li(0:cut1), invert_path, li(cut2:))
7 else
8 li′ = li

9 end
10 end
11 pm = encoding(l′1, l′2,..., l′N)
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Fig. 3    Task assignment level local search.

 

(1) Solution of continuous algorithms
Point 1

1.6 1.2 1.9 1.5

44 11 88 22

2 3 4 5 6 7 8

Value

Path Path

Path

66

Value 1.1 1.2 1.5 1.6 1.9 1.1 1.2

2.2 2.3 2.42.2 2.3 2.4

1.5 1.6 1.9Value

Value

Path 7 5 3 7 5 3

Value

2.4 2.3 1.1 2.2

Robot 1 Robot 1

Robot 2Robot 2

Random<ppm

Random<ppm

 
Fig. 4    Path planning level local search.
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schemes. However, in the later stages, the local search
probability  should  be  reduced  to  provide  a  stable
assignment plan for route planning. Similarly, the local
search  probability  at  the  route  planning  level  should
gradually  increase  during  the  iteration  process  to
enhance  the  local  paths  for  each  robot.  This  approach
aims  to  strike  a  balance  between  exploration  and
exploitation,  allowing  the  algorithm  to  find  better
solutions  by  exploring  different  possibilities  while
exploiting  the  gained  knowledge  during  the
optimization process.  The variation process of the two
local search probabilities with the iterations is shown in
Eqs. (13) and (14), respectively.
 

Ptm = 0.05−0.04×
√

gen
max_gen

(13)

 

Ppm = 0.01+0.05×
(

gen
max_gen

)2

(14)

4    Numerical Experiment

In  this  section,  we  will  verify  the  effectiveness  of  the
proposed  method  through  comparative  experiments
with  other  methods  on  different  numbers  of
surveillance targets and robot scales.

4.1    Experimental setup

For the experimental setup for multi-robot surveillance
scenarios,  we selected three  problem instances  labeled
eil51,  eil76,  and  eil101  from the  TSPLIB[25] database.
These  instances  serve  as  the  basis  for  our  multi-robot
surveillance environments. The number of surveillance
target  points  in  three  instances  are  51,  72,  and  102,
respectively.  All  instances  share  a  common scene  size
of  70  m  ×  70  m.  Moreover,  we  conducted  tests  with
different  scales  of  robot  teams  to  perform  the
surveillance  task,  including  2,  4,  6,  and  8  robots.
Regarding  the  algorithm  configurations,  we  opted  for
two  state-of-the-art  algorithms:  the  physics-based
algorithm  equilibrium  optimizer  (EO)[26] and  the
swarm-based  algorithm  harris  hawks  optimization
(HHO)[27].  Both  algorithms,  introduced  in  2020  and
2019,  respectively,  have  demonstrated  superior
performance  and  attracted  considerable  attention  and
research. Additionally, we also introduced two classical
swarm-based  algorithms,  PSO[28] and  grey  wolf
optimization (GWO)[29] for comparative purposes.

Th

As  for  the  parameter  settings,  the  objective  weights
and task assignment and route planning were set as 0.2
and  0.8,  respectively.  The  task  load  difference
threshold, ,  was  configured  to  0.5.  In  addition,  the

Pccrossover probability  in our proposed algorithm was
set  at  0.95,  and  the  adaptive  local  search  probability
followed  the  formulation  in  Eq.  (13).  All  the
comparative  algorithms  were  executed  using  the
Mealpy library[30] with default parameters. The Python
module  Mealpy  incorporates  various  population-based
meta-heuristic  techniques.  Furthermore,  all  algorithms
employ  a  population  size  of  200  and  a  maximum
iteration count  of  500,  and each problem instance was
independently  run  for  20  repetitions  to  ensure  the
robustness and reliability of the results.

4.2    Experimental result

We  initially  evaluated  our  proposed  methods  with
different  numbers  of  surveillance  targets. Figure  5
shows  the  convergence  curves  of  each  algorithm  in
scenarios  where  the  robot  team  size  is  4  and  the
number  of  surveillance  targets  is  51,  76,  and  101,
respectively. From Fig. 5, it is evident that our method
outperforms  others,  notably  surpassing  the  second-
ranked  EO  algorithm.  Specifically,  our  proposed
method excels in obtaining superior surveillance target
allocation  schemes  early  in  the  algorithm  iteration.  It
further  optimizes  the  local  surveillance  paths  of  each
robot  in  the  later  stages  of  iteration,  ultimately
converging  to  a  significantly  low-cost  function  value
for the multi-robot surveillance task.

To delve deeper into the performance of the proposed
method  concerning  three  performance  metrics—task
energy  consumption,  task  completion  time,  and  task
allocation  uniformity—we  also  recorded  the  total
length  of  surveillance  paths  (Total),  the  maximum
surveillance  path  length  (Max),  and  the  variance  of
surveillance  path  lengths  among  robots  (Std).  The
results  are  displayed  in Table  1 (Note  that  the  best
results  among these  methods  are  marked  in  boldface).
From Table 1, it  is apparent that our proposed method
outperforms  other  algorithms  in  terms  of  energy
consumption, task completion time, and task allocation
uniformity when solving multi-robot surveillance tasks.
Furthermore, as the number of surveillance task points
increases  while  maintaining  a  constant  number  of
robots,  both  the  total  length  of  surveillance  paths  and
the  maximum  surveillance  path  length  among  robots
(i.e., task completion time) also increase. Although the
difference in task load between different  robots shows
an upward trend, the increase is relatively gradual.

Moreover,  we  conducted  tests  to  assess  the
performance  of  the  proposed  method  under  the  same
number of surveillance points with varying robot team
sizes. Figure  6 illustrates  the  comparative  results  of
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each  algorithm  across  three  performance  indicators
when the number of surveillance targets is fixed at 51,
and  the  robot  team  size  varies  between  2,  6,  and  8.
From Fig.  6,  it  is  evident  that,  in  comparison  to  other
methods,  our  proposed  method  consistently  achieves
the  surveillance  target  allocation  scheme  with  the
lowest task load difference across different robot team

sizes.  Additionally,  our  method  demonstrates
superiority  in  terms  of  energy  consumption  and  task
completion  time,  as  evidenced  by  achieving  both  the
shortest  total  surveillance  path  length  and  the  shortest
maximum  surveillance  path  length  simultaneously.
Furthermore,  it  was  observed  that  with  a  constant
number of surveillance targets, as the size of the robot
team  increases,  the  total  surveillance  path  length  and
task  load  difference  among  robots  exhibit  a  slight
increase,  while  the  maximum  surveillance  path  length
gradually  decreases.  This  trend  is  attributed  to  the
increasing  robot  team  size,  the  average  number  of
surveillance  targets  allocated  to  each  robot  decreases.
Consequently, both the task load and surveillance path
length  for  each  robot  decrease.  This  collaborative
approach  among  multiple  robots  enhances  efficiency
and reduces task completion time.

4.3    Effectiveness  of  dual-level  local  search  and
adaptive scheme

To  validate  the  effectiveness  of  the  dual-level  local
search  strategy  and  adaptive  probability  scheme,  we
conducted  ablation  experiments.  We  compared  our
proposed  adaptive  dual-level  local  search  strategy-
based  memetic  algorithm  (referred  to  as  DL-AMA)
with an adaptive MA lacking the task assignment level
local search strategy (referred to as No-tm), an adaptive
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Fig. 5    Mean convergence curves of the compared algorithms.

 

Table 1    Performance of different methods on three metrics
(Total: Sum length of all the robot surveillance paths; Max:
Maximum  length  among  all  surveillance  paths;  Std:
Standard deviation of all the surveillance paths).

Instance Method Total (m) Max (m) Std (m)

eil51

PSO 1377.16 383.11 34.24
EO 700.19 207.21 24.65

HHO 1303.59 350.39 22.80
GWO 1241.11 340.494 24.90

DL-AMA 463.22 125.85 9.22

eil76

PSO 2248.62 634.695 50.05
EO 1234.04 366.056 41.54

HHO 1792.01 571.978 44.3
GWO 1794.21 538.94 34.43

DL-AMA 620.07 165.92 9.04

eil101

PSO 3142.63 849.4 51.91
EO 1745.96 502.86 45.01

HHO 2799.43 793.97 54.07
GWO 2493.61 816.83 61.71

DL-AMA 771.53 209.81 14.12
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MA  without  path  planning  level  local  search  strategy
(referred to as No-pm), and the dual-level MA without
an  adaptive  scheme  (referred  to  as  DL-MA,  with  the
local  search  probability  of  both  set  to  0.025).  The
comparative  results  for  multi-robot  surveillance
scenarios involving four robots surveilling 51,  76,  and
101 target points are presented in Table 2 (Note that the
best  results  among  these  methods  are  marked  in
boldface).

From Table 2, it can be seen that the MA with both a
dual-level local search strategy and an adaptive scheme
performs the best in task allocation uniformity, energy
consumption,  and task completion time.  Among them,
the  adaptive  MA  without  task  assignment  level  local
search  strategy  exhibits  the  poorest  performance,  and
this gap further expands as the number of surveillance
targets  increases.  This  highlights  that  task  assignment
plays a crucial role in multi-robot surveillance. If there
is  no  excellent  global  allocation  scheme  in  advance,
even  the  best  local  path  planning  can  achieve  poor
comprehensive  performance.  The  importance  of  task
allocation  becomes  more  prominent  when  the  task
scale  expands,  i.e.,  when  the  number  of  surveillance
targets or robot team size expands. In addition, we also
noticed  that  the  absence  of  an  adaptive  local  search
probability strategy can lead to a decrease in the quality
of planning results. As we mentioned before, there are

fluctuations  in  the  importance  of  task  allocation  and
path  planning  throughout  the  optimization  process  for
multi-robot surveillance. In the early stages, global task
assignment  holds  more  importance,  while  in  the  later
stages, local path planning becomes more crucial. This
emphasizes  the  need  to  quickly  acquire  suitable
surveillance  target  allocation  in  the  initial  phase  to
establish  a  stable  global  task  assignment  environment
and  enhance  the  quality  of  local  route  planning  in  the
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Fig. 6    Performance of the compared algorithms when a fixed number of targets surveilled by different robot team sizes.

 

Table  2    Performance  of  proposed  method  with  different
strategies  on  three  metrics  (Total:  Sum  length  of  all  the
robot  surveillance  paths;  Max:  Maximum length  among  all
surveillance  paths;  Std:  Standard  deviation  of  all  the
surveillance paths).

Instance Method Total (m) Max (m) Std (m)

eil51

No-tm 775.39 217.95 17.27
No-pm 469.65 126.51 7.69
DL-MA 464.23 126.47 8.34

DL-AMA 463.22 125.85 9.22

eil76

No-tm 1131.57 310.5 21.49
No-pm 634.12 172.79 11.43
DL-MA 629.84 173.10 10.70

DL-AMA 620.07 165.92 9.04

eil101

No-tm 1386.04 386.64 30.34
No-pm 787.12 214.80 13.75
DL-MA 848.64 234.65 18.62

DL-AMA 771.53 209.81 14.12
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later stages of optimization.
Furthermore, we conducted a Friedman test on these

results  to  gain  a  more  distinct  understanding  of  the
comprehensive  performance  of  each  strategy.  As
depicted  in Fig.  7,  the  results  align  with  the
aforementioned  findings.  The  adaptive  MA  with  both
strategies consistently achieves the lowest overall rank
and the best performance. It is followed by the adaptive
MA  without  path  planning-level  local  search  strategy,
while  the  adaptive  MA  lacking  task  assignment-level
local search strategy ranks the highest and exhibits the
poorest performance.

5    Simulation Experiment

To  verify  the  effectiveness  of  DL-AMA  under  the
practical  motion  control  of  the  robot,  we  further
conducted  simulation  experiments. Figures  8a and 8b
show  the  robot  simulation  model  and  the  simulated
surveillance  environment,  respectively.  The  robot
model  is  the  Agilex  robot  of  type  Huntese  2.0,
equipped with Livox solid-state lidar, RealSense depth
camera,  and  a  vision-enhanced  fusion  sensor  RTK
containing  an  embedded  camera  and  IMU,  which  can
continuously  provide  high-precision  positioning
information  even  in  environments  without  GNSS

signals for a long time. The simulation environment is
built  in  Gazebo,  with  51  surveillance  targets  statically
distributed  in  a  35×35  m2 grid,  similar  to  eil51.  The
control,  navigation,  and  communication  modules  for
the  robot  were  based  on  the  robotic  operating  system,
and  the  maximum  velocity  for  all  robots  was  set  to
2 m/s.

We  conducted  simulation  tests  on  scenarios  with
robot  team  sizes  of  2,  6,  and  8.  The  simulation  video
can  be  seen  on  https://youtu.be/X9EebjDKemc.  The
final  surveillance  trajectories  of  each  robot  are  shown
in Fig.  9.  It  can  be  observed  that  for  different  robot
team  sizes,  the  established  multi-robot  surveillance
optimization  model  can  evenly  allocate  non-
overlapping  surveillance  targets  to  each  robot.  This
allocation  strategy  effectively  mitigates  task  load
differences  and  minimizes  mutual  interference  among
robots.  Furthermore,  in  terms  of  path  planning,  the
model  successfully  generates  concise  surveillance
paths  for  each  robot  to  traverse  their  assigned  targets,
contributing  to  the  reduction  of  energy  consumption
and  task  completion  time.  In  addition, Table  3 also
records  information  about  trajectory  lengths  and  task
completion  time.  From  the  results,  as  the  number  of
robots  performing the surveillance task increases from
2  to  8,  the  maximum  trajectory  length  gradually
decreases. With the speed remaining constant, the task
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(a) Robot model (b) Simulated surveillance
environment 

Fig. 8    Simulation case built in Gazebo.

 

(a) 2 robots (b) 6 robots (c) 8 robots 
Fig. 9    Simulated trajectories for 51 target points patrolled by different robot team sizes.
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completion  time  also  gradually  decreases,
corresponding to a decrease from 110 s to 40 s in this
simulation.

6    Conclusion

In  this  study,  we  delved  into  the  challenges  posed  by
multi-robot  surveillance.  To  tackle  the  fundamental
issues  of  task  assignment  and  path  planning  in  multi-
robot surveillance, we initially devised a mathematical
optimization  model  that  carefully  considers  the
objectives  and  constraints  associated  with  both  task
assignment  and  path  planning.  Subsequently,  we
implemented  an  encoding  strategy,  enabling  a
continuous  evolutionary  algorithm  to  concurrently
address  the  task  assignment  and  path  planning
problems. This encoding approach entails rounding and
sorting  operations  on  the  continuous-valued  solution
vector,  providing  essential  information  for  both  task
assignment  and  path  planning.  In  conclusion,  to
effectively  address  the  multi-robot  surveillance
problem, we introduced an adaptive memetic algorithm
founded on a dual-level local search strategy. Through
comparative experiments involving various robot team
sizes  and  numbers  of  surveillance  targets,  ablation
experiments  exploring  the  proposed  strategies,  as  well
as  simulated  experiments,  we  validated  the  feasibility
and efficacy of our approach.

In future research endeavors, we aim to explore more
intricate  multi-robot  surveillance  problems  and
enhance  the  efficiency  and  solution  quality,  especially
in scenarios involving larger surveillance target scales.
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