

Topology design and graph embedding for
decentralized federated learning

Yubin Duan, Xiuqi Li, and Jie Wu*

Abstract: Federated learning has been widely employed in many applications to protect the data privacy of

participating clients. Although the dataset is decentralized among training devices in federated learning, the model

parameters are usually stored in a centralized manner. Centralized federated learning is easy to implement; however, a

centralized scheme causes a communication bottleneck at the central server, which may significantly slow down the

training process. To improve training efficiency, we investigate the decentralized federated learning scheme. The

decentralized scheme has become feasible with the rapid development of device-to-device communication

techniques under 5G. Nevertheless, the convergence rate of learning models in the decentralized scheme depends on

the network topology design. We propose optimizing the topology design to improve training efficiency for

decentralized federated learning, which is a non-trivial problem, especially when considering data heterogeneity. In

this paper, we first demonstrate the advantage of hypercube topology and present a hypercube graph construction

method to reduce data heterogeneity by carefully selecting neighbors of each training device—a process that

resembles classic graph embedding. In addition, we propose a heuristic method for generating torus graphs.

Moreover, we have explored the communication patterns in hypercube topology and propose a sequential

synchronization scheme to reduce communication cost during training. A batch synchronization scheme is presented

to fine-tune the communication pattern for hypercube topology. Experiments on real-world datasets show that our

proposed graph construction methods can accelerate the training process, and our sequential synchronization scheme

can significantly reduce the overall communication traffic during training.

Key words: data heterogeneity; decentralized federated learning; graph embedding; network topology

1 Introduction

Federated learning (FL) is a promising approach for
performing distributed machine learning while
protecting the data privacy of each participating client.
Machine learning, especially deep learning, has been
widely deployed in many application scenarios, such as
natural language processing and computer vision. In
traditional machine learning schemes, the training data
are usually shared among all training devices.
However, centralized data storage has caused privacy

issues. For example, patient information stored in
medical institutions should not be shared with a third
party. To protect data privacy, federated learning is
proposed[1]. In federated learning, each training device
has its own local dataset that would not be exchanged
with other devices.

Although the training dataset is decentralized among
devices, many federated learning schemes use a
centralized server to maintain the parameters of
machine learning models like Fig. 1a. In particular,
each training device in federated learning has its local
model parameters. In every training iteration,
participating training devices would update their local
models based on their local datasets. Then, the local
updates are aggregated by a central server and the

 Yubin Duan, Xiuqi Li, and Jie Wu are with the Department of

Computer and Information Sciences, Temple University,
Philadelphia, PA 19122, USA. E-mail: {yubin.duan, xli, jiewu}@
temple.edu.

 * To whom correspondence should be addressed.
 Manuscript received: 2023-11-29; accepted: 2023-12-13

Intelligent and Converged Networks ISSN 2708-6240
2024, 5(2): 100−115 DOI: 10.23919/ICN.2024.0008

© All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

global model stored in the central server would be
updated accordingly. Centralized federated learning is
easy to implement and the performance of the global
model is relatively easy to evaluate. However, the
centralized scheme causes a communication bottleneck
at the central server. Especially when the network
bandwidth is low, the network traffic may cause
congestion at the server side and significantly slow
down the training process[2]. To mitigate the
communication bottleneck, we explore decentralized
federated learning in this paper.

In decentralized federated learning shown in Fig. 1b,
training devices directly communicate with each other
to synchronize local model updates. With the
development of wireless communication techniques,
device-to-device (D2D) communication has become
feasible in real-world applications using 5G[3].
Utilizing the D2D communication channels, training
devices can directly exchange model updates with each
other without going through a centralized server, which
can amortize the communication cost among all
training devices and avoid the communication
bottleneck. Nevertheless, decentralized federated
learning has its unique challenges, namely, each
training device only synchronizes with its neighbor
nodes in each training iteration, which may affect the
convergence property of learning algorithms.
References [2, 4, 5] analyze the performance of
optimization algorithms for decentralized training.
References [4, 5] show that the decentralized scheme

can achieve the same convergence rate while avoiding
the communication traffic jam. Reference [5] also
shows that the degree of the network plays an
important role in the convergence rate. It is worthwhile
to investigate the topology design problem for
decentralized federated learning.

log2 n n

The convergence rate of decentralized optimization
methods depends on network topology. References
[6, 7] analyze the convergence rate of decentralized
optimization methods for deep learning and have
shown that the network topology impacts the
convergence rate. Their analyses mainly focus on
homogeneous training datasets, i.e., the data samples
among training devices are independent and identically
distributed (IID). However, training datasets in
federated learning are usually heterogeneous. In this
paper, we investigate the topology design for federated
learning and take the data heterogeneity into
consideration. In particular, we first explore the
hypercube topology, which has diameter for
devices and achieves an efficient information flow rate.
In addition, we investigate the topology design
problem for federated learning with heterogeneous
data. We use data similarity[8] to measure the data
heterogeneity. Given the data similarity among training
devices, we propose the maximization of the sum of
data similarities over the edges in the constructed
graph. Intuitively, we attempt to reduce data
heterogeneity in the network and improve training
efficiency.

It is not trivial to construct the optimal topology for
decentralized federated learning with heterogeneous
training data. Firstly, it is challenging to compare the
performance of different topologies and identify the
optimal topology. For example, Ref. [7] shows that it is
difficult to find a tight bound for the convergence rate
of federated learning with IID training data. If a certain
topology achieves a fast convergence rate on a loss
bound of the convergence rate, there is no guarantee
that the topology can significantly improve the training
efficiency in practice. In addition, even if the topology
is selected, it is challenging to construct the
connectivity graph with the given topology such that
the data heterogeneity is minimized, which resembles

Communication
channel

Server

0 1 2 3 4
Training
device

(a) Centralized framework

(b) Decentralized framework

3 2

0 1

4

Fig. 1 Different federated learning frameworks.

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 101

classic graph embedding[9]. For example, building a
ring topology graph where the sum of data similarities
over edges in the graph is a traveling salesman
problem, which is NP-hard.

In this paper, we first demonstrate the advantage of
the hypercube topology. To improve the training
efficiency of decentralized federated learning, we
present an approximate graph construction method to
build a hypercube graph and we attempt to maximize
the sum of data similarities over edges in the
constructed graph. In addition, we also show a heuristic
algorithm to construct a torus graph following a greedy
approach. Moreover, we also investigate the
communication pattern in hypercube graphs and
propose a sequential synchronization scheme to reduce
the communication cost during training. A batch
synchronization scheme for the hypercube graph is
presented where the communication pattern among
training devices can be fine-tuned. We have conducted
experiments to evaluate our proposed methods using
the CIFAR-10 and CIFAR-100 datasets[10]. Our
evaluation results show that our proposed graph
construction methods can efficiently reduce the data
heterogeneity and improve the convergence speed of
learning models. Moreover, the evaluation results show
that our proposed sequential communication scheme
for hypercube graphs can significantly reduce the
communication traffic during training while
maintaining the convergence performance of learning
models.

Our contributions are summarized as follows:
• We investigate the network topology design

problem to improve the training efficiency of
decentralized federated learning with heterogeneous
training datasets.

• We demonstrate the advantage of the hypercube
topology for decentralized federated learning and
present a hypercube graph embedding method to
reduce the data heterogeneity for federated learning
with not independent and identically distributed (Non-
IID) data.

• We present a heuristic graph embedding method to
construct torus graphs with Non-IID data and
maximize the sum of data similarities among the

neighbors.
• We propose a sequential synchronization scheme

for training over the hypercube topology to reduce the
communication cost during training. A batch
synchronization scheme is proposed to fine-tune the
communication pattern during training.

• We test our proposed methods using real-world
datasets. Evaluation results show that the hypercube
and torus graph constructed by our algorithms can
significantly improve the training efficiency.

The remainder of the paper is structured as follows.
We review related work in Section 2. The preliminaries
of federated learning and the network model of the
decentralized federated learning scheme are introduced
in Section 3. Section 4 presents our proposed topology
design methods, including hypercube and torus graph
construction algorithms. Section 5 focuses on using
graph embedding to tackle the Non-IID data by
maximizing the sum of data similarities among
neighbors. Section 6 proposes a sequential
communication scheme to reduce the communication
cost during the training process. Our evaluation setups
and results are shown in Section 7. Finally, Section 8
concludes the paper.

2 Related work

Federated learning is a machine learning technique
where training data are stored in local client devices
without that data being exchanged with one
another[1, 11]. Training without centralized data is an
efficient way to protect data privacy. While the training
data are decentralized in FL, the parameters of machine
learning models can be stored in either a centralized or
decentralized way. Depending on where the model
parameter is kept, FL schemes can be categorized as
centralized or decentralized.

For centralized FL, the parameter server
framework[12−14] is the most widely deployed training
scheme[2, 15]. In this framework, there is a centralized
parameter server to maintain model parameters. All
training devices need to synchronize model parameters
with the parameter server, which causes a
communication bottleneck on the server side. To
reduce the communication cost, existing methods can

 102 Intelligent and Converged Networks, 2024, 5(2): 100−115

be categorized in two major approaches: reducing the
communication frequency[16, 17], and compressing the
communication volume[18−20]. In particular, we can
reduce the communication frequency by optimizing the
communication scheme and aggregating multiple
iterations of local updates in each communication
round. Although this approach can efficiently reduce
the overall communication cost and speed up the
training process of FL, Wang and Joshi[21] and Stich[22]

showed that error terms also accumulate when
aggregating local updates.

Compressing the model updates in each
communication round is another approach for reducing
the communication cost. Common compression
techniques include sparsification[19, 23, 24],
quantization[18, 25, 26], and low-rank methods[27−29].
Specifically, sparsification reduces the parameter
tensor size by selecting a subset of tensor elements.
Ozfatura et al.[19] presented a time-correlated
sparsification to reduce the communication cost for FL
with parameter server implementation. Quantization
decreases the parameter tensor size by encoding the
tensor in less number of bits. Reisizadeh et al.[18]

presented federated learning method with periodic
averaging and quantization (FedPAQ) that reduces the
communication cost for FL by periodic averaging and
quantization. In low-rank methods, model updates
would be decomposed into several low-rank matrices,
which is a lossy compression method and may break
the convergence of the machine learning models during
training. Error-feedback strategies[28, 30, 31] are
proposed to mitigate the error introduced by
compression and maintain the convergence of the
learning models. Moreover, adaptive parameter
freezing[20] is a promising approach to compress the
communication volume by avoiding synchronizing
stable model parameters during the training process.

Decentralized FL can resolve the communication
bottleneck in centralized schemes by amortizing the
communication cost over participating training
devices[32]. Decentralized optimization methods have
been well-studied[2, 5, 33−36]. Koloskova et al.[35]

investigated the decentralized stochastic optimization
algorithms and took the communication compression

into consideration. The efficiency of decentralized FL
also depends on the network topology design[7]. Neglia
et al.[7] investigated the impact of network topologies
on decentralized FL with IID data. Unlike the existing
work, we investigate the topology design for learning
from Non-IID data and take data similarities into
consideration when constructing communication
graphs. Moreover, we propose sequential and batch
communication schemes to fine-tune the
communication pattern for decentralized FL over the
hypercube topology.

3 Model

3.1 Centralized federated learning

V

|V | = n v

Dv

Federated learning is a distributed learning framework
where each training device or client has its own dataset
and will not share its local dataset with other clients.
As shown in Table 1, we use to denote the set of
training devices that participate in the training process.
The number of participating devices is denoted as

. Each training device has its local dataset,
which is denoted as . Training a machine learning or
deep learning model with the federated learning
framework can be formulated as the optimization of the
global objective function:

min
x

F(x) =
n∑

v=1

wv fv(x),

x ∈ Rdwhere is the parameter vector of the learning

Table 1 Notations and explanations.

Notation Explanation
V Set of training devices
v Individual training device
n VNumber of participating devices in

G = (V,E) Topology of decentralized federated learning
Dv vTraining dataset of device
F Global objective function
fv vLocal objective function of device

xv,t
v tDevice ’s model parameter at the -th

iteration
M,M(i, j) Connectivity matrix and its element
S ,S (i, j) Data similarity matrix and its element
λi(M) i MThe -th smallest eigenvalue of
δ(M) MSpectral gap of
Hd dConnectivity graph of the -D hypercube

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 103

F : Rd 7→ R
fv : Rd 7→ R

v wv v

wv 1/n

|Dv|/
n∑

v=1

|Dv|

model, is the global objective function,
 is the local objective function of each

training device , and is the weight of the device .
The local objective function is usually a loss function,
such as the cross-entropy loss, to measure the
performance of the learning model on its local dataset.
In common settings, is usually set to showing

that every device has the same weight, or

showing that the weight of every device is based on the
size of its dataset.

v

∇ fv(x)

Stochastic gradient descent (SGD) is a commonly
applied algorithm to optimize the global objective
function. Logically, SGD starts from a random solution
and iteratively moves toward to the optimal point. In
every iteration, each participating device retrieves a
data sample from its local dataset and computes the
gradient of its local objective function using the
data sample. Then, participating devices would
synchronize their gradient information and update the
global model. This step can be implemented in either a
centralized or a decentralized way.

In the centralized federated learning[1, 37, 38], there is a
central server that coordinates participating training
devices and maintains the global model parameters. As
shown in Fig. 1a, every participating training device
needs to communicate with the central server in order
to upload local model updates and download the latest
global model parameters. In a fully synchronized
setting, training devices need to communicate with the
server in every iteration of SGD. In each
communication round, training devices need to pull the
latest global model parameters from the server and
push their local updates to the server, which would
easily cause congestion at the network interface of the
server. The congestion at the central server would
significantly extend the training time. References [18,
39] show that the communication frequency can be
reduced by allowing some stale model updates, and the
global model still can converge. The overall
communication volume can be reduced by decreasing
the communication frequency. However, the
congestion at the central server still exists and affects
training efficiency.

3.2 Decentralized federated learning

With the development of wireless communication
technology, D2D communication among mobile
devices become more and more reliable. For example,
Ozyurt and Popoola[40] presented a light fidelity (Li-
Fi)-based D2D communication system for industrial
Internet of Things (IoT) devices. By utilizing D2D
communication, federated learning can be implemented
in a decentralized manner. Specifically, training
devices can directly communicate with peers and
exchange model updates. Decentralized federated
learning does not rely on central servers and avoids
congestion at servers, which can improve
communication efficiency and accelerate the training
process.

xv,t

t v

In decentralized federated learning, each device still
needs to sample local data and compute local model
updates. Differently from centralized federated
learning, each device needs to maintain a set of local
model parameters. In each training iteration, each
device needs to gather neighbors’ model updates,
aggregate them with local updates, and modify local
model parameters with the aggregated updates.
Formally, let denote the vector of model
parameters at the -th training iteration of device .
Then, the model updates in the decentralized
optimization can be formulated as

xv,t+1 = xv,t −α
n∑

j=1

mv j∇ f j(x j,t),

α ∈ [0,1]

mv j ∈ [0,1]

mv j = 0 v

j 0 < mv j ⩽ 1

mv j = m jv

v j

mv j = 1/N(v) N(v)

v

where is the hyper-parameter representing the
learning rate and represents the weights of
neighbor updates. The weight , if devices and

 are not connected. Otherwise, . In
addition, we assume , which means that the
mutual influence between devices and are equal. A
common setting is letting , where
represents the number of neighbors of device . This
setting means that every neighbor makes the same
contribution of the model updates.

G = (V,E)

(i, j) ∈ E i j

We use a graph to model the network
topology of training devices, as illustrated in Fig. 1b.
The vertex set consists of training devices. There is an
edge if devices and are connected.

 104 Intelligent and Converged Networks, 2024, 5(2): 100−115

E

M G n

M n×n

M(i, j) = mi j

i j

M(i, i) = mii > 0

G M

M

M
∑

i

M(i, j) =
∑

j

M(i, j) = 1

δ(M) M

G

Notably, we assume the D2D communication channels
are full-duplex, and edges in are undirected. To
analyze the network topology, we use a connectivity
matrix to model the graph . For participating
devices, is a matrix. The matrix element

 shows the weight of connections between
devices and . Notably, we assume that a device is
connected to itself by default, and . For
the undirected graph , the connectivity matrix is
symmetric. Moreover, we assume that is a doubly
stochastic matrix, i.e., each of the rows and columns in

 sums to 1 or formally .

The spectral gap of the matrix can measure the
information flow efficiency in graph . The formal
definition of the spectral gap is shown as follows:

M |λ1(M)| ⩽ |λ2(M)| ⩽ · · · ⩽
|λn−1(M)| < |λn(M)| = 1 δ(M)

M δ(M) ≜ 1− |λn−1(M)|.

Definition 1　 For a symmetric double stochastic
matrix with eigenvalues

, its spectral gap is the
difference between the moduli of the two largest
eigenvalues of . Formally,

3.3 Data heterogeneity

S ≜ [S (i, j)]1⩽i, j⩽n

S (i, j)

i j

S (i, j)

Di

D j

In addition to the network topology, we also consider
the impact of data heterogeneity on federated learning.
In particular, training data on participating devices in
federated learning usually are Non-IID. For example,
sensor data gathered from IoT devices located in
different areas are Non-IID. We use the similarity
among local datasets of training devices to measure the
data heterogeneity. Formally, let
denote the data similarity matrix, where is the
similarity between local datasets of device and . The
similarity is defined as the probability that a data
sample from is similar to at least one data sample
from . The standard that measures whether two data
samples are similar varies with application scenarios.
For image classification applications, two data samples
are similar if they have the same ground-truth label.
Moreover, there are different formulations to evaluate
the data heterogeneity. Bars et al.[41] presented a
quantity named neighborhood heterogeneity. For a
node, its neighborhood heterogeneity is based on
aggregating the differences with its neighbors with 2-
norm. We follow a similar approach while using 1-

norm based on graph embedding.

4 Topology design

M

xv,t t v

M

The convergence rate of distributed federated learning
heavily depends on the network topology. Theoretical
analyses[35] have shown that the convergence rate of
distributed training is closely related to the spectral gap
of the connectivity matrix . Formally, the model
parameter at the -th training iteration of device
converges linearly when the connectivity matrix is
symmetric doubly stochastic, as stated in Theorem 1.

xv,t

x̄ =
1
n

n∑
i=1

xv,0

Theorem 1　 The model parameter converges

linearly to with the rate

n∑
i=1

∥xv,t − x̄∥2 ⩽ (1−γδ(M))2t
n∑

i=1

∥xv,0− x̄∥2,

γ ∈ (0,1] Mwhere and is a symmetric doubly
stochastic connectivity matrix.

γδ(M) ∈ (0,1] (1−γδ(M)) ∈ [0,1)

limt→+∞(1−γδ(M))2t = 0

xv,t

δ(M)

M

n

δ

δ

O(1/n2) O(1/n)

δ

Notice that and , we
have . This shows that the
model parameter will converge eventually.
Moreover, from the convergence rate shown in
Theorem 1, we notice that the spectral gap of the
connectivity matrix plays an important role.
Especially when the number of devices is large, the
difference in the spectral gap of different network
topologies becomes significant. It is shown in Ref. [35]
that the spectral gap of a ring and 2-dimensional (2-
D) torus is and , respectively.
According to Theorem 1, a greater leads to a higher
convergence rate. Therefore, compared to the ring
topology, the 2-D torus graph has a faster convergence
speed. This difference shows that it is worth optimizing
the network topology design for improving the training
efficiency of distributed federated learning. To
optimize the network topology, a natural question to
ask is: what causes the significant difference in the
spectral gaps of different graphs?

By comparing the difference between ring and torus
topology, we observe that the diameter of the ring
graph is greater than the diameter of the torus graph,
given the same number of vertices in the graph.
Intuitively, the larger diameter of the ring graph may

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 105

O(log2 n) n

n = 2d d

d

{0,1}d d

d

Hd d

Hd

cause the smaller spectral gap and the slower
convergence speed. Inspired by the observation, we
investigate the hypercube topology whose diameter
increases in with the number of vertices in
the graph. There are vertices in a -dimensional
(-D) hypercube. The vertex set of the hypercube
graph is defined on . In the -dimensional
hypercube, each vertex has exactly neighbors. Two
vertices are connected if their labels (in binary code)
differ in exactly one dimension. For example, the
structure of a 4-dimensional hypercube is shown in Fig.
2. Let denote the connectivity matrix of the -
dimensional hypercube. can be recursively defined
by the following equation:

Hd =
1

d+1

[
dHd−1 I2d−1

I2d−1 dHd−1

]
,

I2d−1 2d−1×2d−1

H0 = [1]

where represents the identity matrix,
and the base case . Given the connectivity
matrix, we can calculate the spectral gap of the
hypercube topology, as shown in Theorem 2.

δ(Hd) 2/d

δ(Hd)−1 = O(d) = O(log2 n)

Theorem 2　 The spectral gap is and
.

Hd
1
d

(n−2|I|) I ⊆ {1,2, . . . ,d}
Hd n/d (n−2)/d

δ(Hd)

Hd 2/d δ(Hd)−1 = O(d) = O(log2 n)

Proof　We can verify that the eigenvalues of are

, where . The moduli of the

two largest eigenvalues of are and .
According to the definition, the spectral gap of

 is , and . ■

Based on the spectral gap, we can analyze the
convergence speed of the decentralized federated
learning over the hypercube graph. Compared to ring
and torus topologies, the spectral gap of the hypercube
is much larger, especially when the number of
participating devices is large. According to Theorem 1,
the convergence speed of distributed federated learning
over the hypercube graph is faster.

We have evaluated the convergence rate of SGD
over different network topologies. Figure 3 shows the
preliminary experiment results when there are 64
participating training devices. Figure 3 shows the top-1
accuracy of ResNet-50 model when training on the
CIFAR-100 dataset. Data samples in the CIFAR-100
are randomly shuffled and allocated to participating
devices. From Fig. 3 , we can observe that the model
convergence speed heavily depends on the topology of
the communication graph. For example, to achieve
60% accuracy, hypercube takes 73 epochs, while torus
and ring need 83 and 144 epochs, respectively.
Compared to the hypercube topology, torus and ring
are 13.7% and 97.3% slower. The preliminary result
shows that optimizing the topology of the
communication graph can significantly improve the
training efficiency for decentralized federated learning.

G

From the theoretical analyses and the preliminary
experiment results, we notice that the network topology
would impact the convergence rate of decentralized
federated learning. In addition to the network topology,
data heterogeneity also affects the convergence rate.
Too many updates from extremely heterogeneous data
may diverge the learning model. In this paper, we
propose to jointly consider those two factors. When
scheduling the communication among participating
training devices, we attempt to find a graph such that
the spectral gap of the connectivity matrix is
maximized and the heterogeneity of neighbor nodes in
the graph is minimized. This is not a trivial problem
and there may be a trade-off between the information
flow efficiency and the data heterogeneity given a set
of decentralized training devices. It is challenging to

0

4

6

5

2

1

3

8

10

9

11

1312

7 14 15

Fig. 2 4-dimensional hypercube graph.

0
0

20

40

60

80

100

20 40 60
Number of epochs

Ac
cu

ra
cy

 (%
)

80 100 120 140

Complete
Ring
Torus
Hypercube

Fig. 3 Training ResNet-50 on CIFAR-100 with 64 workers.

 106 Intelligent and Converged Networks, 2024, 5(2): 100−115

minimize the data heterogeneity of neighbor nodes
while maintaining a desired network topology.

There is some recent effort on diameter minimization
based on a fixed node degree for a given number of
nodes, but their results generate a random graph with
probabilistic guarantee[42]. We investigate more
deterministic approaches to optimize graph embedding
with multiple graph topologies, and we use the spectral
gap as a mathematical tool to analyze the
approximation property of our proposed methods.

5 Graph embedding for Non-IID data

G

In this section, we focus on optimizing the
communication graph for heterogeneous data. For the
similarity, intuitively, when data distributions of two
workers are similar, we should connect them together
so that the disturbance from other non-similar workers
can be avoided. Li et al.[43] used this intuition to design
the communication graph. The experimental findings in
Ref. [43] confirm this intuition. We use data similarity
to measure the data heterogeneity of communication
graphs. In particular, each edge in the communication
graph shows the data similarity between two vertices
induced on the edge. Our objective is to select a set of
edges such that the summation of similarity among
neighbors is maximized and the desired network
topology is maintained. This process resembles classic
graph embedding, where a target graph, i.e., hypercube
or ring, is embedded in a given graph, i.e., a completely
connected graph in this case. This optimization
problem is challenging even for generating the max-
similarity for a graph with a simple ring topology.
Finding such a graph with ring topology is equivalent
to a traveling salesman problem, which is NP-hard. We
propose two heuristic graph construction methods for
hypercube and torus topologies from a given complete
graph, respectively.

5.1 Hypercube graph construction

G = (V,E)

S i

Gi = (Vi,Ei) i = 0,1, . . . ,d−1

G0 = (V0,E0) V0 V E0

Gi+1 Gi

Given a complete graph with the similarity
matrix , we denote the virtual network of level as

, where . Initially,
, where is and is empty. Our

algorithm iteratively constructs from ,

i = 0,1, ...,d−1. The hypercube construction algorithm
is shown in Algorithm 1. It is a dimension-based
perfect matching using Blossom’s algorithm[44], which
constructs a maximum matching on a graph in
polynomial time. Blossom’s algorithm starts with an
empty matching. Then, it repeatedly increases the size
of the matching by one by finding and utilizing an
augmented path in the graph at each iteration. When no
more augmented paths exist, the result is a maximum
matching.

i

i+1 Gi+1

Gi

Vi+1

i

Gi Ei+1

d Gd

Our hypercube construction process first applies
Blossom’s algorithm to find matching pairs of physical
nodes. Each matching pair forms a 1-D cube, which is
a virtual node of level 1. Then, Blossom’s algorithm is
repeatedly applied to virtual nodes of level to form
virtual nodes of level . is constructed as
follows: each matching pair in is a virtual node in

. Every new one-to-one node-level connection
along dimension in every matching pair plus all
existing links in constitutes . The construction
stops when there is only one virtual node, which is the

-D hypercube, . The construction of a 3-D
hypercube in three iterations is illustrated in Fig. 4.

Figure 5 shows two virtual nodes (i.e., two 3-D
hypercubes). The virtual node on the left is matched to

Algorithm 1　Max-similarity hypercube construction
G = (V,E) |V | = n = 2d

S
Input: The complete graph with and

similarity matrix
d GdOutput: The -D hypercube with max-similarity

G0 = (V0,E0) V0 = V E0 = {}
G0

 1: Define , where and //initialization
for

i = 0 d−1 2: for dimension to do
Gi+1 Gi 3: 　//determine from

vn vn′ Gi 4: 　for each virtual node pair and in do
vn vn′ 5: 　　call Virtual_Node_Similarity(,)

Vi

Gi

 6: 　Apply Blossom’s algorithm to based on virtual node
similarity in

Vi Vi+1 7: 　Each matching pair in forms a virtual node in

i Vi Ei+1

Ei

 8: 　A set of one-to-one mapping connections along
dimension in each matching pair in forms ,
together with existing links in

 9:
vn vn′ 10: Virtual_Node_Similarity(,)

Gi 11: //determine virtual node similarity in
(u,v),u ∈ vn,v ∈ vn′ 12: for each node pair do

S (u,v) u,v ∈ V 13: 　sum up //both

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 107

k k

k!2k

k

(2k)2

i

G i

the virtual node on the right with the maximum
similarity. To find the maximum similarity matching
between two virtual nodes of level (i.e., two -D
hypercubes), there are choices (i.e., the number of
automorphisms). At level 0, the virtual node is the real
node and therefore the matching is at the maximum. In
subsequent levels, our construction algorithm
approximates the maximum using the total pairwise
similarity between two virtual nodes, which is the sum
of pairwise similarity between two physical nodes with
one from each virtual node of level . This
approximation has a complexity of . Once
matching pairs are constructed in the -th iteration, our
algorithm randomly selects one-to-one node-pair (i.e.,
nodes in the original) connections along the -th
dimension without considering different rotations.

1/d

1/d

Our proposed method for hypercube graph
construction has an approximation ratio of , i.e., the
sum of data similarities over edges in the graph is at
least of the optimal solution. The complexity of
our proposed method is shown in Theorem 3. The
approximation property of our proposed method is
shown in Theorem 4.

Theorem 3　 The hypercube graph construction

O(n4) n

method shown in Algorithm 1 has a complexity of
, where is the number of nodes.

i

Gi

O(|Ei||Vi|2) = O(|Vi|4) O(|Vi|4) =

O((2d−i)4) = O((n2−i)4)

Gi O(|Vi|2(2i)2) = O((n2−i)222i) = O(n2)

d−1∑
i=0

(O((n2−i)4)+O(n2)) O

d−1∑
i=0

(n2−i)4

+O

d−1∑
i=0

n2

 =
O(n4)+O(n2 log n) = O(n4)

Proof　 For each dimension , when Blossom’s
Algorithm is applied to , the time complexity is

 based on Ref. [44].
. The time complexity of

calculating the similarities of all virtual node pairs in
 is . The time

complexity of our hypercube construction algorithm is

 =

. ■

(1/d)

Theorem 4　 The hypercube graph construction
method shown in Algorithm 1 is -approximate.

1/d

1/d

1/d

Proof　 Our hypercube graph construction method
would iteratively maximize the similarities over edges
in every dimension. In the first iteration, our method
would pick of total edges for the hypercube graph.
Considering that we apply the maximum weight perfect
matching in this iteration, any other matching plans
that select a portion of total edges would have a
smaller sum of data similarities. Therefore, sum of data
similarities over edges in the graph generated by
Algorithm 1 is at least of the optimal solution. ■

5.2 Torus graph construction

In addition to the hypercube topology, we have
investigated the torus graph construction for
heterogeneous data such that the sum of data
similarities over edges in the graph is maximized.

G = (V,E) n

S

m =
√

n

m

R1,R2, . . . ,Rm m

m

R1,R2, . . . ,Rm

Given the complete graph of nodes with
the similarity matrix , our torus construction
algorithm creates a 2-D torus in two major steps: ring
construction and ring matching. We define .
The ring construction step creates rings,

, in sequence. Each ring contains nodes.
The ring matching step connects the rings,

, to form a ring of rings, which is a 2-D
torus. This process is described in Algorithm 2.

Ri i = 1,2, . . . ,m m

u

G

v u

v

To construct a new ring () of size ,
our algorithm randomly selects an unmatched node
in as the head in the ring. It then finds an unmatched
node with the maximum similarity to . This new
node is set to be the new head. Repeat these two steps

G0 G1

G2 G3
Fig. 4 3-D max-similarity hypercube construction process.

010

110 111

011

101

001000

100

010

110 111

011

101

001000

100

Similarity

Fig. 5 Max-similarity hypercube matching in G3.

 108 Intelligent and Converged Networks, 2024, 5(2): 100−115

m

m m

until the new ring size is . Then, connect the head and
tail in the new ring to form a circle. This new ring
construction process is repeated times to create
rings.

R

R′ R

R′

Ri i = 1,2, . . . ,m−1

The ring matching process begins with randomly
choosing an unmatched ring as the head of the rings
of rings, i.e., the 2-D torus. Then our algorithm finds an
unmatched ring with the maximum similarity to .
Next, ring is set to be the new head. To match each
ring (), repeat the last two steps.
Then connect the head and tail of the rings of rings to
form a 2-D torus.

m2

m

m

m = 6

The 2-D torus construction algorithm is also
heuristic. Clearly, the ring of rings created is a 2-D
torus. The maximum ring similarity between two rings
is the summation of one-to-one node pair similarities.
There are totally possible matchings with various
rotations, including rotations of a given ring and
another rotations after flipping the ring. Figure 6
shows an example for . The ring on the left is
matched to the ring on the right with the maximum

similarity rotation (flip, then rotate) among all possible
rotations. The complexity of our proposed method is
shown in Theorem 5.

O(n2)

n

Theorem 5　The torus graph construction method
shown in Algorithm 2 has a complexity of ,
where is the number of nodes.

√
n

√
n−1 n−1

O(
√

n
√

n n) = O(n2)

Proof　 In Construct_Rings, the outer for-loop in
Line 5 repeats times. The inner for-loop in Line 7
iterates times. In Line 8, at most nodes are
checked. The total run time of ring construction is

.

√
n−1

√
n−1
√

n

O(
√

n
√

n) = O(n)

O(
√

n
√

n n) = O(n2)

O(n2)+O(n2) = O(n2)

In Match_Rings, the for-loop in Line 14 repeats
 times. In Line 15, at most rings are

checked. For each pair of rings of size , the time
complexity of computing their similarity is

. The total run time of ring matching
is . The time complexity of our
torus construction algorithm is . ■

6 Reducing communication frequency

l l ⩾ 1

l

In addition to the network topology design, adjusting
the communication frequency among training devices
can reduce the communication volume and efficiently
speed up the training process. Existing studies mainly
follow either a synchronous or asynchronous approach.
In synchronous federated learning, all participating
devices need to synchronize their model parameters in
every iteration, where is a hyper-parameter
representing the staleness limitation. A large can
efficiently reduce the communication frequency, but
may also break the convergence of machine learning
models[13].

In an asynchronous scheme, training devices no
longer need to wait for neighbors for model
synchronization. However, the overall communication
volume is not significantly reduced in the

Algorithm 2　Max-similarity torus construction
G SInput: The complete graph with the similarity matrix

G′Output: 2-D torus with the maximum total similarity

m←
√

n 1:
 2: call Construct_Rings
 3: call Match_Rings
 4:
 5: Construct_Rings

i = 1 m Ri 6: for to //construct do
u G 7: 　randomly select an unmatched node in

j = 2 m 8: 　for to do
v G

u
 9: 　　find an unmatched node in that has the maximum

similarity to
v u v Ri 10: 　　set to // becomes the head of

Ri 11: 　connect the head and tail of .
 12:
 13: Match_Rings

R1,R2, . . . ,Rm 14: //connect to form a ring of rings
R 15: randomly select an unmatched ring

i = 2 m Ri−1 16: for to //match do
R′

R
 17: 　find an unmatched ring with the maximum similarity

to
R′ R R′ 18: 　set to // becomes the head of the ring of rings

 19: connect the head and tail of the ring of rings to form a 2-D
torus

5

6Similarity

1 1

4 4

5

6

3

2

3

2

Fig. 6 Ring matching through rotation and flipping (the
rightmost ring).

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 109

asynchronous scheme. Different from existing
approaches, we present a batch synchronization scheme
for distributed federated learning over the hypercube
topology. Intuitively, our proposed scheme can fine-
tune the synchronization frequency of nodes in each
dimension in the hypercube graph, which helps to
reduce the network traffic during training and to
improve the training efficiency.

0||1||2||3 ||
d

d

0||1,2||3
0||2,1||3

1/d

To reduce the communication cost, we first present a
sequential communication scheme for decentralized
federated learning in hypercube topology. In traditional
federated learning, all participating devices perform
communication in parallel. For example, if there are 4
devices. they perform parallel communication in each
synchronization round, which can be represented by

, where denotes the parallel communications.
For a -dimensional hypercube, each device needs to
communicate with neighbors in each synchronization
round. The traditional synchronization scheme would
introduce a large communication cost. Differently to
setting up a fixed synchronization barrier, we propose
letting training devices synchronize their model
parameters in sequence by each dimension in the
hypercube connectivity graph. In our sequential
communication scheme, each device only synchronizes
with one neighbor in each communication round. The
neighbor selection sequence of each device is sorted by
dimension. For example, the communication of 4
devices is organized as in the first round, and

 in the second round. Specifically, the Device 0
only communicates with Device 1 in the first round,
and synchronizes with Device 2 in the following round.
In the sequential communication scheme, the
communication cost is reduced by compared to the
traditional federated learning scheme.

i

Detailed steps of our proposed sequential
communication scheme is shown in Algorithm 3. In
particular, while the training process is not completed,
every training device would perform model
synchronization with one neighbor node in a
communication round. Line 2 initializes a counter to
keep a record of the number of iterations. The loop in
Lines 3 and 4 would select a neighbor node for every
training device. At iteration , the neighbor at the

i mod d

i

1/d

 dimension would be selected for
synchronization, as shown in Line 4. Line 5 would
increment the iteration counter . With the sequential
communication scheme, the overall communication
cost is reduced by .

n log2 n

b

0

1

001,010,100,

In addition to the sequential communication scheme,
we present a more flexible communication scheme for
decentralized federated learning over the hypercube
topology. In particular, we can fine-tune the
communication cost in each synchronization round. For
training with devices, we can use a -bit binary
mask to indicate which dimensions the
synchronization should be performed on. In the binary
mask, represents skipping the synchronization in the
corresponding dimension and means performing the
synchronization in this round. For example, the
sequential communication scheme for a 3-dimensional
hypercube with eight devices can be encoded as

 and repeat. The communication pattern
can be fine-tuned by adjusting the binary mask for each
synchronization round.

7 Experiment

7.1 Experiment setup

Out testbed is built based on a computing cluster that
has 8 NVIDIA Tesla V100 GPUs with 448 GB RAM
and 5.9 TB storage space. All GPUs are connected by
NVLinks that provide 300 GB/s bandwidth per GPU.
We have evaluated our proposed methods with
different network sizes. When there are more than eight
nodes in the network, multiple worker nodes would be
assigned to a GPU device. Each device can handle
multiple training processes if the overall workload does
not exceed the GPU memory limitation.

Algorithm 3　Sequential communication scheme
dInput: The dimension of the hypercube graph

Output: A sequential communication schedule
 1: while training process is not completed do

i← 0 2: 　
v ∈ V 3: 　for every device do

(i mod d) 4: 　　Select the neighbor at the -th dimension for
synchronization

i← i+1 i 5: 　 //iteration

 110 Intelligent and Converged Networks, 2024, 5(2): 100−115

We implement our proposed schemes in PyTorch.
We use the OpenMPI package as the backend that
coordinates the communication among training
devices. In particular, we modify the topology module
of PyTorch to integrate our graph construction
methods. The network topology during training is
adjusted by the connectivity matrix generated by our
algorithms. We utilize the CIFAR-10 dataset to
simulate the heterogeneous data distribution among
training devices. We treat the images from the same
class as homogeneous data and mix images from
different classes to construct the heterogeneous data.
During the experiment, we assume the data similarity
matrix is known. Given a data similarity matrix, we
assign heterogeneous data from different image classes
to training devices to fulfill the data heterogeneity
indicated by the matrix. When testing our proposed
synchronization scheme, we use both CIFAR-10 and
CIFAR-100 datasets.

n

1/3

In our experiments, we compared the performance of
different graph construction methods. In particular, our
proposed hypercube and torus graph construction
methods are denoted as HGC and TGC, respectively.
We also implement an exhaustive search method to
find the optimal graph where the sum of data
similarities over edges in the graph is maximized. The
exhaustive search method is denoted as ES. ES finds
the optimal solution in non-polynomial time, and
cannot be applied to solve large-scale problems. In the
graph construction experiment, we set to 16. In
addition, we implement a random construction method,
which is denoted as RC. The RC method can only
guarantee the topology of the generated graph, but it
cannot reduce the data heterogeneity of the generated
graph. Moreover, we also compare different
synchronization schemes. We denote our sequential
synchronization scheme as SS and the traditional full
synchronization scheme as FS. Based on our batch
synchronization scheme, we also implement a hybrid
synchronization scheme that reduces the
communication frequency of the full synchronization
scheme by , i.e., performing a full synchronization
in every 3 iterations such that the communication cost
is equivalent to SS. The hybrid synchronization scheme

n

is denoted as HS. When evaluating different
synchronization schemes, the number of devices is
set to 8.

7.2 Experiment result

The evaluation results of hypercube construction
algorithms are shown in Fig. 7. In particular, Fig. 7a
shows the experiment results of the ResNet-20 model
and Fig. 7b shows the results of the ResNet-50 model.
From Figs. 7a and 7b, we can find that our proposed
HGC method achieves a better convergence rate
compared to randomly constructing a hypercube graph
in RC. The experiment results show that finding a
hypercube graph that increases the sum of data
similarities over edges in the graph can improve the
training efficiency. In addition, our HGC method has a
similar convergence trace as ES. This shows that our
proposed method can find the near-optimal graph in
terms of data similarity maximization. Compared to
ES, our proposed method has polynomial time
complexity and is more time efficient when

0

50

60

70

80

90

100

20 40 60
Number of epochs

(a) ResNet-20

Ac
cu

ra
cy

 (%
)

80 100 120 140

ES
HGC
RC

0

65

60

70

80

75

85

90

95

100

20 40 60
Number of epochs

(b) ResNet-50

Ac
cu

ra
cy

 (%
)

80 100 120 140

ES
HGC
RC

Fig. 7 Evaluation of hypercube construction methods.

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 111

constructing hypercube graphs.
Experiment results of torus graph construction

methods are shown in Fig. 8. Figure 8 illustrates the
model convergence property when training with the
communication graph constructed by different graph
construction methods. From Fig. 8, we find that our
TGC method outperforms RC in both the ResNet-20
and ResNet-50 models. Our proposed TGC method can
reduce the data heterogeneity in the generated torus
graph, which helps improve the convergence rate of
machine learning models. For example, TGC takes
about 30 epochs less than RC to achieve 95% model
accuracy with training with ResNet-20. In addition, the
performance of TGC is close to the optimal graph
construction method ES.

Figure 9 shows the evaluation results of different
synchronization schemes on the ResNet-50 model.
Figure 9a shows the experiment results over the
CIFAR-10 dataset and Fig. 9b illustrates the results
over the CIFAR-100 dataset. From Fig. 9, we can
observe that our sequential synchronization scheme SS

requires lower communication cost to achieve the same
model accuracy as the traditional FS scheme. For
example, when reaching 80% accuracy for CIFAR-10,
SS has a 19% lower communication cost compared to
FS, and the saving is more significant when reaching
the same higher level of accuracy. In addition, the
model trained with the sequential synchronization
scheme converges to the same accuracy as FS. This
shows that our SS scheme can efficiently reduce the
communication cost during training without harming
the model convergence.

8 Conclusion

In this paper, we investigate the topology design
problem for decentralized federated learning with
heterogeneous training data. We demonstrate the
advantage of hypercube topology by showing its
spectral gap and theoretical convergence rate. To
reduce the data heterogeneity during the training
process, we present graph construction methods for
both hypercube and torus topologies to carefully select

0

65
60

70

80
75

85
90
95

100

20 40 60
Number of epochs

(a) ResNet-20

Ac
cu

ra
cy

 (%
)

80 100 120 140

ES
TGC
RC

0

85

80

90

95

100

20 40 60
Number of epochs

(b) ResNet-50

Ac
cu

ra
cy

 (%
)

80 100 120 140

ES
TGC
RC

Fig. 8 Evaluation of torus construction methods.

0

20

60

40

80

100

100 200 300
Communication cost (MB)

(a) CIFAR-10

Ac
cu

ra
cy

 (%
)

400 500 600 700 800

FS
HS
SS

0
0

60

40

20

80

100

200 400 600

Communication cost (MB)
(b) CIFAR-100

Ac
cu

ra
cy

 (%
)

800 1000 1200 1400 1600

FS
HS
SS

Fig. 9 Evaluation of synchronization schemes.

 112 Intelligent and Converged Networks, 2024, 5(2): 100−115

(1/d)

neighbors for each training device and increase the
overall data similarities in the generated graph. Our
hypercube graph construction method is -
approximate. In addition to the topology design, we
propose a sequential synchronization scheme for
training in hypercube graphs. Also, a batch
synchronization scheme is proposed to fine-tune the
communication patterns during training. To evaluate
our proposed methods, we conduct experiments over
CIFAR-10 and CIFAR-100 datasets. Training traces of
ResNet models show that our proposed graph
construction methods can accelerate the training
process. Moreover, our proposed synchronization
schemes can significantly reduce the overall
communication cost during training.

Acknowledgment

This work was supported in part by the National
Science Foundation (NSF) (Nos. SaTC 2310298, CNS
2214940, CPS 2128378, CNS 2107014, CNS 2150152,
CNS 1824440, CNS 1828363, and CNS 1757533).

References

 J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, Federated learning: Strategies for
improving communication efficiency, arXiv preprint
arXiv: 1610.05492, 2016.

[1]

 X. Lian, C. Zhang, H. Zhang, C. J. Hsieh, W. Zhang, and
J. Liu, Can decentralized algorithms outperform
centralized algorithms? A case study for decentralized
parallel stochastic gradient descent, arXiv preprint arXiv:
1705.09056, 2017.

[2]

 R. I. Ansari, C. Chrysostomou, S. A. Hassan, M. Guizani,
S. Mumtaz, J. Rodriguez, and J. J. P. C. Rodrigues, 5G
D2D networks: Techniques, challenges, and future
prospects, IEEE Syst. J., vol. 12, no. 4, pp. 3970–3984,
2018.

[3]

 I. Hegedűs, G. Danner, and M. Jelasity, Decentralized
learning works: An empirical comparison of gossip
learning and federated learning, J. Parallel Distrib.
Comput., vol. 148, pp. 109–124, 2021.

[4]

 K. Seaman, F. Bach, S. Bubeck, Y. T. Lee, and L.
Massoulié, Optimal algorithms for smooth and strongly
convex distributed optimization in networks, in Proc. 34th
Int. Conf. Machine Learning, Sydney, Australia, 2017, pp.
3027–3036.

[5]

 A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi,
Decentralized deep learning with arbitrary communication

[6]

compression, in Proc. Int. Conf. Learning Representations
(ICLR 2020), Addis Ababa, Ethiopia, 2020, pp. 1–23.
 G. Neglia, C. Xu, D. Towsley, and G. Calbi, Decentralized
gradient methods: Does topology matter? in Proc. Int.
Conf. Artificial Intelligence and Statistics, Palermo, Italy
2020, pp. 2348–2358.

[7]

 S. Wang, M. Lee, S. Hosseinalipour, R. Morabito, M.
Chiang, and C. G. Brinton, Device sampling for
heterogeneous federated learning: Theory, algorithms, and
implementation, in Proc. IEEE INFOCOM 2021—IEEE
Conf. Computer Communications, Vancouver, Canada,
2021, pp. 1–10.

[8]

 F. T. Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes. San Mateo, CA,
USA: Morgan Kaufmann Publishers, Inc., 1992.

[9]

 A. Krizhevsky and G. Hinton, Learning multiple layers of
features from tiny images, Technical report, Department of
Computer Science, University of Toronto, Toronto,
Canada, 2009.

[10]

 S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and
X. Shen, Distributed artificial intelligence empowered by
endedge- cloud computing: A survey, IEEE
Communications Surveys & Tutorials, vol. 25, no. 1, pp.
591–624, 2023.

[11]

 M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen,
and A. Smola, Parameter server for distributed machine
learning, presented at Big Learning 2013: NIPS 2013
Workshop on Big Learning, Lake Tahoe, NV, USA, 2013.

[12]

 Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing, More
effective distributed ML via a Stale synchronous parallel
parameter server, in Proc. 26th Int. Conf. Neural
Information Processing Systems, Lake Tahoe, NV, USA,
2013, pp. 1223–1231.

[13]

 M. Li, D. G. Andersen, A. Smola, and K. Yu,
Communication efficient distributed machine learning
with the parameter server, in Proc. 27th Int. Conf. Neural
Information Processing Systems, Montreal, Canada, 2014,
pp. 19–27.

[14]

 O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao,
Optimal distributed online prediction using mini-batches,
J. Mach. Learn. Res., vol. 13, no. 1, pp. 165–202, 2012.

[15]

 V. Smith, S. Forte, C. Ma, M. Takáč, M. I. Jordan, and M.
Jaggi, CoCoa: A general framework for communication-
efficient distributed optimization, J. Mach. Learn. Res.,
vol. 18, p. 230, 2018.

[16]

 J. Wang and G. Joshi, Adaptive communication strategies
to achieve the best error-runtime trade-off in local-update
SGD, arXiv preprint arXiv: 1810.08313, 2018.

[17]

 A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and
R. Pedarsani, FedPAQ: A communication-efficient
federated learning method with periodic averaging and
quantization, arXiv preprint arXiv: 1909.13014, 2019.

[18]

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 113

 E. Ozfatura, K. Ozfatura, and D. Gunduz, Time-correlated
sparsification for communication-efficient federated
learning, in Proc. IEEE Int. Symp. on Information Theory
(ISIT), Melbourne, Australia, 2021, pp. 461–466.

[19]

 C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G.
Zhang, Communication-efficient federated learning with
adaptive parameter freezing, in Proc. IEEE 41st Int. Conf.
Distributed Computing Systems (ICDCS), Washington,
DC, USA, 2021, pp. 1–11.

[20]

 J. Wang and G. Joshi, Cooperative SGD: A unified
framework for the design and analysis of communication-
efficient SGD algorithms, arXiv preprint arXiv:
1808.07576, 2018.

[21]

 S. U. Stich, Local SGD converges fast and communicates
little, arXiv preprint arXiv: 1805.09767, 2018.

[22]

 H. Sun, Y. Shao, J. Jiang, B. Cui, K. Lei, Y. Xu, and J.
Wang, Sparse gradient compression for distributed SGD,
in Database Systems for Advanced Applications, G. Li, J.
Yang, J. Gama, J. Natwichai, and Y. Tong, eds. Cham,
Switzerland: Springer, 2019, pp. 139–155.

[23]

 N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica,
and R. Arora, Communication-efficient distributed SGD
with Sketching, arXiv preprint arXiv: 1903.04488, 2019.

[24]

 Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang,
A. Schwing, H. Esmaeilzadeh, and N. S. Kim, A network-
centric hardware/algorithm co-design to accelerate
distributed training of deep neural networks, in Proc. 51st
Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO), Fukuoka, Japan, 2018, pp. 175–188.

[25]

 Y. Yu, J. Wu, and J. Huang, Exploring fast and
communication-efficient algorithms in large-scale
distributed networks, arXiv preprint arXiv: 1901.08924,
2019.

[26]

 H. Wang, S. Sievert, Z. Charles, S. Liu, S. Wright, and D.
Papailiopoulos, ATOMO: Communication-efficient
learning via atomic sparsification, arXiv preprint arXiv:
1806.04090, 2018.

[27]

 T. Vogels, S. P. Karimireddy, and M. Jaggi, PowerSGD:
Practical low-rank gradient compression for distributed
optimization, arXiv preprint arXiv: 1905.13727, 2019.

[28]

 M. Cho, V. Muthusamy, B. Nemanich, and R. Puri,
GradZip: Gradient compression using alternating matrix
factorization for large-scale deep learning, presented at
Neural Information Processing Systems (NeurIPS),
Vancouver, Canada, 2019.

[29]

 S. P. Karimireddy, Q. Rebjock, S. U. Stich, and M. Jaggi,
Error feedback fixes SignSGD and other gradient
compression schemes, arXiv preprint arXiv: 1901.09847,
2019.

[30]

 C. Xie, S. Zheng, O. Koyejo, I. Gupta, M. Li, and H. Lin,
CSER: Communication-efficient SGD with error reset,
arXiv preprint arXiv: 2007.13221v2, 2020.

[31]

 N. Mhaisen, A. A. Abdellatif, A. Mohamed, A. Erbad, and[32]

M. Guizani, Optimal user-edge assignment in hierarchical
federated learning based on statistical properties and
network topology constraints, IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 1, pp. 55–66, 2022.
 Y. Arjevani and O. Shamir, Communication complexity of
distributed convex learning and optimization, arXiv
preprint arXiv: 1506.01900, 2015.

[33]

 A. Nedić, A. Olshevsky, and W. Shi, Achieving geometric
convergence for distributed optimization over time-
varying graphs, SIAM J. Optim., vol. 27, no. 4, pp.
2597–2633, 2017.

[34]

 A. Koloskova, S. Stich, and M. Jaggi, Decentralized
stochastic optimization and gossip algorithms with
compressed communication, in Proc. Int. Conf. Machine
Learning, Long Beach, CA, USA, 2019, pp. 3478–3487.

[35]

 H. Gao, M. T. Thai, and J. Wu, When decentralized
optimization meets federated learning, IEEE Netw., vol.
37, no. 5, pp. 233–239, 2023.

[36]

 K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A.
Ingerman, V. Ivanov, C. Kiddon, J. Konečný, S.
Mazzocchi, H. B. McMahan, et al., Towards federated
learning at scale: System design, arXiv preprint arXiv:
1902.01046, 2019.

[37]

 T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, Federated
learning: Challenges, methods, and future directions,
IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60,
2020.

[38]

 L. Zhu, H. Lin, Y. Lu, Y. Lin, and S. Han, Delayed
gradient averaging: Tolerate the communication latency
for federated learning, presented at Neural Information
Processing Systems (NeurIPS), Virtual, 2021.

[39]

 A. B. Ozyurt and W. O. Popoola, LiFi-based D2D
communication in industrial IoT, IEEE Syst. J., vol. 17,
no. 1, pp. 1591–1598, 2023.

[40]

 B. L. Bars, A. Bellet, M. Tommasi, E. Lavoie, and A.
Kermarrec, Refined convergence and topology learning
for decentralized optimization with heterogeneous data,
presented at Workshop on Federated Learning: Recent
Advances and New Challenges (in Conjunction with
NeurIPS 2022), New Orleans, LA, USA, 2022.

[41]

 Y. Hua, K. Miller, A. L. Bertozzi, C. Qian, and B. Wang,
Efficient and reliable overlay networks for decentralized
Federated learning, SIAM J. Appl. Math., vol. 82, no. 4,
pp. 1558–1586, 2022.

[42]

 S. Li, T. Zhou, X. Tian, and D. Tao, Learning to
collaborate in decentralized learning of personalized
models, in Proc. IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), New Orleans, LA, USA,
2022, pp. 9756–9765.

[43]

 J. Edmonds, Maximum matching and a polyhedron with 0,
1-vertices, J. Res. Natl. Bur. Stand. Sect. B Math. Math.
Phys., vol. 69B, nos. 1&2, pp. 125–130, 1965.

[44]

 114 Intelligent and Converged Networks, 2024, 5(2): 100−115

Yubin Duan received the BS degree in
mathematics and physics from University
of Electronic Science and Technology of
China, China in 2017, and the PhD degree
from Temple University, USA in 2022.
Currently, he is working at Meta
Platforms, Inc., USA as a research
scientist. His research focuses on

scheduling algorithms for distributed systems and parallel
computing. He has published nearly thirty papers in high-impact
conferences and journals, such as IEEE ICDCS, ICPP, IWQoS,
TMC, JPDC, etc. He has served as a program committee
member for top international conferences such as the Web
Conference, ACM WSDM, etc., and a reviewer for premier
journals such as IEEE Transactions on Mobile Computing
(TMC), IEEE Internet of Things Journal, IEEE Transactions on
Network Science and Engineering (TNSE), etc.

Xiuqi Li is an associate professor of
instruction at the Department of Computer
and Information Sciences, Temple
University, USA. She was a tenured
associate professor at the Department of
Computer Science and Mathematics,
University of North Carolina at Pembroke,
USA. She worked as a senior instructor in

Florida Atlantic University, USA, where she received the PhD
degree in 2006. She is a PI/Co-PI of multiple grants. She was an
NSF session chair and panelist. She served as a chair/co-
chair/program committee member/referee for a number of
conferences and journals. She holds 32 peer-reviewed journal
and conference papers. Her research interests include federated
learning, blockchain, security, cloud computing, and computer
science education. She is a member of ACM and IEEE.

Jie Wu is the Laura H. Carnell Professor
at Temple University, USA and the
Director of the Center for Networked
Computing (CNC). He served as the chair
of the Department of Computer and
Information Sciences, Temple University,
USA from the summer of 2009 to the
summer of 2016, and the associate vice

provost for International Affairs from the fall of 2015 to the
summer of 2017. Prior to joining Temple University, USA, he
was a program director at the National Science Foundation and
was a distinguished professor at Florida Atlantic University,
USA, where he received the PhD degree in 1989. His current
research interests include mobile computing and wireless
networks, routing protocols, network trust and security,
distributed algorithms, applied machine learning, and cloud
computing. He regularly published in scholarly journals,
conference proceedings, and books. He serves on several
editorial boards, including IEEE/ACM Transactions on
Networking, IEEE Transactions on Service Computing, and
Journal of Computer Science and Technology. He is/was the
general chair/co-chair for IEEE DCOSS’09, IEEE ICDCS’13,
ICPP’16, IEEE CNS’16, WiOpt’21, ICDCN’22, IEEE IPDPS’
23, and ACM MobiHoc’23 as well as the program chair/co-chair
for IEEE MASS’04, IEEE INFOCOM’11, CCF CNCC’13, and
ICCCN’20. He was an IEEE Computer Society Distinguished
Visitor, ACM Distinguished Speaker, and chair for the IEEE
Technical Committee on Distributed Processing (TCDP). He is a
fellow of the AAAS and a fellow of the IEEE. He is the
recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award. He is a member of
the Academia Europaea (MAE).

 Yubin Duan et al.: Topology design and graph embedding for decentralized federated learning 115

