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ABSTRACT We present a technique for three-dimensional (3D) object reconstruction utilizing an ultrasonic
array sensor and a variational autoencoder (VAE) within a high-interference environment. In scenarios where
optical instruments such as cameras and LiDAR are impractical, the utilization of air-coupled ultrasonic
waves for 3D measurements has emerged as a viable alternative. Nevertheless, deploying this technology in
high-interference settings, particularly outdoor environments, has presented significant challenges. To tackle
this challenge, we have developed and established a methodology for the 3D reconstruction of stationary
objects by combining the time-of-flight point cloud data acquired through beamforming with the deep
learning model VAE. This study proceeds by elucidating the procedure for conducting beamforming and
measuring distances using ultrasonic waves. Subsequently, we expound upon an experimental methodology
that employs 3D object reconstruction and associated techniques. Finally, we present the results obtained from
attaching an ultrasonic sensor to a utility pole and conducting ultrasonic measurements. Our investigation
focuses on four distinct types of objects: boxes, motorbikes, humans, and reflectors. The measurement system
was positioned 5 m above the ground on a utility pole situated alongside the road. The objects selected for
measurement were situated in stationary positions within a 3 m3 area, with a maximum distance of 10 m from
the utility pole. The objective of this study is to assess the efficacy of ultrasonic measurements and object
reconstruction techniques under these specified conditions. The results indicate a precision of 0.939, a recall
of 0.868, and an F-value of 0.902, which are considered sufficient for the application of ultrasonic waves.

INDEX TERMS Beamforming, three-dimensional object reconstruction, ultrasound array, variation
autoencoder.

I. INTRODUCTION

A IR-COUPLED ultrasonic measurement, which does
not require direct contact with the object, finds appli-

cation in a wide range of fields such as agriculture [1],
robotics [2], [3], and self-position estimation [4]. Among
these diverse applications, time-of-flight (ToF) ultrasound
imaging [5], [6], [7], [8] stands out for its capability to
measure the shape of an object in three dimensions. Although
light detection and ranging (LiDAR) and millimeter-wave
radars are commonly used for three-dimensional (3D) mea-
surements [9], the effectiveness of LiDAR can be com-
promised by the optical properties of the object being
measured, such as poor weather conditions and transparent
objects [10], [11], unlike ultrasonic imaging which remains

unaffected by these factors. Additionally, ultrasound imaging
is less expensive than both LiDAR andmillimeter-wave radar,
providing a cost-effective alternative for 3D measurement
applications.

Ultrasound imaging employs beamforming and ToF tech-
nologies. Beamforming enhances signals from various direc-
tions using the phase differences between transducers. ToF
is a technology that estimates the distance to an object based
on the travel time of sound waves emitted by a device, which
are then reflected off the object and returned to the device.
By integrating these techniques, it is possible to perform ToF
calculations from multiple directions, thereby enhancing the
accuracy and versatility of ultrasound imaging. These tech-
nologies find applications in diverse fields, including object
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detection [12] and non-destructive testing [13]. Furthermore,
research has explored 3D measurements using air-coupled
ultrasound to investigate its potential in various scientific and
industrial domains. However, most previous studies on 3D
air-coupled ultrasound and beamforming imaging have been
limited to indoor distances within 10 m, with only a few
studies extending beyond this range [2], [5], [14], [15], [16].

Outdoor ultrasonic measurement presents challenges
owing to the need to eliminate various sources of noise
such as multipath and environmental disturbances. However,
if ultrasonic 3D imaging can be successfully implemented
outdoors, it could serve as an alternative in environments
where optical cameras are impractical owing to privacy
concerns, such as residential areas. This technology holds
potential for diverse applications, including monitoring road
conditions, human behavior, and traffic volume in residential
areas during times of disaster.

We have developed a 3D reconstruction system that uses
ultrasonic imaging technology. This system is designed to
monitor road conditions, where approximations of the outer
shapes of objects are sufficient without the need for details.
The system achieves 3D reconstruction by integrating the ToF
point cloud obtained through 25 kHz ultrasound beamform-
ing and direct sequence spread spectrum (DSSS) [17] mod-
ulation with a deep learning model, specifically a variational
autoencoder (VAE) [18]. We have developed a comprehen-
sive computational pipeline for this system, encompassing
both hardware development and 3D reconstruction processes,
utilizing a VAE that integrates all necessary components
from data acquisition to analysis. The system successfully
reconstructs a 30 × 30 × 30 voxel space from ultrasound
signals sampled at 227 kHz, achieving a precision of 0.939,
recall of 0.868, and F-value of 0.902, which highlights the
effectiveness of our approach in 3D ultrasonic imaging.

The remainder of this paper is organized as follows:
Section II describes the theoretical and computational
pipelines that we have developed for ultrasound imaging.
Section III details our measurement system, including the
ultrasound array and recording hardware. Section IV presents
our experimental results and the accuracy of the 3D recon-
struction. In Section V, we compare our findings with those
of previous studies. Finally, in Section VI, we present our
conclusions.

II. PREVIOUS WORKS
This section reviews previous research on 3D reconstruction
using air-coupled ultrasound and acoustic traffic monitoring.

The 3D measurements based on air-coupled ultrasound are
realized using the ToF of ultrasound. In a previous study [15],
two types of distances were targeted: the far field, which is
more than 2 m away, and the near field, which is approxi-
mately 200 mm away in an acoustic chamber. High-precision
3D imaging was achieved bymeasuring an ultrasonic array of
64 transducers, which also served as microphones, arranged
according to a Fermat spiral with an aperture of 200 mm. One
of the major contributions of this study is the demonstration

of the effectiveness of microphone placement based on the
Fermat spiral in ultrasonic imaging. This study shows that
microphones arranged in a Fermat’s spiral pattern reduce the
side lobes and grating lobes better than those arranged in a
grid pattern, thus improving the quality of ultrasonic imaging.
The evaluation experiments were conducted at far-field and
near-field distances. In the far-field, all 28 corner reflectors
at a distance of 2 m were accurately measured individually.
In the near-field, precise measurements of a human finger
were obtained at a distance of 20 mm.

A previous study [14] focused on the hardware aspects of
3D measurements using air-coupled ultrasound. In this study,
a microphone array, field-programmable gate array (FPGA),
and graphics processing unit were employed to con-
struct a highly compact ultrasonic measurement system
that integrates all components from data acquisition to
beamforming. One of the significant contributions of this
study is the proposal of a cohesive hardware system that
encompasses not only the ultrasonic array but also sig-
nal processing. Although acoustic sensing research often
highlights the cost-effectiveness of microphones compared
to LiDAR and millimeter-wave radar, only a limited
number of studies have implemented them, especially
within edge signal processing systems. Despite being an
embedded system, it achieves 30 FPS with beamforming
of 240 beams.

Previous research has focused on ultrasonic measurements
at targeting distances exceeding 10 m. In a previous study,
researchers successfully imaged objects positioned 16 mm
away with a resolution of 25 × 25 pixels [16]. Further-
more, in our previous investigation [5], we successfully
conducted position measurements of objects located 12.5 m
away in an outdoor setting. However, these studies have not
achieved detailed 3D measurements for discerning object
shapes.

Prior research on outdoor acoustic monitoring has explored
passive systems that utilize the sound emitted by vehicles
during operation rather than the reflected sound. Acoustic
traffic monitoring systems can be categorized into two types:
rule-based and machine learning-based systems.

In a previous study [19], a microphone array arranged
in a crisscross pattern was employed. The recorded audible
sound was utilized to estimate parameters such as the num-
ber of passing vehicles, lane occupancy, average speed, and
even vehicle types in multiple lanes. Machine learning-based
acoustic traffic monitoring employs K-nearest neighbors and
convolutional neural networks (CNN). In [20], audio was
recorded and traffic was monitored using stereo microphones
installed at the roadside. The power spectrogram and phase
difference information of the audio were used as inputs to the
CNN to estimate parameters such as the number of vehicles,
speed, type, and occupancy.

III. ULTRASONIC IMAGING
In this section, the ToF calculation using air-coupled ultra-
sound and the theory of 3D reconstruction from the ToF
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FIGURE 1. 3D measurement using beamforming and ToF.

point cloud are explained. First, the ToF is elucidated,
followed by a description of the calculation pipeline for
the 3D reconstruction. The ToF represents the duration it
takes for the ultrasonic waves emitted from the trans-
ducer to bounce off the object’s surface and reach the
microphone.

Fig. 1 provides an overview of 3D measurements using
air-coupled ultrasound. Initially, ultrasonic waves are emitted
from speaker array toward the object. Phase-shifted ultra-
sound waves overlap and amplify, resulting in directional
focus. The emitted ultrasonic waves are reflected off the
surface of the object. The reflected ultrasonic waves are
measured by a microphone array with a phase difference.
By calculating the delays and sums based on phase dif-
ferences, sound waves from an arbitrary direction can be
enhanced. Next, the cross-correlation between the beam-
formed reflected wave and the transmitted waves is calcu-
lated. The closer the waveform shapes are, the greater the
cross-correlation; the ToF is the time from the timing of
transmission to the peak of the cross-correlation. In envi-
ronments with high interference, such as outdoor settings,
ultrasonic cross-correlation tends to deteriorate. However,
in this study, we enhanced interference resilience by employ-
ing DSSS modulation for ultrasonic signals. Further details
will be discussed in Section II.

Fig. 2 illustrates a block diagram of the proposed sys-
tem utilized for ultrasonic measurements and 3D object
reconstruction. A DSSS signal using an M -sequence as the
transmission signal is emitted toward an object. In Stage (a)
of the diagram, the signals reflected from the object surface
are received by the microphone array and subjected to beam-
forming. In Stage (b), the beamformed reflected signal is
normalized by the distance, and the cross-correlation of the
transmitted signals is calculated, while removing the back-
ground to obtain a 3D ToF image. Consequently, the distance
to an object can be measured. The ultrasonic data processed
by this ultrasonic signal processing system serve as the input
for the VAE machine learning in Stage (c).

FIGURE 2. Block diagram of proposed ultrasonic imaging
system.

FIGURE 3. Beamforming of a rectangular array.

A. BEAMFORMING
This subsection delineates the beamforming process depicted
in Fig. 2(a). As depicted in Fig. 3, when the array is situated
on theY–Z plane, themain beam direction in 3D is denoted by
the zenith angle θ around the X-axis and the azimuth angle ϕ

relative to the Y–Z plane. In the nth element, the displacement
in the y-axis direction from the origin is dyn, and the displace-
ment in the z-axis direction is dzn. In beamforming, the delay
time dtn of the n-th element in the main beam direction (θ, ϕ)
is given by (1), where c represents the propagation velocity
of ultrasonic waves in air.

dtn = (dynsin (θ) cos(ϕ) + dznsin (θ) sin(ϕ))/c. (1)
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FIGURE 4. Direct-sequence spread spectrum.

Here, c represents the propagation velocity of ultrasonic
waves in air.

B. 3D MEASUREMENT
The 3D measurement illustrated in Fig. 2(b) comprises four
substages: (I) normalization, (II) cross-correlation, (III) back-
ground removal, and (IV) ToF matrix. (I) Normalization
mitigates the effect of distance attenuation. Propagation atten-
uation [21] is represented using a loudspeaker that uniformly
radiates a spherical wave. If the power at the receiver is Pr ,
the power at the transmitter is Pt . The distance from the
transmitter to receiver is R. The power at the receiver is
expressed as follows:

Pr =
Pt

4πR2
(2)

Based on this equation, the received signal can be normal-
ized by R2, signifying distance attenuation.
This normalization alleviates the effects of the distance

attenuation on the intensity of the reflection from the object
surface, thereby enhancing the detection accuracy of distant
objects for the DSSD cross-correlation in Substage (II).

As depicted in Fig. 4, the cross-correlation between the
received and transmitted signals is computed in (II). In this
study, the transmitted signal was modulated by DSSS to
enhance interference and noise immunity in the cross-
correlation. Illustrated on the right side of Fig. 4, DSSS
is a modulation technique where the transmitted data are
multiplied by a spread signal with a higher frequency to
broaden the bandwidth over a wider frequency band than the
original signal, ensuring secure communication. Although
this method consumes a larger bandwidth, it can improve
the ability to reject interfering and noise waves. The XOR
operation is performed between the M -Sequence and the
transmitted data. The carrier wave remains non-inverted if
each bit of the XOR result is 1 and is inverted if each bit is 0.
In this instance, a data bit of one was modulated with an
8-bit M-sequence, with each M -sequence corresponding to
a carrier wave of three wavelengths.

When an object is situated on a road, the signal reflected
from the road often manifests as a strong interference wave.
Additionally, the grating lobe of the ultrasonic array trans-
mitter may introduce significant interference from directions
other than that of the main beam. Consequently, to eliminate
signals originating from sources other than the object itself,

FIGURE 5. Histogram of correlated values.

the received signal must undergo background removal (III),
especially in scenarios where no object is present. Fig. 5
illustrates the distribution of signal strength when measur-
ing reflected signals in front of the origin point. The signal
strength of the background data exhibited non-uniformity.
Therefore, it is assumed that the signal magnitude follows
a normal distribution, and the magnitude of the signal to be
subtracted is thus determined accordingly.

The ToF data, from which background information has
been removed, constitutes a point cloud expressed in a polar
coordinate system denoted by (r, θ, φ). In this study, the
input to the VAE is a 3D matrix. To input the ToF point
cloud into the VAE, the point cloud is partitioned into a
grid and transformed into a (100, 100, 100) Cartesian matrix
represented by (x, y, z) with dimensions of (100, 100, 100).

C. VARIATIONAL AUTO ENCODER
The 3DVAE encoder-decoder model utilized to obtain the 3D
coordinates of a stationary target object is depicted in Fig. 6.
A VAE functions as a type of autoencoder that compresses
input voxels into a 500-dimensional latent variable space
using an encoder, which are subsequently reconstructed as
voxels in three dimensions by a decoder.

Supervised learning is employed to eliminate noise, such
as interference waves, and to perform object detection by
imaging a target object using ultrasonic data. The ultrasonic
wavelengths range from ten to several millimeters. The input
data dimensions are (100, 100, and 100) by segmenting the
data into 30 mm intervals, resulting in a cube measuring
3000 mm per side. Each voxel represents a cube with 30 mm
sides. These 3D data undergo convolution using a convolu-
tional layer and a max-pooling layer to extract features in 3D
space [22]. Subsequently, they are imaged in 3D space using
a reverse convolutional layer.

For the training data utilized for supervision, the object is
represented as (30, 30, 30) by dividing a cube of 3000 mm on
one side into sections of 100 mm each. The positions where
the target object is located are assigned a value of 1.0, while
the positions where the target object does not exist are filled
with values of 0.1 in a voxel for use as training data.
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FIGURE 6. Network architecture of 3D reconstructed VAE.

D. 3D EVALUATION
In the 3D VAE machine learning framework, although the
input has dimensions of (100 × 100 × 100), the output

TABLE 1. Confusion matrix for binary classification.

FIGURE 7. Ultrasonic measurement system structure.

is represented as (30 × 30 × 30), where 1.0 signifies the
ideal value for a specified object. We assessed the proximity
of this region to the area where the object exists in the training
data using Precision, Recall, and F-value (where the F-value
is was recognized as the harmonic mean of the precision
and recall). The precision, recall, and F-value are denoted
in (3), (4), and (5), respectively, with explanations of the true
positive (TP), false negative (FN), false positive (FP), and
true negative (TN) presented in Table 1 to clarify their use
in the equations.

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ TN
(4)

F =
2 × Precision× Recall
Precision+ Recall

(5)

IV. EXPERIMENTAL SETUP
In this section, we outline the measurement system.
Subsection A details the configuration of the proposed
system, whereas Subsection B covers the experimental
conditions.

A. MEASUREMENT SYSTEM
Both hardware and software components were developed to
implement the proposed measurement system. Fig. 7 illus-
trates the structure of the system, which consists of three
main components. The first component is the ultrasonic
array, which integrates microphones and speakers. The sec-
ond component is a FPGA, which is responsible not only
for processing signals but also for the DSSS modulation
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FIGURE 8. Ultrasonic array and FPGA.

of ultrasonic waves, and it includes its own local storage. The
third component is a recording server tasked with receiving
and storing data.

Our measurement system utilized a PYNQ-Z2 [23]. The
PYNQ-Z2 is equipped with a Xilinx ZYNQ system on a
chip (SoC), which includes an internal ARM central pro-
cessing unit (CPU) and a processing system comprised
of peripheral circuits alongside programmable logic serv-
ing as an FPGA, facilitating CPU-to-FPGA communication.
Additionally, the PYNQ-Z2 supports Linux, allowing for the
utilization of TCP/IP and Linux file systems. We leveraged
these features to achieve the streaming and logging of mea-
surement data.

The FPGA consists of two types of circuits: a speaker
control circuit and a receiving circuit. The speaker control
circuit generates an ultrasonic signal projected onto the object
to be measured and drives the speaker. It operates by gen-
erating an ultrasonic signal projected onto the target object
and controlling the speaker. The speaker functions based on
DSSS modulation with parameters such as the M -sequence
and frequency configured from the processing system. In the
experiment, modulation was carried out with a carrier wave
of 25 kHz, an M -sequence length of 8 bits, and 8 waves
per bit. The receiving circuit demodulates the output of
the 16-channel microphone array as a pulse code modula-
tion (PCM) signal and transfers it to the PS. The ultrasonic
microphone produces a 4.55 MHz Pulse-density modula-
tion (PDM) output, which is demodulated into a 227 kHz
PCM signal using a cascaded integrator comb (CIC) filter.
Additional information is added to the 16-channel PCM sig-
nal and transferred to the PS via DMA.

Fig. 8 displays the appearance of the measurement system.
Enclosed within a waterproof case designed for utility pole
installation, the FPGA and Raspberry Pi serve as the data-
streaming target, storage, and server, respectively. The system
operates viaWi-Fi, with a Raspberry Pi acting as the gateway.
The speakers and microphone array are housed within a ded-
icated 3D-printed enclosure and connected to the PYNQ-Z2
via flat cables.

FIGURE 9. Ultrasonic array device (a) 4 × 4 microphone array
(b) speaker.

FIGURE 10. Measurement environment and measurement system
installation.

Fig. 9 (a) showcases the microphone array, whereas (b)
exhibits the transducers. (a) The microphone array com-
prises 4 × 4 MEMS microphones arranged on a grid, spaced
5 mm apart, which is less than half the wavelength of the
carrier wave. All microphones share a common clock source
and produce a PDM signal with a maximum frequency
of 4.55 MHz. (b) The speakers transmit modulated waves.
Employing an H-bridge configuration, the circuit can drive
microphones with an amplitude that is twice the supply volt-
age. Four speakers are integrated into the speaker array.

B. MEASUREMENT ENVIRONMENT
Fig. 10 illustrates the installation of the ultrasonic array dur-
ing measurement. The study aims to monitor the road envi-
ronment, with the measurement system installed on a utility
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FIGURE 11. Experiment environment. θ is azimuth angle, ϕ is
elevation angle).

pole by the roadside. The measurement area encompasses
a 3000 mm cubic space positioned 10 m from the pole, where
the objects of interest are located and measured. Mounted
on a fixed arm 5.4 m above the pole, the ultrasonic array is
designed to encircle the pole in a belt-like structure.

V. EXPERIMENT RESULTS
Experimental results are presented in this section. Subsection
A outlines the training data, detailing the data sam-
pling method and the classes of objects intended for
3D reconstruction. Section B discusses the results of the 3D
reconstruction.

A. SIGNAL STRENGTH DISTRIBUTION
AND TRAINING DATA
The experimental environment for acquiring ultrasonic data
in 3D space is depicted in Fig. 11. Following the placement
of the sensor on the utility pole, beamforming, as described
in Section II, was employed to gather the data. During
the experiment, the pole height was 5.4 m, and the radia-
tion direction ϕld was 53◦. The target measurement range
extended 10 m from the sensor in the direction of distance.
The elevation angle ranged from −24◦ to 24◦, and similarly,
the azimuth angle spanned from −24◦ to 24◦. The area under
consideration measured 3000 × 3000 × 3000 mm3, delin-
eated by a green cube in the figure.

Fig. 12 illustrates images depicting ultrasonic data and
training data for a circular reflector, box, motorcycle, and per-
son. These images were captured from the position of the sen-
sor installed on the utility pole. As previously mentioned, the
ultrasonic data formed a cube measuring 3000 mm on each
side. Consequently, each voxel was subdivided every 30 mm
to create dimensions of (100 × 100 × 100). The obtained
ultrasonic data were normalized from 0 to 1.0 for display
purposes: blue voxels indicate a strength between 0.6 and 0.7;
green voxels represent values between 0.7 and 0.9; and red
voxels signify values greater than 0.9. The training data were

TABLE 2. Approximated size of the target object.

TABLE 3. Reconstruction result (3D stationary target).

utilized to approximate a 3D object based on the size and
shape of each object. The box, motorcycle, and human are
approximated as cuboids, whereas the reflector is approxi-
mated as a sphere.

Table 2 displays the sizes of the approximated solids up
to 1,600 mm. Considering the challenge of imaging objects
in 3D space within a few centimeters, we divided the object
into 100 mm pieces and represented them as (30, 30, 30).
A value of 1.0 was assigned to the position where the
object existed, and voxel plots were generated in blue for
visualization. A total of 1628 ultrasonic data points were
measured, with 1304 used for training data and 324 for
test data.

B. EVALUATION RESULTS OF 3D STATIONARY OBJECTS
Fig. 13 showcases the input and output results achieved
using the proposed VAE model for 3D stationary objects:
(a) box, (b) motorcycle, (c) person, and (d) reflector at
the center. The different plot colors denote different values:
values between 0.4 and 0.7 are represented in blue, values
between 0.7 and 0.9 are represented in green, and values
greater than 0.9 are represented in red after data normaliza-
tion. A comparison of (a) and (b) illustrates the difference in
size between the box and motorcycle. Furthermore, compar-
ing (a) and (b) with (c) and (d) reveals variations in size and
shape, as identified and classified.

Table 3 presents the results of the precision, recall, and
F-values obtained when the threshold value was set to 0.5.
For evaluation, a value above 0.5 was regarded as 1. Val-
ues below 0.5 were taken as 0. The overall accuracies for
precision, recall, and F-value were 0.939, 0.868, and 0.902,
respectively.

This paper targets the reconstruction of small objects
ranging from a few hundred millimeters to 1,600 mm. Recon-
struction would likely be even more feasible for larger
measurement targets such as cars and trucks. As in Sub-
stage (III) of our method’s pipeline, the background signals
are were removed to intensify the signal reflected from the
target object. Consequently, for larger objects such as cars
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FIGURE 12. 3D static target dataset: appearances from ultrasonic array, point clouds, and ground truth.

FIGURE 13. 3D reconstruction results and ground truth for each class.

and trucks, the difference from the backgroundwould become
more significant.

VI. CONCLUSION
Here, we present a 3D object reconstruction technique tai-
lored for high-interference environments utilizing ultrasonic
array sensors and a VAE. Leveraging ultrasonic data and
supervised VAE, we accurately image the position, size,

and shape of 3D stationary objects. Across the four object
types examined, the average results demonstrate a precision
of 0.939, recall of 0.868, and F-value of 0.902. It is worth not-
ing that the experiment focused solely on stationary objects.

For a comprehensive assessment of road conditions,
accounting for the Doppler effect becomes imperative, par-
ticularly for measuring moving vehicles and other mobile
objects. Moreover, the measurement system employed in this
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study isn’t limited to ultrasonic waves; it can also capture
audible sounds. By incorporating audible sounds emitted by
vehicles and pedestrians, akin to previous studies, we can
achieve a more nuanced understanding of road conditions.
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