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Abstract: Remanufacturing is  regarded as a  sustainable  manufacturing paradigm of  energy conservation and

environment  protection.  To  improve  the  efficiency  of  the  remanufacturing  process,  this  work  investigates  an

integrated scheduling problem for disassembly and reprocessing in a remanufacturing process, where product

structures  and  uncertainty  are  taken  into  account.  First,  a  stochastic  programming  model  is  developed  to

minimize  the  maximum  completion  time  (makespan).  Second,  a  Q-learning  based  hybrid  meta-heuristic  (Q-

HMH) is specially devised. In each iteration, a Q-learning method is employed to adaptively choose a premium

algorithm from four candidate ones, including genetic algorithm (GA), artificial bee colony (ABC), shuffled frog-

leaping algorithm (SFLA),  and simulated annealing (SA) methods. At  last,  simulation experiments are carried

out  by  using  sixteen  instances  with  different  scales,  and  three  state-of-the-art  algorithms in  literature  and  an

exact solver CPLEX are chosen for comparisons. By analyzing the results with the average relative percentage

deviation  (RPD)  metric,  we  find  that  Q-HMH  outperforms  its  rivals  by  9.79%−26.76%.  The  results  and

comparisons verify the excellent competitiveness of Q-HMH for solving the concerned problems.
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1    Introduction

As the fast  growth of economy and the quick advance
of  technology,  a  great  many  of  products,  e.g.,
electronics  and  automobiles,  are  rapidly  updated,  and

their lifecycle becomes shorter[1]. Consequently, a vast
quantity  of  end-of-life  (EOL)  products  are  flooding
into our environments at  an unprecedented rate.  In the
case  that  these  products  are  directly  cast  away,  they
will  cause  severe  environment  contamination  and
massive  resource  waste[2].  Remanufacturing  is  treated
as a promising way to achieve recycling usage of EOL
products[3].  It  can  enable  products  to  achieve  the  best
performance  and  life  requirements  with  less
environment  pollution,  higher  resource utilization,  and
lower production cost[4, 5].

Remanufacturing  concentrates  on  transforming  EOL
products  to  like-new  circumstances  by  using
disassembly,  reprocessing,  and  reassembly
operations[6].  In  a  remanufactured  system,  EOL
products  are  dismantled  into  multiple  components
along  with  inspection  operations  at  the  disassembly
shop.  Subsequently,  the  dismantled  components  are
recovered  via  reconditioning  operations  at  the
reprocessing shop. At last,  the repaired components, if
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required,  are  further  reassembled  into  remanufactured
products  at  the  reassembly  shop.  Production  planning
and scheduling are very important to improve operation
efficiency  of  manufacturing  and  remanufacturing
processes[7−9]. Over the last years, many researchers are
dedicated  to  independently  scheduling  the
disassembly[10],  reprocessing[11],  and  reassembly
shops[12]. Noteworthily, to find a universal optimization
of the three shops, a few studies propose an integrated
method to schedule the three shops together[13−15].

In  practical  remanufacturing  processes,  we  must
obey product structures when performing disassembly,
reprocessing,  and  reassembly  operations.  By  making
full  analysis  on  existing  work  regarding
remanufacturing scheduling problems, we discover that
product  structures  are  fully  considered  in  the
disassembly  process.  Yet,  rare  attention  is  devoted  to
taking  such  inherent  characteristics  into  account  in
solving  integrated  remanufacturing  scheduling
problems. Besides, although meta-heuristics are widely
employed  to  address  such  difficult  scheduling
problems,  a  hybridization  of  meta-heuristic  and
reinforcement learning methods does not draw concern.

As  an  assembly  operation  of  products  in
manufacturing  processes  which  must  follow  the
product  structures[12],  obeying  EOL product  structures
in  a  remanufacturing  process  is  very  essential  to  find
feasible  and  performable  decisions.  Thus,  the  product
structures  must  be  followed  when  we  address
integrated  remanufacturing  scheduling  problems.
Usually,  it  ought  to  remanufacture  multiple  EOL
products during a planning period, and thus we have to
disassemble  them  obeying  their  product  structures
simultaneously  in  a  remanufacturing  process.
Generally,  we  are  knotty  to  gain  precise  conditions  of
EOL  products,  such  as  depreciation  and  wear,  since
their  diverse  usage  circumstances,  causing  that  the
remanufacturing  process  cannot  be  implemented  as
planned. Thus, we must consider such uncertainties in a
remanufacturing  process[16−19].  This  work  focuses  on
the disassembly and reprocessing operations under the
circumstances that the remanufactured components are
sold  to  downstream  customers  rather  than  are
reassembled  into  new  products  immediately.  In  fact,
the  investigated  problem  widely  exists  in  practical
remanufacturing  systems,  e.g.,  a  vehicle  engine
remanufacturing  process.  In  practice,  many  engines
from EOL vehicles are recycled, and then are delivered
to  a  remanufacturing  system.  They  are  disassembled
into multiple components, e.g., crankshafts, camshafts,

cylinder  blocks,  and  cylinder  heads,  in  a  disassembly
shop  with  identical  workstations.  Subsequently,  these
components  are  reprocessed  by  a  series  of  operations,
such  as  cleaning,  inspecting,  and  reconditioning,  in  a
reprocessing  shop  including  parallel  flow-shop-type
reprocessing lines. At last, the repaired components are
sold  separately  or  reassembled.  A  manager  needs  to
make  disassembly  and  reprocessing  scheduling
schemes  in  disassembly  and  reprocessing  shops
together  to  achieve  an  overall  optimization.  Thereby,
this  research  addresses  an  integrated  scheduling
problem of  disassembly  and  reprocessing  processes  to
achieve  minimal  makespan,  where  product  structures
and uncertain operation time are fully considered. A Q-
learning  based  hybrid  meta-heuristic  (Q-HMH)  is
specially  developed  by  combining  effective  search
algorithms  to  find  satisfaction  solutions.  Through
performing  comparisons  between  this  research  and
previous work, we make the following contributions:

(1) A stochastic programming model is formulated to
achieve  minimal  expected  maximum  completion  time
(makespan)  by  considering  product  structures  and
random processing time.

(2) In the proposed algorithm, a Q-learning method is
employed  to  adaptively  select  the  premium  search
algorithm in each iteration.

(3)  A  stochastic  simulation  method  is  incorporated
into  the  search  process  to  assess  the  performance  and
feasibility of acquired solutions.

The remainder of this article is structured as: Section
2 briefly sums up relevant research. Section 3 states the
considered  issue  along  with  formulizing  it.  Section  4
presents the optimization approach. Section 5 performs
comparative  experiments  and  analyzes  attained
findings.  Lastly,  Section  6  epitomizes  this  article  and
explores the subsequent directions.

2    Literature Review

2.1    Related work

Over  the  last  years,  many researchers  are  dedicated to
modeling  and  optimization  of  remanufacturing
scheduling  problems[20].  They  concentrate  on
enhancing  operational  efficiency  of  disassembly,
reprocessing,  and  reassembly  processes  from  the
perspective of independence and integration.
2.1.1    Scheduling only one shop
Recently,  many  studies  are  proposed  to  make  optimal
disassembly  decisions  by  employing  limited  resources
to optimize given criteria. Two important optimization

  Fuquan Wang et al.:   A Q-Learning Based Hybrid Meta-Heuristic for Integrated Scheduling of Disassembly... 185

 



problems,  i.e.,  disassembly  sequence  planning
problems  (DSPPs)  and  disassembly  line  balancing
problems  (DLBPs),  are  addressed  to  find  disassembly
sequence  following  product  structure  constraints.  Yet,
nearly all existing studies concentrate on disassembling
only  one  product.  Liang  et  al.[21] developed  a  marine
predators method combining a stochastic simulation to
solve  a  DSPP  with  achieving  disassembly  profit
maximization  in  consideration  of  noise  contamination
and  energy  consumption.  Fu  et  al.[22] studied  a  DSPP
with operation failures to realize maximal disassembly
revenue  and  minimal  energy  consumption  by
employing  a  multiverse  optimization  method.  Yu
et  al.[23] addressed  a  DSPP  to  realize  minimal  energy
consumption  via  improving  a  whale  optimization
approach. Gao et al.[24] designed a data-driven method
for  dismantling  products  with  uncertainties  to  find  an
optimal  selective  disassembly  sequence.  Via  taking
resource constraints into account in addressing DSPPs,
Guo  et  al.[25] aimed  to  reach  maximal  disassembly
revenue  and  minimal  energy  consumption  by
improving  a  genetic  algorithm  (GA).  Zhang  et  al.[26]

studied  a  DSPP  to  minimize  disassembly  costs  via
improving  a  social  engineering  method.  Lee  et  al.[27]

considered solving a DSPP with limited resources and
work  safety.  A  comprehensive  sequence  planning
method  is  developed  to  reach  a  minimization  of
disassembly  time.  Guo  et  al.[28] investigated  a  partial
destructive  DSPP  with  consideration  of  the
collaboration  between  workers  and  robots.  They
improved a GA to minimize disassembly time and cost.

In  practice,  it  is  necessary  to  dismantle  multiple
products  in  a  planning  period.  Thus,  finding  optimal
disassembly  decisions  in  such  circumstances  is  very
essential.  In  recent  years,  some  researchers  start  to
study  the  modeling  and  optimization  of  multi-product
disassembly  optimization  problems.  Liang  et  al.[29]

focused  on  maximizing  disassembly  profit  for
dismantling  multiple  products  in  DSPPs  with  random
disassembly  time.  They  designed  an  equilibrium
method  incorporating  a  stochastic  simulation  to  tackle
it.  Liang  et  al.[30] formulated  multi-product  DLBPs
focusing on gaining maximal disassembly profit  under
the  constraints  of  disassembly  time.  A  group  teaching
optimization  method  is  improved  to  deal  with  it.  Guo
et  al.[31] addressed  multi-product  DSPP  and  DLBP  to
reach  maximal  disassembly  profit,  minimal  energy
consumption,  and  carbon  footprint  by  using  simulated
annealing  (SA)  methods  and  grey  wolf  optimization

methods.  Liu  et  al.[32] devoted  to  minimizing
disassembly  cost  in  multi-product  DLBPs  with
workforce  assignment.  They  used  a  cutting-plane
algorithm and an approximated approach to address it.
Hu  et  al.[33] proposed  DLBPs  considering  multiple
product disassembly having stochastic processing time
to minimize disassembly cost. An integrated method of
chance-constrained  programming  and  distribution-free
model  was  developed  to  settle  it.  Meanwhile,  Yin  et
al.[34] addressed  such  problems  with  multi-robot
workstations  to  realize  minimal  cycle  time,  minimal
energy  consumption,  and  minimal  hazardous  indices.
They  devised  a  mixed  driving  method  to  optimally
solve it.

The  existing  studies  on  scheduling  reprocessing
operations  mainly  consider  two  classifications:  flow-
shop-type  and  job-shop-type  reprocessing  lines.  Yu
et  al.[11] modeled  a  job-shop-type  reprocessing
scheduling  problem  having  job  families.  They
introduced two heuristics to reach minimal flow time of
job  families.  Afterwards,  Kim et  al.[35] developed  two
iterated  greedy  methods  to  handle  such  a  scheduling
issue considering sequence-dependent setup operations
with  the  applications  in  a  reprocessing  shop.  Gao
et al.[36] aimed to schedule and reschedule a flow-shop-
type  reprocessing  process  with  new  job  insertion  and
variable processing time to minimize mean of earliness
and  tardiness  and  maximum  completion  time.  A
harmony  search  method was  developed  to  handle  it.
Shi  et  al.[37] studied  a  reprocessing  scheduling  issue
having  concurrent  flow-shop-type  lines  considering
uncertain  processing  time  and  reliability.  They
improved a particle swarm optimization (PSO) method
to gain minimal  maximum completion time as  well  as
maximal reliability. Liu et al.[38] considered a job-shop-
type reprocessing scheduling issue having job families
to  find  a  tradeoff  between  replacement  and  repair
modes.  It  was  solved  by  improving  an  artificial  bee
colony method (ABC).

In  addition  to  the  above  studies  on  scheduling
disassembly  and  reprocessing  operations,  optimizing
assembly processes also receive concern. Xiao et al.[12]

studied  an  assembly  sequence  problem  of
remanufactured  parts  with  diverse  accuracy  levels.  In
consideration of selection matching requirements, they
hybridized  GA  and  PSO  to  find  an  optimal  assembly
sequence. Li et al.[39] focused on a quality control issue
of  assembly  operations  in  remanufacturing.  They
transformed  it  into  a  convex  quadratic  programming
problem.  Liu  et  al.[40] formulated  an  integrated

    186 Complex System Modeling and Simulation, June  2024, 4(2): 184−209

 



optimization  method  according  to  dynamic
programming for assembly operations with dynamicity
and uncertainties.
2.1.2    Integrated scheduling
Different  from  the  above  studies  focusing  on
scheduling  only  one  shop,  a  few  studies  consider  the
integrated  scheduling  models  to  achieve  an  overall
optimization.  Doh  and  Lee[13] addressed  an  integrated
disassembly  and  reprocessing  lot-sizing  issue  to  reach
minimal  total  cost  via  adopting  heuristics.  Hojati[41]

solved  a  disassembly  flow-shop  scheduling  issue  with
reaching minimal  makespan,  and three heuristics  were
designed  according  to  the  problem  properties.  Kim
et  al.[42] investigated  an  integrated  scheduling  issue
having  flow-shop-type  reprocessing  lines  to  minimize
total  flow time.  A heuristic-based local  search method
was  devised  to  deal  with  it.  To  minimize  total
tardiness,  Kim  et  al.[43] devised  a  priority  method  to
address  an  integrated  scheduling  of  disassembly,
reprocessing  and  assembly  operations.  To  reach
minimal energy consumption, Wang et al.[44] improved
a  GA  to  tackle  an  integrated  scheduling  problem.  Yu
and Lee[45] considered scheduling three shops together
with component matching requirements. They designed
two  solution  methods  that  consider  the  three  shops
separately  and  integrally,  respectively.  Gong  et  al.[46]

improved  an  evolutionary  algorithm  to  address  an
integrated scheduling with minimizing makespan, flow
time,  and  maximum  machine  load.  Wen  et  al.[47]

devised  an  optimization  approach  with  two  stages  for
solving  an  integrated  scheduling  problem to  minimize
makespan,  carbon  footprint,  and  tardiness.  Zhang
et  al.[48] put  forward  an  extended  network  graph  to
define the integrated scheduling problem and improved
an  ABC  method  to  minimize  makespan.  Shi  et  al.[49]

dealt  with  a  remanufacturing  scheduling  to  minimize
completion  time and  carbon footprint  by  developing  a
flower pollination approach.
2.1.3    Optimization algorithms
By  analyzing  the  above  studies,  we  find  that  most  of
them  use  meta-heuristics  to  solve  remanufacturing
scheduling  problems.  The  meta-heuristic  methods  win
wide  acceptance  from  academia  because  of  their  high
efficiency  and  accuracy  in  response  time  and
quality[50].  In  recent  years,  a  hybridization  of  artificial
intelligence and meta-heuristics has been regarded as a
favorable way in solving complex optimization issues.
Ala  et  al.[51] studied  patient  information  performance
optimization in smart healthcare centers. The improved
PSO-long  short-term  memory  algorithm  was  designed

to deal with it. Wang et al.[52] developed an ABC with
reinforcement learning methods to address a distributed
three-stage  assembly  scheduling  with  maintenance
activities.  Qi  et  al.[53] solved  a  time-dependent  green
vehicle routing problems with time windows by using a
Q-learning  based  evolutionary  algorithm.  Ji  et  al.[54]

devised a Q-learning based hyper-heuristic algorithm to
handle  dynamic  task  allocation  of  crowdsensing
problems.  Cai  et  al.[55] solved  distributed  hybrid  flow
shop scheduling problems with assembly operations by
designing  a  hybridization  of  shuffled  frog-leaping
algorithm  (SFLA)  and  reinforcement  learning
algorithms. Similarly, the hybridization framework was
also  applied  to  remanufacturing  scheduling  problems.
Ren  et  al.[56] investigated  a  DLBP  to  minimize  the
smoothing  index  via  a  Q-learning  based  variable
neighborhood  iterative  search  algorithm.  Chu  and
Chen[57] designed a PSO with a Q-learning method for
human-robot  collaboration  disassembly  planning
problems.

2.2    Discussion

Via  summing  up  previous  work  on  remanufacturing
scheduling problems, we find that they feature with the
subsequent characteristics:

(1)  Most  of  them  make  disassembly  sequence
decisions  of  disassembly  shops  following  product
structures  in  addressing  DSPPs  and  DLBPs.  Also,  a
few  studies  devote  to  solving  multi-product
disassembly optimization problems.

(2)  All  of  the  studies  on  integrated  remanufacturing
scheduling do not consider product structures. In order
to  obtain  a  performable  schedule  for  a  practical
remanufacturing  process,  we  ought  to  obey  product
structures  in  solving  such  integrated  remanufacturing
scheduling problems. Also, the uncertainties have to be
taken  into  account  since  we  are  difficult  to  exactly
know the conditions of EOL products.

(3) Meta-heuristic approaches have been widely and
victoriously  employed  to  deal  with  disassembly
optimization  and  integrated  remanufacturing
scheduling  problems.  However,  rare  attention  is
dedicated to studying a hybridization of meta-heuristic
and  reinforcement  learning  methods  to  deal  with  such
difficult problems.

A tabular review and comparison are given in Table 1.
It  is  seen  that  integrated  scheduling  problems  of
disassembly  and  reprocessing  considering  product
structures  in  uncertain  environments  are  missing.
Thereby,  this  work  studies  the  modeling  and
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optimization  of  such  problems.  The  details  are  given
below.

3    Problem Definition

3.1    Problem statement

The  considered  integrated  remanufacturing  scheduling
problem  of  disassembly  and  reprocessing  processes  is
defined  as  follows.  At  a  disassembly  shop,  all  EOL
products  are  completely  dismantled  into  components
on  multiple  identical  workstations  by  performing
disassembly  operations  and  following  their  product
structures.  Once  a  component  is  disassembled  from  a
product, it enters the reprocessing shop to be fabricated
on its dedicated flow-shop-type reprocessing line. As a
matter of fact, there exist multiple reprocessing lines in
the reprocessing shop, and they have diverse functions.
A disassembled component must be reprocessed on the
specific  flow-shop-type  reprocessing  line.  Namely,  a

reprocessing  line  has  a  specified  function  to  handle
given  components,  and  therefore  it  is  defined  as  a
dedicated  flow-shop-type  reprocessing  line.  Each  line
contains  multiple  machines  and  the  components
assigned  to  it  must  pass  all  the  involved  machines  as
the  same route.  The disassembly time of  products  and
processing  time  of  components  obey  known  random
distributions.

An  executable  schedule  should  conform  to  the
subsequent  restrictions:  (1)  At  any  time,  each
workstation  can  dismantle  no  more  than  one  product;
(2)  Each  product  can  be  disassembled  at  most  on  one
workstation  at  any  time;  (3)  Each  machine  can
fabricate no more than one component at any time; (4)
Each  component  can  be  fabricated  by  one  machine  at
the utmost at any time; (5) Preemption of workstations
and  machines  is  forbidden  at  the  disassembly  and
reprocessing  shops.  The  target  of  addressing  the
considered problem is to achieve minimal makespan by

 

Table  1    Comparisons  of  existing  studies  and  our  work  in  terms  of  shop  types,  characteristics,  environments,  and
methodologies.

Reference
Shop type Characteristic Environment

Solution method
DS RS AS PS MP DP UP

[30] √ − − √ √ − √ Meta-heuristic (EGTOA)
[31] √ − − √ √ − √ Meta-heuristic (SMDG)
[32] √ − − √ √ − √ Matheuristic
[33] √ − − √ √ − √ Heuristic; matheuristic
[34] √ − − √ √ √ − Meta-heuristic (HDA)
[35] − √ − − √ √ − Meta-heuristic (IGA)
[36] − √ − − √ − √ Meta-heuristic (DHS)
[37] − √ − − √ − √ Meta-heuristic (EDPSO)
[38] − √ − − √ √ − Meta-heuristic (EABC)
[39] − − √ − − − √ Matheuristic
[40] − − √ − − − √ Matheuristic
[41] √ √ − − √ √ − Heuristic
[42] √ √ √ − √ √ − Heuristic
[43] √ √ √ − √ √ − Heuristic
[44] √ √ √ − √ √ − Meta-heuristic (GAVNS)
[45] √ √ √ − √ √ − Heuristic
[46] √ √ √ − √ √ − Meta-heuristic (HMEA)
[47] √ √ √ − √ √ − Meta-heuristic (INSGA-II)
[48] √ √ √ − √ √ − Meta-heuristic (IABC)
[49] √ √ √ − √ √ − Meta-heuristic (IFPA)

Our work √ √ − √ √ − √ Q-HMH
Note: DS: disassembly shop; RS: reprocessing shop; AS: assembly shop; PS: product structure; MP: multi-product; DP: deterministic
problem; UP: uncertain problem; EGTOA: enhanced group teaching optimization algorithm; SMDG: SA-based multi-objective
discrete grey wolf optimization; HDA: hybrid driving algorithm; IGA: iterated GA; DHS: discrete harmony search; EDPSO: extended
discrete particle swarm optimization; EABC: extended artificial bee colony; GAVNS: hybrid genetic algorithm based on variable
neighborhood search; HMEA: hybrid multi-objective evolutionary algorithm; INSGA-II: improved NSGA-II; IABC: improved ABC;
and IFPA: improved flower pollination algorithm.
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determining  the  following  decisions:  (1)  disassembly
workstation  assignment  of  products;  (2)  disassembly
sequence  of  products  on  workstations;  (3)  performed
disassembly  operations  of  products;  (4)  performed
sequence  of  disassembly  operations;  (5)  reprocessing
line  assignment  of  components;  (6)  processing
sequence of components on reprocessing lines.

3.2    Model formulation

i
k k′

To  define  the  products’ structure  mathematically,  this
work  uses  AND/OR  graphs[22] to  formulize
relationships  of  subassemblies  and  disassembly
operations.  Notice  that  a  product  includes  multiple
subassemblies,  and  a  subassembly  can  be  further
dismantled  into  other  subassemblies.  If  a  subassembly
cannot  be  further  disassembled,  it  is  called  a
component  in  this  research.  Let  be  a  subassembly
index,  while  and  are  disassembly  operation
indexes.  An  AND/OR  graph  is  depicted  by  the
subsequent matrices:

T = [τkk′ ](1)  A  precedence  matrice  is  adopted  to
define conflict and precedence relations of disassembly
operations. It is given as
 

τkk′ =
1, if k′can be implemented following k;
−1, if k and k′conflict with each other;
2, if k and k′do not have sequential relationships;
0, otherwise.

S =
[
ξkk′
]

(2)  A  succession  matrix  is  adopted  to
formulize  succession  relationships  of  disassembly
operations. It is formulated as
 

ξkk′ =

1, if k′can be implemented next to k;
0, otherwise.

I = [ωik](3)  An  incidence  matrix  is  established  to
depict relationships of subassemblies and operations. It
is formulated as follows:
 

ωik =


1, if i is acquired by performing k;
−1, if i is dismantled by k;
0, otherwise.

To  model  the  problem  under  investigation,  we  give
the following symbols:

Indexes:
p : p ∈ {0,1,2, . . . ,P} P Product  index, ,  in  which 

denotes  the  number  of  products,  and  0  represents  a
dummy product.

i : i ∈
{
1,2, . . . ,Vp,Vp+1, . . . , Ip

}
Vp

 Subassembly  index, ,
where  denotes  the  quantity  of  subassemblies  of

p Ip

p
product , and  is the quantity of subassemblies and
components of product .

j : j ∈ {0,1,2, . . . ,N} N Component  index, ,  in  which 
signifies the quantity of components disassembled from
products, and 0 represents a dummy component.

k : k ∈
{
0,1,2, . . . , Jp

}
Jp

p

 Disassembly  operation  index, ,
in  which  represents  the  quantity  of  operations  of
product ,  and  0  denotes  a  dummy  operation  without
any disassembly time.

l : l ∈ {1,2, . . . ,L}
L

 Disassembly  workstation  index, ,  in
which  is the quantity of disassembly workstations at
the disassembly shop.

r : r ∈ {1,2, . . . ,R}
R

 Reprocessing line index, ,  in  which
 represents  the  quantity  of  reprocessing  lines  at  the

reprocessing shop.
s : s ∈ {1,2, . . . ,S }

S
 Stage index of  reprocessing lines, ,

in  which  denotes  the  quantity  of  stages  in  a
reprocessing line.

Parameters:
td
pk : k

p
 Disassembly  time  of  operation  regarding

product .
ts
pkk′ : k′

k p
 Setup  time  in  the  cast  that  operation  is

executed following  regarding product .
t js : j s Processing time of component  at stage  at the

reprocessing shop.
Ip : p Incidence matrix of product .
Sp : p Succession matrix of product .
ωpik : i k
Ip p

 An element in the -th row and the -th column
of  as regards .
ξpkk′ : k k′

Sp p
 An  element  in  the -th  row  and  the -th

column of  as regards .
h jr : j

r
 Equaling to 1, if component  can be processed

on the reprocessing line , and 0, otherwise.
G : A very large number.

td
pk ts

pkk′ t jsNotice that , , and  are random.
Decision variables:
xpl : p l

xpl = 1 xpl = 0
 If  product  is  assigned  to  workstation  for

disassembling, ; otherwise, .
ypp′l : p′ p

l ypp′l = 1 ypp′l = 0
 If  product  is  disassembled  after  on

workstation , ；otherwise, .
zpk : k p zpk = 1

zpk = 0
 If operation  of product  is executed, ;

otherwise, .
upkk′ : k′ p

k upkk′ = 1 upkk′ = 0
 If  operation  of  product  is  executed

following , ; otherwise, .
v jr : j

r v jr = 1 v jr = 0.
 If  component  is  assigned  to  the  reprocessing

line  for processing, ; otherwise, 
w j j′r : j′ j

r w j j′r = 1 w j j′r = 0
 If  component  is  processed  after  on  the

reprocessing line , ; otherwise, .
ap : p Disassembly completion time of product .
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bpk : k
p

 Disassembly  completion  time  of  operation 
regarding product .

cpi : i
p

 Disassembly  completion  time  of  subassembly 
of product .

d j : j Disassembly completion time of component .
er js : j

s r
 Reprocessing completion time of  component 

at stage  on the reprocessing line .
CM : Makespan.

ap,bpk,cpi,d j,er js CMNotice  that ,  and  are  stochastic
variables.

By  employing  the  aforesaid  symbols,  this  research
formulizes  a  stochastic  programming  model  to
minimize expected makepan below.
 

min E (CM) (1)
subject to:
 

zpk′ =

Jp∑
k=0

upkk′ ,k′ = 1,2, . . . , Jp; p = 1,2, . . . ,P (2)

 

zpk + zpk′ ⩽ 1,∀τpkk′ =−1;k,k′ = 0,1,2, . . . , Jp;
p = 1,2, . . . ,P (3)

 

ξpkk′ −upkk′ ⩾ 0,∀τpkk′ =1 or 0;k,k′ = 0,1,2, . . . , Jp;
p = 1,2, . . . ,P (4)

 

Jp∑
k=0

ξpkk′ ·upkk′ ⩾ upk′k′′ ,∀τpk′k′′ = 2;

k′,k′′ = 0,1,2, . . . , Jp; p = 1,2, . . . ,P (5)
 

0 ⩽
Jp∑

k=0

ωpik · zpk ⩽ 1, i = 1,2, . . . , Ip; p = 1,2, . . . ,P (6)

 

k∑
k′=1

upk′k ⩾
Jp∑

k′′=1

upkk′′ ,k = 1,2, . . . , Jp; p = 1,2, . . . ,P (7)

 

Jp∑
k=0

ωpik · zpk = 1, i = Vp+1,Vp+2, . . . , Ip; p = 1,2, . . . ,P

(8)
 

L∑
l=1

xpl = 1, p = 1,2, . . . ,P (9)

 

L∑
l=1

P∑
p=0

ypp′l = 1, p′ = 0,1,2, . . . ,P (10)

 

L∑
l=1

P∑
p′=0

ypp′l = 1, p = 0,1,2, . . . ,P (11)

 

E
(
bp′0+

(
3− xpl− xp′l− ypp′l

)
·G−ap

)
⩾ 0, p, p′ =

1,2, . . . ,P; l = 1,2, . . . ,L (12)

 

E

ap−bp0−
Jp∑

k=1

td
pk · zpk −

Jp∑
k=1

Jp∑
k′=1

ts
pkk′ ·upkk′

 ⩾ 0,

p = 1,2, . . . ,P (13)
 

E
(
bpk′ −bpk − td

pk − ts
pkk′
)
⩾ 0,∀zpk′ ·upkk′ = 1,

p = 1,2, . . . ,P;k,k′ = 0,1,2, . . . , Jp (14)
 

E
(
cpi−bpk

)
⩾ 0,∀zpk ·ωpik = 1; p = 1,2, . . . ,P;

k = 0,1,2, . . . , Jp; i = 1,2, . . . , Ip (15)
 

E
(
d(p−1)·(Ip−1−Vp−1)+i−Vp

− cpi
)
⩾ 0, p = 1,2, . . . ,P;

i = Vp+1,Vp+2, . . . , Ip (16)
 

R∑
r=1

v jr = 1, j = 1,2, . . . ,N (17)

 

v jr ⩽ h jr, j = 1,2, . . . ,N;r = 1,2, . . . ,R (18)
 

E
(
er j1+

(
1− v jr

)
·G−d j− t j1

)
⩾ 0,

j = 1,2, . . . ,N;r = 1,2, . . . ,R (19)
 

E
(
er j(s+1)+

(
1− v jr

)
·G− er js− t j(s+1)

)
⩾ 0,

j = 1,2, . . . ,N;r = 1,2, . . . ,R; s = 1,2, . . . ,S −1 (20)
 

N∑
j=1

w j j′r =

N∑
j=1

w j′ jr,∀v j′r = 1;

r = 1,2, . . . ,R; j′ = 0,1,2, . . . ,N (21)
 

N∑
j=1

w j j′r = 1,∀v j′r = 1;r = 1,2, . . . ,R; j′ = 0,1,2, . . . ,N

(22)
 

N∑
j′=1

w j j′r = 1,∀v jr = 1;r = 1,2, . . . ,R; j = 0,1,2, . . . ,N (23)

 

E
(
er j′ s+

(
3− v j′r − v jr −w j j′r

)
·G− er js− t js

)
⩾ 0,

r = 1,2, . . . ,R; s = 1,2, . . . ,S ; j, j′ = 1,2, . . . ,N (24)
 

E
(
CM − er js

)
⩾ 0,r = 1,2, . . . ,R; j = 1,2, . . . ,N (25)

 

xpl ∈ {0,1} ,ypp′l ∈ {0,1} ,zpk ∈ {0,1} ,
upkk′ ∈ {0,1} ,v jr ∈ {0,1} ,w j j′r ∈ {0,1} ,
p, p′ = 1,2, . . . ,P; l = 1,2, . . . ,L;k,k′ = 0,1,2, . . . , Jp;
j, j′ = 1,2, . . . ,N;r = 1,2, . . . ,R (26)

 

ap ⩾ 0,bpk ⩾ 0,cpi ⩾ 0,d j ⩾ 0,er js ⩾ 0,CM ⩾ 0,
p = 1,2, . . . ,P;k = 0,1,2, . . . , Jp; i = 1,2, . . . , Ip;
j = 1,2, . . . ,N;r = 1,2, . . . ,R; s = 1,2, . . . ,S (27)
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where  Formula  (1)  aims  to  achieve  minimal  expected
makespan. Equation (2) requires that each disassembly
operation can be implemented at  most  once.  Formulas
(3)−(5)  ensure  that  precedence  and  conflict
relationships  of  operations  must  be  met.  Formula  (6)
guarantees  that  each  subassembly  ought  to  be
dismantled by implementing a corresponding operation
at  most  once.  Formula  (7)  assures  flow  balances
between  in-degree  and  out-degree  of  operations.
Equation  (8)  requires  that  all  products  must  be
completely  disassembled.  Equation  (9)  ensures  that
each  product  must  be  disassembled  on  only  one
workstation.  Formulas  (10)−(12)  give  sequence
relationships of two adjacent products on workstations.
Formula (13) defines the disassembly completion time
of  products  on  workstations.  Formulas  (14)−(16)
formulate  the  disassembly  completion  time  of
components.  Formulas  (17)  and  (18)  signify  that  each
component must be processed on only one reprocessing
line.  Formula  (19)  denotes  that  the  start  time  of
components at the reprocessing shop ought to be equal
to  or  larger  than  their  disassembly  completion  time.
Formula (20) ensures that  a component can start  to be
fabricated  at  a  stage  in  the  case  that  it  finishes  being
processed at the precedence stage. Equations (21)−(23)
indicate  that  each  component  must  be  fabricated  just
once  at  a  stage  on  a  reprocessing  line.  Formula  (24)
gives  sequence  relationships  of  two  adjacent
components  on  a  reprocessing  line.  Formula  (25)
formulates  the  makespan  of  the  entire  process.  The
variable ranges are limited by Formulas (26) and (27).

4    Proposed Q-HMH

In  recent  years,  a  hybridization  of  meta-heuristics  and
Q-learning methods attracts widespread attention. Such
hybridization frameworks have gained great success in
solving  various  optimization  problems.  Inspired  by
their  excellent  performance,  this  work  develops  a  Q-
learning  based  hybrid  meta-heuristic  in  consideration
of  problem-specific  characteristics.  It  effectively
utilizes  the  feedback  information  acquired  from  the
previous  search  process,  and  further  chooses  the  most
promising  meta-heuristic  to  search  satisfaction
solutions.

4.1    Solution encoding and population initialization

This  research  employs  a  combination  of  an  integer
string  and  multiple  double-link  integer  strings  to
represent a solution (called an individual as well) of the

π =
(
π0,
(
π′1,π

′′
1

)
,
(
π′2,π

′′
2

)
, . . . ,(

π′P,π
′′
P

))
π0 = (d1,d2, . . . ,dP) π

dp p
p ∈ {1,2, . . . ,P}(

π′p,π
′′
p

)
π

p π′p =
(
op1,op2, . . . ,

opJp

)
p opk k

k ∈
{
1,2, . . . , Jp

}
π′′p =

(
xp1, xp2, . . . , xpJp

)
p π′′p

π′p

considered  problem,  i.e., 
.  in  denotes  a  product

sequence  string,  where  each  integer  on  the -th
position  indicates  a  product  index, .  A
double-link  integer  string  in  represents  a
disassembly  decision  of  product . 

 denotes  an  operation  sequence  substring  for
product , where each integer  on the -th position
indicates  a  disassembly  operation  index,

;  including
binary numbers is an operation execution substring for
product .  If  an  element  in  equals  to  1,  we
implement  the  operation  on  the  associated  position  in

, and otherwise, it is not done. Figure 1c illustrates a
solution of  an instance with two products  as  shown in
Figs.  1a and  1b.  It  is  seen  that  Products  2  and  1  are
disassembled  following  their  relative  sequence  at  the
disassembly  shop.  Disassembly  operations  1,  3,  and  5
 

(a) Product 1

(b) Product 2

(c) Diagram of a solution 

(1) ABCD

(1) ABCDE

(2) BCD

3

5

4

(3) AB

(4) CD

(5) A (6) B (7) C (8) D

1 2

1
2

3 4

6 7 8

5

(2) BCDE

(4) BC (5) AB (6) DE

(3) ABC

(7) A (8) B (9) C (10) D (11) E

2

1 4

2 1

3

3

2

4

5

6

1

7

0

Operation sequence substring Operation execution substring

5

1

8

0

1

1

0 0 1 1 0 0 1

1Product sequence
substring

Disassembly decision
of Product 1

Disassembly decision
of Product 2

 
Fig. 1    Illustration of solution representation methods.
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of  Product  1  and  2,  4,  6,  and  8  of  Product  2  are
executed according to the given sequence, respectively.

π

The  above  methods  just  give  the  disassembly
decisions  at  the  disassembly  shop,  and  we  cannot
obtain  the  scheduling  decisions  at  the  reprocessing
shop directly. Thereby, we design heuristics to decode
an individual  to an executable schedule as: (1) At the
disassembly  shop,  we  schedule  all  products  according
to the product sequence string, and assign a product to
the  earliest  available  disassembly  workstation.  Once  a
component  is  dismantled  from  a  product,  it  enters  a
reprocessing shop for reprocessing immediately; (2) At
the reprocessing shop, the arrival components from the
disassembly shop are sequenced in an ascending order
according to the disassembly completion time, and they
are sequentially assigned to their accordingly dedicated
reprocessing  lines  with  the  least  workload.  By
employing  the  above  approach,  we  can  decode  a
solution to an executable schedule.

p

Noteworthily,  a  solution  might  be  unfeasible  on
condition  that  it  violates  the  precedence  and  conflict
constraints of disassembly operations. In such situation,
we use the following methods to repair the disassembly
decisions of a product :

p

π′′p
π′′p

π′′p
π′′p

First,  we  adjust  the  operation  execution  substring
according to the precedence matrix of product  as: (1)
The  first  executed  disassembly  operation  is  identified,
and  its  conflict  operations  are  found;  If  the
corresponding elements of conflict operations in  are
1, they are adjusted to 0, and the other elements in 
are adjusted to 1; (2) The first operation corresponding
to  1  in  is  identified  again,  and  we  adjust  the
following elements of its conflict operations in  to 0.
By repeating (2), we check the disassembly operations
sequentially  until  all  executed  disassembly  operations
do not conflict with each other.

π′p

π′p

Second, we change the operation sequence substring
according  to  the  succession  matrix  as  follows:  (1)  All
the  executed  operations  are  deleted  from ;  (2)  For
each  executed  operation,  we  find  out  its  executed
immediate  precedence  operations.  Then,  we  can
construct a precedence operation list for each executed
operation;  (3)  The  operation  without  immediate
precedence  operations  is  inserted  into  the  first  vacant
position  in ;  (4)  We  delete  this  operation  from  the
lists of the other executed operations. By repeating (3)
and (4), we can form a disassembly operation sequence
obeying precedence relationships.

By  adopting  the  aforesaid  methods,  we  are  able  to

Fgenerate  feasible individuals as a population.

4.2    Assessment of solutions’ objective values

π ϕ

The  objective  function  in  the  formulated  model
concentrates  on  minimizing  expected  makespan
because  the  disassembly  time  of  products  and
processing time of components are stochastic. Q-HMH
incorporates a stochastic simulation[29] to appraisal the
objective value.  It  averages a  vast  quantity of  samples
as an estimation to the true value. A sample contains all
the  disassembly  time  of  products  and  processing  time
of  components  which  are  created  according  to  their
associated  stochastic  distributions.  On  condition  that
the quantity of  samples go to infinite,  this  approach is
able  to  gain  the  true  value.  However,  we  need  to  use
finite computation resources for simulation in practice.
Let  be an assessed solution and  be the quantity of
samples. The main steps are provided as follows:

CM (π) := 0 ϕ := 10Step 1: Set  and .
ϕ

τλ λ = 1,2, . . . ,ϕ
Step  2: Produce  samples,  and  each  of  which  is

denoted as , .
τλ C′M (τλ)

C′M (τλ) π

τλ λ = 1,2, . . . ,ϕ.

Step  3: Evaluate  the  makespan  of , ,
 denotes the makespan of  associated with the

sample , 
CM (π)Step  4: Calculate  the  average  value  of  all

samples as
 

CM (π) =

ϕ∑
λ=1

C′M (τλ)

ϕ
.

CM (π)
π

Step  5: Return  as  an  approximation  to  the
expected makespan of .

4.3    Design  of  search  methods  for  solving  the
studied problem

This  article  improves  the  GA,  ABC  method,  SFLA,
and  SA  method  for  solving  the  problem  under
consideration. Their detailed designs are given below.
4.3.1    Design of GA
GA,  motivated  by  the  evolution  theory  of  natural
selection,  is  a  population-based  meta-heuristic.  It  uses
three  basic  operations,  i.e.,  selection,  crossover,  and
mutation,  to  perform  an  evolution  process[44].  In  Q-
HMH, they are devised as follows:

The  selection  operation  adopts  a  tournament
selection  approach[58] to  choose  parent  individuals  for
implementing a  crossover  approach.  Subsequently,  the
crossover  approach  is  implemented  on  two  parent
individuals as

(1)  For  the  product  sequence  string,  an  order-based
crossover (OX) method[59] is adopted to recombine two
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p

π′p

product  sequence  strings.  An  example  with  eight
products is shown in Fig. 2. Two cut points are chosen
at  random,  and  the  product  indexes  between  them  in
Parent  1  are  copied  to  an  offspring  at  the  same
positions directly. The rest products in the offspring are
filled  with  the  products  from  Parent  2  according  to
their  related  sequence;  (2)  For  the  operation  sequence
substring  and  operation  execution  substring  of
products,  a  precedence  preservative  crossover  (PPX)
method[60] is  adopted  to  produce  new  substrings.  To
display  the  PPX,  an  example  of  a  product  owning
four disassembly operations is given in Fig. 3. A binary
string  possessing  the  same length  with  the  quantity  of
disassembly  operations  is  produced  at  random.  If  a
number  in  this  string  equals  to  0,  the  element  in  the
operation  sequence  substring  at  the  corresponding
position is from one parent individual, and otherwise, it
is  from the other parent  individual.  Then,  this  element
is  deleted  from  two  parent  individuals;  (3)  For  the
operation  execution  substring,  the  elements
corresponding to 1 in the binary string are sequentially
chosen  from  a  parent  individual,  and  the  rest  are
successively from the other parent individual.

κm

After the crossover operation, a mutation operation is
applied  with  probability  on  the  newly  generated
individuals as: (1) For the product sequence string, we

randomly choose two products and swap them; (2) For
the  disassembly  decisions  of  products,  we  randomly
choose  a  product  and  swap  any  two  operations  in  its
associated  operation  sequence  string.  Also,  the
corresponding  elements  in  the  operation  execution
substring  are  swapped;  (3)  In  the  case  that  the  new
individual is infeasible, this research repairs it to obtain
a feasible  individual  employing the  method in  Section
4.1.

It  is  noted  that  the  best  individual  in  population  is
inherited into the new population directly, and the rest
are  created  by  using  the  crossover  and  mutation
methods.
4.3.2    Design of ABC approach
ABC  is  a  population-based  meta-heuristic  method  in
accordance  with  foraging  activities  of  honey  bee
swarm.  In  the  ABC  method,  the  position  of  a  food
source  denotes  a  solution  of  a  solved  issue,  and  its
nectar  quantity  is  related  to  the  performance  of  its
corresponding  solution[61].  In  general,  the  colony
includes three sections: employed, onlooker, and scout
bees.  Accordingly,  its  search  process  contains  three
stages,  i.e.,  employed  bee  phase,  onlooker  bee  phase,
and scout bee phase. In Q-HMH, they are devised as:

In  the  employed  bee  phase,  we  use  crossover
operations  to  create  new  individuals,  i.e.,  solutions  or
food sources. For an individual in population, the other
individual is correspondingly selected from population
using  a  tournament  selection  method[59],  and  the  two
individuals are seen as parent individuals. Then, a new
individual  is  produced  by  employing  OX  and  PPX
methods.  Afterwards,  an SA method introduced in  the
following  is  employed  to  further  refine  the  new
individuals.

F
In  the  onlooker  bee  phase,  this  research  employs  a

tournament  selection  approach[59] to  select 
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2 4 8 6
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7 1 8 5

3 7 1 5
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Fig. 2    Illustration of the OX method.
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Fig. 3    Illustration of the PPX approach.
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individuals  from  the  population  and  new  generated
individuals as a new population. It is noted that the best
individual  found  in  the  previous  search  process  is
straightforwardly stored into the new population.

κ′l

κ′l

In  the  scout  bee  phase,  on  condition  that  an
individual is not improved during a given  iterations,
we  randomly  generate  two  individuals,  and  the  better
one is employed to replace it directly.  is a specified
parameter that is named as the number of food sources
limit.
4.3.3    Design of SFLA
SFLA is a population-based meta-heuristic in line with
observation and imitation of frog group behavior. It has
been  widely  used  in  coping  with  various  optimization
problems[62]. In SFLA, a solution of the solved problem
is denoted as a frog’s position (i.e., an individual), and
a population includes a group of individuals. It consists
of three main procedures,  i.e.,  memeplex construction,
solution  searching,  and  population  recombination[62].
Their designs in Q-HMH are given as:

η

M1 M2 η

Mη (η+1) M1

η

The  memeplex  construction  aims  to  partition  the
population  into  memeplexes.  The  individuals  are
sequenced  in  an  ascending  order  in  accordance  with
their quality. Then, the first is allotted to the memeplex

,  the  second  goes  to ,  the -th  is  assigned  to
,  and  the -th  enters .  In  this  way,  we

construct  memeplexes.

µ β

πb πw

πo

πo πw πo πw

πg

πw

πw

πw

πw

πw

The  search  process  aims  to  evolve  all  the
memeplexes  with  iterations.  At  each  iteration, 
individuals  are  selected  at  random  from  the  present
memeplex to form a submemeplex, and we identify the
best  and worst  individuals in this  submemeplex which
are recorded as  and , respectively. Then, they are
employed to produce a new individual  with OX and
PPX methods.  If  is  better  than ,  replaces ,
and  otherwise,  the  global  best  individual  in
population  and  are  adopted  to  create  another
individual  that  is  allowed  to  replace  if  it  is  better
than .  If  both  the  two  methods  do  not  produce  a
better  individual  compared  with ,  an  individual  is
generated  at  random  and  replaces  directly.  The
above  steps  are  repeated  until  all  memeplexes  are
updated.

The  population  recombination  combines  all  the
memeplexes into a new population. By using the above
procedures, SFLA can perform an evolution process.
4.3.4    Design of SA method
SA  is  a  meta-heuristic  method  according  to  the

π

probabilistic  technique  for  searching  a  global  solution
of  an  optimization  problem.  It  imitates  an  annealing
process  in  metallurgy,  a  technique  including  heating
and  controlled  cooling  to  vary  its  physical  properties.
Different from a basic local search method that prefers
a  better  neighborhood  solution  in  a  greedy  way,  SA
allows  to  accept  a  worst  solution  with  a  probability.
Thus,  it  has  better  abilities  of  jumping  from  local
optima.  In  Q-HMH,  according  to  the  work[63],  SA  is
designed to refine the best individual in population. Let

 be  a  refined  solution,  the  main  steps  of  the  SA
method in Q-HMH are given as:

to :=CM (πw)−CM
(
πg
)

πw πg

CM (πw) CM
(
πg
)

πw πg

t := t0

Step  1: Set  an  initial  temperature
,  where  and  denote  the

worst  and  best  solutions  in  population,  respectively,
 and  are severally the objective values

of  and , respectively. Let the current temperature
.

π1 πStep  2: Create  based  on  by  choosing  one
product at  random and swapping any two disassembly
operations without sequential relationships.

π1 π π := π1Step 3: If  bests , , switch to Step 5; if not,
switch to Step 4.

rand(0,1) ⩽ exp(−∆/t) π := π1

rand(0,1)
∆ :=CM (π1)−CM (π)

CM (π1) CM (π) π1

π

Step 4: If , ,  go to  Step
5.  Notice  that  creates  a  number  at  random
between  0  and  1,  and ,  where

 and  are  the  objective  values  of  and
, respectively.

t := t ·ρ ρStep  5: Let ,  where  is  an  annealing
coefficient.

t < t0 · (1−ρ)Step 6: Repeat Steps 2−5 until .
πgStep 7: Update  the  global  best  solution  by using

the found best solution.

4.4    Q-learning based selection method

s a r

There  exist  five  essential  items  in  the  Q-learning
approaches:  states ,  actions ,  rewards ,  action
selection  strategies,  and  Q-table.  In  this  research,  the
states are defined as a combination of the search stage
and population evaluation, the actions are to select one
search  method  from  GA,  ABC,  SFLA,  and  SA  for
performing,  the  rewards  are  relevant  with  the  state
movement,  and  the  Q-table  is  employed  to  record
actions’ feedback results.

πg

Q-HMH  concentrates  on  finding  optimal  solutions
for solving the considered problem, and thus we mainly
concern the obtained best solution in a search process.
Thereby,  the  variation  of  the  best  solution  in
population  is  regarded  as  an  evaluation  criterion.
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bl

πg πg

bl = 1 bl = 0 es

Additionally,  the  employed  methods  have  essential
roles at different search stages in a search process, and
thus it  is  better  to  choose befitting search methods for
performing  at  the  stages.  Thereby,  the  whole  search
process  is  partitioned  into  a  series  of  stages.
Consequently,  the  variation  of  obtained  best  solutions
and the search stage are combined to define eight states
as  shown  in Table  2.  is  employed  to  formulate  the
improvement of .  In the case that  is  improved in
the  present  iteration, ;  otherwise, . 
denotes a search stage. This work evenly partitions the
whole search process into four stages.

a1

a2 a3 a4

According to  the  states,  we define  four  actions: ,
, , and , signifying that Q-HMH chooses GA,

ABC, SFLA, and SA for implementing at an iteration,
respectively. In Q-HMH, the reward function is defined
as
 

rt+1 =


st−st+1,st , st+1;
st−st+1,st = st+1,st > 4,st+1 > 4;
smax−smin,st = st+1,st ⩽ 4,st+1 ⩽ 4

(28)

st t

st ∈ {1,2, . . . ,8} smax smin

smax = 8 smin = 1 rt+1

(t+1)

where  denotes  the  state  at  the -th  iteration,
.  and  severally  mean  the

maximal  and  minimal  indexes  of  states,  respectively,
i.e.,  and .  represents  the  reward
value  at  the -th  iteration.  By  dissecting  all  the
states,  it  is  seen  that  the  best  solution  is  improved  at
States  1−4,  and  thus  a  positive  reward  value  is  given.
For  the  rest  states,  we  give  a  negative  value.  The  Q-
table is updated as Qi et al.[53]
 

Q (st,at)← Q (st,at)+

α ·
(
rt+1+γ ·max

a
{Q (st+1,a)}−Q (st,at)

)
(29)

Q (st,at) at

st α γ

α γ rt+1

at st st ∈ {1,2, . . . ,8}
at ∈ {a1,a2,a3,a4} max

a
{Q (st+1,a)}

where  denotes a Q value that chooses  at
,  is  a  learning  rate,  and  indicates  a  discount

factor.  and  are set to 0.1 and 0.9, respectively. 
is  a  reward  value  by  taking  at , 
and .  indicates

st+1

a ∈ {a1,a2,a3,a4}
the  maximal Q value  in Q-table  at ,

.
ϵ

ϵ

This article uses an -greedy method[54, 64] to choose
an  action  for  execution.  In  the  case  that  a  created
number  between  0  and  1  is  smaller  than  a  given
parameter , we randomly choose an action; otherwise,
an action with the maximal Q value is chosen.

4.5    Framework of Q-HMH

In  order  to  exhibit  the  procedures  of  Q-HMH
intuitively,  we  illustrate  its  flowchart  as  provided  in
Fig.  4.  First,  we  initialize  all  parameters  and  create  a
group  of  individuals  as  a  population.  Second,  the
method  continuously  iterates  as:  (1)  The  Q-learning
approach  is  employed  to  choose  a  search  method;  (2)
The selected search method is  performed to produce a
new population, of which valuable information is used
to update the Q-table. At last, the obtained best solution
is exported if a given stopping criterion is met.

5    Experiment Result and Dissection

To  validate  the  capacities  of  Q-HMH  in  working  out
the  problem  under  consideration,  we  perform
experiments  by  using  a  group  of  test  instances.
Furthermore,  we  choose  three  popular  and  classical
meta-heuristics  for  solving  disassembly  optimization
problems  in  literature,  i.e.,  GA[65],  ABC[58],  enhanced
equilibrium  optimizer  (EEO)[29],  and  a  mathematical
programming solver CPLEX, for  comparisons.  All  the
approaches are programmed with C++ language on the
VC++  2017  and  implemented  on  a  computer  owning
an  Intel  Core  i5-8265U CPU @ 1.60  GHz with  8  GB
RAM.

5.1    Test instance construction

P

P ∈ {2,4,6,8}

{1,2,3,4}
{2,3,4}

{3,4}

This  study  chooses  a  product  from  the  existing
literature[58] and three  randomly generated  products  as
test  cases.  Then,  four  test  instances  including 
products are produced via choosing the four products at
random, .  For  each  instance,  the  quantity
of  workstations  at  the  disassembly  shop  is  selected  at
random  from ,  the  number  of  reprocessing
lines at the reprocessing shop is produced from ,
and  the  quantity  of  stages  in  a  reprocessing  line  is
chosen from . The dedicated reprocessing lines of
components  are  created  at  random in  accordance  with
the  quantity  of  reprocessing  lines.  It  is  noted  the
disassembly  time  and  setup  time  of  operations  and
processing time of components are stochastic numbers
obeying  truncated  normal  distributions.  The  mean

 

Table 2    State definition.

State No. Definition
1 bl = 1 es = 1 and 
2 bl = 1 es = 2 and 
3 bl = 1 es = 3 and 
4 bl = 1 es = 4 and 
5 bl = 0 es = 1 and 
6 bl = 0 es = 2 and 
7 bl = 0 es = 3 and 
8 bl = 0 es = 4 and 
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[100,400]
[100,200]

[100,200]

disassembly time of operations is generated at random
from  an  interval ,  the  mean  setup  time  of
operations  is  created  from ,  and  the  mean
processing  time  of  components  at  stages  is  from

.  The  standard  deviation  values  of
disassembly  time,  setup  time,  and  processing  time  are
set to their mean time multiplied by 0.0001.

5.2    Parameter tuning

30 ·P ·H P
H

To analyze the influence of user parameters on the Q-
HMH,  this  research  does  Taguchi  experiments[66, 67].
An  instance  with  four  products,  two  disassembly
workstations,  two  reprocessing  lines,  and  three  stages
in a reprocessing line is employed. All the methods use
the  quantity  of  fitness  evaluations  as  stopping  criteria
equaling  to ,  in  which  denotes  the  quantity
of products, and  indicates the maximum quantity of
operations of all products.

F η

ρ κm

κ′l
F ∈ {20,40,60,80} η ∈ {2,3,4,5} ρ ∈ {0.75,0.80,0.85,

Q-HMH  includes  five  important  parameters,  i.e.,
population  size ,  memeplex  quantity ,  annealing
coefficient ,  mutation  probability ,  and  number  of
food  sources  limit .  Each  of  them  has  four  levels:

, , 

0.90} κm ∈ {0.05,0.10,0.15,0.20} κ′l ∈ {20,40,60,
80} L16

(
45
)

ϵ µ β

η κm

κ′l F ρ

F = 60
η = 4 ρ = 0.85 κm = 0.20 κ′l = 40

, ,  and 
. Hence, an orthogonal array  comprising of

16 parameter combinations is employed as provided in
Table  3.  Q-HMH  with  each  combination  performs  20
runs, and the average objective value is computed as an
average  response  variable  (ARV)  value.  In  the  Q-
learning  approach,  all  elements  in  the  Q-table  are
initially set to 0, and  is set to 0.2. In addition,  and 
in  the  SFLA  are  severally  set  to  3  and  4. Table  3
provides the final outcome, and the significance rank of
parameters  and  corresponding  influence  tendency  are
provided in Table 4 and Fig. 5, respectively. It is found
that  and  have the most significant and the second
roles  since  they  largely  affect  Q-HMH’s  search
abilities. Besides, , , and  severally rank the third,
fourth,  and  fifth.  It  is  seen  that  Q-HMH  with ,

, , ,  and  can  achieve
better  results.  Thus,  Q-HMH  adopts  them  in  the
following.

To  perform  comparisons  between  Q-HMH  and  its
rivals  impartially,  the  Taguchi  experiments  are  also
conducted  on  the  peer  methods  by  using  the  same
instance with Q-HMH.
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Fig. 4    Flow chart of Q-HMH.
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ζN

ιc κ′m
ζN ∈ {20,40,60,80}

ιc ∈ {0.6,0.7,0.8,0.9} κ′m ∈ {0.05,0.1,0.15,0.2}

ζN = 40 ιc = 0.8 κ′m = 0.20

GA  possesses  three  parameters:  population  size ,
crossover  probability ,  and  mutation  probability .
Each  parameter  has  four  levels: ,

,  and .  All
the  combinations  and  corresponding  outcome  are
provided  in Table  5.  Furthermore, Table  6 and Fig.  6
reveal  the  significance  rank  and  influence  trend  of
parameters,  respectively.  By  analyzing  the  results,  we
discover  that  GA  is  able  to  gain  more  excellent
outcome  when , ,  and .  They
will be employed in the following.

ζ′N κ′l
ζ′N ∈ {20,40,60,80} κ′l ∈ {20,40,60,80}

ζ′N κ′l

ABC  contains  two  key  parameters,  i.e.,  population
size  and number of food sources limit . They have
four  levels:  and .
All  the  parameter  combinations  and  corresponding
ARV  values  are  provided  in Table  7.  Through
dissecting the outcome, we detect that ABC achieves a
more superior result  when  and  are set  to 40 and
80,  respectively.  They  will  be  employed  in  the
following experiments.

ζ′′q ι′′u
κ′′m

ϑ

ζ′′q ∈ {20,40,60,80} ι′′u ∈ {3,5,7,9} κ′′m ∈ {0.05,0.1,
0.15,0.2} ϑ ∈ {20,40,60,80}

L16
(
44
)

In  EEO,  there  are  four  parameters:  population  size
,  the  quantity  of  particles  in  equilibrium  pool ,

local-best  search  probability ,  and  number  of  local-
best  search iterations .  Each of  them has four levels:

, , 
,  and .  Accordingly,  an

orthogonal experiment  is  applied,  and Table 8
displays  the  ARV  values  of  parameter  combinations.
The  significance  rank  of  parameters  and  associated
influence  trend  are  furnished  in Table  9 and Fig.  7,

 

Table 3    Orthogonal table and ARV values of parameters in
Q-HMH.

No.
Factor level

ARV
F η ρ κm κ′l

1 20 2 0.75 0.05 20 5768.69
2 20 3 0.80 0.10 40 5739.61
3 20 4 0.85 0.15 60 5706.93
4 20 5 0.90 0.20 80 5705.35
5 40 2 0.80 0.15 80 5739.15
6 40 3 0.75 0.20 60 5703.26
7 40 4 0.90 0.05 40 5684.30
8 40 5 0.85 0.10 20 5696.18
9 60 2 0.85 0.20 40 5676.94
10 60 3 0.90 0.15 20 5689.52
11 60 4 0.75 0.10 80 5700.97
12 60 5 0.80 0.05 60 5736.55
13 80 2 0.90 0.10 60 5738.03
14 80 3 0.85 0.05 80 5719.99
15 80 4 0.80 0.20 20 5692.73
16 80 5 0.75 0.15 40 5659.94

 

Table 4    Response and rank of parameters in Q-HMH.

Level F η ρ κm κ′l
1 5730 5731 5708 5727 5712
2 5706 5713 5727 5719 5690
3 5701 5696 5700 5699 5721
4 5703 5700 5704 5695 5716

Delta 29 34 27 33 31
Rank 4 1 5 2 3

 

20 40 60
F η ρ κm

80 2 3 4 5 0.75 0.80 0.85 0.90 0.05 0.10 0.15 0.20 20 40 60 80

AR
V

5730

5720

5710

5700

5690

κ'l 
Fig. 5    Influence trends of parameters in Q-HMH.
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ζ′′q = 60, ι′′u = 5, κ′′m = 0.05, ϑ = 80

respectively.  On  the  basis  of  the  afore-mentioned
outcome,  a  favorable  parameter  setting  for  EEO  is
suggested  as: .  EEO
will use it in the following experiments.

5.3    Effectiveness of Q-learning method

(RPD)

To validate the effects of the Q-learning approach in Q-
HMH, this work develops a variation of Q-HMH which
chooses  actions  at  random  (recorded  as  R-HMH)
instead  of  using  the  Q-learning  method.  We  conduct
comparison experiments between Q-HMH and R-HMH
on the  employed  instances,  and  each  one  is  solved  20
times by using Q-HMH and its rival. In the following,
we analyze the comparison results  of Q-HMH and the
rival  by  adopting  a  relative  percentage  deviation

. It is calculated as
 

RPD =
θv− θ∗
θ∗

(30)

θ∗

θv

v aRPD bRPD
sRPD RPD RPD

RPD

aRPD bRPD sRPD

where  denotes  the  best  outcome  acquired  by  Q-
HMH and its rival,  and  is  the result  obtained by an
approach  in  the -th  run.  The  symbols , 
and  denote the average , the best , and
the  standard  deviation  of  over  20  runs,
respectively.  It  is  noted  that  an  algorithm  with  the
smaller , ,  and  values  means  the
better performance.

30 ·P ·H

aRPD sRPD
aRPD bRPD sRPD

t

Q-HMH  and  R-HMH  take  fitness
evaluations  as  stopping  conditions.  The  comparison
results of Q-HMH and R-HMH are reported in Table 10.
It  is  found  that  Q-HMH  exhibits  better  performance
than R-HMH in 14 out of 16 instances with respect to

 and  metrics.  Besides,  the  average  values
of , ,  and  of  Q-HMH  on  all  the
instances are 0.0152, 0.0010, and 0.0088, respectively,
while  those  obtained  by  R-HMH  are  0.0217,  0.0018,
and  0.0115,  respectively.  This  indicates  that  Q-HMH
wins  R-HMH  in  solving  the  instances.  The -test  at
0.05 level of significance is applied to further examine

 

Table  5    Orthogonal  table  and  ARV  values  of  parameters
regarding GA.

No.
Factor level

ARV
ζN ιc κ′m

1 20 0.6 0.05 6038.65
2 20 0.7 0.10 5942.80
3 20 0.8 0.15 5907.02
4 20 0.9 0.20 5918.87
5 40 0.6 0.10 5916.69
6 40 0.7 0.05 5977.51
7 40 0.8 0.20 5927.34
8 40 0.9 0.15 5946.53
9 60 0.6 0.15 5929.69
10 60 0.7 0.20 5963.60
11 60 0.8 0.05 5940.92
12 60 0.9 0.10 5978.65
13 80 0.6 0.20 5949.35
14 80 0.7 0.15 5980.21
15 80 0.8 0.10 5954.99
16 80 0.9 0.05 5989.01

 

Table 6    Response and rank of parameters regarding GA.

Level ζN ιc κ′m
1 5952 5959 5987
2 5942 5966 5948
3 5953 5933 5941
4 5968 5958 5940

Delta 26 33 47
Rank 3 2 1
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V
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ζN ιc κ'm

80 0.6 0.7 0.8 0.9 0.05 0.10 0.15 0.20

 
Fig. 6    Influence trends of parameters in GA.

    198 Complex System Modeling and Simulation, June  2024, 4(2): 184−209

 



t

Q-HMH and R-HMH. The outcome is marked as “+”,
“−”, and “~” when Q-HMH is significantly superior to,
significantly  inferior  to,  and  statistically  equivalent  to
R-HMH.  By  detecting  the -test  results,  we  discover
that Q-HMH significantly exceeds R-HMH in 12 out of
16  instances,  R-HMH  is  significantly  better  than  Q-
HMH in only one instance, and the rest are statistically

equivalent.  Through  dissecting  the  comparison
outcome,  we  find  out  that  Q-HMH  reveals  more
superior  results  than  R-HMH.  Namely,  the  Q-learning
method  plays  essential  roles  in  reinforcing  the
performance of Q-HMH for solving the problem under
consideration.

To reveal the search process of Q-HMH and R-HMH
visually,  we  equally  divide  the  entire  search  process
into  20  phases  according  to  the  quantity  of  fitness
evaluations,  and  then  the  ratio  of  using  GA,  ABC,
SFLA,  and  SA  at  each  phase  across  20  times  is
illustrated in Fig. 8. It is seen that R-HMH chooses the
four  methods  in  a  random  way  and  their  selected
percentages  are  very  similar  since  it  does  not  employ
any valuable information. Looking at  the results of Q-
HMH, we can find that the selected percentages of four
methods are diverse since the Q-learning method fully
uses  the  search  information  to  choose  a  befitting
method.  In  the  search  process,  GA  and  SA  are
frequently  selected  to  update  the  population,  followed
by  ABC  and  SFLA.  In  accordance  with  the  above
outcome and dissection, we verdict that the Q-learning
methods  have  essential  roles  in  improving  the
performance of Q-HMH.

5.4    Comparison of Q-HMH and CPLEX

P
P ∈ {2,4,6,8}

In order to verify the abilities of Q-HMH in searching
optimal  solutions,  this  study  makes  comparisons
between Q-HMH and CPLEX in addressing the studied
problem.  All  the  employed  instances  are  transformed
into  deterministic  circumstances  by  taking  the  mean
values  as  regards  disassembly  and  setup  time  of
operations and processing time of components. CPLEX
takes  the  maximum running  time  equaling  to  3  h  as  a
suspensive  condition.  Namely,  CPLEX  is  forced  to
stop when the given computation time exhausts.  Thus,
it gains an approximately optimal value (AOV) like Q-
HMH. Q-HMH and CPLEX solve the instances with 
products, .  Q-HMH  solves  each  instance
20 runs, and the average is computed for comparisons.
The  experimental  results  obtained  by  Q-HMH  and

 

Table  7    Parameter  combinations  and  ARV  values  of
parameters regarding ABC.

No.
Factor level

ARV
ζ′N κ′l

1 20 20 5816.42
2 20 40 5776.02
3 20 60 5827.23
4 20 80 5773.88
5 40 20 5732.11
6 40 40 5757.10
7 40 60 5746.63
8 40 80 5755.47
9 60 20 5763.41
10 60 40 5758.01
11 60 60 5757.56
12 60 80 5751.51
13 80 20 5774.89
14 80 40 5770.89
15 80 60 5776.07
16 80 80 5771.22

 

Table  8    Orthogonal  table  and  ARV  values  of  parameters
regarding EEO.

No.
Factor level

ARV
ζ′′q ι′′u κ′′m ϑ

1 20 3 0.05 20 5926.38
2 20 5 0.10 40 5931.32
3 20 7 0.15 60 5971.91
4 20 9 0.20 80 5954.06
5 40 3 0.10 60 5943.74
6 40 5 0.05 80 5917.38
7 40 7 0.20 20 5933.72
8 40 9 0.15 40 5931.65
9 60 3 0.15 80 5908.90
10 60 5 0.20 60 5912.33
11 60 7 0.05 40 5926.09
12 60 9 0.10 20 5929.07
13 80 3 0.20 40 5933.93
14 80 5 0.15 20 5941.32
15 80 7 0.10 80 5934.65
16 80 9 0.05 60 5923.85

 

Table 9    Response and rank of parameters regarding EEO.

Level ζ′′q ι′′u κ′′m ϑ

1 5946 5928 5923 5933
2 5932 5926 5935 5931
3 5919 5942 5938 5938
4 5933 5935 5934 5929

Delta 27 16 15 9
Rank 1 2 3 4
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CPLEX  are  reported  in Table  11.  This  research
calculates  the  gap  of  Q-HMH  and  CPLEX  to  assess
their difference degree. It is calculated as Eq. (31).
 

gap =
ψ−ψQ

ψ
×100% (31)

ψQ ψwhere  and  denote  the  results  found  by  Q-HMH
and CPLEX, respectively. A larger gap means that the
solution obtained by Q-HMH is much better.

It  is  seen  that  Q-HMH  and  CPLEX  can  reach  the
optimal  solution  for  the  instance  with  two  products,

while  CPLEX  achieves  approximately  optimal
solutions  for  the  instances  with  more  than  two
products. In addition, compared with CPLEX, Q-HMH
can get  better  results  for  the  instances  with  more  than
two  products  by  spending  less  time.  It  is  noted  that
their gap becomes larger as the problem size increases.
Via dissecting the comparison outcome, we declare that
Q-HMH  exhibits  evident  advantage  over  CPLEX  in
addressing  the  studied  problem,  especially  for  the
large-size problems.
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Fig. 7    Influence trends of parameters in EEO.

 

Table 10    Comparison results of Q-HMH and R-HMH.

Number of products Instance No.
Q-HMH R-HMH

t-test
aRPD bRPD sRPD aRPD bRPD sRPD

2

1 0.0094 0.0000 0.0068 0.0172 0.0059 0.0093 +
2 0.0078 0.0000 0.0061 0.0139 0.0012 0.0097 +
3 0.0189 0.0000 0.0156 0.0341 0.0000 0.0151 +
4 0.0022 0.0000 0.0019 0.0017 0.0000 0.0020 ~

4

1 0.0090 0.0000 0.0084 0.0174 0.0000 0.0091 +
2 0.0245 0.0010 0.0134 0.0349 0.0000 0.0156 +
3 0.0251 0.0000 0.0171 0.0331 0.0036 0.0166 ~
4 0.0057 0.0000 0.0061 0.0132 0.0000 0.0119 +

6

1 0.0198 0.0000 0.0104 0.0303 0.0018 0.0149 +
2 0.0163 0.0000 0.0088 0.0248 0.0025 0.0108 +
3 0.0379 0.0136 0.0121 0.0266 0.0000 0.0140 −
4 0.0187 0.0000 0.0094 0.0286 0.0102 0.0114 +

8

1 0.0241 0.0015 0.0100 0.0359 0.0000 0.0190 +
2 0.0025 0.0000 0.0018 0.0055 0.0003 0.0057 +
3 0.0124 0.0001 0.0071 0.0125 0.0000 0.0096 ~
4 0.0083 0.0000 0.0060 0.0173 0.0033 0.0094 +

Average 0.0152 0.0010 0.0088 0.0217 0.0018 0.0115
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5.5    Comparison of Q-HMH and peer methods

This  work  carries  out  experiments  to  verify  the
capacities of Q-HMH and its competitive methods, i.e.,
GA[65],  ABC[58],  and  EEO[29].  GA  and  ABC  are  two

well-known  meta-heuristics,  and  a  great  many  of
studies  give  them  positive  evaluations  in  solving
disassembly  optimization  problems[58, 65].  EEO  is  a
recently-published  work  for  solving  multi-product
DSPPs,  and  extensive  comparison  experiments  verify
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Fig. 8    Selected percentage of search methods for Q-HMH and R-HMH.
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its excellent performance in addressing such problems.
Besides,  ABC  and  EEO  use  the  same  solution
representation methods with Q-HMH like their original
studies[29, 58],  which can be straightforwardly extended
to solve the considered problem. They are extended to
solve  the  studied  problem  by  selecting  the  earliest
available  reprocessing  line  for  arrival  components  as
Q-HMH.  Therefore,  this  work  selects  the  three  meta-
heuristics  for  comparisons.  The  details  of  extending
GA,  ABC,  and  EEO  for  solving  the  considered
problem are given as follows:

(1)  GA  uses  the  same  solution  representation  as  Q-
HMH. It contains three stages, i.e., selection, crossover,
and  mutation.  The  crossover  and  mutation  operations
are  the  same  with  Q-HMH,  and  the  selection  and
population  update  are  identical  to  GA  in  the  original
literature[65].

(2)  ABC  also  employs  the  same  solution
representation approach like Q-HMH. At the employed

bee phase, the crossover operation of employed bees is
the  same  with  Q-HMH.  At  the  onlooker  bee  phase,  a
tournament  selection  method[58] is  applied  to  choose
initial onlooker bees, and then a neighborhood method,
which  is  the  same with  ABC[58],  is  used.  At  the  scout
bee  phase,  new  individuals  are  generated  by  the
tournament  selection  method,  and  the  predetermined
limit is equal to 0.

(3)  EEO  adopts  the  same  solution  representation
approach  like  Q-HMH  as  well.  Its  equilibrium  pool
construction,  concentrations  of  particles  update,  and
particle’s memory saving are the same with EEO in the
original  literature[29].  Additionally,  it  uses  the  same
crossover  operations  like  Q-HMH  and  the  local-best
search approach in EEO[29].

30 ·P ·H
aRPD bRPD

sRPD

Furthermore,  the Taguchi  experiments[66, 67] are  also
adopted  to  determine  the  user  parameters  of  three
competitive  methods.  Q-HMH  and  the  rivals  use  the
same  number  of  fitness  evaluations  equaling  to

 as stopping conditions. Q-HMH and the rivals
address  each  instance  20  times,  and  the , ,
and  values  across  20  times  are  calculated  to
dissect their outcome.

aRPD bRPD sRPD
aRPD

aRPD

Table 12 reports the optimization results of Q-HMH
and its  peers  respecting , ,  and .  The
outcome  regarding  reveals  that  Q-HMH
surpasses  ABC  in  13  out  of  16  instances.  It  is
remarkable that Q-HMH has smaller  values than
GA  and  EEO  in  handling  all  instances.  Besides,  the

 

Table 11    Comparison results of Q-HMH and CPLEX.

Number of
products

AOV Gap (%)
CPLEX Q-HMH Time of Q-HMH (s)

2 1023◎ 1023◎ 0.9901 0.0000
4 1352 1283 3.4892 5.1036
6 1801 1659 8.2020 7.8845
8 2351 2100 14.0501 10.6763

Note: The symbol “◎” signifies that the corresponding result is
optimal.

 

Table 12    Comparison outcomes of Q-HMH and the peer algorithms.

Number of
products Instance No.

Q-HMH GA ABC EEO
aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD aRPD bRPD sRPD

2

1 0.0094 0.0000 0.0068 0.0594 0.0433 0.0140 0.0417 0.0244 0.0092 0.0463 0.0300 0.0084
2 0.0078 0.0000 0.0061 0.0421 0.0226 0.0068 0.0321 0.0203 0.0076 0.0315 0.0205 0.0076
3 0.0192 0.0003 0.0156 0.0667 0.0518 0.0070 0.0490 0.0000 0.0130 0.0517 0.0326 0.0123
4 0.0022 0.0000 0.0019 0.0023 0.0000 0.0024 0.0016 0.0000 0.0020 0.0036 0.0004 0.0020

4

1 0.0090 0.0000 0.0084 0.0367 0.0080 0.0186 0.0188 0.0036 0.0087 0.0287 0.0135 0.0072
2 0.0235 0.0000 0.0134 0.0748 0.0532 0.0173 0.0514 0.0260 0.0136 0.0791 0.0380 0.0138
3 0.0251 0.0000 0.0171 0.0467 0.0179 0.0139 0.0234 0.0142 0.0106 0.0359 0.0178 0.0104
4 0.0057 0.0000 0.0061 0.0398 0.0163 0.0164 0.0187 0.0027 0.0121 0.0399 0.0269 0.0092

6

1 0.0198 0.0000 0.0104 0.0624 0.0280 0.0143 0.0305 0.0159 0.0111 0.0693 0.0313 0.0124
2 0.0163 0.0000 0.0088 0.0708 0.0430 0.0151 0.0344 0.0162 0.0124 0.0712 0.0430 0.0097
3 0.0240 0.0000 0.0119 0.0736 0.0419 0.0137 0.0231 0.0076 0.0114 0.0850 0.0653 0.0085
4 0.0187 0.0000 0.0094 0.0536 0.0236 0.0182 0.0317 0.0051 0.0174 0.0584 0.0413 0.0099

8

1 0.0226 0.0000 0.0099 0.1061 0.0586 0.0181 0.0458 0.0173 0.0154 0.1069 0.0234 0.0213
2 0.0025 0.0000 0.0018 0.0296 0.0118 0.0144 0.0093 0.0030 0.0081 0.0229 0.0127 0.0076
3 0.0123 0.0000 0.0071 0.0320 0.0103 0.0095 0.0162 0.0015 0.0083 0.0302 0.0221 0.0040
4 0.0083 0.0000 0.0060 0.0391 0.0209 0.0088 0.0217 0.0101 0.0080 0.0311 0.0195 0.0042

Average 0.0142 0.0000 0.0088 0.0522 0.0282 0.0130 0.0281 0.0105 0.0106 0.0495 0.0274 0.0093
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aRPD

(R)

bRPD

bRPD

sRPD

sRPD

average  values of Q-HMH, GA, ABC, and EEO
in  all  the  instances  are  0.0142,  0.0522,  0.0281,  and
0.0495,  respectively.  A  relative  percentage  increase

,  defined in Eq.  (32),  is  adopted to further  analyze
the experiment results. It is found that Q-HMH exceeds
GA, ABC, and EEO by 26.76%, 9.79%, and 24.56% on
average,  respectively.  Accordingly,  it  is  observed  that
Q-HMH produces much smaller results than ABC in 14
out  of  16  instances  with  respect  to ,  and  it
performs better than GA and EEO in all the instances.
The average  values of  Q-HMH, GA, ABC, and
EEO are severally equal to 0.0000, 0.0282, 0.0105, and
0.0274,  respectively.  Moreover,  by  computing  the

 values  on  all  instances,  we  find  that  Q-HMH
severally  exceeds  GA,  ABC,  and  EEO  in  14,  13,  and
10 instances. Furthermore, the average  values of
Q-HMH,  GA,  ABC,  and  EEO  are  0.0088,  0.0130,
0.0106,  and  0.0093,  respectively.  Concerning  the
relative  percentage  increase  on  average,  Q-HMH
outperforms  GA,  ABC,  and  EEO  by  4.77%,  2.05%,
and  0.57%,  respectively,  implying  that  Q-HMH  is
much  steadier  in  working  out  this  problem.  By
analyzing the comparison outcome, we can declare that
Q-HMH  defeats  its  rivals  in  figuring  out  the
investigated problem. 

R =
φA−φ∗A
φ∗A×10

×100% (32)

φ∗A φA

RPD
where  and  denote the average values of Q-HMH
and  its  rivals  on  all  the  instances  regarding 
metrics, respectively.

aRPD

aRPD

Moreover,  to  reveal  the  comparison  outcome
intuitively, Fig.  9 diagrams  the  boxplots  of  Q-HMH
and its peers in dealing with the instances with diverse
number of products. It is observed that Q-HMH is more
concentrated  and  more  stable  than  its  competitors.
Figure  10 illustrates  the  results  of  instances  with
different  number  of  products  in  terms  of  the  average

.  It  is  found  that  Q-HMH  achieves  the  smaller
results  than  the  rivals  on  the  instances  with  different
number  of  products.  Furthermore,  we  calculate  the
confidence  interval  with  a  95% confidence  interval  in
terms  of  values,  and Fig.  11 illustrates  the
confidence  intervals  of  Q-HMH  and  the  peers  in
addressing some instances with different products. The
confidence  intervals  of  Q-HMH  do  not  overlap  with
those of GA, ABC, and EEO in most of the instances,
implying that there are significant differences between
Q-HMH  and  the  rivals.  Meanwhile,  Q-HMH  has
narrower  confidence  interval  in  most  of  the  instances
than  the  peers,  indicating  that  the  estimates  are  more
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precise. In consequence, we are able to declare that Q-
HMH  has  excellent  performance  in  solving  the
considered problem.

To clearly dissect the experimental results, we further
use the Friedman test[68], Nemenyi post-hoc test[69], and
Wilcoxon  signed-rank  test[70] to  sort  Q-HMH  and  its
peers.  The  concrete  dissection  of  statistical  results  is
furnished as:

aRPD

(1)  The  Friedman  test  is  performed  at  0.05  level  of
significance.  All  the  methods  are  assigned  to  order
values 1, 2,  3,  and 4 in accordance with  values.
Afterwards,  the  average  order  values  across  the  used
instances  are  calculated  as  displayed  in Table  13.
Looking  at  the  obtained  optimization  results,  we  can
conclude  that  Q-HMH  and  the  rivals  are  statistically
discrepant  since  they  have  different  average  order
values.

(2)  The  Nemenyi  post-hoc  test  at  0.05  level  of
significance  is  adopted  to  dissect  the  discrepancy  of
average order values. The differences of Q-HMH, GA,
and  EEO  as  regards  average  order  values  are  2.3125
and  2.2500.  By  comparing  with  a  critical  range  value
1.1726,  the  results  imply  that  Q-HMH is  significantly
better than GA and EEO. Besides, the difference of Q-
HMH  and  ABC  is  0.6875  (smaller  than  1.1726),
signifying  that  their  capacities  are  statistically
equivalent.

t(3) The -test at 0.05 level of significance is used to
further  examine  Q-HMH  and  its  competitors  in
figuring  out  the  employed  instances.  In Table  13,  the
outcomes  are  marked  as “+”, “−”,  and “~” in  the
bracket  when  Q-HMH  is  significantly  superior  to,
significantly  inferior  to,  and  statistically  equivalent  to
its peers, respectively. It is found that Q-HMH exhibits
significantly  better  performance  than  GA,  ABC,  and
EEO on 15, 12, and 16 instances, respectively, and they

are statistically equivalent for the rest.

w+ w−

w∼

R+s

R−s

aRPD bRPD
sRPD

(4)  The results  of  the  Wilcoxon signed-rank test  are
shown  in Table  14.  The  symbols “ ”, “ ”,  and
“ ” denote  that  Q-HMH  is  superior  to,  inferior  to,
and  equivalent  to  its  competitors,  respectively. “ ”
indicates  the  sum  of  ranks  that  the  first  algorithm
outperforms the second, and “ ” is calculated for the
opposite.  It  is  observed  that  Q-HMH  exhibits  better
performance  than  its  rivals  respecting , ,
and . The statistical results verify that Q-HMH is
a better method, and it can gain positive acceptance in
addressing the considered issue.

Furthermore,  we  collect  the  computation  time  of  Q-
HMH and the competitors in solving the instances, and
then we calculate the average computation time of the
instances  having  the  identical  quantity  of  products.
Table  15 reports  the  experimental  outcome.  By
observing these results, we can see that Q-HMH spends
less  computation  time  to  reach  the  above  superior
performance.  Thus,  Q-HMH  has  higher  computation
efficiency.

6    Conclusion and Future Work

This study addresses an integrated scheduling problem
of disassembly and reprocessing processes considering
product  structures  with  random  disassembly  and
processing  time.  A  stochastic  programming  model  is
established  to  realize  minimal  expected  makespan.  A
Q-learning  based  hybrid  meta-heuristic  method  is
accordingly devised with consideration of the problem’s
characteristics. The formulated model is validated, and
the strong competitiveness of the proposed algorithm is
verified.  This  research  provides  a  high-efficiency
approach  to  solve  integrated  disassembly  and
reprocessing  scheduling  problems  in  uncertain
circumstances  when  the  product  structures  need  to  be
considered.  The  achievements  can  help  managers  and
practicers  to  make  much  better  and  credible  decisions
for reference.

In  the  future,  we  will  consider  the  subsequent
directions:  (1)  formulize  the  integrated  scheduling
models  of  disassembly,  reprocessing,  and  reassembly
with  consideration  of  product  structures  and
uncertainties;  (2)  design  effective  meta-heuristics
incorporating  multi-task  optimization  and  digital  twin
methods to handle the formulated problems[71, 72].
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Table 13    Statistic outcomes of Q-HMH and the rivals.

Number of
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