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Abstract— Mathematical modelling is a fundamental 
instrument in the development of theoretical validation for 
experimental results and in their interpretation. The gist of 
this paper is the application of a special multi-valued 
function, called Lambert W function, to several aspects of 
electrical engineering. This multi-valued function serves the 
purpose of inverting a vast gamut of expressions involving 
exponential functions, and can be used in many models 
concerning electrical insulation issues, yielding lower 
computational times as opposed to other methods solving 
nonlinear problems. In particular, this paper presents the 
analytical calculation of parameters for capacitor field and 
equipotential lines, Paschen’s law inversion, a model for 
electric field distribution in power cables, the inversion of 
Schottky and Dissado, Montanari, Mazzanti model for cable 
life estimation.     

Index Terms— Electric field distribution, Gas discharges, 
Lifetime modelling, Mathematical methods. 

 

I. INTRODUCTION 

ODELLING of physical-chemical behavior of 

materials is a key step for reducing the effort in 

experimental testing and guaranteeing efficient and 

reliable application of electrical equipment in real conditions. 

In this framework, mathematical modelling aims at providing 

the most accurate approach, even though it yields a plethora of 

approximations from real experimental outcomes. Nonetheless, 

available mathematical models for electrical engineering 

applications are characterized by transcendental equations, 

which are usually very difficult to solve analytically [1, 2]. 

Lambert W function can be used to solve problems involving 

the sum or the product between a linear and an exponential term 

exactly [3]. This behavior is quite recurrent in several fields of 

science, from condensed matter physics [4] to enzyme catalytic 

reaction kinetics [5]. Computational numerical implementation 

of Lambert W function is possible. In addition, it helps in the 

development of more accurate models in a considerable number 

                                                
 (Corresponding author: D. Mariani email: daniele.mariani8@unibo.it )  

Daniele Mariani, Paolo Seri, Andrea Cavallini, Leonardo Gasperini, 

Giacomo Selleri, Alberto Rumi, Simone Vincenzo Suraci and Davide 

Fabiani are with LIMES (Laboratory of Innovative Materials for Electrical 

of cases. This function has already been used in several fields 

connected to electrical engineering: the main use is for the exact 

resolution of the equivalent circuit of first-generation 

photovoltaic cells [6]. In this case, the contemporary presence 

of a diode, characterized by an exponential relationship among 

the current and the voltage, and resistances, linear components, 

renders Lambert W function the most suitable mathematical 

tool for this scope [7]. This led to more accurate estimations of 

parameters connected to their performance, such as the fill 

factor. In some particular cases, it is also possible to implement 

a similar solution for third generation photovoltaic cells, but the 

result is extremely more complicated due to the higher 

complexity of the equivalent circuit. Metals exhibit a simple 

linear relationship between their thermal and electronic 

conductivities, namely Wiedemann-Franz law. However, 

experimental results can diverge from this ideal behavior. 

Recent research [8] shows that expressions involving a 

generalization of Lambert W function correctly describe the 

deviation from linearity and optimize the figure of merit ZT, a 

parameter strictly related to the efficiency of thermoelectric 

materials. 

With reference to electrical insulation engineering, several 

important employments of Lambert W function have been 

attained. One of the main topics which can be addressed is space 

charge effect on electrical insulating materials and 

semiconductors, previously studied analytically both with [9] 

and without Lambert W function employment [10]. Even 

though this topic has seen a significant interest especially in the 

last decades due to its impact on HVDC applications, to the 

Authors’ knowledge, the most complete theoretical exposition 

of space charge was developed by Lampert and Mark in the 

1970s [11]. The validation of this approach has been also 

confirmed by a recent work from Guedes et al. [12]. Under the 

assumption of an exponential trap distribution in the sample, the 

model uses a generalized Lambert W function to give the 

expression for the current flowing through a material which 

Systems) - DEI, Viale del Risorgimento 2, Bologna, Italy. 

Arturo Popoli is with Department of Electrical, Electronic, and 

Information Engineering "Guglielmo Marconi", Viale del Risorgimento 2, 

Bologna, Italy (email: arturo.popoli@unibo.it). 

M 

This article has been accepted for publication in IEEE Transactions on Dielectrics and Electrical Insulation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDEI.2024.3469154

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:arturo.popoli@unibo.it


8 

IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION 

 

respects Child’s law. This latter represents the typical square 

law current-voltage characteristic of an insulating material. An 

additional application is related to the electric field distribution 

in a coaxial geometry, characteristic of the electrical insulation 

of HVDC cables, was investigated by Boggs [13]. In particular, 

it was shown that under the hypothesis of an inhomogeneous 

field due to accumulation of space charge, the electric field 

distribution can be calculated by means of Lambert W function. 

Finally, an analysis of Schottky emission found the expression 

for the temperature required to have a certain value of current 

density [14]. This could be a useful instrument in case of planar 

geometry design for electrical insulation applications. 

The aim of this paper is to further expand the application of 

the Lambert W function to other electrical applications which 

have not been totally covered in literature. In addition, 

comparison with conventional approaches is reported to 

validate the proposed method, highlighting a reduction in 

computational times. Furthermore, the closed form expression 

for the solution can be analyzed in a simpler way once the basics 

of Lambert W function are understood. In this article, the law 

will be applied to three main areas: gas discharges, electric field 

distribution and charge transport in solid insulating samples, 

lifetime modelling. The former topic is covered by Rogowski 

profile [15] parameters calculation and by Paschen’s law 

inversion [16], the second by Eoll theory [17-18], the latter by 

Dissado, Montanari and Mazzanti (DMM) model [19] for aging 

owing to space charge. 

II. FUNDAMENTALS OF LAMBERT W FUNCTION 

Let’s suppose x is a real variable and define the function: 

 

𝑓(𝑥) = 𝑥𝑒𝑥 (1) 
 

The Lambert W function W(x) is defined as the inverse of 

the function 𝑓(𝑥) in the interval [-1/e,+∞). Therefore, if we 

write: 

 

𝑥𝑒𝑥 = 𝑎 (2) 
 

the solution to (2) is: 

 

 𝑥 = 𝑊(𝑎) (3) 
 

This definition already shows the fact that the presence of 

both a linear and an exponential function require the 

introduction of a special function in order to invert it. 

Nonetheless, this definition is ambiguous by itself, as W(x) can 

assume two different values in the interval [-1/e,0[, as shown in 

Fig. 1. For this reason, it is necessary to distinguish these two 

possibilities as two branches of the function defined in the [-1/e, 

+∞) and in [-1/e,0), which are called 0 branch and -1 branch, 

respectively.  

 

 
Fig. 1 Lambert W function branches 

This separation of the two branches is fundamental in the 

inversion of functions which have a non-monotonic behavior, 

as the absence of its implementation would lead to the outcome 

of a double-valued Lambert W function, as will be shown in its 

application to Paschen’s law. The Lambert W function can be 

generalized to solve a more general equation, which is (4):  

 

𝑥 = 𝑎 + 𝑏𝑒𝑐𝑥 . (4) 
 

Its solution is:  

 

𝑥𝑘 = 𝑎 −
1

𝑐
𝑊𝑘(−𝑏𝑐𝑒

𝑎𝑐). (5) 

 

In (4) and (5) a, b and c are real parameters, and k can assume 

the values 0 and -1, representing the 0 and -1 branches, 

respectively. 

Routines for the calculation of 𝑊(𝑥) are provided in several 

numerical software packages, including MATLAB, as a 

function called lambertw, and Python. 

Compared to the symbolic solving method in MATLAB, 

vpasolve, the numeric (approximate) lambertw MATLAB 

function requires considerably smaller computational times, 

especially for high numerousness of the analyzed array. In 

particular, when used for solving (2) for an array a of 1000 

elements, the time is reduced from around forty seconds for 

vpasolve to almost ten milliseconds for lambertw. This 

divergence further increases when considering more complex 

problems, thus assessing Lambert W function method as less 

time consuming. 

III. NUMERICAL SOLUTION 

To numerically evaluate 𝑊(𝑎), i.e., the Lambert function of 

a generic real number 𝑎, one must solve a transcendental 

equation.  𝑊(𝑎) is indeed the solution of (6): 
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𝑥𝑒𝑥 − 𝑎 = 0. (6) 
 

Fortunately, calculating the zeros of the former expression is 

a problem that can be solved by many root-finding algorithms. 

One may, for example, use the well-known Newton's method 

(also known as Newton-Raphson algorithm), which is based on 

an expansion of the unknown function 𝑓(𝑥) = 𝑥𝑒𝑥 − 𝑎. The 

approximate solution is updated from the iteration 𝑘 to the next 

one 𝑘 + 1 with: 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
, (7) 

where: 

𝑓′(𝑥) = 𝑒𝑥 (1 + 𝑥) (8) 

The criteria for stopping the iterative procedure may be based 

on how close to zero is 𝑓(𝑥𝑘) or, more often, on the change of 

the tentative solution 𝑥𝑘+1 − 𝑥𝑘. The order of convergence of 

the method is quadratic [20]; this means that – at least when the 

initial guess 𝑥0 is reasonably close to the real root – Newton’s 

method is considerably faster than linearly converging 

methods, e.g., the simple bisection method. 

Let’s now consider the second-order derivative of 𝑓(𝑥): 

𝑓′′(𝑥) = 𝑒𝑥 (2 + 𝑥). (9) 

The simplicity with which this expression can be computed 

suggests the use of a higher-order convergence method. 

Applying Newton’s method (7) to the function 𝑔(𝑥) =
𝑓(𝑥)

√|𝑓′(𝑥)|
 

instead of 𝑓(𝑥) leads to Halley’s method [21]: 

 

 𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
[1 −

𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 
𝑓′′(𝑥𝑘)

2𝑓′(𝑥𝑘)
]

−1

 (10) 

 

Halley’s method has a cubic convergence rate, and is used in 

several codes for the evaluation of the Lambert W function, 

including the built-in MATLAB, MAPLE and Mathematica 

functions [21-22], the GNU Scientific Library (GSL) [23] and 

Istvan Mezo’s C++ routine [24]. It is worth realizing that both 

Newton’s method and Halley’s method are examples of 

Householder's methods (of order 1 and 2, respectively). 𝑓(𝑥) is 

infinitely continuously derivable, and its differentiation is 

inexpensive given that: 𝑓𝑛(𝑥) = 𝑒𝑥 (𝑛 + 𝑥). Therefore, one 

may also consider using methods with orders higher than two 

to get faster rates of convergence. Veberič has shown in [25] 

that the iterative method proposed by Fritsch in [26], which is 

fourth-order accurate, grants substantial advantages in terms of 

computation time over Halley’s method. Finally, it should be 

noted that the performance of all mentioned iterative schemes 

depends on the quality of the initial guess; Strategies to 

determine the initial guess for (10) and for the Fritsch method 

can be found in [21] and [26], respectively. 

IV. APPLICATIONS 

In the following subsections, Lambert W functions will be 

utilized to find variables which are implicit in the equations 

modelling field lines in a capacitor, Paschen’s law, Eoll theory 

for HVDC cables, Schottky emission and DMM lifetime 

modelling. The final expressions containing Lambert W 

functions, except for when explicitly said, are on the x axis of 

the plots representing them. 

A. Electric field distribution in a capacitor 

Other valuable attempts at finding an expression for electric 

field outside a capacitor were made. In particular, in [27] an 

expression was found, but the electric field lines were not 

drawn. In order to get a smoother geometric shape, Rogowski 

[15] used the Maxwell solution of the electric fields associated 

with a finite flat plane above an infinite flat plane. 

This theoretical approach managed to link field lines to the 

spatial positions x and y in the case of air insulation between 

two electrodes. This correlation can be represented by the 

 
Fig. 2 Plane plate capacitor field and equipotential lines  

 
following equations: 

 

 

Fig. 3 Rogowski field lines (after [14]) 
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𝑥 = 𝐴(𝜑 + 𝑒𝜑 cos(𝜓)) (11) 
 

𝑦 = 𝐴(𝜓 + 𝑒𝜑 sin(𝜓)) (12) 

where A is d/π, with d the distance between the electrodes, φ 

defines an electrical field line and ψ, proportional to the 

potential and in the range [0,π]. The electrodes are usually 

obtained following the profile given by: 

ψ = π/2 (13) 

In this case, equation (11) is simply a linear expression. 

Nonetheless, it may be important to determine the potential and 

the field intensity in other points of the air domain, where ψ 

assumes different values. In this way, edge effects are taken into 

account. Assigning different values to ψ, it is possible to obtain 

the following expression for φ: 

 

φ =
x

A
−𝑊(cos(ψ) 𝑒

𝑥
𝐴) (14) 

 

After φ has been found in this manner, the corresponding 

value of x and y can be calculated through (11-12). Also, the 

potential V and electric field E are:  

𝐸(𝜑,𝜓) =
𝑉0

𝑑√1 + 𝑒2φ − 2𝑒φcos(ψ)
(15) 

𝑉 =
𝑉0
𝜋
ψ (16) 

 

 

The field and equipotential lines corresponding to 10 kV 

applied to an interelectrodic distance of 20 cm are plotted in 

Fig. 2, and are quite in agreement with Fig. 2 of [14], here 

reported as Fig. 3, representing field and equipotential lines in 

Maxwell theory for a capacitor. The insight also shows the 

classical denser concentration of field lines near the edges.  

B. Paschen’s law inversion 

 

Paschen’s law expresses the relationship between the 

breakdown voltage VB of a gaseous medium and the pressure 

p applied to it in a specific geometrical configuration. This law, 

which is widely used in the design of high pressure switches, 

relates the applied electrical stress with the increase in kinetic 

energy of charge carriers in the inter-electrodic region. This 

causes the rise in the probability of inelastic collisions with 

neighboring neutrals. These ones lead to the release of new 

electrons, which may trigger the ionization of other surrounding 

particles. As a consequence, an exponential avalanche process 

described by Townsend first coefficient will take place. In 

particular this last parameter is inversely proportional to the free 

mean path of a charge carrier, which in turn is inversely 

proportional to the pressure. Thus, after some simple 

mathematical considerations, it is possible to obtain Paschen’s 

law: 

𝑉𝐵 =
𝐵𝑝𝑑

ln(𝐴𝑝𝑑) − ln (ln (1 +
1
𝛾
))

(17)
 

where d is the interelectrode distance (or gap length), A and B 

are constant coefficients which depend upon the employed gas, 

and γ, the second Townsend coefficient, which depends on both 

the gas and the cathode. The Lambert W function can be used 

to solve the equation in the following way, whose details are 

shown in Appendix A: 

𝑝𝑑 = 𝑎 −𝑊(−
𝐵

𝑉𝐵
𝑒𝑎) (18) 

where: 

 
Fig. 5 Paschen's law inversion with distinction of the two 

branches 

 

𝑎 = −𝑙𝑛(𝐴) + 𝑙𝑛 (𝑙𝑛 (1 +
1

𝛾
)) (19)  

  

Fig. 4 Paschen's law inversion without distinction 

of the two branches 
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As known, Paschen curve plots have a minimum VB, and if 

values lower than this value are inserted in (18), it does not 

return real values, but complex ones; another consequence is 

that two possible pressure values are available for each 

acceptable breakdown voltage value. This leads to a possible 

ambiguity in the implementation of  (18), as shown in Fig. 4. 

To solve this issue, it is sufficient to distinguish between the 

two branches of the Lambert W function, as exposed in Section 

II: the 0 branch and the -1 branch provide the solutions below 

and above the pd value corresponding to the Paschen’s 

minimum: 

 

𝑝𝑑 =

{
 

 𝑝𝑑0 = 𝑎 −𝑊0 (−
𝐵

𝑉𝐵
𝑒𝑎)  below minimum (a)

𝑝𝑑−1 = 𝑎 −𝑊−1 (−
𝐵

𝑉𝐵
𝑒𝑎)  after minimum (𝑏)

(20) 

 

Equation (20a) is assigned to the part of the plot with lower pd 

values because the expression contains a 0 branch, which by 

itself is higher than the -1 branch (see Fig. 1), with changed 

sign. The parameters used in the simulation are those of 

hydrogen, namely A=3.6, B=102, γ=0.015. 

Fig. 5 reports the comparison between the conventional 

Paschen law expressed by (17) and the two branches of the 

curve obtained by applying Lambert W function, as per  (20). It  

is evident that the two curves are practically superposed 

throughout the pd region considered, exception given for the 

minimum (insight in Fig. 5), which is excluded from the 

calculation due to the change of the expression from (20a) to 

(20b). More importantly, this approach, which could be used 

for several applications, such as GIS design, avoids 

approximated methods (e.g., look-up tables) for the 

determination of the correct p value. In case Paschen’s law is 

inverted for a high numerousness of VB values, Lambert W 

function considerably diminishes computational times. 

C. Electric field distribution in cables 

In the backdrop of recent developments of electrical energy 

transmission, DC cables compete with AC ones. The apparent  

economic shortcomings, represented by the need of converters  

for interfacing with AC grids, can be strongly abated in case 

of extremely high voltage transmission over long distances. 

Among the most critical aspects which influence the operating 

lifetime of a cable, there is the concurrent effect of electrical 

field and temperature on electrical conductivity in the insulating  

layer.  

In this context, several theories lay the groundwork for an 

analytical approach to assess the possible effects of this conjoint 

applied stress. More specifically, Eoll [17-18] developed a 

theory which models the electric field distribution in a coaxial 

cylinder capacitor filled with a polymer, which is a typical 

geometry for HVDC cable insulation. It starts from the 

  
TABLE I 

PARAMETERS FOR SIMULATION OF HVDC CABLE 

 

nonlinear behavior of electrical conductivity with temperature 

and electric field:  

𝜎(𝐸, 𝑇) = 𝜎0𝑒
𝑎(𝑇−𝑇0)+𝑏(𝐸−𝐸0) (21) 

where 𝜎0 is the intrinsic electrical conductivity of the material 

in a given thermal condition, T is the temperature, T0 is a 

reference temperature (usually 0 or 20°C), E0 is a reference 

electric field (usually 0 kV/mm) and a and b are parameters 

dependent on the investigated material. Developing other 

equations which describe the thermal losses, exposed in [16-

17], equation (22) is obtained:  

𝐼

2𝜋𝑟𝐸(𝑟)𝜎0
= 𝑒𝑎𝑇(𝑟𝑜)+𝑏𝐸(𝑟) (

𝑟𝑜
𝑟
)
𝐴

𝑤𝑖𝑡ℎ  𝐴 =
𝑎𝛥𝑇

ln (
𝑟𝑜
𝑟𝑖
)
(22) 

where E(r) is the electric field at radial position r, T(r0) the 

temperature at outer radius, ro the outer radius, ri the inner 

radius, r the generic radius, ρ0 the resistivity at T0, T0 the 

reference temperature, ΔT the temperature difference between 

the extremes, 𝐼 the current flowing through the insulation. 

A cross section with the geometrical parameters listed in Table 

I is shown in Fig. 6. 

At this point, Eoll employed an approximation for the 

exponential term with E(r), namely  

𝑒−𝑏𝐸(𝑟) ≈ (
𝑒𝐸(𝑟)

𝐸𝑚
)
−𝑏𝐸𝑚

(23)  

leading to the equation (24):  

𝐸(𝑟) =
𝛿𝑈0 (

𝑟
𝑟0
)
𝛿−1

𝑟0 (1 − (
𝑟𝑖
𝑟𝑜
)
𝛿
)
, 𝛿 =

𝑎𝛥𝑇

ln (
𝑟𝑜
𝑟𝑖
)
+

𝑏𝑈0
𝑟𝑜 − 𝑟𝑖

1 +
𝑏𝑈0
𝑟𝑜 − 𝑟𝑖

(24)  

a b ro ri σ0 ΔT T(ro) 

K-1 m/V mm mm S/m °C °C 

0.15  10-8  50  20  10-17  15 20 

 

Fig. 6 HVDC cable cross section 
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Fig. 7 Electric field in Eoll and Lambert models 

Equation (24) achieves a good approximation, especially 

when the electric field does not drift significantly from the 

average electric field inside the cable. On the contrary, 

important deviations from the real electric field distribution 

may arise by the employment of  (24) where the electric field is 

not constant e.g., in the presence of space charge in the 

insulation bulk. In these circumstances, a more accurate 

solution may be given by the deployment of Lambert W 

function, as explained further in Appendix B:  

𝐸(𝑟) =
𝑊(𝑐(𝑟)𝑏)

𝑏
(25) 

 

 

where: 

 

 c(r) =  𝑒
−𝑎𝑇(𝑟𝑜)𝐼

2𝜋𝑟𝜎0
(
𝑟

𝑟𝑜
)
𝐴

(26) 

and a power law has not been solved yet, to the best of the 
authors’ knowledge. 

Nonetheless, Lambert W function does not get a closed form 

expression for the voltage. This happens because the integration 

of the composite function of a Lambert W function authors’ 

knowledge. Thus, an approximation is introduced by 

performing numerical integration. In Fig. 7, the electric field 

distribution is shown, whereas Fig. 8 shows the maximum 
percentage error in the calculation of the electric field when 

Eoll's model is used instead of Lambert’s one. As shown in Fig. 

7, Eoll’s approximation is extremely accurate to evaluate the 

electric field distribution in the middle of the cable, but slightly 

differs from the exact value near the inner and outer radial 

positions. Furthermore, Fig. 8 displays an increasing difference 

between Eoll’s and Lambert’s models when the nominal 

voltage increases. From this figure, it may be stated that, though 

for voltages lower than 100 kV Eoll’s solution does not bring 

 
significant errors in the calculation of electric field, for voltages 

higher than this value the error follows an exponential 

behaviour. On the contrary, Lambert W permits a quite accurate 

evaluation of electric field, introducing an almost negligible 

error in the computation of the voltage by numerical 

integration. This result is particularly of interest given the 

current HVDC cables, whose design voltage is nowadays 
higher than 525 kV.  

 

D.DMM first model  

Space charge is a known cause of degradation in DC 

applications. the space charge effect on the performance of a 

cable system [19, 28-30] was widely studied by Dissado, 

Montanari and Mazzanti. In this paper, only the formula in [19] 

is taken into consideration, as the expression for lifetime is 

extremely simpler to analyze from a mathematical point of 

view. The formula is: 

𝐿(𝐸, 𝑇) =
𝐾𝐸(𝑇)𝑒

−𝜉(𝑇)(𝐸−𝐸𝑡)
4𝑏

(𝐸−𝐸𝑡)
𝜇

(27)  

where μ and b are characteristic constants of the material, ξ(T) 

and KE(T) are parameters dependent on the temperature, Et is 

the threshold electric field for charge injection. Through the 

Lambert W function application, one can find the value of E 

when T and all other parameters are known. The following 

formula holds:  

𝐸 = 𝑒
−
(𝑒
𝑎−𝑊(

4𝑏
𝜇
𝑒𝑎)

+𝐴)
𝜇 + 𝐸𝑡 , 𝑎 = ln(𝜉(𝑇)) −

4𝐴𝑏

𝜇
,

 𝐴 = ln (
𝐾𝐸
𝐿
) (28)

 

TABLE II 

PARAMETERS FOR SIMULATION OF DMM MODEL 

TABLE III 

KE 

s(kV/mm)μ 
ξ 

(kV/mm)-4b 

Et 

kV/mm 
μ B 

8.58·106 1.1·10-6 300 0.45 1.29 

 
 

Fig. 8 Percentage difference of Eoll model for 
maximum electric field as a function of rated voltage  
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where μ and b are characteristic constants of the material, ξ(T) 

and KE(T) are parameters dependent on the temperature, Et is 

the threshold electric field for charge injection. Through the 

Lambert W function application, one can find the value of E 

when T and all other parameters are known. The following 

formula holds: 

 

𝐸 = 𝑒
−
(𝑒
𝑎−𝑊(

4𝑏
𝜇
𝑒𝑎)

+𝐴)
𝜇 + 𝐸𝑡 , 𝑎 = ln(𝜉(𝑇)) −

4𝐴𝑏

𝜇
,

 𝐴 = ln (
𝐾𝐸
𝐿
) (28)

 

 

This expression is a viable alternative in electric field 

estimation for the design of a high voltage component to reach 

a predefined value of lifetime L, even though the usage of this 

DMM model has not been so covered in literature. Full 

derivation is realized in Appendix C. Parameters from Table II 

lead to the plot in Fig. 9. 

V. CONCLUSIONS 

In this paper, it was shown that some mathematical 

expressions easily solvable by means of Lambert W function 

are almost ubiquitous in different branches of science,  

especially in the electrical ones. Therefore, a thorough 

  
 

application of the Lambert W function tool to several existing 

models in the electrical insulation engineering field was carried 

out. This led to a revamping of previous models on gas 

insulation, solid insulating samples and lifetime modelling, 

achieving closed form expressions for the mathematical 

variables arising from these models. This resulted in proper 

compatibility with conventional approaches, which was even 

improved in some cases, e.g. Eoll. Further work may include 

the exploitation of more advanced formulations of Lambert W 

function to solve much more general and complex problems 

with equations resembling (4), and a review on the current 

research involving Lambert W function applications. 

APPENDIX A - LAMBERT APPLICATION TO PASCHEN’S LAW 

Starting from (17), we can obtain:  

 

𝑉𝐵(ln(𝐴) + ln(𝑝𝑑) − ln (ln (1 + 1/𝛾) ) = 𝐵𝑝𝑑  (𝐴. 1) 
 

by performing variable substitutions: 

 

𝑎 = (− ln(𝐴) + ln (ln (1 +
1

𝛾
)) , 𝑥 = ln (𝑝𝑑)  (𝐴. 2) 

 

 

we get to 

 

𝑉𝐵(𝑥 − 𝑎) = 𝐵𝑒
𝑥 , 𝑥 =

𝐵

𝑉𝐵
𝑒𝑥 + 𝑎 (𝐴. 3) 

 

And applying eqs. (4-5), the result is (20). 

APPENDIX B - LAMBERT APPLICATION TO HVDC CABLES 

By isolating the terms with E(r), it is possible to simplify  

(22) to: 

 

𝐸(𝑟)𝑒𝑏𝐸(𝑟) =
𝐼𝑒−𝑎𝑇(𝑟𝑜)

2𝜋𝑟𝜎0
(
𝑟

𝑟𝑜
)
𝐴

(𝐴. 4) 

 

By posing the right-hand side equal to c(r) (as in  (26)): 

 

𝐸(𝑟)𝑒𝑏𝐸(𝑟) = 𝑐(𝑟), 𝑥𝑒𝑥 = 𝑏𝑐(𝑟) (𝐴. 5) 
here x=bE. Final expression in (A.6) can be solved by means of  

 

APPENDIX C - LAMBERT W FUNCTION APPLICATION TO DMM 

Applications Advantages Limitations 

Rogowski Explicit expression considering edge effects for 

parallel plate capacitor can be achieved 

If only the behavior between the plates is required in the 

analysis, classical field expression is much simpler 

Paschen Pressure conditions can be obtained with limited 

computational efforts 

Complication due to Lambert W branches 

HVDC cables Improvement of Eoll expression for electric field Errors for numerical integration to get voltage 

DMM Closed form expression for electric field estimation for 

high voltage applications 

The required parameters are not deeply studied in 

literature 

 

Fig. 9 Plot of  (27) and (28) by using parameters reported 

in Table II 
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After applying natural logarithm to both sides of (27), we 

obtain: 

 

−ln (
𝐿

𝐾𝐸
) − 𝜇 ln(𝐸 − 𝐸𝑡) = 𝜉(𝑇)(𝐸 − 𝐸𝑡)

4𝑏 (𝐴. 6) 

 

and applying logarithm once again, we obtain: 

 

ln(𝐴 − 𝜇𝑦) = ln(𝜉(𝑇)) + 4𝑏𝑦,𝐴 = − ln (
𝐿

𝐾𝐸
) ,

 𝑥 = 𝐸 − 𝐸𝑡 , 𝑦 = ln(𝑥) (𝐴. 7)
 

 

We can further proceed by means of the following substitution: 

 

𝑧 = ln(𝜉(𝑇)) +
4𝑏𝐴

𝜇
−
4𝑏𝑒𝑧

𝜇
, 𝑧 = ln(𝐴 − µ𝑦) (𝐴. 8) 

 

The formula now is in form (4). Thus, it can be solved as: 

 

𝑧 = ln(𝜉(𝑇)) +
4𝑏𝐴

𝜇
−𝑊(

4𝑏

𝜇
𝑒
ln(𝜉(𝑇))+

4𝑏𝐴
𝜇 ) (𝐴. 9) 

 

which is equal to (28). 
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