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Abstract: As an emerging technology, digital twin is expected to bring novel application modes to the whole life

cycle  process  of  unmanned  ground  equipment,  including  research  and  development,  design,  control

optimization,  operation  and  maintenance,  etc.  The  highly  dynamic,  complex,  and  uncertain  characteristics  of

unmanned  ground  equipment  and  the  battlefield  environment  also  pose  new  challenges  for  digital  twin

technology.  Starting  from  the  new  challenges  faced  by  the  digital  twin  of  unmanned  ground  equipment,  this

paper designs a service-oriented cloud-edge-end collaborative platform architecture of the digital  twin system

of unmanned ground equipment, and further analyzes several key technologies supporting the implementation

of the platform architecture.
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1    Introduction

The  future  war  will  evolve  in  the  direction  of
unmanned  and  intelligent,  and  a  large  number  of
unmanned  equipment  will  be  put  into  use  in  the
battlefield,  which  will  bring  profound  changes  to  the
future combat mode. Using ubiquitous communication
network  to  connect  unmanned  equipment  to  a  unified
combat  cloud  platform  in  real  time  can  effectively
promote the realization of new strategic tactics such as
battlefield  global  perception,  real-time  intelligent
decision-making,  multi-service  wide-area  cooperative
combat,  and  unmanned  cluster  distributed  combat.  At
present,  countries  are  also  actively  promoting  the
development of  various types of  unmanned equipment

such  as  Unmanned  Ground  Vehicle  (UGV),  aerial
drones,  offshore  unmanned  boats,  and  underwater
unmanned  equipment.  Actually,  UGV  is  a  kind  of
Unmanned  Ground  Equipment  (UGE),  except  which
UGE still includes various of unmanned ground robots
or complex mechanical and electrical equipment. UGE
is  an  important  unmanned  combat  force  deployed  on
the  ground  battlefield.  The  research  and  development
of  UGE  is  more  difficult  than  other  unmanned
equipment,  because  the  ground  environment  is  more
complex  than  the  sea  or  air,  where  the  unmanned
equipment needs to have strong all-terrain adaptability.
At  present,  most  of  the  ground  unmanned  combat
equipment  requires  soldiers  to  control  through  the
terminal, and the level of intelligence and autonomy is
relatively  low.  How  to  develop  and  design  high-
performance  autonomous  UGE  that  adapts  to
battlefield  changes,  and  verify  its  combat  capability
efficiently  and  quickly,  so  that  it  can  quickly  deploy
troops and give full play to its potential is an important
technical issue that all countries are concerned about.

In  recent  years,  digital  twin  has  been  widely
discussed  as  an  emerging  hot  topic.  Starting  with  the
digital twin of the manufacturing industry, followed by
medical,  energy,  defense  and  others,  a  new  wave  of
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digital twins has also been set off. For the definition of
digital  twin,  different  industries  and  institutions  are
slightly  different.  Actually,  digital  twin  refers  to  the
digital  model,  which  can  evolve  dynamically  in  real
time  to  represent  the  physical  entity  credibly.  The
application  based  on  digital  twin  refers  to  a  series  of
activities carried out by using digital twin to feed back
to  physical  asset,  such  as  state  monitoring  based  on
digital  twin,  fault  diagnosis  based  on  digital  twin,
predictive  control  based  on  digital  twin,  decision
support  based  on  digital  twin,  etc.  With  the  rapid
development  of  Modeling  and  Simulation  (M&S)
technology,  sensing  technology,  Internet  of  Things
technology,  communication  technology,  high-
performance  computing  technology,  and  artificial
intelligence  technology,  digital  twin  has  gradually
moved from the vision blueprint to the real world, and
people  are  full  of  expectations  for  the  industry
innovation and disruptive development that digital twin
will  bring.  As  a  new  concept  and  technology,  digital
twin  has  aroused  extensive  discussion  in  the  industry
on  how  to  enable  the  whole  life  cycle  of  the
development, use, and maintenance of UGE.

Different  from  other  equipment,  the  demand  for
flexibility and strong intelligence of UGE, the dynamic
and uncertain characteristics of battlefield environment
also  bring  new  challenges  to  the  digital  twin
technology of UGE.

(1)  Faced  with  the  challenges  of  the  complexity
and  uncertainty  from  the  battlefield  environment.
The  battlefield  environment  is  complex,  including
electromagnetic  interference,  enemy fire  strike,  and so
on. The road condition fluctuates greatly and there are
many  occasional  obstacles.  Thus,  UGE  digital  twin
needs  to  use  real-time  multi-source  sensing  data  to
understand  these  changes.  The  battlefield  situation  is
rapidly  changing,  and  the  dynamic  and  uncertain
characteristics  are  prominent,  which  puts  forward
higher  requirements  for  the  rapid  perception  and
intelligent cognitive ability of the digital twin.

(2) Faced with the frequent changes in the state of
UGE  and  its  vulnerability  to  severe  challenges. In
the  service  stage,  due  to  the  changes  in  the  battlefield
environment  and  the  attack  of  the  enemy,  UGE  may
encounter different degrees of performance degradation
and battle damage at any time. Digital twin needs real-
time  credible  feedback  of  the  real  state  of  the
equipment, which puts forward higher requirements for
the  dynamic  interactivity  and  dynamic  evolution  of
digital twin.

(3) Faced with the challenge of real-time decision-
making  of  complex  tasks. The  battlefield  situation  is
rapidly changing and complex. In many cases, the UGE
needs  to  make  real-time  decisions  considering  the
battlefield situation,  process large volume of data,  and
computation  in  a  short  time,  and  obtain  the  optimal
mission  planning,  which  poses  a  challenge  to  the
architecture  and  capabilities  of  the  digital  twin
platform.

(4)  Faced  with  the  challenge  of  flexible
configuration  and  fast  deployment  of  different
functional  modules. For  example,  the  transportation
unmanned  equipment  can  be  quickly  upgraded  to  the
fire support unmanned equipment. The UGE also needs
to  have  the  ability  of  continuous  self-learning.  Its
perception  algorithm  and  control  algorithm  need  to
support online rapid upgrade, which also provides new
challenges for the digital twin of UGE.

(5)  Faced  with  the  challenge  of  service-oriented
ability  to  adapt  to  multiple  needs. The  UGE  has
different  requirements  for  digital  twin  applications  at
different  stages of  the whole life  cycle.  It  is  necessary
to design a  service-oriented,  customized,  scalable,  and
extensible digital twin architecture to meet the needs of
different  departments  for  digital  twins  in  different  life
cycle stages of unmanned equipment.

In  order  to  effectively  mitigate  the  aforementioned
challenges,  this  paper  proposes  a  UGE  digital  twin
platform framework  based  on  cloud-native  technology
and  service-oriented  design  principles,  and  analyzes
several  key  supporting  technologies  of  digital  twins
from  the  perspective  of  model  engineering.  The
proposed  architecture  and  method  leverage  the
advantages  of  cloud-edge  collaborative  computing,
enabling  the  dynamic  evolution  of  UGE digital  twins,
which helps  represent  real  states  of  UGE credibly and
support  for  rapid  and  accurate  decision-making  to
address  the  complexities  and  uncertainties  of  changes
on  the  battlefield.  Leveraging  cloud-native
technologies,  we  can  easily  realize  rapid  and
personalized  construction,  configuration,  deployment,
and updating of digital twin applications of UGE. So as
to  effectively  meet  the  demands  of  UGE  for  multi-
scenario  personalized  services  and  rapid  adaptability
capability on the battlefield.

2    Related Work

Joint  Global  Command  and  Control  System  (JADC2)
is  a  new  combat  concept  and  plan  for  future  wars
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proposed by the US Department of Defense in response
to the opponent’s  anti-intervention and regional  denial
capabilities.  The  US  Army’s  JADC2  strategy  aims  to
integrate multi-domain combat forces of sea,  land, air,
and  space  to  form  a  network,  increase  operational
flexibility, and adapt to the requirements of distributed
operations  (mosaic  warfare).  It  includes  three  core
enabling  technologies,  artificial  intelligence,  combat
cloud,  and  communication  technology.  The  core  is  to
establish  the  digital  twin  of  the  battlefield,  virtualize
each  combat  unit  (equipment,  even  personnel)  on  the
front  line,  and  connect  it  to  the  combat  cloud.  With
each  combat  unit,  the  sensor  is  connected  to  each
shooter  on  the  front  line,  and  the  combat  forces  are
gathered  quickly  and  flexibly  to  form  a  mesh  killing
chain,  which  effectively  consumes  and  blocks  the
enemy.  Digital  twin  technology  is  the  core  of  JADC2
strategy. It uses a wide-area universal sensor system to
establish  a  digital  twin  model  of  the  battlefield.  With
the  help  of  a  new  generation  of  artificial  intelligence
and  machine  learning  technology,  it  can  quickly
capture  key  situation  information  from  real-time
massive  battlefield  ISR  data,  help  commanders  make
rapid  decisions,  and  quickly  update  combat  plans  and
commands to any weapon equipment on the front line.
Obviously,  the  star  chain  program  that  SpaceX  is
actively  building  will  provide  a  solid  communication
foundation  for  the  implementation  of  the  JADC2
strategy.  Its  global,  fast  reconnaissance,  surveillance,
and  communication  relay  capabilities  will  become  a
powerful tool for the US military to build a digital twin
battlefield.

Michael  Griffin,  deputy  secretary  of  Defense
Research  and  Engineering,  issued  the “Department  of
Defense  Digital  Engineering  Strategy” on  25  June
2018, which aims to guide the planning, development,
and  implementation  of  the  entire  Department  of
Defense  digital  engineering  transformation.  The
strategy  points  out  that  digital  technology  has
completely  changed  the  business  of  most  major
industries and our personal life activities. By improving
computing  speed,  storage  capacity,  and  processing
power,  digital  engineering  has  given  a  paradigm  shift
from  the  traditional “design-build-test” method  to  the
“model-analysis-build” method.  This  approach  allows
the Department of Defense to build prototypes, conduct
experiments and tests, support decisions and determine
solutions in a virtual environment before delivering the
project  to  combatants.  And  digital  twin  technology  is

incorporated into one of the supporting technologies of
digital engineering strategy.

NVIDIA builds a twin environment of the city based
on  Omniverse’s  unmanned  development  platform,
DRIVE  Sim  and  DRIVE  Map,  which  is  used  to
develop  and  verify  the  ability  of  unmanned  vehicle
intelligent  algorithms.  The  core  is  that  the  driverless
scene can be reconstructed at any time according to the
scenario,  and the required sensor data can be obtained
to optimize the driverless algorithm. NVIDIA twins the
city’s  road  network,  including  road  details,  and  uses
artificial  intelligence.  The  method  simulates  the
behavior of other vehicles at intersections or in extreme
cases,  and  also  establishes  a  database  collected  from
real  vehicle  sensor  data,  such  as  on-board  driving
recorders.

In  China,  with  the  vigorous  development  of
intelligent  manufacturing,  many  experts  and  scholars
have focused on the related concepts and technologies
of  digital  twin,  and  many  of  them  have  begun  to  pay
attention to the application of digital twin technology in
the field of national defense. Among them, the concept
of “parallel  system” proposed  by  Zhang  et  al.[1] has
many  conceptual  and  technical  similarities  with  the
concept  of  digital  twins.  It  emphasizes  the  integration
and  symbiosis  of  the  virtual  world  and  the  physical
world,  and  finally  predicts  and  controls  the  actual
system  through  the  artificially  constructed  virtual
system.  Under  the  guidance  of  parallel  system theory,
domestic  scholars  have carried out  related research on
the application of parallel system in military system-of-
systems  combat  training  and  parallel  simulation[2].  In
particular,  the  China  Industry  4.0  Research  Institute
released  the “Digital  Twin  Defense  White  Paper” in
2021,  emphasizing  the  great  application  potential  of
digital  twin  as  a  disruptive  technology  in  future
defense,  and  summarizing  three  important  research
areas,  the  digital  twin  battlefield,  digital  twin
equipment,  and  digital  twin  training.  Reference  [3]
expounded  the  important  progress  made  by  the  US
military in the field of equipment digital twin in recent
years, including ADT (fuselage digital twin), F35, and
“Aegis” project,  and  pointed  out  that  digital  twin  will
be  one  of  the  core  supporting  technologies  for  future
intelligent warfare.

In  addition,  domestic  universities  and  research
institutes  represented  by  Beihang  University  and
National  University  of  Defense  Technology  have
relevant  research  progress  in  the  fields  of  unmanned
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equipment  digital  twin  platform,  digital  twin  battle
damage  assessment  system,  digital  twin  military
deduction  training,  and  etc.[3−11] Among  them,  Li  et
al.[4] proposed  a  five-layer  macro  framework  for  the
application  design  of  digital  twin  technology  in  the
military  field,  which  are  the  entity  layer,  the
transmission layer, the data layer, the service layer, and
the  application  layer.  However,  the  implementation
details  and  core  technologies  are  not  specific  enough,
and there is a lack of specific practice guidance for the
digital twin platform of UGE. Song et al.[6] established
a  special  digital  twin  platform  for  battlefield  damage
assessment.  The  reference  platform  highlights  the
dynamic interaction between the digital twin model and
the  physical  equipment  entity  and  the  closed-loop
optimization  characteristics.  It  focuses  on  the  data
collection and analysis capabilities of the data layer and
the  analysis  and  decision-making  capabilities  of  the
application  layer.  However,  due  to  the  focus  on  the
battle  damage  assessment  scenario,  the  digital  twin
application scenarios of other UGE are not involved. In
Ref.  [7],  a  digital  twin platform for unmanned combat
systems was designed, and an online learning algorithm
based  on  random  finite  set  was  proposed.  The
algorithm  can  use  real-time  collected  sensor  data  to
learn and predict the motion mode and trajectory of the
UGV  online.  It  is  an  important  tool  for  sensing  the
battlefield  environment.  Similarly,  it  focuses  on  the
combat  scenario.  The  construction  and  simulation  of
complex  models  and  decision  support  algorithms  are
not  described.  Therefore,  the  platform  is  not  easy  to
extend  to  other  stages  such  as  Research  &
Development  (R&D)  stage,  maintenance  application,
and training of unmanned equipment.

3    Cloud-Edge-End  Collaborative  Platform
for  Unmanned  Ground  Equipment
Digital Twin

Considering  the  characteristics  of  the  digital  twin  of
UGE  and  the  new  challenges  it  faces,  this  paper
designs a service-oriented cloud-edge-end collaborative
digital  twin platform architecture that tries to meet the
various  requirements  of  UGE.  The  architecture  relies
on the native cloud technology system[12, 13],  takes the
digital  twin  of  battlefield  environment  and  the  digital
twin of UGE as the starting point, deeply integrates the
cloud  resource  aggregation  ability,  the  edge  side
flexible  deployment  ability,  and  the  end  side  fast
response ability, and systematically analyzes. Then, we

summarize  various  key  technologies  suitable  for  the
development and design of the digital twin of UGE and
the  whole  life  cycle  application,  which  need  to  be
further broken through.

As shown in Fig. 1, the digital twin platform of UGE
designed in this paper includes three levels: cloud, edge
side,  and  end  side  from  top  to  bottom.  The  cloud  is
divided  into  twin  platform  infrastructure  layer,  twin
model development layer, and twin application service
layer.  The  user  of  the  cloud  includes  stakeholders,
UGE  design  and  manufacturing  team,  cloud  service
management and maintenance team, etc. The cloud is a
powerful  resource  pool,  and  it  is  also  a  collaborative
design,  service encapsulation,  and release platform for
digital twin applications of UGE.

The edge side refers to the computing node deployed
in  the  decentralized  combat  unit  near  the  UGE.  Its
users  should  be  the  command  center  of  each  combat
unit  on  the  front  line.  The  cloud  and  edge  sides  are
deployed  with  container  engines  and  corresponding
orchestration tools to facilitate the rapid migration and
deployment of digital twin applications encapsulated in
a service-oriented form. The edge side can apply to call
the  mature  applications  in  the  cloud  resource  pool  at
any  time,  and  quickly  form  a  customized  twin
application scenario through rapid orchestration.

The  end/terminal  side  mainly  refers  to  the  onboard
control  platform  of  the  UGE.  Through  the  perception
and  action  execution  components  of  the  UGE  on  the
control  platform,  the  basic  information  collection  and
perception  functions  could  be  completed  so  as  to
guarantee  that  tasks  could  be  performed  according  to
the decision.

The  edge  side  can  complete  the  deployment  of
control and decision-making algorithms with high real-
time  requirements,  while  the  cloud  can  support  large-
scale  training  and  updating  tasks  of  perception  and
decision-making  algorithms.  Through  the  effective
collaboration  of  cloud-edge-end,  the  digital  twin
platform  can  satisfy  various  complex  requirements
during the whole lifecycle of UGE.

3.1    Cloud twin infrastructure layer

This  layer  is  the  resource  support  layer  to  realize  the
digital  twin  platform,  which  mainly  includes  various
resources  for  platform  storage,  computing,
communication,  and  security.  The  storage  resources
mainly  include  various  types  of  databases.  The
equipment digital twin will generate a large amount of
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Fig. 1    Cloud-edge-end collaborative platform for unmanned ground equipment digital twin.
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stream  data  in  real  time.  The  well-designed  stream
database can efficiently process various types of stream
data  (such  as  Kafka).  It  also  includes  various  models,
knowledge  relational  databases,  and  historical
databases  of  various  types  of  equipment.  Computing
resources  include  high-performance  CPU  and  GPU
clusters  to  meet  the  needs  of  real-time  large-scale
computing  and  environmental  rendering  of  the  digital
twin  platform.  Communication  resources  are  used  to
support  low-latency  and  fast  communication  between
twin  platforms  and  physical  equipment.  It  integrates
satellite  communication,  Internet,  5G,  WiFi,  Wireless
Sensor  Networks  (WSN),  ad  hoc,  light  network,  and
other  communication  methods  that  can  be  applied  to
different  scenarios  to  adapt  to  the  dynamic  battlefield
environment.  The  security  resources  are  mainly  to
ensure  the  operation  security,  network  security,
confidentiality,  and  other  requirements  of  the  entire
twin  system,  including  various  information  encryption
technologies,  blockchain  technology,  backup
technology, etc., to ensure the resilience and anti-attack
ability of the platform operation.

3.2    Cloud twin model development layer

The  twin  model  development  layer  is  used  to  build
various types of digital twins. It is the core of the entire
digital  twin  cloud  platform,  providing  a  variety  of
environments,  tools,  and  components  needed  to
develop  digital  twin  models.  The  twin  model
development  layer  deploys  the  container  runtime
environment  and  the  Kubernetes  (K8s)  container
orchestration  environment,  which  is  responsible  for
controlling the scheduling and deployment of resources
required  for  container  operation  and  network
communication  based  on  proxy  mode.  The
development  layer  also  includes  development
components  such  as  development  process  database,
equipment  model  database,  battlefield  environment
database,  domain  knowledge  database,  and  code
library,  which  are  used  to  support  the  reuse,
reconstruction,  and  combination  of  models.  The  twin
model  development  layer  divides  the  development
process of digital  twin of UGE into three steps,  which
are  twin  model  construction,  simulation  solution,  and
decision support. The respective key techniques will be
discussed in the next part of this paper.

3.3    Cloud twin application layer

This  layer  is  responsible  for  providing  various  typical
applications  developed  and  integrated  by  the  twin

model  development  layer  and  based  on  the  service
encapsulation  of  container  technology,  such  as  digital
twin  applications  for  UGE  R&D  and  testing,  digital
twin  applications  for  UGE  capability  verification,
digital twin applications for UGE training and teaching,
and digital twin applications for UGE operations.

Next, the structure and function modules of the edge
side  are  introduced.  Compared  with  the  complex
development  environment  and  tool  components  of  the
cloud  platform,  the  structure  and  function  of  the  edge
side  are  relatively  simple.  The  main  purpose  of  the
edge  side  is  to  initiate  a  service  request  to  the  cloud
according to the specific demand scenario, and quickly
complete  the  deployment  to  meet  the  needs  of  digital
twin  real-time  and  personalized  service  for  unmanned
ground equipment.

The edge side also deploys a container orchestration
and  operating  environment  consistent  with  the  cloud.
From  the  bottom  up,  it  includes  the  edge  digital  twin
platform infrastructure layer, the edge twin application
operating  environment  layer,  and  the  edge  twin
application  deployment  and  management  layer.  The
infrastructure  layer  contains  basic  stream  data
processing  databases  for  real-time  interaction  with
unmanned  ground  equipment,  basic  computing
hardware  resources,  and  network  and  system  security
components.  The  application  environment  layer
deploys  container  operating  environments,  such  as
Docker and container orchestration environment K8s.

By  building  a  cloud-consistent  operating
environment,  the  deployment  and  migration
capabilities of cloud applications are greatly facilitated,
and the continuous delivery and maintenance of digital
twin  applications  can  be  realized.  It  is  convenient  for
the  upgrade  of  digital  twin  model  software  and
algorithms,  which  also  makes  edge-side  applications
have  fault  tolerance,  disaster  preparedness,  and  elastic
scalability.  It  improves  the  adaptability  of  the  UGE
digital  twin  platform  in  complex  and  dynamic
battlefield  environment.  The  application  deployment
and  management  layer,  mainly  includes  the  rights
management,  service  request,  and  application
management  functions,  through  this  layer,  the  edge
side  can  control  the  permission  and  version  of
application download and deployment request from the
cloud,  and  manage  the  update  and  upgrade  of
applications and routine maintenance.

Finally,  it  is  the  end  side,  which  refers  to  the
structure  and  function  module  of  the  UGE  vehicle
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onboard  control  platform.  Its  main  task  is  to  be
responsible  for  the  perception,  acquisition,  and
transmission  of  real-time  sensing  data  of  physical
entities  and  the  reception,  and  transmission  and
execution  of  optimal  control  commands  from  the
direction  of  digital  twin  platform.  In  the  digital  twin
scenario  of  UGE,  the  sensing  access  layer  mainly
includes two tasks. On one hand, it is the perception of
battlefield environment entities, and on the other hand,
it  is  the  perception  of  the  state  and  performance  of
UGE.

4    Key  Supporting  Technology  for  the
Platform

The construction of  the digital  twin platform for  UGE
described  above  requires  the  support  of  many  key
technologies.  From  the  perspective  of  model
engineering,  it  is  necessary  to  consider  the  key
technologies of the four stages, model building, model
using,  model  evaluation,  and  model  management,
respectively. There has been many research progress in
the above related technologies in the field, but they are
still  in  the  initial  stage  on  the  whole.  There  are  still
many tough problems that  need  to  be  broken through,
and  a  complete  technical  system  has  not  yet  been
formed. In the following, this paper will summarize the
key  technologies  that  support  the  realization  of  the
functional  modules  of  the  designed  digital  twin
platform  for  UGE,  and  point  out  the  shortcomings  of
various  key  technologies  and  the  future  development
direction.

Here,  only  the  key  technologies  that  are
representative and need to be developed and improved
to solve the various challenges faced by the digital twin
of  UGE  described  in  this  paper  are  selected.  Sections
4.1−4.5 correspond to the twin building module of the
proposed cloud twin model development layer in Fig. 1
and  Sections  4.6  and  4.7  correspond  to  the  simulation
module  and  decision  module  of  the  cloud  twin  model
development layer, respectively.

4.1    Digital twin basic model building technique for
UGE

The  digital  twin  basic  model  of  UGE  refers  to  the
digital  model  that  has  not  yet  participated  in  the
evolution on a certain time slice. In order to distinguish
it from the dynamic evolution characteristics of digital
twin,  it  is  called  the  digital  twin  basic  model.
Establishing  the  digital  twin  basic  model  of  UGE

requires  various  advanced  modeling  and  simulation
technologies.  The current field can be roughly divided
into  three  technical  categories,  namely,  mechanism-
driven  modeling  technology,  data-driven  modeling
technology,  and  mechanism  and  data  hybrid-driven
modeling technology, as described below.

(1)  The  mechanism  model  is  also  known  as  the
mathematical  model  established  by  the “first
principle”.  Its  construction  depends  on  the  mature
mathematical  theory  of  various  disciplines,  which  is
manifested  as  complex  differential  equations,  partial
differential  equations,  etc.  It  is  the  most  widely  used
modeling  and  simulation  method  in  multi-domain
simulation software. However, many parameters in the
model  are  difficult  to  obtain  directly,  and  a  large
number  of  parameter  identification  experiments  are
needed.  Moreover,  the  mathematical  equation  of  the
mechanism  model  is  fixed,  and  its  adaptive  ability  is
limited.  It  cannot  adapt  to  the  simulation  in  complex
uncertain  environments,  and  the  digital  model
constructed by it is difficult to perform real-time online
evolution. The commonly used parameter identification
methods  in  the  field  include  unscented  Kalman  filter
method,  particle  filter  method,  heuristic  optimization
algorithm,  etc.[14, 15],  but  these  methods  cannot  get  rid
of the tedious computational complexity.

(2)  Data-driven  modeling  technology  is  an  end-to-
end  black-box  modeling  technology  that  mines  fixed
patterns and associations from system input and output
data.  Common  data-driven  modeling  methods  include
machine  learning  related  methods  (Support  Vector
Machine  (SVM),  decision  tree,  ensemble  learning,
etc.), deep learning related methods (Long Short-Term
Memory  (LSTM),  Recurrent  Neural  Network  (RNN),
Gated  Recurrent  Unit  (GRU),  Temporal  Convolution
Network  (TCN),  Autoencoder,  etc.),  probabilistic
statistical  modeling  methods  (dynamic  Bayesian
network,  Markov  Chain  Monte  Carlo  (MCMC),  etc.),
and  traditional  system  identification  methods  (Neural
Network  Autoregressive  with  Exogenous  Input
(NNARX),  Auto  Regressive  Moving  Average
(ARMA),  etc.)[16−19].  In  general,  the  dynamic  data-
driven  model  has  poor  interpretability,  generalization,
and  robustness,  and  there  are  still  bottlenecks  in  the
application  of  industrial  fields  with  high  reliability
requirements.

(3)  The  hybrid-driven  modeling  technology  of
mechanism and data fully integrates the interpretability
of  mechanism  modeling  and  the  powerful  fitting  and
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representation  ability  of  data-driven  modeling.  It
studies how to integrate prior knowledge into the data-
driven  black  box  model,  which  makes  the  black  box
model  more  credible  and  enhances  its  generalization
ability.  It  also  greatly  accelerates  the  convergence
speed  of  the  black  box  model  and  reduces  the  huge
amount of data that  its  training relies on,  for example,
typical  Physics  Informed  Neural  Network  (PINN),
Physics Guided Neural Network (PGNN), Neural ODE
(NODE)[20−23], and so on. However, this field is still in
the stage of exploration and development,  and there is
no  mature  theoretical  framework  and  application
practice.  How  to  integrate  credible  prior  knowledge
into data-driven models is still a problem that needs to
be overcome.

4.2    Digital  twin  dynamic  rapid  reconstruction
technology for battlefield environment

Constructing  the  digital  twin  of  the  battlefield
environment is of great significance for the digital twin
of  the  equipment  to  play  a  role.  Dynamic  rapid
reconstruction  of  battlefield  environment  digital  twin
refers  to  the  rapid  modeling  or  reconstruction  of
dynamic  battlefield  environment  model,  including  3D
geographic  environment,  personnel  equipment,  and
other key elements, by using the existing model library
and  real-time  updated  environmental  sensor  data.  For
example,  the  mission  planning  of  the  UGE  needs  to
refer  to the twin model  of  the battlefield environment.
At  present,  the  construction of  battlefield  environment
model  is  a  concrete  analysis  of  the  specific  situation.
Usually, Remote Sensing, Global Position System, and
Geographic  Information  System  (3S)  technology  is
used  to  explore  and  map  the  actual  environment  to
obtain  standard  data,  and  then  a  model  is  formed
through  a  lot  of  development  work  of  professionals.
The  battlefield  environment  model  constructed  in  this
way  is  not  only  time-consuming  and  labor-intensive,
but  also  difficult  to  reuse.  When  the  real  battlefield
environment changes, it is inevitable to increase a lot of
secondary  development  work.  The  real  battlefield  has
the  characteristics  of  diverse  terrain,  changeable
weather,  dynamic  time,  complex  electromagnetic
environment,  and  the  uncertainty  of  human  activities,
which puts forward an urgent need for the digital twin
dynamic  reconstruction  technology  of  battlefield
environment.

Aiming  at  the  digital  twin  dynamic  reconstruction
technology of battlefield environment, it is necessary to
tackle  key  problems  from  two  aspects.  The  first  is  to

develop  a  meta-model  construction  method  and  basic
model  library  for  modern  battlefield,  which  is
convenient  to  inherit  the  meta-model  template
according  to  the  specific  needs  of  the  battlefield,  and
quickly  customize  the  development  of  real-time
battlefield  environment.  The  general  battlefield
includes  three  types  of  elements:  our  equipment  and
situation,  enemy  equipment  and  situation,  and
battlefield three-dimensional scene.

The  second  is  to  deeply  study  the  intelligent  3D
scene  reconstruction  technology  based  on  deep
learning. With the help of the trained intelligent vision
algorithm, the collected 2D image information and the
image  depth  information  (point  cloud,  etc.)  collected
by  3D  sensors  (such  as  Light  Detection  and  Ranging
(LiDAR),  Time  of  Flight  sensor  (ToF),  etc.)  can  be
used  to  quickly  and  automatically  generate  high-
fidelity fine-grained 3D scene content. There are many
good  algorithms  in  the  field,  but  there  are  still  many
problems to be overcome from the digital twin dynamic
reconstruction  of  battlefield  environment.  It  mainly
includes  3D  reconstruction  technology  of  large-scale
outdoor  weak  texture  scene,  high-precision  3D
reconstruction  of  large  scene  with  detail  preservation,
lightweight  environment  characterization  technology
adapted to battlefield game and communication limited
environment,  and multi-agent  collaborative multi-node
map  verification  and  fusion  technology.  Breaking
through the above key technologies plays an important
role  in  promoting  the  implementation  of  digital  twin
dynamic  reconstruction  technology  in  battlefield
environment.

4.3    Digital  twin  dynamic  real  time  evolution
technology for UGE

Dynamic  evolution  characteristics  are  an  important
feature of  the digital  twin model  that  is  different  from
the traditional simulation model.  How to use real-time
sensor data to correct the twin model online and in real
time to make it consistent with the internal mechanism
of  physical  objects,  such  as  performance  degradation
and model structure change, is the core issue that needs
to be studied[24−26].

It is a very difficult task to establish an online digital
twin  model  that  can  adapt  to  dynamic  evolution,
especially for the system model with high complexity.
At  present,  the  related  theories  and  methods  of
incremental  learning,  lifelong  learning,  continuous
learning  or  transfer  learning  in  the  field  of  deep
learning,  and  the  related  theories  of  dynamic  data-
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driven application system in the field of modeling and
simulation  can  provide  corresponding  reference  and
guidance for evolution modeling.

Life-long  learning  and  other  related  theories  are
aimed at continuously learning the implicit  knowledge
in  new  samples  without  forgetting  the  domain
knowledge  that  the  network  has  learned,  so  that  the
model  continues  to  evolve  and grow,  and increasingly
adapts to the sample and label distribution on the target
domain[27].  The  theory  of  dynamic  data-driven
application  system  is  essentially  an  extension  of
Bayesian  statistical  theory.  Its  core  technology  lies  in
various  filtering  algorithms.  Through  the  real-time
acquisition  of  new  data,  the  prior  estimation  is
continuously  corrected  to  obtain  a  more  accurate
probability  distribution  model,  so  as  to  predict  the
system  behavior[28].  Similar  theories  include  deep
Markov  model,  Variational  Autoencoders  (VAE),  etc.
According  to  different  digital  twin  needs,  different
evolution  modeling  methods  can  be  selected  to
establish different types of models.

In terms of the implementation framework of digital
twin  dynamic  real  time  evolution,  it  can  be  briefly
divided  into  three  steps.  The  first  is  data  acquisition
and  preprocessing.  According  to  modeling
requirements and engineering practice, the observation
variables  are  determined,  many  sensors  are  deployed
scientifically, real-time operation data of equipment are
obtained,  and  data  are  preprocessed  such  as  singular
value  processing,  time  alignment,  noise  reduction
filtering,  etc.,  for  subsequent  use.  The  second  is  the
determination  of  dynamic  evolution  triggering
mechanism.  Evolution  triggering  mechanism is  a  very
important step for digital twin model to realize adaptive
online  evolution,  which  determines  the  instant  of
evolution.  It  can  be  further  divided  into  three
categories:  periodic  time  triggering  mechanism,  non-
periodic  event  triggering  mechanism,  and  hybrid
triggering mechanism. It  is  necessary to  determine the
evolution  triggering  mechanism  according  to  the
background and real-time requirements of the problem.
The  third  is  the  design  of  the  real-time  evolution
algorithm. If the self-evolution is triggered, digital twin
model  will  evolve  itself  using  real-time  sensor  data
driven  by  the  evolution  algorithm,  such  as  commonly
used  gradient  descent  in  deep  learning,  variational
inference  in  deep  Markov  models,  heuristic
optimization  algorithms  in  parameter  identification,
and so on.

4.4    Rapid  model  combination  and  reuse
technology for UGE digital twin

Rapid  model  combination  and  reuse  is  one  of  the  key
technologies  for  UGE  digital  twin  construction.  Its
purpose is to semi-automatically or automatically reuse
existing  components  from  the  combination  model
library  according  to  specific  task  scenarios,  reuse
previous domain knowledge, and quickly complete the
configuration of digital twin models[29]. This paper tries
to  break  through  the  rapid  combination  and  reuse
technology of model, mainly from two aspects. One is
the  support  of  model  running  environment.  Using  the
native  cloud  technology  described  above,  the
developed model  is  service-oriented encapsulated,  and
the  unified  container  running  engine  is  configured,
which can easily migrate and deploy the application of
digital  twin  model.  In  addition,  the  container
orchestration  technology  can  easily  realize  the
integration  of  different  applications,  which  is
conducive to the integrated simulation of cross-domain
cross-platform heterogeneous models.

The  second  is  the  description  of  digital  twin  meta-
model.  The  meta-model  is  a  higher-level  formal
description  of  the  complex  model  structure.  The
internal  logical  relationship  between  complex  model
components is  expressed.  It  can be said that  the meta-
model  is  a  knowledge  graph  that  realizes  model
combination  and  reuse  (including  reconstruction).  At
present,  the  SysML  language  is  widely  used  in  the
field.  SysML  describes  the  system  components,
architecture, behavior, and correlation through multiple
sets  of  views  such  as  requirements,  structure,  and
behavior.  In  particular,  Beihang  University  proposed
the  design  of  Model-Based  System  Engineering
(MBSE)  oriented  complex  product  modeling  and
simulation  integrated  language-X  language[30],  which
can make up for the lack of SysML language that does
not  support  simulation  and  lay  the  foundation  for  the
localization of system-level modeling language. It is of
great  significance  to  promote  the  rapid  combination
and  reuse  of  models  for  digital  twins  by  deeply
studying the meta-model design and syntax, semantics,
pragmatics  standards,  and  specifications  of  digital
twins for UGE and battlefield environment.

4.5    Dynamic  credibility  evaluation  technology  of
digital twin

Credible  digital  twin  can  play  its  application  value.
Untrustworthy digital  twin can not  only bring positive
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value but also bring devastating damage to equipment.
However,  in  the  current  field,  it  is  not  comprehensive
and scientific to consider the credibility evaluation only
from the  perspective  of  the  fidelity  of  the  twin  model
shape and the output of the twin model simulation data.
The  credibility  of  the  digital  twin  should  be  analyzed
and  studied  in  a  specific  demand  scenario  from  a
unified  perspective  of  the  whole  life  cycle  of  the  twin
model development. The perfect theory and method of
equipment  digital  twin  credibility  evaluation  can  not
only  evaluate  the  constructed  digital  twin  afterwards,
but  also provide guidance for  the  construction process
of digital twin.

The  credibility  evaluation  of  equipment  digital  twin
system  is  different  from  the  credibility  in  the  field  of
traditional  modeling  and  simulation.  This  difference
mainly  comes  from  the  essential  characteristics  of
digital twin, which is mainly reflected in the following
aspects.  Firstly,  the  object  of  credibility  evaluation  of
equipment  digital  twin  system  is  not  only  the  digital
twin  model  of  equipment,  but  also  the  physical  entity
of equipment, which constitutes a symbiotic system. In
addition,  the  equipment  digital  twin  has  the
characteristics  of  dynamic  real-time  evolution,  an
important  feature  of  digital  twin  different  from
traditional modeling and simulation.  The credibility of
the  evolution  mechanism  itself  will  directly  affect  the
credibility  of  the  digital  twin  model.  The  dynamic
evolution  characteristics  of  the  whole  life  cycle  of  the
equipment  digital  twin  require  that  its  credibility
evaluation  should  also  be  dynamic.  Obviously,  the
digital  twin  is  a  time-varying  digital  model,  and  its
credibility  evaluation  results  have  timeliness,  finally,
the  equipment  digital  twin  has  multi-dimensional
characteristics. Due to the complexity of the equipment
itself,  its  digital  twin  must  have  multi-disciplinary,
multi-physical,  multi-granularity,  and  multi-scale
characteristics.  Its  credibility  evaluation  should  fully
consider  the  internal  correlation  coupling  mechanism
of  the  equipment  and  conduct  a  comprehensive
evaluation from a multi-dimensional perspective.

4.6    Efficient  simulation  solution  technology  for
UGE digital twin

Different  from  traditional  modeling  and  simulation,
digital  twin  puts  forward  high  requirements  for  the
real-time performance of online simulation. In order to
meet  the  requirements  of  real-time  performance,  it  is
necessary  to  make  efforts  in  communication

technologies, such as 5G, 6G, and other new generation
communication  technologies.  It  is  also  necessary  to
make  efforts  at  the  hardware  level  supporting
distributed high-performance computing (such as high-
performance  GPU  computing  cluster).  In  addition,  a
very  important  key  technology  is  the  efficient
simulation solution technology for digital twin. Digital
simulation solution is essentially a process of computer
numerical  solution.  In  addition  to  the  hardware
performance  of  the  computer  itself,  the  efficiency  of
numerical solution is mainly determined by two major
factors. One is the complexity of the simulation model
itself,  and  the  other  is  the  calculation  mode  of
numerical  solution.  To  break  through  the  efficient
simulation  solution  technology  for  digital  twin,  we
should mainly focus on the above two points. Here, we
mainly  describe  the  model  reduction  technology  and
numerical  solution  mode  to  reduce  the  complexity  of
the model.

Model reduction, simply speaking, is to simplify the
model  and reduce the amount  of  calculation under  the
premise  of  ensuring  the  setting  accuracy.  Common
model  reduction  methods  can  be  divided  into  four
categories:  time  domain,  frequency  domain,  time-
frequency domain,  and intelligent  optimization theory.
This  paper  focuses  on  the  new  generation  of  artificial
intelligence  technology  in  intelligent  optimization
methods.  Using  the  powerful  fitting  and
characterization capabilities of deep neural networks, it
can  fit  many  complex  partial  differential  equations
(such  as  common  heat  conduction  equations,  Navier-
Stokes  turbulence  equations,  etc.).  The  calculation
method of neural network linearization can greatly save
calculation  time  and  efficiency.  The  hot  PINN
technology  in  the  current  field  is  a  typical
representative  of  this  type  of  technology.  The  famous
finite  element  simulation  software  provider  Ansys
claims to also use artificial neural networks to achieve
model  reduction,  which  can  achieve  digital  twin-level
real-time finite element simulation.

The new numerical solution mode also points out the
way for the efficient simulation solution technology for
digital  twins.  In  recent  years,  thanks  to  the  efficient
parallel  solution  ability  of  GPU  for  matrix  operation,
deep  learning  technology  has  developed  by  leaps  and
bounds.  Further  discussion  on  how  to  apply  GPU
parallel  computing  capabilities  to  scientific  computing
fields  such  as  differential  equations  or  partial
differential  equations  solving,  and  designing  novel
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cloud-edge  collaborative  parallel  and  efficient
computation  framework  will  greatly  benefit  the
development  of  digital  twin  technology.  In  addition,
the CPU numerical solution mode currently dependent
on  the  X86  architecture  is  transferred  to  the  Field
Programmable  Gate  Array  (FPGA)  chip,  thereby
improving the computational efficiency, which has also
received  extensive  attention  from  the  industry.
However,  due  to  the  limitations  of  memory  and
computational  theory,  the current  maturity is  not  high.
The  next  generation  of  computers  based  on  quantum
physics also opens up the way for people to update the
computational  mode.  The  birth  of  quantum computers
in  the  future  may  push  the  digital  twin  to  another
climax.

4.7    Cloud-edge-end collaborative online intelligent
control  and  decision-making  technology  for
UGE combat

The  digital  twin  models  of  equipment,  people,  and
environment  in  the  battlefield  are  connected  to  the
combat  cloud platform, and the battlefield digital  twin
model  can  be  further  formed.  Based  on  the  battlefield
digital  twin  model,  the  tasks  of  battlefield  situation
perception  and  strategic  and  tactical  deduction  can  be
further completed. In the future, due to the continuous
improvement  of  the  level  of  informatization,
networking,  and  intelligence,  the  rhythm  of  the  war
will  gradually  accelerate.  The  battlefield  form  will
change  rapidly,  and  a  large  amount  of  data  will  be
generated in the short term. The commander may need
to respond quickly in a few seconds, which will bring a
big  challenge  to  the  commander.  The  use  of  artificial
intelligence  means,  based  on  the  powerful  computing
and  solving  ability  of  the  computer,  can  assist  the
commander  to  make  decisions  quickly,  and  find  the
optimal  or  sub-optimal  combat  plan.  And  the
unmanned  combat  cluster  can  even  be  taken  over  by
the  cloud  brain  to  perform  specific  tasks  through
distributed  online  control,  such  as  cluster  raids  on
designated  targets  and  remote  assistance  fire  strikes.
This  is  so-called  UGE  online  intelligent  control  and
decision-making  technique  based  on  battlefield  digital
twin.

Based on the battlefield digital  twin model,  with the
help of artificial intelligence technologies such as deep
learning  and  reinforcement  learning,  the  virtual-real
symbiosis  and  closed-loop  optimization  of  the  entire
battlefield  digital  twin  system  can  be  formed.  The
current  field  can  provide  guidance  and  reference  for

online  intelligent  control  and  decision-making
optimization  technology  based  on  digital  twin.  It  is
mainly  composed  of  the  following  types  of
technologies,  machine  vision-driven  situation
awareness  technology,  using  feature  extraction
capabilities  such  as  graph  neural  network  and
convolutional  neural  network  to  perceive  the  changes
and  characteristics  of  the  enemy’s  combat  mode,  and
make  advanced  predictions  on  its  future  operational
capabilities and combat intentions. Deep reinforcement
learning  and  heuristic  multi-objective  optimization
algorithm-driven optimization techniques, aiming at the
NP-hard  problem  of  combinatorial  optimization,  use
reinforcement  learning  algorithms  or  heuristic
optimization  algorithms  to  search  for  the  optimal
solution  that  satisfies  the  established  constraints  from
the feasible solution space.

Using  the  battlefield  digital  twin  model,  it  is
expected  to  generate  new  tactical  strategy  creatively
and  break  through  the  original  cognitive  limit.  The
distributed  adaptive  control  technology  of  unmanned
cluster  realizes  the  model  predictive  control  of
unmanned  equipment  cluster  based  on  digital  twin,
which  helps  unmanned  cluster  realize  self-organizing
and  adaptive  behavior  ability  for  given  tasks.
Knowledge reasoning technology based on knowledge
graph  formalizes  expert  experience  knowledge,
constructs knowledge graph for target tasks, and finally
forms  knowledge  reasoning  engine  to  help
commanders  complete  problem  analysis  and  plan
recommendation.  Of  course,  the  above  technologies
need  to  be  further  developed  in  terms  of  real-time
performance,  interpretability,  universality,  robustness,
and  credibility  in  order  to  truly  empower  the  online
intelligence and control technology of battlefield digital
twins.

In  summary,  a  reasonably  designed  cloud-edge-end
collaborative  digital  twin  platform  architecture,  and
well  developed  above  advanced  support  technology
research, will effectively respond to the new challenges
faced  by  UGE  digital  twin,  such  as  complex
environment,  drastic  changes,  rapid  decision-making,
and others as described before.

However,  the  existing  technologies  still  have
limitations.  In  terms  of  digital  twin  basic  model
building,  it  has  been  found  in  practice  that  the  digital
twin dynamic system model of UGE developed in data-
driven  modeling  manner  such  as  neural  networks  still
have  problems  including  poor  robustness  and  poor
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generalization  capability.  How  to  effectively  integrate
the discipline mechanism and prior knowledge into the
data-driven  model  is  still  an  urgent  problem  to  be
solved.  In  terms  of  real-time  3D  reconstruction  and
situational  awareness  of  battlefield  environment  task,
the distributed accurate perception and effective fusion
of  multi-source  and  multi-modal  data  based  on  the
coordination  of  UGE  still  have  shortcomings,
especially in the scenario of game confrontation, which
is  vulnerable  to  interference  conditions  such  as
incomplete  information  acquirement  and  limited
communication resource.

In view of the challenges of frequent or even drastic
changes  with  unmanned  ground  equipment,  the
existing  model  adaptive  dynamic  evolution
technologies are only applicable to the situations where
equipment  is  subjected  to  small-scale  changes  such  as
wear  and  working  condition  changes.  Whereas,  for
large-scale  behavior  changes  of  unmanned  ground
equipment,  we  can  only  try  to  reconstruct  the  digital
twin model. Under this circumstance, it is necessary to
rely  on  the  MBSE  methodology  and  software  tools
with  machine  automatic  reasoning  and  optimization
capability.

In  view  of  the  dynamic  credibility  evaluation  of
digital twins, it is still difficult to design a digital twin
evaluation  system  that  can  truly  support  dynamic
online credibility evaluation. This difficulty stems from
two  aspects.  One  is  the  lack  of  recognition  of  the
concept  of  credibility  of  digital  twins.  Another  is  the
dynamic evolution characteristics of digital twin, which
blurs  the  line  between  model  construction  stage  and
model using stage.

In terms of the simulation solution engine for digital
twin,  the  development  of  a  simulation  engine  that  can
simultaneously  support  the  solution  of  AI  algorithms
such  as  deep  neural  networks,  and  efficient  parallel
solution of complex differential and partial differential
equations/groups  will  provide  guarantee  for  the
operation of the entire digital twin system.

For  the  decision  support  of  unmanned  ground
equipment based on digital twins, based on the credible
digital  twin  model,  we  can  make  use  of  advanced
artificial  intelligence  methods  including  deep
reinforcement  learning  to  carry  out  intelligent
inference,  optimization,  and  other  activities  in  virtual
space.  However,  how  to  design  the  interaction
mechanism  between  decision  optimization  algorithm
and  unmanned  ground  equipment  digital  twin  system,

including  interoperable  interface,  super  real-time
simulation  time  management,  new  and  old  algorithm
update  exchange  mechanism,  etc.,  still  needs  a
complete theoretical and technical study.

5    Main Workflow of Proposed UGE Digital
Twin Platform

Figure  2 shows  the  workflow  of  the  digital  twin
platform  architecture  proposed  in  this  paper,  which  is
briefly analyzed below. Figure 2a shows the workflow
of  digital  twin  service  requests,  personalized  service
customization,  and  application  deployment  for  UGE.
Users  determine  the  digital  twin  application  to  be
deployed  based  on  the  specific  requirements  firstly.  If
the relevant  digital  twin application can be queried on
the  cloud  platform,  the  user  at  the  edge  side  can
directly initiate a service request to the cloud platform
and then realize rapid deployment of application. After
deployment,  the  application  is  connected  with  the
actual  UGE  through  the  sensor  network,  private
network,  etc.,  to  build  a  complete  digital  twin
application  system,  and  further  realize  the  dynamic
evolution  of  the  digital  twin  through  cloud-edge
collaborative  computing.  If  users  are  unable  to  find
relevant  applications  that  can  be  directly  deployed  on
the  cloud  platform,  they  can  leverage  existing  model
library  components  in  the  cloud  to  rapidly  develop
customized  digital  twin  applications  according  to  the
development mode of microservices.

Figure  2b shows  the  implementation  of  building
complex  fundamental  models  of  UGE  through  cloud
native  technology.  Using  the  twin  model  development
layer  tool  of  the  proposed  framework,  simulation
models of specific scenarios and fields of UGE can be
built  respectively  and  encapsulated  in  containers.  For
example,  if  we  try  to  build  UGE digital  twin  for  path
planning, we can respectively build environment rapid
reconstruction  service  application,  UGE  dynamics
simulation  application,  UGE  electrical  power
simulation  application,  UGE  control  decision
application, etc. These applications are finally managed
through  Kubernetes  container  orchestration  tool,
including mutual communication, interoperability, time
synchronization,  and  event  advancement  among
containers.  Finally,  the  personalized  digital  twin
application  of  UGE  can  be  built.  After  that,  the
customized  UGE  digital  twin  application  is  migrated
from the  cloud to  the  designated working node on the
edge  side,  and  is  connected  with  the  actual  ground
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unmanned  equipment  to  build  a  complete  digital  twin
system.

Figure  2c describes  the  workflow  of  the  dynamic
evolution  of  UGE  digital  twins  in Fig.  2a.  Dynamic
evolution  is  the  core  feature  of  digital  twins,  which  is
of  great  significance  to  credibly  reflect  the  battlefield
environment  and the  actual  state  of  UGE in  real  time.
In  this  paper,  a  cloud-edge  collaborative  approach  is
adopted  to  realize  the  dynamic  evolution  of  digital
twins. As shown in Fig. 2c, the digital twin application
deployed  at  the  edge  side  consists  of  two  modules,
digital  twin  model  and  twin-based  application,  which
realize  state  perception  and  fast  decision-making
through  real-time  interaction  with  the  physical  entity.
When  the  digital  twin  finds  the  abnormal  deviation
between  itself  and  the  physical  entity,  dynamic
evolution  operation  is  triggered.  The  powerful
computing  resources  and  real-time  evolution  tools  on
the  cloud  are  invoked  to  update  the  digital  twin  and
related  applications,  and  the  updated  relevant
parameters  and  components  will  be  overloaded  on  the
edge side.

Above  all,  the  service-oriented  cloud-edge-end
collaborative  UGE  digital  twin  platform  framework,
key  supporting  technology,  and  related  workflow
designed  in  this  paper  based  on  the  cloud  native
concept can well cope with the challenges of the UGE
digital twin described above.

6    Conclusion

Unmanned  ground  equipment  will  play  a  huge  role  in
future wars, and the development of digital twin related
technologies  will  play  an  active  role  in  the  whole  life
cycle  of  research  and  development,  operation  and
maintenance,  and  command  and  operation  of
unmanned  ground  equipment.  This  paper  summarizes
and  analyzes  the  new  challenges  faced  by  the  digital
twin  technology  of  UGE,  and  briefly  analyzes  the
essence  of  digital  twin  technology.  On  this  basis,  a
service-oriented  cloud-edge-end  collaborative  digital
twin  platform  architecture  for  UGE  is  designed  and
proposed.  Finally,  the  key technologies  of  digital  twin
for  UGE  supporting  the  realization  of  platform
functions are analyzed.
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