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ABSTRACT In this paper, a linear lumped-element equivalent circuit model (ECM) for ultrasonic later-
ally transduced electrostatic bulk-mode air-coupled resonant micro-electro-mechanical systems (MEMS) is
described. A single-crystal silicon (SCS) square plate with T-shaped tethers is considered as the geometry of
interest with a one-sided electrostatic actuation. This type of sensor can be used for sensitive mass sensing
of airborne particles and possesses a large active surface with in-plane vibration modes in the ultrasonic
frequency range. Firstly, the eigensolutions and eigenvectors of the problem are obtained using analytical
equations and compared with finite-element modeling (FEM) solutions. Secondly, using modal analysis, the
number of degrees of freedom is reduced and individual solutions are provided for each vibration mode,
leading to various effective masses, stiffnesses and dampings. The first order Taylor expansion of both
the electrical current equation and the electrostatic force applied on the resonator allows one to obtain
expressions for the additional stiffness and the electro-mechanical transformation coefficient linked to the
membrane actuation. Based on theses results, single-input single output (SISO) equivalent circuits are
established using electro-mechanical and Butterworth-Van Dyke (BVD) approaches. Electrical admittance
simulations resulting from different in-plane vibration modes are proven to be in excellent agreement with
FEM simulations. Finally, a numerical mass sensing application is described to evaluate the relevance of
both the model and the resonator design to act as a microbalance. The proposed model can be used to design,
predict, analyze and optimize the behavior of highly sensitive air-coupled ultrasonic bulk-mode SCS MEMS
for various physical applications.

INDEX TERMS Capacitive, FEM, microbalance, modal analysis, silicon, resonator, ultrasonic.

I. INTRODUCTION

RESONATOR sensors have been a topic of research for
multiple decades now [1], [2], [3], [4], [5], [6]. With

the manufacturing progresses made in the field of micro-
electronics, micro-electro-mechanical systems (MEMS) have
emerged as ideal sensors for various applications thanks
to high levels of reproducibility, robustness and reliabil-
ity [7]. In the case of resonators, the commonly employed
manufacturing material is single-crystal silicon (SCS) which
possesses great mechanical properties that can be used in
conjunction with MEMS inherent enhanced miniaturization
capabilities and a high driving electronics integration poten-
tial. From a design perspective, researchers and engineers
are looking for very high quality factors (i.e., low damping)

to measure small variations of physical parameters (e.g.,
temperature, pressure, gas concentration, particle presence).
Our group is mainly interested in airborne aerosol par-
ticle detection for air quality monitoring using MEMS
resonators as microbalances. The excitation-detection actu-
ation mechanisms behind SCS MEMS are usually either
electrostatic, piezoelectric, piezoresistive, magnetic, optic or
a mix between them [8].

Most resonators can be depicted as beams or plates
whose actuation occurs along the axis where the struc-
ture dimension is the smallest. This is practical because
classical tools in mechanical and vibration analysis can
be employed to model the membrane dynamics [9], [10].
In addition, the finite-element method (FEM) is often
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employed to resolve the discretized version of the behav-
ioral equations linked to resonators of various shapes and
sizes [11]. Modeling is a key step in the framework of
micro-sensors and is needed for design purposes up to elec-
tronics integration and optimization. Indeed, it is mandatory
to understand the underlying physical phenomena occurring
in sensors of any technology while performing measure-
ments to ensure their functionality in the desired application
field. Combining mechanics and electronics in the case
of SCS MEMS, FEM tools are time consuming and a
versatile reduced-order lumped-element model is generally
preferable [12], [13].

In this paper, we are interested in a large freely vibrat-
ing square suspended membrane with constrained T-shaped
tethers for airborne mass sensing applications [14]. The
resonator is laterally excited using electrostatic forces orig-
inating from an electrode that partially covers the plate
side length. This type of structure with lateral excitation
is employed to favor the high-frequency sensitive in-plane
longitudinal vibration modes (e.g., Lamé, butterfly, exten-
sional) of the resonator [15], [16], [17]. The resonator is
defined as a single-input single-output (SISO) system using
its electrostatic driving and capacitive sensing capabilities
to generate and detect signals [18]. Such resonators have
been previously fabricated by our group, demonstrated low
anchor losses with high sensitivity and a great experimental
potential for the detection of sub-ng airborne particles using
in-plane vibration modes around 4 MHz [19]. Compared
with other microbalances architectures in a similar frequency
range [20], this setup as the advantage of having a very large
active surface (i.e., superior to 1 mm2) which maximizes the
detection of small-size particles [21].

Models based on transmission line theory exist for quartz
crystal microbalances (QCM) that are very practical to deter-
mine physical loading media parameters variations on the
membrane (e.g., added mass, humidity, viscoelasticity) [22].
However, to our knowledge, lumped-element models describ-
ing the behavior of electrostatic SCS MEMS microbalances
only exists in the case of disks, clamped beams or top-to-
bottom actuated plates [23], [24], [25], [26], [27]. Following
our previous experimental results, the aim of this paper is to
establish a linear lumped-parameter equivalent circuit model
(ECM) of laterally actuated electrostatic MEMS which will
be used as a guiding tool for design and optimization of such
microbalances. For clarity purposes, fringing field effects are
neglected throughout this analysis but may affect laterally
transduced electrostatic SCS MEMS depending on the plate
width-to-gap ratio [28].

This paper is organized as follows: the first section is ded-
icated to the eigensolutions analysis of the aforementioned
problem. Analytical equations are provided for the anistropic
freely vibrating square membrane and compared with a FEM
analysis of the geometry of interest. The second section
focuses on the model setup, starting with the discretized
version of the mechanical displacement equation. A modal
analysis is employed to reduce the number of degrees of

FIGURE 1. Illustration of the SISO SCSMEMS resonator (a) viewed
from the top and (b) viewed from the side. The axial electrostatic
force F acting on the membrane along the x axis is denoted in
red.

freedom and obtain lumped mechanical parameters. A first
order Taylor expansion is employed to linearize the electro-
static force acting on the resonator as well as the current
equation. Resulting equations lead to equivalent circuit repre-
sentations for laterally actuated MEMS. The third section is
the validation study of the lumped-element ECM developed
based on electrical admittance results confrontation with
FEM. The final section is a discussion surrounding the model
limits and its importance in the broad landscape of exist-
ing modeling techniques for ultrasonic electrostatic MEMS.
Using a numerical mass sensing application case, the rele-
vance of the model and the resonator design are established
when compared with an analytical expression analogous to
the Sauerbrey equation. In addition, a first appendix provides
the anisotropic silicon tensor matrix used for computations
and a second provides the analytical square in-plane plate
mode shapes.

II. IN-PLANE VIBRATION MODES
The SCS MEMS geometry is illustrated Figure 1. The actua-
tion electrode has a length Le = 0.75 mm that partially covers
the square resonator of length and width L = 1 mm. The
electrode and the resonator have a thickness of h = 40 µm
(i.e., h ≪ Le < L) and are both separated by a gap height of
hgap = 2 µm. The membrane is freely vibrating and only the
sides of the four T-shaped tethers are constrained. The tethers
are 56 µm in length and width.
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TABLE 1. Comparison of the SCS plate with T-shaped tethers
in-plane resonances obtained using FEM and the analytical
equations (1), (2) and (3) given in the case of a freely vibrating
anisotropic square plate.

A. ANALYTICAL EQUATIONS
A common approach to estimate the solutions of the eigen-
problem related to MEMS mechanical structures, provided
that its constitutive material properties are known, is to use
analytical equations. In our case, the geometry closely resem-
bles that of a free square membrane. As described by H.
Ekstein [29], the first three bulk-mode, so-called longitudinal,
resonance frequencies denoted here f1, f2 and f3 (i.e., the
Lamé, butterfly and extensional modes, respectively) of a
freely vibrating anisotropic square plate are equal to

f1 =
1
2L

√
(C11 − C12)

ρ
, (1)

f2 =
1
2L

√
C11

ρ
, (2)

f3 =
1
2L

√
C11

ρ
+

8
π2

C12

ρ
, (3)

where Cij are coefficients of the silicon tensor matrix that
intrinsically depend on the silicon crystal orientation and ρ

is the plate density.
In this work, the silicon (100) wafer is considered to be

aligned in the ⟨110⟩ crystal directions. In addition, the sil-
icon is assumed orthotropic (i.e., possesses two orthogonal
planes of symmetry) and the stiffness coefficients can thus
be expressed using the material’s Young modulus and Pois-
son coefficient in each direction, as described in details by
Hopcroft et al. [30]. For clarity purposes, the tensor matrix
coefficients computation is reported in the appendix A of this
work. The plate’s properties employed are equal to

C11 = 194.5 GPa , (4)

C12 = 35.7 GPa , (5)

ρ = 2330 kg/m3. (6)

The analytical equations results for the bulk-mode resonance
frequencies in accordance with the presented sensor geome-
try and properties are reported in the Table 1.

B. FINITE-ELEMENT ANALYSIS
To evaluate the accuracy of the analytical equations with
regards to the considered geometry and determine the tethers
influence, a FEM analysis is performed using COMSOL
Multiphysics™ v6.1 (COMSOL AB, Stockholm, Sweden)

FIGURE 2. Anisotropic silicon plate eigenfrequencies and mode
shapes magnitude obtained using FEM where (a) is the Lamé
mode, (b) is the butterfly mode and (c) is the extensional mode.

and results are presented Figure 2. The eigenfrequen-
cies obtained are reported in Table 1 for comparison
purposes.

It is interesting to note that, even with tethers, the consid-
ered geometry displays similar in-plane plate mode shapes
as expected in the case of a perfectly square membrane.
This result is practical because it means that the classical
analytical bulk-mode square plate mode shape equations may
be considered to approximate the eigenvectors solutions of
the geometry of interest. These equations, obtained by H.
Ekstein [29], are reported in the appendix B of this paper.
From a practical perspective, one sees that the butterfly mode
has the disadvantage of having the smallest actively vibrating
surface hence is less interesting to optimize particle presence
detection in the case of air-coupled sensitive microbalances.

As expected when it comes to the eigensolutions, the error
between the analytical equations and FEM is the highest for
the extensional mode. Indeed, the T-shaped tethers at each
plate corner are on a vibration node for both the Lamé and the
butterfly modes but not in the case of the extensional mode.
In addition, the T-shaped tethers affect the physical damp-
ing of the device differently as a function of frequency and
therefore its quality factor may vary for each mode [31], [32].
More specifically, based on previous experimental and sim-
ulation results, an increase in anchor length tends to reduce
the overall quality factor of the device and even more so in
the case of the extensional mode [19]. Therefore, to perform
accurate assessment of particle deposition on the membrane,
it is ideal to evaluate the resonance and quality factor of the
microbalance at different vibration modes.
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III. MODEL SETUP
Throughout this paper, the notation [ ] is employed to define
a matrix, { } to define a vector, T their transpose form, ˙ to
define the time derivative of a variable and ˜ to define a time
independent variable amplitude.

A. MECHANICAL BEHAVORIAL EQUATION
Based on the MEMS geometry depicted Figure 1, the time
dependent membrane displacement is defined using the dis-
cretized version of Newton’s second law

[M ]
∂2{u}
∂t2

+ [R]
∂{u}
∂t

+ [K ]{u} = {q} , (7)

where {u} is the displacement vector, [M ] is the mass matrix,
[K ] is the stiffness matrix, [R] is the damping matrix and {q}
is the axial load vector acting on the membrane. In classi-
cal mechanical problems, the mass matrix is diagonal and
defined using the density and geometrical properties of the
structure at each mesh node. The stiffness matrix is harder to
obtain as it classically relies on the computation of Laplace
operators using beam or plate theory [9] and can be com-
puted using numerical methods such as FEM [33] or finite
difference [34]. In this paper, due to the non-conventional
mechanical structure, boundary conditions, electrode dispo-
sition and because we are interested in parameters lumping
for specific in-plane vibration modes, we chose to rely on
a FEM-assisted modal analysis approach. The idea is to
perform an analytical modal decomposition based on a FEM
eigenstudy. This allows us to define the effective mechani-
cal parameters of the plate using its various in-plane mode
shapes.

Based on modal analysis principles (i.e., the Galerkin
method) [10], the displacement vector can be written as

{u} = [φ]{ξ} , (8)

where [φ] = [{φ1}, {φ2}, . . . , {φn}] are the plate mode shapes
(i.e, the normalized eigenvectors of the undamped problem in
the absence of load) and {ξ} = {ξ1, ξ2, . . . , ξn} are the time
dependent modal coordinates. Writing equation (7) with the
modal displacement solution at mode i yields

[M ]{φi}
∂2ξi

∂t2
+ [R]{φi}

∂ξi

∂t
+ [K ]{φi}ξi = {q}. (9)

Multiplying each side of this equation by the transposed
mode shape vector allows one to define classical modal
parameters. Here, the modal mass mi, sometimes refer to as
the effective mass, is defined as

mi = {φi}
T [M ]{φi} = χiρhS , (10)

where S is the resonator surface. The term χi can be deduced
from this modal analysis and translates the effective pro-
portion of the membrane total physical mass that actively
contributes to the vibrationmode. Themodal stiffness is equal
to

ki = {φi}
T [K ]{φi} = miω2

i , (11)

and is linked to the eigensolutions ω2
i of the problem

ω2
i = (2π fi)2 =

{φi}
T [K ]{φi}

{φi}T [M ]{φi}
, (12)

which can be used to express the natural frequency fi at mode
i. The modal damping is equal to

ri = {φi}
T [R]{φi} =

√
miki
Qi

= αmi + βki , (13)

which can also be expressed using the quality factor Qi at
mode i or the Rayleigh damping coefficients where α is the
mass proportional damping coefficient and β the stiffness
proportional damping coefficient [35]. In addition, the gen-
eralized modal force is coherently defined as

Fi = {φi}
T
{q}. (14)

Henceforth, equation (9) can be written using modal param-
eters such that

mi
∂2ξi

∂t2
+ ri

∂ξi

∂t
+ kiξi = Fi. (15)

To further develop the equation of motion, we assume
that the force possesses a time independent (i.e., static)
component, a time dependent (i.e., dynamic) component of
amplitude F̃i and is purely harmonic. From this load, the
resulting modal coordinates possess a static time independent
and a dynamic time dependent component of amplitude ξ̃i.
Therefore, the static modal coordinates and force terms van-
ish from equation (15) which becomes the dynamic harmonic
equation of motion

ξ̃i

(
−ω2mi + jωri + ki

)
= F̃i. (16)

To compute this equation, knowledge of the applied force is
needed.

B. THE ELECTROSTATIC FORCE
In our setup, the resonator is actuated using electrostatic
forces oriented towards the y axis. As stated by H. Tilmans,
it is fairly accurate to assume that the membrane mode shapes
(i.e., the normalized eigenfunctions of the problem) are not
affected by the electrostatic load [26]. In addition, because
we are mainly interested by the main underlying physical
phenomena behind the presented setup, we also ignore fring-
ing field effects and we consider that the electrostatic force
only applies on the resonator surface Se directly facing the
electrode [36]. The generalized modal force equation (14)
becomes that of the electrostatic force provided that one only
considers the mode shapes nodes affecting the gap height
variation

Fi =

∫ ∫
Se

ε0εr

2

[
VDC + VAC

hgap − {O}{φi}ξi

]2
dSe , (17)

where ε0 = 8.854×10−12 F/m is the vacuum permittivity, εr
the gap medium relative permittivity, VDC is the bias voltage,
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VAC is the excitation voltage, hgap is the gap height and {O}

is the aperture vector

{O} =

{
1 ∀ {φi} affecting the gap height ,

0 otherwise.
(18)

Equation (17) is difficult to compute as the modal coordi-
nates are needed for its calculation and the latter themselves
require knowledge of the electrostatic force to be resolved.
To do so, we chose to employ small signal approximations
meaning that the modal displacement is assumed to be much
lower than the gap height (i.e., ξi ≪ hgap) and that the excita-
tion voltage is assumed to bemuch lower than the bias voltage
(i.e., VAC ≪ VDC ). Combining these assumptions with a
Taylor expansion of the first order leads to the linearized
expression of the harmonic electrostatic force

Fi =
ε0εrSeV 2

DC

2h2gap
+

ε0εrSeVDC
h2gap

ṼACejωt

+

∫ ∫
Se

ε0εrV 2
DC

h3gap
{O}{φi}ξ̃iejωtdSe. (19)

From this equation, one identifies three terms that can be
described as follows: the first term is the electrostatic force
in presence of bias voltage and absence of excitation voltage.
The second term is the excitation voltage combined with
the electrical-to-mechanical transformation coefficient ηem

independent from the plate vibration mode

ηem =
ε0εrSeVDC

h2gap
. (20)

The third term is the additional stiffness ke,i originating from
the electrostatic pressure combined with the dynamic mem-
brane displacement where

ke,i =
ε0εrV 2

DC

h3gap

∫ ∫
Se

{O}{φi}dSe =
ε0εrSeV 2

DC

h3gap
3i. (21)

with the average modal electrostatic coefficient 3i equal to

3i =
1
Se

∫ ∫
Se

{O}{φi}dSe. (22)

The additional stiffness, sometimes referred to as the spring
softening stiffness, lowers the resonance frequency as the
bias voltage increases (cf. next section). Hence, the harmonic
dynamic electrostatic force yields

F̃i = ηemṼAC + ke,iξ̃i , (23)

and combining equations (23) and (16) yields the dynamic
harmonic modal amplitude of the membrane

ξ̃i =
ηemṼAC

−ω2mi + jωri + ki − ke,i
. (24)

To complete this analysis, knowledge of the electric phenom-
ena related to the mechanical behavior of the resonator are
needed.

C. THE ELECTRICAL CURRENT
On the electrical side, the electrical charge is equal to the
product of the capacitance Ci at vibration mode i with the
voltage, classically referred to as

CiV =

∫ ∫
Se

ε0εr (VDC + VAC )
hgap − {O}{φi}ξi

dSe. (25)

Following the same assumptions used in the linearization
process of the electrostatic force, we calculate the first order
Taylor expansion of the electrical charge

CiV =
ε0εrSeVDC

hgap
+

ε0εrSe
hgap

VAC

+

∫ ∫
Se

ε0εrVDC
h2gap

{O}{φi}ξidSe. (26)

Under harmonic consideration, the electrical current is writ-
ten

Ĩiejωt =
∂CiV
∂t

= jω
ε0εrSe
hgap

ṼACejωt

+ jω
∫ ∫
Se

ε0εrVDC
h2gap

{O}{φi}ξ̃iejωtdSe , (27)

where two terms can be identified: the left-hand side term
is the combination of the static capacitance C0 with the
excitation voltage where

C0 =
ε0εrSe
hgap

, (28)

and the right-hand side term is the mechanical-to-electrical
transformation coefficient ηmei equal to

ηmei =
ε0εrVDC
h2gap

∫ ∫
Se

{O}{φi}dSe =
ε0εrSeVDC

h2gap
3i. (29)

Note that the static capacitance is independent from the bias
voltage and the plates mode shapes using the small-signal
assumption.

The electrical current equation (27) now yields

Ĩi = jω(C0ṼAC + ηmei ξ̃i). (30)

This result can be viewed as the summation of two current
paths, one towards the electrical capacitance of the device, the
other towards its motionnal mechanical branch. Combining
equations (30) with (24) and referring to the modal superpo-
sition principle, to generalized expression Ĩ for the electrical
current yields

Ĩ =

n∑
i=0

Ĩi = jωC0ṼAC +

n∑
i=0

jωη2i ṼAC
−ω2mi + jωri + ki − ke,i

.

(31)

where η2i is defined for clarity purposes as the combination of
the electro-mechanical transformation coefficients depicted
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FIGURE 3. Small-signal electro-mechanical equivalent circuit
model of the bulk-mode MEMS resonator. Each branch is associ-
ated with a specific in-plane vibrationmode and specific effective
lumped-parameters.

in equations (20) and (29) such that

η2i = ηemηmei = 3i

(
ε0εrSeVDC

h2gap

)2

. (32)

Now that all intrinsic terms of the resonators have been
defined, one can deduce various equivalent circuit represen-
tations depicting its electro-mechanical behavior.

D. EQUIVALENT CIRCUIT REPRESENTATIONS
For clarity purposes in this section, we define the harmonic
time derivative of the modal coordinates from equation (24),
a term analogous to the membrane velocity, such that

˙̃
ξi = jωξ̃i =

ηemṼAC
jωmi + ri + (ki − ke,i)/(jω)

. (33)

The small-signal linear electro-mechanical equivalent circuit
representation of the MEMS resonator is presented Figure 3.
On the electrical side, one finds the applied harmonic

excitation voltage ṼAC , the total harmonic input current Ĩ
and the static capacitance C0 independent from the applied
voltage. Based on equation (31), one sees n branches that
all possess a current generator ηmei

˙̃
ξi associated with the

mechanical behavior of the resonator at each specific vibra-
tion mode i. On the mechanical side, each branch possesses
a force generator ηemṼAC , a modal velocity term ˙̃

ξi, an effec-
tive mass mi, a damper ri, an effective compliance 1/ki
and an additional compliance linked to the electrostatic
load −1/ke,i. Similar representations have been previously
employed for capacitive MEMS devices and fully capture
their electro-mechanical behavior based on modal decom-
position principles [37], [38]. By extension, it is often more
convenient to use a Butterworth-Van Dyke (BVD) represen-
tation of resonator sensors based on electrical parameters

FIGURE 4. Butterworth-Van Dyke (BVD) equivalent circuit model
of the bulk-mode MEMS resonator. Each branch is associated
with a specific in-plane vibration mode and specific effective
lumped-parameters.

only. Using the electro-mechanical transformation coefficient
equation (32), one can define the entire equivalent circuit
purely on the electrical side using a classical BVD represen-
tation, as presented Figure 4.

In this purely electrical representation, the negative com-
pliance coherently becomes a negative capacitance whose
physical interpretation is that the stiffness of the resonator
gets smaller as the bias voltage increases [27]. Additionally,
one may assume that the additional stiffness linked to the
electrostatic load changes the resonance fi by a term δfe,i such
that [23]

fi + δfe,i =
1
2π

√
ki − ke,i
mi

= fi

√
1 −

ke,i
ki

. (34)

In our case, the electrode active surface is very small com-
pared to the overall resonator surface (i.e., Se ≪ S).
Therefore, it is coherent to state that the additional stiffness is
very small compared to the effective stiffness (i.e., ke,i ≪ ki).
This consideration leads to the resonance variation associated
with the softening phenomenon being very small compared to
the resonance itself (i.e., δfe,i ≪ fi). Using these assumptions
with a first order Taylor expansion of expression (34), one
finds

δfe,i = −
ke,i

4πωimi
= −

ke,i
4π

√
kimi

. (35)

Note that a similar theoretical analysis is often performed
to evaluate small mass deposition on microbalances (i.e.,
the small-load approximation [22], [39]), as discussed
section V-B of this paper.

IV. COMPARISON WITH FEM RESULTS
To compare the results between models, we set throughout
this section the Rayleigh damping coefficients to be α =

103 s−1 and β = 10−12 s, values based on the quality factors
obtained in our experimental results [19]. Indeed, the quality
factors are calculated using the damping ratio expression and
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TABLE 2. Parameter values independent from the bias voltage associated with the lumped-element equivalent circuit of the bulk-mode
MEMS resonator for different vibration modes. Note that the quality factors, hence the modal damping coefficients, were obtained
using the arbitrarily fixed Rayleigh damping coefficients α = 103 s−1 and β = 10−12 s.

the eigensolutions of the problem such that

Qi =
ωi

α + ω2
i β

. (36)

To be rigorous, Rayleigh damping coefficients ought to be
evaluated experimentally or by considering every physical
damping mechanisms (e.g., viscous losses, anchor losses,
material losses).Moreover, the gap is filledwith air andwe set
εr = 1.0006. We denote the conductance (i.e., the real part
of the electrical admittance) as G and the susceptance (i.e.,
the imaginary part of the electrical admittance) as B. Based
on equation (31), the electrical admittance of the system is
defined as

Yelec = jωC0 +

n∑
i=0

η2i

jωmi + ri + (ki − ke,i)/(jω)

= G+ jB. (37)

Based on the given geometry and modeling inputs, the modal
parameters associated with the ECM at different in-plane
vibration modes are reported in Table 2.

The modal mass factor χ1 = 0.4876 for the Lamé mode
is found for our geometry very close to the classical χ

sq
1 =

0.5000 existing in the literature for the perfectly square
membrane [40]. The difference is linked to the four tethers
contribution on the total resonator surface. In the case of
the butterfly and the extensional modes, their modal mass
factors χ2 = 0.2514 and χ3 = 0.8711 differ a bit more
from those obtained directly using the square plate mode
shapes (i.e., χ sq

2 = 0.2938 and χ
sq
3 = 0.7745, respectively)

and may lead to erroneous results if the problem geometry
is not rigorously considered. The butterfly mode possesses
the lowest modal mass factor in accordance with its small-
est active surface (cf. Figure 2) while the extensional mode
possesses the highest modal mass factor. In addition, the
plate mode shape influence is also translated on the average
modal electrostatic coefficient which varies depending on the
considered bulk-mode. Note that the electrostatic coefficient
value will change if one uses a different physical electrode
coverage (cf. equation (22)).
In the FEM model, a multiphysics approach was taken,

combining a structural mechanical analysis and an elec-
trostatic analysis. The structural mechanical analysis was
only applied for the resonator whose entire structure freely
vibrates in air except for fixed constraints located on the

sides of each T-shaped tether (cf. Figure 1). The material
employed was anisotropic silicon whose tensor matrix is
given in appendix A. The electrostatic analysis was applied
to the whole setup where the resonator was electrically
grounded and the electrode was excited with a 1 V har-
monic perturbation. The setup was meshed using a fine,
free triangular, physics-controlled mesh. A frequency domain
study was set-up and performed using a two steps process,
the stationary problem resolution followed by a frequency
harmonic perturbation resolution. Confrontation between the
lumped-element ECM and the FEM results is presented for
each bulk-mode at different bias voltages on Figure 5.

From these results one sees that the lumped-element model
and the FEM results are in excellent agreement. Resonances
are located between 4 MHz and 5 MHz and the vibration
amplitude coherently increases as the bias voltage increases.
On the conductance, a clear resonance appear which is an
ideal result to define clearly the quality factor and the res-
onance position of the system when it comes to experimental
measurements. However, care must be taken with these sim-
ulations as the amplitude of the peaks is quite small and will
be experimentally subjected to parasitic noises as well as
stray impedances. Moreover, this ideal case does not consider
ohmic losses and silicon piezoresistance hence the conduc-
tance is ideally null except at the resonance, which will likely
be different in an experimental setup. As expected, because of
the small electrode surface relative to the resonator surface,
the bias voltage has no effect on the resonance position (i.e.,
ke,i ≪ ki).

The susceptance translates the capacitance of the device
with a non-zero threshold value throughout the frequency
spectrum. This result touches the frequently addressed prob-
lem of feedthrough capacitance in electrostatic MEMS
resonator. This phenomenon deteriorates the resonance detec-
tion and reduces its dynamics [41]. Indeed, one sees that
the amplitude threshold of the susceptance is much higher
than the resonance amplitude itself. Hence, the introduc-
tion of even the smallest parasitic capacitance will effect
these results and will impede the extraction of reso-
nances values and quality factors from frequency mag-
nitude curves or temporal signals. A practical solution
commonly employed for the Lamé mode is to use differen-
tial amplifiers that enable feedthrough capacitance current
canceling [42], [43].
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FIGURE 5. Electrical admittance simulation results comparison between FEM and the linear lumped-element equivalent
circuit model in the case of: the Lamé vibration mode (a) conductance and (b) susceptance; the butterfly vibration mode
(c) conductance and (d) susceptance; the extensional vibration mode (e) conductance and (f) susceptance. Each vibration
mode is given for three different bias voltages except the butterfly mode susceptance result (d) where only the VDC = 30 V is
plotted because the curves for lower bias voltages are almost all identical.

We note that, in case of the butterfly mode, the reso-
nance amplitudes are very small compared to the Lamé and

extensional modes. The susceptance of the butterfly mode is
plotted only for VDC = 30 V because the curves for lower
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bias voltages are almost all identical. Experimentally, this
means that it is mandatory to separate the real and imaginary
part of the result in order to accurately extract the intrinsic
properties of the resonator from the plot. Alternatively, a fit
algorithm could also be employed to obtain each individual
parameter of the lumped-element equivalent circuit model
introduced in this paper. Ultimately in this situation, the
butterflymode is not ideal for airborne particles detection due
to its small active surface and small vibration amplitude.

V. DISCUSSIONS
The presented model combines a FEM eigenstudy with a
modal analysis to create an ECM that provides major advan-
tages: anisotropic materials can be employed; multilayered
beams and plates of arbitrary geometry can be considered;
equations can be resolved using simulation program with
integrated circuit emphasis (SPICE); fast computation times
are achieved. Indeed, the model combines the flexibility
of FEM and the fastness of analytical equations computa-
tion. Note that, Gazzola et al. have also recently proposed
a similar parameter-lumping approach oriented towards the
design of piezoelectric micro-loudspeakers [44]. However,
some drawbacks may impede its use depending on mod-
eling requirements. To grasp the ultrasonic electrostatic
MEMS modeling landscape and the relevance of the pro-
posed approach, the advantages and drawbacks of existing
techniques used to establish ECM are presented in Table 3.

A. LIMITATIONS
One intrinsic drawback of the presented model is the absence
of nonlinearities from the simulation results, removed when
performing a first-order Taylor expansion of the electrostatic
force equation (17). The nonlinearities can be regrouped into
two categories: first, the nonlinearities due to the additional
stiffness and linked to a large displacement of the structure
(i.e., ξi ≮ hgap). These terms induce a frequency shift and
produce results in the form of a Duffing equation with unsta-
ble regions translated by a frequency hysteresis behavior [49],
[50]. These effects, known to be prominent in the case of
electrostatic beams and cantilevers [51], [52], may be detri-
mental to accurately predict their behavior. In our case, the
resonator is only clamped at each corner, laterally actuated
over a small surface and a large gap which, by design, ensures
that the additional stiffness is multiple orders of magnitude
smaller than the resonator effective stiffness. This means
that the small-displacement assumption is always true for
non-aberrant actuation voltages. Second, the nonlinearities
due to a large excitation voltage (i.e., VAC ≮ VDC ). The
electrostatic force produces a second-harmonic at twice the
excited resonance frequency that may be of importance in
the case of fluid-coupled MEMS (e.g., nonlinear ultrasound
imaging [53]). The presented model does not predict the
second-harmonic but the latter does not affect the excited
fundamental bulk-modes commonly used for air-coupled
applications (e.g., mass sensing).

Another intrinsic drawback of our method is the loss of
membrane discretization when performing the modal analy-
sis to obtain effective lumped-parameters and an analytical
SPICE-compatible model. The FEM is employed for any
desired geometry to obtain eigenvectors and eigenfrequencies
before proceeding to amodel order reduction. However, some
may require the use of discretized problems for Green func-
tion computation in the case of fluid-coupled MEMS [54] or
to apply concentrated loads [55] for example.
Additional limitations in the presented model are linked

to phenomena that were voluntarily not addressed for clar-
ity purposes, but can be added if desired to the model.
For instance, residual stress from material deposition and
oxide growth during microfabrication process may arise
and affect MEMS performances (e.g., frequency drift) [56].
Such phenomenon can be classically included directly in the
mechanical behavioral equation (7) [9], [34], [57]. More-
over, the quality factor of the presented devices may also be
affected by multiple phenomena that will decrease its overall
sensitivity. For example, the presence of residual particles
on the membrane, the anchors, the ambient temperature or
material thermoelastic damping have all been shown to affect
the mechanical damping of MEMS [58], [59], [60], [61]. The
employed quality factors in this paper were arbitrarily fixed
based on previous measurements but should be all individ-
ually studied to better understand the underlying physical
damping mechanisms.

B. MASS SENSING APPLICATION CASE
This last section aims to exploit the developed model and
analyze the behavior of the MEMS resonator subjected to a
uniformly deposited mass. For that purpose, we consider a
latex filmwhose Youngmodulus is equal to 2.8 MPa, Poisson
coefficient to 0.33 and density 1050 kg/m3 [62]. From an
ECM perspective, the modified BVD circuit that accounts
for a complex elastic loading of impedance ZL is depicted
Figure 6. In a practical case, this load corresponds to an
additional mass and damping (i.e., an additional inductance
and resistance, respectively) that will cause the resonance
properties to change. Here, we are only interested in the
eigenfrequency shift linked to the additional mass.

Based on equation (12), the resonator resonance frequency
becomes

fi + δfi =
1
2π

√
{φi}T [K ]{φi}

{φi}T ([M ] + [ML]) {φi}
, (38)

where [ML] is the additional mass matrix and δfi is the
induced frequency shift at mode i.

For further analysis, the frequency shift can be writ-
ten as a function of the total deposited mass mL using a
first-order Taylor expansion of equation (38). Classically
referred to as the small-load assumption (SLA) [22], the
deposited mass is assumed to be much smaller than the
resonator effective mass (i.e., mL ≪ mi) and the resonance
frequency shift much smaller than the resonance frequency
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TABLE 3. Overview and comparison of existing ultrasonic electrostatic MEMS modeling techniques used to establish ECM. The loss
of membrane discretization refers to the definition of equivalent electrical elements (i.e., resistance, inductance, capacitance)
contrary to more complex impedances classically obtained with discretized modeling techniques. SPICE compatibility refers to the
ability of the ECM to be directly used as such for transient analyses.

FIGURE 6. Butterworth-Van Dyke (BVD) equivalent circuit model
of the loaded bulk-mode MEMS resonator. The mechanical
branch loading is represented by a complex impedance denoted
ZL.

itself (i.e., δfi ≪ fi). This yields an expression analogous to
the Sauerbrey equation such that

δf SLAi = −
fi
2mi

χimL , (39)

where χi is the modal factor (cf. equation (10)) resulting from
the combination of mode shape vectors. From the ECM per-
spective, this means the loading impedance ZL corresponds
to an additional inductance where

ZL =
jωχimL

η2i
. (40)

This result must be taken with care because it does not
consider the additional resistance value. Indeed, a sepa-
rate analysis on the deposited material induced damping is
required to precisely evaluate its influence on the resonator
quality factor, which is out of the scope of this paper.

To evaluate the MEMS response and the SLA accuracy,
the uniformly deposited mass thickness is progressively
increased which, in turns, increases the total added mass.
Figure 7 shows the frequency shift as a function of the
deposited mass for the three bulk-modes obtained using the
model based on equation (38) and compared with the SLA
equation (39). Moreover, Table 4 summarizes the sensitivity
computed in both cases. In the analytical linear SLA equation,
the effective modal parameters (cf. Table 2) and mode shapes
are assumed to not change as mass is progressively added.

Coherently, the frequency shift changes linearly with the
deposited mass and each in-plane vibration mode possesses
a different sensitivity. The difference between the model
and the SLA equation progressively increases for multiple

72 VOLUME 4, 2024



Merrien et al.: Equivalent Circuit Modeling of Electrostatic Bulk-Mode MEMS

FIGURE 7. Frequency shift of the MEMS resonator as a function of
the total deposited mass for the Lamé, butterfly and extensional
in-plane vibrationmodes. Results displayed were obtained using
the developed model and the SLA analytical equation (39).

TABLE 4. Comparison of the sensitivity (i.e., δfi/mL) obtained
using the model and directly with the small-load approximation
(SLA) analytical equation (39).

reasons: the deposited mass progressively increases towards
the effective resonator mass (i.e., the SLA does not hold);
the effective parameters such as ki and χi are also slightly
affected by the mass deposition (cf. the complex impedance
ZL Figure 6); the mode shapes changes with added mass.
Interestingly, we observe different frequency shift values
depending on the actuated vibration mode for the same
deposited mass.

This application case demonstrate how the frequency shift
of the resonator can be related to a deposited mass value.
It also shows that the SLA approximation produces increas-
ingly erroneous results as the added mass increases towards
the resonator effective mass. Globally, the proposed model
offers a better accuracy than the electrostatic MEMS adapted
Sauerbrey equation.

VI. CONCLUSION
In this paper, a linear lumped-element equivalent circuit for
ultrasonic air-coupled bulk-mode vibrating SCSMEMS with
lateral electrostatic driving and capacitive sensing capabilities
was introduced. The analytical equations dedicated to the
eigenfrequencies prediction of a free anisotropic square body
were proven to be an accurate representation of the behavior
of a suspended square membrane anchored by T-shaped teth-
ers. A modal analysis was performed to reduce the number
of degrees of freedom of the discretized dynamic equation

of motion and define lumped-parameters from a FEM eigen-
study. This process allows one to define different effective
mass, stiffness and damping of the system for each individual
vibration mode. Equivalent circuit representations were given
based on the first order linearization of the electrostatic force
and the current equation. The results led to the expression of
the electrical static capacitance, the electro-mechanical trans-
formation coefficients and the additional stiffness related to
the membrane electrostatic actuation.

The lumped-element model electrical admittance results
were confronted with a FEM analysis and displayed great
accuracy with minimal computation time. The employed
MEMS geometry depicts bulk-mode vibrations between
4 MHz and 5 MHz coherently with previous experimental
measurements. As such, results showed that it is preferable to
use the real part of the electrical admittance (i.e. the real part
of the electrical current) to extract bulk-mode frequencies and
quality factors of SCS MEMS resonators in an experimen-
tal setup. The duality between conductance and susceptance
results demonstrates the importance of the driving electronics
optimization when it comes to mass sensing applications.

In the broader landscape of ultrasonic electrostatic MEMS
modeling, the presented model gathers the flexibility of FEM
(e.g., arbitrary geometry, multilayered anisotropic materials)
and the practical aspect of analytical equations. If one is
not limited by nonlinear effects and the loss of membrane
discretization, this model becomes an ideal tool for MEMS
resonator design and optimization. The relevance of the pro-
posed MEMS topology and model was emphasized with a
mass sensing numerical application. Indeed, the model pro-
vided more accurate results than the analogous expression
to the Sauerbrey equation adapted for electrostatic MEMS.
In addition, the resonator displayed a great sensitivity of
more than 20 Hz/ng, ideal for small mass concentration
sensing. With this model, an initial reference measurement
and assuming that the deposited aerosol only adds mass and
damping to the system, one will be able to relate airborne
particles presence through precise ECM lumped-parameters
variations.

From a modeling perspective, extension of this work
involves nonlinear effects integration and capacitive fringing
field consideration. Additional work is also required to incor-
porate the silicon piezoresistance influence, residual stress
and mechanical damping mechanisms on the devices per-
formance. Finally, optimization of the measurement chain
through various amplifier architectures for real-time mass-
sensing monitoring with SCS MEMS microbalances is
currently undergoing experimental investigations.

APPENDIX A
ORTHOTROPIC SILICON TENSOR MATRIX
To define silicon properties, one must be mindful of the
initial wafer position and crystal orientations. Indeed, the
anisotropic nature of silicon causes the material to have dif-
ferent properties in each direction. Using the cubic symmetry
of silicon, these ‘‘changing’’ properties are often described
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using a 6 × 6 tensor matrix comprised of stiffness coeffi-
cients. As explained by Hopcroft et al. [30], silicon properties
can also be describe using classical mechanical terms (i.e.,
Young’s modulus Ei and Poisson coefficients νij) assuming
orthotropic symmetry. In this case, the relationship between
stress σij and strain εij in each direction (x, y, z) can be written
as

σxx
σyy
σzz
σyz
σzx
σxy

 =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




εxx
εyy
εzz
εyz
εzx
εxy

 .

(41)

where Cij are the tensor matrix terms.
In our case, we chose the normal of the wafer to be oriented

towards the [100] direction and the other axes are aligned
towards the ⟨110⟩ crystal directions. Hence, one gets C11 =

C22 and C44 = C55. To compute the bulk-mode resonance
frequencies in equations (1), (2) and (3), only the stiffness
terms C11 and C12 are needed. These terms are equal to [30]

C11 =
1 − νyzνzy

EyEz1
, (42)

C12 =
νyx − νyzνzy

EyEz1
, (43)

where

1 =
1 − νxyνyx − νyzνzy − νzxνxz − 2νxyνyzνzx

ExEyEz
. (44)

Assuming a [110], [1̄10], [001] silicon crystal orientation, the
Young’s modulus and Poisson coefficients in each directions
are equal to

Ex = Ey = 169 GPa , (45)

Ez = 130 GPa , (46)

and

νyz = νxz = 0.36 , (47)

νzx = νzy = 0.28 , (48)

νxy = νyx = 0.064. (49)

Note that the silicon anisotropy influences its mechanical
behavior and should be taken into account to accurately
model SCS MEMS.

APPENDIX B
SQUARE PLATE BULK-MODE SHAPES
The square plate mode shapes [φ] for bulk-mode vibrations
are presented here based on H. Ekstein’s work [29]. Because
the problem is homogeneous, the amplitudes of the solutions
are arbitrary and only the plate mode shapes are defined
uniquely. As such, one may find arbitrary coefficients along

FIGURE 8. Plate mode shapes for the SCS MEMS with T-shaped
tethers given for: the Lamé mode (a) along the x axis and
(b) along the y axis; the butterfly mode (c) along the x axis and
(d) along the y axis; the extensional mode (e) along the x axis and
(f) along the y axis. The maximum plate displacement is depicted
in red and the minimum in blue.

these equations in the literature. He writes for the Lamé
vibration mode along the x and y directions

[φx1 ] = cos
(πx
L

)
sin
(πy
L

)
, (50)

[φy1] = − sin
(πx
L

)
cos

(πy
L

)
, (51)

for the butterfly vibration mode

[φx2 ] =

[
sin
(πy
L

)
−

π

4

]
cos

(πx
L

)
, (52)

[φy2] =

[
− sin

(πx
L

)
+

π

4

]
cos

(πy
L

)
, (53)

and for the extensional vibration mode

[φx3 ] = cos
(πx
L

)
, (54)

[φy3] = cos
(πy
L

)
. (55)

Using the MEMS geometry depicted Figure 1, an FEM
analysis is performed to obtain the plate mode shapes in
each directions and for each vibration mode. The results are
presented Figure 8.
Interestingly, the FEM results for the plate with T-shaped

tethers resembles that of the square plate mode shapes
described by Ekstein’s equations. As discussed in section IV,
the Lamé mode is accurately depicted by these analytical
equations while the butterfly and extensional plate mode
shape equations should be used more cautiously to perform
modal analysis and approximate the behavior of T-shaped
tethered square plates.
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