
 

Topology design and graph embedding for
decentralized federated learning

Yubin Duan, Xiuqi Li, and Jie Wu*

Abstract: Federated  learning  has  been  widely  employed  in  many  applications  to  protect  the  data  privacy  of

participating  clients.  Although  the  dataset  is  decentralized  among  training  devices  in  federated  learning,  the  model

parameters are usually stored in a centralized manner. Centralized federated learning is easy to implement; however, a

centralized scheme causes a communication bottleneck at the central  server,  which may significantly slow down the

training  process.  To  improve  training  efficiency,  we  investigate  the  decentralized  federated  learning  scheme.  The

decentralized  scheme  has  become  feasible  with  the  rapid  development  of  device-to-device  communication

techniques under 5G. Nevertheless, the convergence rate of learning models in the decentralized scheme depends on

the  network  topology  design.  We  propose  optimizing  the  topology  design  to  improve  training  efficiency  for

decentralized  federated  learning,  which  is  a  non-trivial  problem,  especially  when  considering  data  heterogeneity.  In

this  paper,  we first  demonstrate  the advantage of  hypercube topology and present  a  hypercube graph construction

method  to  reduce  data  heterogeneity  by  carefully  selecting  neighbors  of  each  training  device—a  process  that

resembles  classic  graph  embedding.  In  addition,  we  propose  a  heuristic  method  for  generating  torus  graphs.

Moreover,  we  have  explored  the  communication  patterns  in  hypercube  topology  and  propose  a  sequential

synchronization scheme to reduce communication cost during training. A batch synchronization scheme is presented

to  fine-tune  the  communication  pattern  for  hypercube  topology.  Experiments  on  real-world  datasets  show  that  our

proposed graph construction methods can accelerate the training process, and our sequential synchronization scheme

can significantly reduce the overall communication traffic during training.
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1    Introduction

Federated  learning  (FL)  is  a  promising  approach  for
performing  distributed  machine  learning  while
protecting the data privacy of each participating client.
Machine  learning,  especially  deep  learning,  has  been
widely deployed in many application scenarios, such as
natural  language  processing  and  computer  vision.  In
traditional machine learning schemes, the training data
are  usually  shared  among  all  training  devices.
However,  centralized  data  storage  has  caused  privacy

issues.  For  example,  patient  information  stored  in
medical  institutions  should  not  be  shared  with  a  third
party.  To  protect  data  privacy,  federated  learning  is
proposed[1].  In federated learning, each training device
has its  own local  dataset  that  would not  be exchanged
with other devices.

Although the training dataset is decentralized among
devices,  many  federated  learning  schemes  use  a
centralized  server  to  maintain  the  parameters  of
machine  learning  models  like Fig.  1a.  In  particular,
each training device in federated learning has its  local
model  parameters.  In  every  training  iteration,
participating  training  devices  would  update  their  local
models  based  on  their  local  datasets.  Then,  the  local
updates  are  aggregated  by  a  central  server  and  the
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global  model  stored  in  the  central  server  would  be
updated  accordingly.  Centralized  federated  learning  is
easy  to  implement  and  the  performance  of  the  global
model  is  relatively  easy  to  evaluate.  However,  the
centralized scheme causes a communication bottleneck
at  the  central  server.  Especially  when  the  network
bandwidth  is  low,  the  network  traffic  may  cause
congestion  at  the  server  side  and  significantly  slow
down  the  training  process[2].  To  mitigate  the
communication  bottleneck,  we  explore  decentralized
federated learning in this paper.

In decentralized federated learning shown in Fig. 1b,
training devices  directly  communicate  with  each other
to  synchronize  local  model  updates.  With  the
development  of  wireless  communication  techniques,
device-to-device  (D2D)  communication  has  become
feasible  in  real-world  applications  using  5G[3].
Utilizing  the  D2D  communication  channels,  training
devices can directly exchange model updates with each
other without going through a centralized server, which
can  amortize  the  communication  cost  among  all
training  devices  and  avoid  the  communication
bottleneck.  Nevertheless,  decentralized  federated
learning  has  its  unique  challenges,  namely,  each
training  device  only  synchronizes  with  its  neighbor
nodes  in  each  training  iteration,  which  may  affect  the
convergence  property  of  learning  algorithms.
References  [2, 4, 5]  analyze  the  performance  of
optimization  algorithms  for  decentralized  training.
References  [4, 5]  show  that  the  decentralized  scheme

can achieve the same convergence rate while avoiding
the  communication  traffic  jam.  Reference  [5]  also
shows  that  the  degree  of  the  network  plays  an
important role in the convergence rate. It is worthwhile
to  investigate  the  topology  design  problem  for
decentralized federated learning.

log2 n n

The  convergence  rate  of  decentralized  optimization
methods  depends  on  network  topology.  References
[6, 7]  analyze  the  convergence  rate  of  decentralized
optimization  methods  for  deep  learning  and  have
shown  that  the  network  topology  impacts  the
convergence  rate.  Their  analyses  mainly  focus  on
homogeneous  training  datasets,  i.e.,  the  data  samples
among training devices are independent and identically
distributed  (IID).  However,  training  datasets  in
federated  learning  are  usually  heterogeneous.  In  this
paper, we investigate the topology design for federated
learning  and  take  the  data  heterogeneity  into
consideration.  In  particular,  we  first  explore  the
hypercube  topology,  which  has  diameter  for 
devices and achieves an efficient information flow rate.
In  addition,  we  investigate  the  topology  design
problem  for  federated  learning  with  heterogeneous
data.  We  use  data  similarity[8] to  measure  the  data
heterogeneity. Given the data similarity among training
devices,  we  propose  the  maximization  of  the  sum  of
data  similarities  over  the  edges  in  the  constructed
graph.  Intuitively,  we  attempt  to  reduce  data
heterogeneity  in  the  network  and  improve  training
efficiency.

It  is  not  trivial  to construct  the optimal topology for
decentralized  federated  learning  with  heterogeneous
training  data.  Firstly,  it  is  challenging  to  compare  the
performance  of  different  topologies  and  identify  the
optimal topology. For example, Ref. [7] shows that it is
difficult to find a tight bound for the convergence rate
of federated learning with IID training data. If a certain
topology  achieves  a  fast  convergence  rate  on  a  loss
bound  of  the  convergence  rate,  there  is  no  guarantee
that the topology can significantly improve the training
efficiency in practice. In addition, even if the topology
is  selected,  it  is  challenging  to  construct  the
connectivity  graph  with  the  given  topology  such  that
the  data  heterogeneity  is  minimized,  which  resembles
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Fig. 1    Different federated learning frameworks.
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classic  graph  embedding[9].  For  example,  building  a
ring topology graph where the sum of data similarities
over  edges  in  the  graph  is  a  traveling  salesman
problem, which is NP-hard.

In  this  paper,  we  first  demonstrate  the  advantage  of
the  hypercube  topology.  To  improve  the  training
efficiency  of  decentralized  federated  learning,  we
present  an  approximate  graph  construction  method  to
build  a  hypercube  graph  and  we  attempt  to  maximize
the  sum  of  data  similarities  over  edges  in  the
constructed graph. In addition, we also show a heuristic
algorithm to construct a torus graph following a greedy
approach.  Moreover,  we  also  investigate  the
communication  pattern  in  hypercube  graphs  and
propose a sequential synchronization scheme to reduce
the  communication  cost  during  training.  A  batch
synchronization  scheme  for  the  hypercube  graph  is
presented  where  the  communication  pattern  among
training devices can be fine-tuned. We have conducted
experiments  to  evaluate  our  proposed  methods  using
the  CIFAR-10  and  CIFAR-100  datasets[10].  Our
evaluation  results  show  that  our  proposed  graph
construction  methods  can  efficiently  reduce  the  data
heterogeneity  and  improve  the  convergence  speed  of
learning models. Moreover, the evaluation results show
that  our  proposed  sequential  communication  scheme
for  hypercube  graphs  can  significantly  reduce  the
communication  traffic  during  training  while
maintaining  the  convergence  performance  of  learning
models.

Our contributions are summarized as follows:
•  We  investigate  the  network  topology  design

problem  to  improve  the  training  efficiency  of
decentralized  federated  learning  with  heterogeneous
training datasets.

•  We  demonstrate  the  advantage  of  the  hypercube
topology  for  decentralized  federated  learning  and
present  a  hypercube  graph  embedding  method  to
reduce  the  data  heterogeneity  for  federated  learning
with not independent and identically distributed (Non-
IID) data.

• We present a heuristic graph embedding method to
construct  torus  graphs  with  Non-IID  data  and
maximize  the  sum  of  data  similarities  among  the

neighbors.
•  We  propose  a  sequential  synchronization  scheme

for training over the hypercube topology to reduce the
communication  cost  during  training.  A  batch
synchronization  scheme  is  proposed  to  fine-tune  the
communication pattern during training.

•  We  test  our  proposed  methods  using  real-world
datasets.  Evaluation  results  show  that  the  hypercube
and  torus  graph  constructed  by  our  algorithms  can
significantly improve the training efficiency.

The remainder  of  the  paper  is  structured as  follows.
We review related work in Section 2. The preliminaries
of  federated  learning  and  the  network  model  of  the
decentralized federated learning scheme are introduced
in Section 3. Section 4 presents our proposed topology
design  methods,  including  hypercube  and  torus  graph
construction  algorithms.  Section  5  focuses  on  using
graph  embedding  to  tackle  the  Non-IID  data  by
maximizing  the  sum  of  data  similarities  among
neighbors.  Section  6  proposes  a  sequential
communication  scheme  to  reduce  the  communication
cost during the training process. Our evaluation setups
and  results  are  shown in  Section  7.  Finally,  Section  8
concludes the paper.

2    Related work

Federated  learning  is  a  machine  learning  technique
where  training  data  are  stored  in  local  client  devices
without  that  data  being  exchanged  with  one
another[1, 11].  Training  without  centralized  data  is  an
efficient way to protect data privacy. While the training
data are decentralized in FL, the parameters of machine
learning models can be stored in either a centralized or
decentralized  way.  Depending  on  where  the  model
parameter  is  kept,  FL  schemes  can  be  categorized  as
centralized or decentralized.

For  centralized  FL,  the  parameter  server
framework[12−14] is  the  most  widely  deployed  training
scheme[2, 15].  In  this  framework,  there  is  a  centralized
parameter  server  to  maintain  model  parameters.  All
training devices need to synchronize model parameters
with  the  parameter  server,  which  causes  a
communication  bottleneck  on  the  server  side.  To
reduce  the  communication  cost,  existing  methods  can
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be  categorized  in  two  major  approaches:  reducing  the
communication  frequency[16, 17],  and  compressing  the
communication  volume[18−20].  In  particular,  we  can
reduce the communication frequency by optimizing the
communication  scheme  and  aggregating  multiple
iterations  of  local  updates  in  each  communication
round.  Although  this  approach  can  efficiently  reduce
the  overall  communication  cost  and  speed  up  the
training process of FL, Wang and Joshi[21] and Stich[22]

showed  that  error  terms  also  accumulate  when
aggregating local updates.

Compressing  the  model  updates  in  each
communication round is another approach for reducing
the  communication  cost.  Common  compression
techniques  include  sparsification[19, 23, 24],
quantization[18, 25, 26],  and  low-rank  methods[27−29].
Specifically,  sparsification  reduces  the  parameter
tensor  size  by  selecting  a  subset  of  tensor  elements.
Ozfatura  et  al.[19] presented  a  time-correlated
sparsification to reduce the communication cost for FL
with  parameter  server  implementation.  Quantization
decreases  the  parameter  tensor  size  by  encoding  the
tensor  in  less  number  of  bits.  Reisizadeh  et  al.[18]

presented  federated  learning  method  with  periodic
averaging and quantization (FedPAQ) that  reduces the
communication cost  for  FL by periodic  averaging and
quantization.  In  low-rank  methods,  model  updates
would  be  decomposed  into  several  low-rank  matrices,
which  is  a  lossy  compression  method  and  may  break
the convergence of the machine learning models during
training.  Error-feedback  strategies[28, 30, 31] are
proposed  to  mitigate  the  error  introduced  by
compression  and  maintain  the  convergence  of  the
learning  models.  Moreover,  adaptive  parameter
freezing[20] is  a  promising  approach  to  compress  the
communication  volume  by  avoiding  synchronizing
stable model parameters during the training process.

Decentralized  FL  can  resolve  the  communication
bottleneck  in  centralized  schemes  by  amortizing  the
communication  cost  over  participating  training
devices[32].  Decentralized  optimization  methods  have
been  well-studied[2, 5, 33−36].  Koloskova  et  al.[35]

investigated  the  decentralized  stochastic  optimization
algorithms  and  took  the  communication  compression

into  consideration.  The  efficiency  of  decentralized  FL
also depends on the network topology design[7]. Neglia
et  al.[7] investigated  the  impact  of  network  topologies
on decentralized FL with IID data. Unlike the existing
work,  we  investigate  the  topology  design  for  learning
from  Non-IID  data  and  take  data  similarities  into
consideration  when  constructing  communication
graphs.  Moreover,  we  propose  sequential  and  batch
communication  schemes  to  fine-tune  the
communication  pattern  for  decentralized  FL  over  the
hypercube topology.

3    Model

3.1    Centralized federated learning

V

|V | = n v

Dv

Federated learning is  a distributed learning framework
where each training device or client has its own dataset
and  will  not  share  its  local  dataset  with  other  clients.
As  shown  in Table  1,  we  use  to  denote  the  set  of
training devices that participate in the training process.
The  number  of  participating  devices  is  denoted  as

.  Each  training  device  has  its  local  dataset,
which is denoted as . Training a machine learning or
deep  learning  model  with  the  federated  learning
framework can be formulated as the optimization of the
global objective function:
 

min
x

F(x) =
n∑

v=1

wv fv(x),

x ∈ Rdwhere  is  the  parameter  vector  of  the  learning
 

Table 1    Notations and explanations.

Notation Explanation
V Set of training devices
v Individual training device
n VNumber of participating devices in 

G = (V,E) Topology of decentralized federated learning
Dv vTraining dataset of device 
F Global objective function
fv vLocal objective function of device 

xv,t
v tDevice ’s model parameter at the -th

iteration
M,M(i, j) Connectivity matrix and its element
S ,S (i, j) Data similarity matrix and its element
λi(M) i MThe -th smallest eigenvalue of 
δ(M) MSpectral gap of 
Hd dConnectivity graph of the -D hypercube
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F : Rd 7→ R
fv : Rd 7→ R

v wv v

wv 1/n

|Dv|/
n∑

v=1

|Dv|

model,  is  the  global  objective  function,
 is  the  local  objective  function  of  each

training device , and  is the weight of the device .
The local objective function is usually a loss function,
such  as  the  cross-entropy  loss,  to  measure  the
performance of the learning model on its local dataset.
In  common settings,  is  usually  set  to  showing

that every device has the same weight,  or 

showing that the weight of every device is based on the
size of its dataset.

v

∇ fv(x)

Stochastic  gradient  descent  (SGD)  is  a  commonly
applied  algorithm  to  optimize  the  global  objective
function. Logically, SGD starts from a random solution
and  iteratively  moves  toward  to  the  optimal  point.  In
every  iteration,  each  participating  device  retrieves  a
data  sample  from  its  local  dataset  and  computes  the
gradient  of its local objective function using the
data  sample.  Then,  participating  devices  would
synchronize  their  gradient  information  and  update  the
global model. This step can be implemented in either a
centralized or a decentralized way.

In the centralized federated learning[1, 37, 38], there is a
central  server  that  coordinates  participating  training
devices and maintains the global model parameters. As
shown  in Fig.  1a,  every  participating  training  device
needs  to  communicate  with  the  central  server  in  order
to upload local model updates and download the latest
global  model  parameters.  In  a  fully  synchronized
setting, training devices need to communicate with the
server  in  every  iteration  of  SGD.  In  each
communication round, training devices need to pull the
latest  global  model  parameters  from  the  server  and
push  their  local  updates  to  the  server,  which  would
easily cause congestion at the network interface of the
server.  The  congestion  at  the  central  server  would
significantly  extend  the  training  time.  References  [18,
39]  show  that  the  communication  frequency  can  be
reduced by allowing some stale model updates, and the
global  model  still  can  converge.  The  overall
communication  volume  can  be  reduced  by  decreasing
the  communication  frequency.  However,  the
congestion  at  the  central  server  still  exists  and  affects
training efficiency.

3.2    Decentralized federated learning

With  the  development  of  wireless  communication
technology,  D2D  communication  among  mobile
devices become more and more reliable.  For example,
Ozyurt  and  Popoola[40] presented  a  light  fidelity  (Li-
Fi)-based  D2D  communication  system  for  industrial
Internet  of  Things  (IoT)  devices.  By  utilizing  D2D
communication, federated learning can be implemented
in  a  decentralized  manner.  Specifically,  training
devices  can  directly  communicate  with  peers  and
exchange  model  updates.  Decentralized  federated
learning  does  not  rely  on  central  servers  and  avoids
congestion  at  servers,  which  can  improve
communication  efficiency  and  accelerate  the  training
process.

xv,t

t v

In  decentralized federated learning,  each device  still
needs  to  sample  local  data  and  compute  local  model
updates.  Differently  from  centralized  federated
learning,  each  device  needs  to  maintain  a  set  of  local
model  parameters.  In  each  training  iteration,  each
device  needs  to  gather  neighbors’ model  updates,
aggregate  them  with  local  updates,  and  modify  local
model  parameters  with  the  aggregated  updates.
Formally,  let  denote  the  vector  of  model
parameters  at  the -th  training  iteration  of  device .
Then,  the  model  updates  in  the  decentralized
optimization can be formulated as
 

xv,t+1 = xv,t −α
n∑

j=1

mv j∇ f j(x j,t),

α ∈ [0,1]

mv j ∈ [0,1]

mv j = 0 v

j 0 < mv j ⩽ 1

mv j = m jv

v j

mv j = 1/N(v) N(v)

v

where  is the hyper-parameter representing the
learning  rate  and  represents  the  weights  of
neighbor updates. The weight , if devices  and

 are  not  connected.  Otherwise, .  In
addition,  we  assume ,  which  means  that  the
mutual influence between devices  and  are equal. A
common  setting  is  letting ,  where 
represents  the  number  of  neighbors  of  device .  This
setting  means  that  every  neighbor  makes  the  same
contribution of the model updates.

G = (V,E)

(i, j) ∈ E i j

We  use  a  graph  to  model  the  network
topology  of  training  devices,  as  illustrated  in Fig.  1b.
The vertex set consists of training devices. There is an
edge  if  devices  and  are  connected.
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E

M G n

M n×n

M(i, j) = mi j

i j

M(i, i) = mii > 0

G M

M

M
∑

i

M(i, j) =
∑

j

M(i, j) = 1

δ(M) M

G

Notably, we assume the D2D communication channels
are  full-duplex,  and  edges  in  are  undirected.  To
analyze  the  network  topology,  we  use  a  connectivity
matrix  to  model  the  graph .  For  participating
devices,  is  a  matrix.  The  matrix  element

 shows the weight of connections between
devices  and .  Notably,  we  assume  that  a  device  is
connected to itself by default, and . For
the  undirected  graph ,  the  connectivity  matrix  is
symmetric.  Moreover,  we  assume  that  is  a  doubly
stochastic matrix, i.e., each of the rows and columns in

 sums  to  1  or  formally .

The spectral gap  of the matrix  can measure the
information  flow  efficiency  in  graph .  The  formal
definition of the spectral gap is shown as follows:

M |λ1(M)| ⩽ |λ2(M)| ⩽ · · · ⩽
|λn−1(M)| < |λn(M)| = 1 δ(M)

M δ(M) ≜ 1− |λn−1(M)|.

Definition  1　 For  a  symmetric  double  stochastic
matrix  with  eigenvalues 

,  its  spectral  gap  is  the
difference  between  the  moduli  of  the  two  largest
eigenvalues of . Formally, 

3.3    Data heterogeneity

S ≜ [S (i, j)]1⩽i, j⩽n

S (i, j)

i j

S (i, j)

Di

D j

In  addition  to  the  network  topology,  we  also  consider
the impact of data heterogeneity on federated learning.
In  particular,  training  data  on  participating  devices  in
federated  learning  usually  are  Non-IID.  For  example,
sensor  data  gathered  from  IoT  devices  located  in
different  areas  are  Non-IID.  We  use  the  similarity
among local datasets of training devices to measure the
data  heterogeneity.  Formally,  let 
denote  the  data  similarity  matrix,  where  is  the
similarity between local datasets of device  and . The
similarity  is defined as the probability that a data
sample  from  is  similar  to  at  least  one  data  sample
from . The standard that measures whether two data
samples  are  similar  varies  with  application  scenarios.
For image classification applications, two data samples
are  similar  if  they  have  the  same  ground-truth  label.
Moreover,  there  are  different  formulations  to  evaluate
the  data  heterogeneity.  Bars  et  al.[41] presented  a
quantity  named  neighborhood  heterogeneity.  For  a
node,  its  neighborhood  heterogeneity  is  based  on
aggregating  the  differences  with  its  neighbors  with  2-
norm.  We  follow  a  similar  approach  while  using  1-

norm based on graph embedding.

4    Topology design

M

xv,t t v

M

The convergence rate  of  distributed federated learning
heavily  depends  on  the  network  topology.  Theoretical
analyses[35] have  shown  that  the  convergence  rate  of
distributed training is closely related to the spectral gap
of  the  connectivity  matrix .  Formally,  the  model
parameter  at  the -th  training iteration of  device 
converges  linearly  when  the  connectivity  matrix  is
symmetric doubly stochastic, as stated in Theorem 1.

xv,t

x̄ =
1
n

n∑
i=1

xv,0

Theorem  1　 The  model  parameter  converges

linearly to  with the rate
 

n∑
i=1

∥xv,t − x̄∥2 ⩽ (1−γδ(M))2t
n∑

i=1

∥xv,0− x̄∥2,

γ ∈ (0,1] Mwhere  and  is  a  symmetric  doubly
stochastic connectivity matrix.

γδ(M) ∈ (0,1] (1−γδ(M)) ∈ [0,1)

limt→+∞(1−γδ(M))2t = 0

xv,t

δ(M)

M

n

δ

δ

O(1/n2) O(1/n)

δ

Notice that  and , we
have .  This  shows  that  the
model  parameter  will  converge  eventually.
Moreover,  from  the  convergence  rate  shown  in
Theorem 1, we notice that the spectral gap  of the
connectivity  matrix  plays  an  important  role.
Especially  when the  number  of  devices  is  large,  the
difference  in  the  spectral  gap  of  different  network
topologies becomes significant. It is shown in Ref. [35]
that the spectral gap  of a ring and 2-dimensional (2-
D)  torus  is  and ,  respectively.
According to Theorem 1, a greater  leads to a higher
convergence  rate.  Therefore,  compared  to  the  ring
topology, the 2-D torus graph has a faster convergence
speed. This difference shows that it is worth optimizing
the network topology design for improving the training
efficiency  of  distributed  federated  learning.  To
optimize  the  network  topology,  a  natural  question  to
ask  is:  what  causes  the  significant  difference  in  the
spectral gaps of different graphs?

By comparing the difference between ring and torus
topology,  we  observe  that  the  diameter  of  the  ring
graph  is  greater  than  the  diameter  of  the  torus  graph,
given  the  same  number  of  vertices  in  the  graph.
Intuitively,  the  larger  diameter  of  the  ring  graph  may
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O(log2 n) n

n = 2d d

d

{0,1}d d

d

Hd d

Hd

cause  the  smaller  spectral  gap  and  the  slower
convergence  speed.  Inspired  by  the  observation,  we
investigate  the  hypercube  topology  whose  diameter
increases in  with the number of vertices  in
the graph. There are  vertices in a -dimensional
( -D)  hypercube.  The  vertex  set  of  the  hypercube
graph  is  defined  on .  In  the -dimensional
hypercube,  each  vertex  has  exactly  neighbors.  Two
vertices  are  connected  if  their  labels  (in  binary  code)
differ  in  exactly  one  dimension.  For  example,  the
structure of a 4-dimensional hypercube is shown in Fig.
2.  Let  denote  the  connectivity  matrix  of  the -
dimensional hypercube.  can be recursively defined
by the following equation:
 

Hd =
1

d+1

[
dHd−1 I2d−1

I2d−1 dHd−1

]
,

I2d−1 2d−1×2d−1

H0 = [1]

where  represents  the  identity  matrix,
and  the  base  case .  Given  the  connectivity
matrix,  we  can  calculate  the  spectral  gap  of  the
hypercube topology, as shown in Theorem 2.

δ(Hd) 2/d

δ(Hd)−1 = O(d) = O(log2 n)

Theorem  2　 The  spectral  gap  is  and
.

Hd
1
d

(n−2|I|) I ⊆ {1,2, . . . ,d}
Hd n/d (n−2)/d

δ(Hd)

Hd 2/d δ(Hd)−1 = O(d) = O(log2 n)

Proof　We can verify that the eigenvalues of  are

,  where .  The  moduli  of  the

two  largest  eigenvalues  of  are  and .
According  to  the  definition,  the  spectral  gap  of

 is , and . ■

Based  on  the  spectral  gap,  we  can  analyze  the
convergence  speed  of  the  decentralized  federated
learning  over  the  hypercube  graph.  Compared  to  ring
and torus topologies, the spectral gap of the hypercube
is  much  larger,  especially  when  the  number  of
participating devices is large. According to Theorem 1,
the convergence speed of distributed federated learning
over the hypercube graph is faster.

We  have  evaluated  the  convergence  rate  of  SGD
over  different  network  topologies. Figure  3 shows  the
preliminary  experiment  results  when  there  are  64
participating training devices. Figure 3 shows the top-1
accuracy  of  ResNet-50  model  when  training  on  the
CIFAR-100  dataset.  Data  samples  in  the  CIFAR-100
are  randomly  shuffled  and  allocated  to  participating
devices.  From Fig.  3 ,  we  can  observe  that  the  model
convergence speed heavily depends on the topology of
the  communication  graph.  For  example,  to  achieve
60% accuracy, hypercube takes 73 epochs, while torus
and  ring  need  83  and  144  epochs,  respectively.
Compared  to  the  hypercube  topology,  torus  and  ring
are  13.7% and  97.3% slower.  The  preliminary  result
shows  that  optimizing  the  topology  of  the
communication  graph  can  significantly  improve  the
training efficiency for decentralized federated learning.

G

From  the  theoretical  analyses  and  the  preliminary
experiment results, we notice that the network topology
would  impact  the  convergence  rate  of  decentralized
federated learning. In addition to the network topology,
data  heterogeneity  also  affects  the  convergence  rate.
Too many updates from extremely heterogeneous data
may  diverge  the  learning  model.  In  this  paper,  we
propose  to  jointly  consider  those  two  factors.  When
scheduling  the  communication  among  participating
training devices, we attempt to find a graph  such that
the  spectral  gap  of  the  connectivity  matrix  is
maximized and the heterogeneity of neighbor nodes in
the  graph  is  minimized.  This  is  not  a  trivial  problem
and  there  may  be  a  trade-off  between  the  information
flow efficiency  and  the  data  heterogeneity  given  a  set
of  decentralized  training  devices.  It  is  challenging  to
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Fig. 2    4-dimensional hypercube graph.
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Fig. 3    Training ResNet-50 on CIFAR-100 with 64 workers.
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minimize  the  data  heterogeneity  of  neighbor  nodes
while maintaining a desired network topology.

There is some recent effort on diameter minimization
based  on  a  fixed  node  degree  for  a  given  number  of
nodes,  but  their  results  generate  a  random  graph  with
probabilistic  guarantee[42].  We  investigate  more
deterministic approaches to optimize graph embedding
with multiple graph topologies, and we use the spectral
gap  as  a  mathematical  tool  to  analyze  the
approximation property of our proposed methods.

5    Graph embedding for Non-IID data

G

In  this  section,  we  focus  on  optimizing  the
communication  graph  for  heterogeneous  data.  For  the
similarity,  intuitively,  when  data  distributions  of  two
workers  are  similar,  we  should  connect  them  together
so that the disturbance from other non-similar workers
can be avoided. Li et al.[43] used this intuition to design
the communication graph. The experimental findings in
Ref. [43] confirm this intuition. We use data similarity
to  measure  the  data  heterogeneity  of  communication
graphs.  In  particular,  each  edge  in  the  communication
graph  shows the data similarity between two vertices
induced on the edge. Our objective is to select a set of
edges  such  that  the  summation  of  similarity  among
neighbors  is  maximized  and  the  desired  network
topology is maintained. This process resembles classic
graph embedding, where a target graph, i.e., hypercube
or ring, is embedded in a given graph, i.e., a completely
connected  graph  in  this  case.  This  optimization
problem  is  challenging  even  for  generating  the  max-
similarity  for  a  graph  with  a  simple  ring  topology.
Finding  such  a  graph with  ring  topology is  equivalent
to a traveling salesman problem, which is NP-hard. We
propose  two  heuristic  graph  construction  methods  for
hypercube and torus topologies from a given complete
graph, respectively.

5.1    Hypercube graph construction

G = (V,E)

S i

Gi = (Vi,Ei) i = 0,1, . . . ,d−1

G0 = (V0,E0) V0 V E0

Gi+1 Gi

Given  a  complete  graph  with  the  similarity
matrix ,  we  denote  the  virtual  network  of  level  as

,  where .  Initially,
,  where  is  and  is  empty.  Our

algorithm  iteratively  constructs  from ,

i = 0,1, ...,d−1.  The  hypercube  construction  algorithm
is  shown  in  Algorithm  1.  It  is  a  dimension-based
perfect matching using Blossom’s algorithm[44],  which
constructs  a  maximum  matching  on  a  graph  in
polynomial  time.  Blossom’s  algorithm  starts  with  an
empty matching. Then, it  repeatedly increases the size
of  the  matching  by  one  by  finding  and  utilizing  an
augmented path in the graph at each iteration. When no
more  augmented  paths  exist,  the  result  is  a  maximum
matching.

i

i+1 Gi+1

Gi

Vi+1

i

Gi Ei+1

d Gd

Our  hypercube  construction  process  first  applies
Blossom’s algorithm to find matching pairs of physical
nodes. Each matching pair forms a 1-D cube, which is
a virtual node of level 1. Then, Blossom’s algorithm is
repeatedly  applied  to  virtual  nodes  of  level  to  form
virtual  nodes  of  level .  is  constructed  as
follows:  each  matching  pair  in  is  a  virtual  node  in

.  Every  new  one-to-one  node-level  connection
along  dimension  in  every  matching  pair  plus  all
existing  links  in  constitutes .  The  construction
stops when there is only one virtual node, which is the

-D  hypercube, .  The  construction  of  a  3-D
hypercube in three iterations is illustrated in Fig. 4.

Figure  5 shows  two  virtual  nodes  (i.e.,  two  3-D
hypercubes). The virtual node on the left is matched to
 

Algorithm 1　Max-similarity hypercube construction
G = (V,E) |V | = n = 2d

S
Input: The complete graph  with  and

similarity matrix 
d GdOutput: The -D hypercube  with max-similarity

G0 = (V0,E0) V0 = V E0 = {}
G0

   1: Define , where  and  //initialization
for 

i = 0 d−1   2: for dimension  to  do
Gi+1 Gi   3: 　//determine  from 

vn vn′ Gi   4: 　for each virtual node pair  and  in  do
vn vn′   5: 　　call Virtual_Node_Similarity( , )

Vi

Gi

   6: 　Apply Blossom’s algorithm to  based on virtual node
similarity in 

Vi Vi+1   7: 　Each matching pair in  forms a virtual node in 

i Vi Ei+1

Ei

   8: 　A set of one-to-one mapping connections along
dimension  in each matching pair in  forms ,
together with existing links in 

   9:
vn vn′ 10: Virtual_Node_Similarity( , )

Gi 11: //determine virtual node similarity in 
(u,v),u ∈ vn,v ∈ vn′ 12: for each node pair  do

S (u,v) u,v ∈ V 13: 　sum up  //both 
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G i

the  virtual  node  on  the  right  with  the  maximum
similarity.  To  find  the  maximum  similarity  matching
between  two  virtual  nodes  of  level  (i.e.,  two -D
hypercubes), there are  choices (i.e., the number of
automorphisms). At level 0, the virtual node is the real
node and therefore the matching is at the maximum. In
subsequent  levels,  our  construction  algorithm
approximates  the  maximum  using  the  total  pairwise
similarity between two virtual nodes, which is the sum
of pairwise similarity between two physical nodes with
one  from  each  virtual  node  of  level .  This
approximation  has  a  complexity  of .  Once
matching pairs are constructed in the -th iteration, our
algorithm  randomly  selects  one-to-one  node-pair  (i.e.,
nodes  in  the  original )  connections  along  the -th
dimension without considering different rotations.

1/d

1/d

Our  proposed  method  for  hypercube  graph
construction has an approximation ratio of , i.e., the
sum  of  data  similarities  over  edges  in  the  graph  is  at
least  of  the  optimal  solution.  The  complexity  of
our  proposed  method  is  shown  in  Theorem  3.  The
approximation  property  of  our  proposed  method  is
shown in Theorem 4.

Theorem  3　 The  hypercube  graph  construction

O(n4) n

method  shown  in  Algorithm  1  has  a  complexity  of
, where  is the number of nodes.

i

Gi

O(|Ei||Vi|2) = O(|Vi|4) O(|Vi|4) =

O((2d−i)4) = O((n2−i)4)

Gi O(|Vi|2(2i)2) = O((n2−i)222i) = O(n2)

d−1∑
i=0

(O((n2−i)4)+O(n2)) O

d−1∑
i=0

(n2−i)4

+O

d−1∑
i=0

n2

 =
O(n4)+O(n2 log n) = O(n4)

Proof　 For  each  dimension ,  when  Blossom’s
Algorithm  is  applied  to ,  the  time  complexity  is

 based  on  Ref.  [44]. 
.  The  time  complexity  of

calculating  the  similarities  of  all  virtual  node  pairs  in
 is .  The  time

complexity of our hypercube construction algorithm is

 = 

. ■

(1/d)

Theorem  4　 The  hypercube  graph  construction
method shown in Algorithm 1 is -approximate.

1/d

1/d

1/d

Proof　 Our  hypercube  graph  construction  method
would iteratively  maximize the  similarities  over  edges
in  every  dimension.  In  the  first  iteration,  our  method
would pick  of total edges for the hypercube graph.
Considering that we apply the maximum weight perfect
matching  in  this  iteration,  any  other  matching  plans
that  select  a  portion  of  total  edges  would  have  a
smaller sum of data similarities. Therefore, sum of data
similarities  over  edges  in  the  graph  generated  by
Algorithm 1 is at least  of the optimal solution. ■

5.2    Torus graph construction

In  addition  to  the  hypercube  topology,  we  have
investigated  the  torus  graph  construction  for
heterogeneous  data  such  that  the  sum  of  data
similarities over edges in the graph is maximized.

G = (V,E) n

S

m =
√

n

m

R1,R2, . . . ,Rm m

m

R1,R2, . . . ,Rm

Given the complete graph  of  nodes with
the  similarity  matrix ,  our  torus  construction
algorithm creates  a  2-D torus  in  two major  steps:  ring
construction  and  ring  matching.  We  define .
The  ring  construction  step  creates  rings,

, in sequence. Each ring contains  nodes.
The  ring  matching  step  connects  the  rings,

,  to  form  a  ring  of  rings,  which  is  a  2-D
torus. This process is described in Algorithm 2.

Ri i = 1,2, . . . ,m m

u

G

v u

v

To construct a new ring  ( ) of size ,
our  algorithm  randomly  selects  an  unmatched  node 
in  as the head in the ring. It then finds an unmatched
node  with  the  maximum  similarity  to .  This  new
node  is set to be the new head. Repeat these two steps
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G2 G3 
Fig. 4    3-D max-similarity hypercube construction process.
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Fig. 5    Max-similarity hypercube matching in G3.
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m

m m

until the new ring size is . Then, connect the head and
tail  in  the  new  ring  to  form  a  circle.  This  new  ring
construction  process  is  repeated  times  to  create 
rings.

R

R′ R

R′

Ri i = 1,2, . . . ,m−1

The  ring  matching  process  begins  with  randomly
choosing an unmatched ring  as the head of the rings
of rings, i.e., the 2-D torus. Then our algorithm finds an
unmatched ring  with the maximum similarity to .
Next, ring  is set to be the new head. To match each
ring  ( ),  repeat  the  last  two  steps.
Then connect the head and tail of the rings of rings to
form a 2-D torus.

m2

m

m

m = 6

The  2-D  torus  construction  algorithm  is  also
heuristic.  Clearly,  the  ring  of  rings  created  is  a  2-D
torus. The maximum ring similarity between two rings
is  the  summation  of  one-to-one  node  pair  similarities.
There  are  totally  possible  matchings  with  various
rotations,  including  rotations  of  a  given  ring  and
another  rotations  after  flipping  the  ring. Figure  6
shows  an  example  for .  The  ring  on  the  left  is
matched  to  the  ring  on  the  right  with  the  maximum

similarity rotation (flip, then rotate) among all possible
rotations.  The  complexity  of  our  proposed  method  is
shown in Theorem 5.

O(n2)

n

Theorem  5　The  torus  graph  construction  method
shown  in  Algorithm  2  has  a  complexity  of ,
where  is the number of nodes.

√
n

√
n−1 n−1

O(
√

n
√

n n) = O(n2)

Proof　 In  Construct_Rings,  the  outer  for-loop  in
Line 5 repeats  times. The inner for-loop in Line 7
iterates  times. In Line 8, at most  nodes are
checked.  The  total  run  time  of  ring  construction  is

.

√
n−1

√
n−1
√

n

O(
√

n
√

n) = O(n)

O(
√

n
√

n n) = O(n2)

O(n2)+O(n2) = O(n2)

In  Match_Rings,  the  for-loop  in  Line  14  repeats
 times.  In  Line  15,  at  most  rings  are

checked.  For  each  pair  of  rings  of  size ,  the  time
complexity  of  computing  their  similarity  is

.  The  total  run  time  of  ring  matching
is .  The  time  complexity  of  our
torus construction algorithm is . ■

6    Reducing communication frequency

l l ⩾ 1

l

In  addition  to  the  network  topology  design,  adjusting
the  communication  frequency  among  training  devices
can  reduce  the  communication  volume  and  efficiently
speed  up  the  training  process.  Existing  studies  mainly
follow either a synchronous or asynchronous approach.
In  synchronous  federated  learning,  all  participating
devices need to synchronize their model parameters in
every  iteration,  where  is  a  hyper-parameter
representing  the  staleness  limitation.  A  large  can
efficiently  reduce  the  communication  frequency,  but
may  also  break  the  convergence  of  machine  learning
models[13].

In  an  asynchronous  scheme,  training  devices  no
longer  need  to  wait  for  neighbors  for  model
synchronization.  However,  the  overall  communication
volume  is  not  significantly  reduced  in  the

 

Algorithm 2　Max-similarity torus construction
G SInput: The complete graph  with the similarity matrix 

G′Output: 2-D torus with the maximum total similarity 

m←
√

n   1: 
   2: call Construct_Rings
   3: call Match_Rings
   4:
   5: Construct_Rings

i = 1 m Ri   6: for  to  //construct  do
u G   7: 　randomly select an unmatched node  in 

j = 2 m   8: 　for  to  do
v G

u
   9: 　　find an unmatched node  in  that has the maximum

similarity to 
v u v Ri 10: 　　set  to  //  becomes the head of 

Ri 11: 　connect the head and tail of .
 12:
 13: Match_Rings

R1,R2, . . . ,Rm 14: //connect  to form a ring of rings
R 15: randomly select an unmatched ring 

i = 2 m Ri−1 16: for  to  //match  do
R′

R
 17: 　find an unmatched ring  with the maximum similarity

to 
R′ R R′ 18: 　set  to  //  becomes the head of the ring of rings

 19: connect the head and tail of the ring of rings to form a 2-D
torus
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Fig. 6    Ring  matching  through  rotation  and  flipping  (the
rightmost ring).
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asynchronous  scheme.  Different  from  existing
approaches, we present a batch synchronization scheme
for  distributed  federated  learning  over  the  hypercube
topology.  Intuitively,  our  proposed  scheme  can  fine-
tune  the  synchronization  frequency  of  nodes  in  each
dimension  in  the  hypercube  graph,  which  helps  to
reduce  the  network  traffic  during  training  and  to
improve the training efficiency.

0||1||2||3 ||
d

d

0||1,2||3
0||2,1||3

1/d

To reduce the communication cost, we first present a
sequential  communication  scheme  for  decentralized
federated learning in hypercube topology. In traditional
federated  learning,  all  participating  devices  perform
communication in parallel.  For example,  if  there are 4
devices.  they  perform  parallel  communication  in  each
synchronization  round,  which  can  be  represented  by

, where  denotes the parallel communications.
For  a -dimensional  hypercube,  each  device  needs  to
communicate with  neighbors in each synchronization
round.  The  traditional  synchronization  scheme  would
introduce  a  large  communication  cost.  Differently  to
setting  up  a  fixed  synchronization  barrier,  we  propose
letting  training  devices  synchronize  their  model
parameters  in  sequence  by  each  dimension  in  the
hypercube  connectivity  graph.  In  our  sequential
communication scheme, each device only synchronizes
with  one  neighbor  in  each  communication  round.  The
neighbor selection sequence of each device is sorted by
dimension.  For  example,  the  communication  of  4
devices  is  organized as  in  the first  round,  and

 in the second round. Specifically, the Device 0
only  communicates  with  Device  1  in  the  first  round,
and synchronizes with Device 2 in the following round.
In  the  sequential  communication  scheme,  the
communication cost is reduced by  compared to the
traditional federated learning scheme.

i

Detailed  steps  of  our  proposed  sequential
communication  scheme  is  shown  in  Algorithm  3.  In
particular, while the training process is not completed,
every  training  device  would  perform  model
synchronization  with  one  neighbor  node  in  a
communication  round.  Line  2  initializes  a  counter  to
keep a record of the number of iterations.  The loop in
Lines  3  and 4  would select  a  neighbor  node for  every
training  device.  At  iteration ,  the  neighbor  at  the

i mod d

i

1/d

 dimension  would  be  selected  for
synchronization,  as  shown  in  Line  4.  Line  5  would
increment  the  iteration  counter .  With  the  sequential
communication  scheme,  the  overall  communication
cost is reduced by .

n log2 n

b

0

1

001,010,100,

In addition to the sequential communication scheme,
we present a more flexible communication scheme for
decentralized  federated  learning  over  the  hypercube
topology.  In  particular,  we  can  fine-tune  the
communication cost in each synchronization round. For
training with  devices,  we can use a -bit  binary
mask  to  indicate  which  dimensions  the
synchronization should be performed on. In the binary
mask,  represents skipping the synchronization in the
corresponding dimension and  means  performing the
synchronization  in  this  round.  For  example,  the
sequential  communication scheme for a 3-dimensional
hypercube  with  eight  devices  can  be  encoded  as

 and  repeat.  The  communication  pattern
can be fine-tuned by adjusting the binary mask for each
synchronization round.

7    Experiment

7.1    Experiment setup

Out  testbed  is  built  based  on  a  computing  cluster  that
has  8  NVIDIA Tesla  V100 GPUs with  448 GB RAM
and 5.9 TB storage space. All  GPUs are connected by
NVLinks  that  provide  300  GB/s  bandwidth  per  GPU.
We  have  evaluated  our  proposed  methods  with
different network sizes. When there are more than eight
nodes in the network, multiple worker nodes would be
assigned  to  a  GPU  device.  Each  device  can  handle
multiple training processes if the overall workload does
not exceed the GPU memory limitation.

 

Algorithm 3　Sequential communication scheme
dInput: The dimension  of the hypercube graph

Output: A sequential communication schedule
  1: while training process is not completed do

i← 0  2: 　
v ∈ V  3: 　for every device  do

(i mod d)  4: 　　Select the neighbor at the -th dimension for
synchronization

i← i+1 i  5: 　  //iteration 
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We  implement  our  proposed  schemes  in  PyTorch.
We  use  the  OpenMPI  package  as  the  backend  that
coordinates  the  communication  among  training
devices. In particular, we modify the topology module
of  PyTorch  to  integrate  our  graph  construction
methods.  The  network  topology  during  training  is
adjusted  by  the  connectivity  matrix  generated  by  our
algorithms.  We  utilize  the  CIFAR-10  dataset  to
simulate  the  heterogeneous  data  distribution  among
training  devices.  We  treat  the  images  from  the  same
class  as  homogeneous  data  and  mix  images  from
different  classes  to  construct  the  heterogeneous  data.
During  the  experiment,  we  assume  the  data  similarity
matrix  is  known.  Given  a  data  similarity  matrix,  we
assign heterogeneous data from different image classes
to  training  devices  to  fulfill  the  data  heterogeneity
indicated  by  the  matrix.  When  testing  our  proposed
synchronization  scheme,  we  use  both  CIFAR-10  and
CIFAR-100 datasets.

n

1/3

In our experiments, we compared the performance of
different graph construction methods. In particular, our
proposed  hypercube  and  torus  graph  construction
methods  are  denoted  as  HGC  and  TGC,  respectively.
We  also  implement  an  exhaustive  search  method  to
find  the  optimal  graph  where  the  sum  of  data
similarities over edges in the graph is maximized. The
exhaustive  search  method  is  denoted  as  ES.  ES  finds
the  optimal  solution  in  non-polynomial  time,  and
cannot be applied to solve large-scale problems. In the
graph  construction  experiment,  we  set  to  16.  In
addition, we implement a random construction method,
which  is  denoted  as  RC.  The  RC  method  can  only
guarantee  the  topology  of  the  generated  graph,  but  it
cannot  reduce  the  data  heterogeneity  of  the  generated
graph.  Moreover,  we  also  compare  different
synchronization  schemes.  We  denote  our  sequential
synchronization  scheme  as  SS  and  the  traditional  full
synchronization  scheme  as  FS.  Based  on  our  batch
synchronization  scheme,  we  also  implement  a  hybrid
synchronization  scheme  that  reduces  the
communication  frequency  of  the  full  synchronization
scheme by ,  i.e.,  performing a full  synchronization
in every 3 iterations such that the communication cost
is equivalent to SS. The hybrid synchronization scheme

n

is  denoted  as  HS.  When  evaluating  different
synchronization  schemes,  the  number  of  devices  is
set to 8.

7.2    Experiment result

The  evaluation  results  of  hypercube  construction
algorithms  are  shown  in Fig.  7.  In  particular, Fig.  7a
shows  the  experiment  results  of  the  ResNet-20  model
and Fig. 7b shows the results of the ResNet-50 model.
From Figs.  7a and 7b,  we  can  find  that  our  proposed
HGC  method  achieves  a  better  convergence  rate
compared to randomly constructing a hypercube graph
in  RC.  The  experiment  results  show  that  finding  a
hypercube  graph  that  increases  the  sum  of  data
similarities  over  edges  in  the  graph  can  improve  the
training efficiency. In addition, our HGC method has a
similar  convergence  trace  as  ES.  This  shows  that  our
proposed  method  can  find  the  near-optimal  graph  in
terms  of  data  similarity  maximization.  Compared  to
ES,  our  proposed  method  has  polynomial  time
complexity  and  is  more  time  efficient  when
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Fig. 7    Evaluation of hypercube construction methods.
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constructing hypercube graphs.
Experiment  results  of  torus  graph  construction

methods  are  shown  in Fig.  8. Figure  8 illustrates  the
model  convergence  property  when  training  with  the
communication  graph  constructed  by  different  graph
construction  methods.  From Fig.  8,  we  find  that  our
TGC  method  outperforms  RC  in  both  the  ResNet-20
and ResNet-50 models. Our proposed TGC method can
reduce  the  data  heterogeneity  in  the  generated  torus
graph,  which  helps  improve  the  convergence  rate  of
machine  learning  models.  For  example,  TGC  takes
about  30  epochs  less  than  RC  to  achieve  95% model
accuracy with training with ResNet-20. In addition, the
performance  of  TGC  is  close  to  the  optimal  graph
construction method ES.

Figure  9 shows  the  evaluation  results  of  different
synchronization  schemes  on  the  ResNet-50  model.
Figure  9a shows  the  experiment  results  over  the
CIFAR-10  dataset  and Fig.  9b illustrates  the  results
over  the  CIFAR-100  dataset.  From Fig.  9,  we  can
observe that our sequential synchronization scheme SS

requires lower communication cost to achieve the same
model  accuracy  as  the  traditional  FS  scheme.  For
example, when reaching 80% accuracy for CIFAR-10,
SS has a 19% lower communication cost  compared to
FS,  and  the  saving  is  more  significant  when  reaching
the  same  higher  level  of  accuracy.  In  addition,  the
model  trained  with  the  sequential  synchronization
scheme  converges  to  the  same  accuracy  as  FS.  This
shows  that  our  SS  scheme  can  efficiently  reduce  the
communication  cost  during  training  without  harming
the model convergence.

8    Conclusion

In  this  paper,  we  investigate  the  topology  design
problem  for  decentralized  federated  learning  with
heterogeneous  training  data.  We  demonstrate  the
advantage  of  hypercube  topology  by  showing  its
spectral  gap  and  theoretical  convergence  rate.  To
reduce  the  data  heterogeneity  during  the  training
process,  we  present  graph  construction  methods  for
both hypercube and torus topologies to carefully select

 

0

65
60

70

80
75

85
90
95

100

20 40 60
Number of epochs

(a) ResNet-20

Ac
cu

ra
cy

 (%
)

80 100 120 140

ES
TGC
RC

0

85

80

90

95

100

20 40 60
Number of epochs

(b) ResNet-50

Ac
cu

ra
cy

 (%
)

80 100 120 140

ES
TGC
RC

 
Fig. 8    Evaluation of torus construction methods.
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Fig. 9    Evaluation of synchronization schemes.
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(1/d)

neighbors  for  each  training  device  and  increase  the
overall  data  similarities  in  the  generated  graph.  Our
hypercube  graph  construction  method  is -
approximate.  In  addition  to  the  topology  design,  we
propose  a  sequential  synchronization  scheme  for
training  in  hypercube  graphs.  Also,  a  batch
synchronization  scheme  is  proposed  to  fine-tune  the
communication  patterns  during  training.  To  evaluate
our  proposed  methods,  we  conduct  experiments  over
CIFAR-10 and CIFAR-100 datasets. Training traces of
ResNet  models  show  that  our  proposed  graph
construction  methods  can  accelerate  the  training
process.  Moreover,  our  proposed  synchronization
schemes  can  significantly  reduce  the  overall
communication cost during training.
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