
 

Research progress of quantum artificial intelligence in smart city
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Abstract: The  rapid  accumulation  of  big  data  in  the  Internet  era  has  gradually  decelerated  the  progress  of  Artificial

Intelligence  (AI).  As  Moore’s  Law  approaches  its  limit,  it  is  imperative  to  break  the  constraints  that  are  holding  back

artificial  intelligence.  Quantum  computing  and  artificial  intelligence  have  been  advancing  along  the  highway  of

human  civilization  for  many  years,  emerging  as  new  engines  driving  economic  and  social  development.  This  article

delves  into  the  integration  of  quantum  computing  and  artificial  intelligence  in  both  research  and  application.  It

introduces  the  capabilities  of  both  universal  quantum  computers  and  special-purpose  quantum  computers  that

leverage  quantum  effects.  The  discussion  further  explores  how  quantum  computing  enhances  classical  artificial

intelligence  from  four  perspectives:  quantum  supervised  learning,  quantum  unsupervised  learning,  quantum

reinforcement learning, and quantum deep learning. In an effort to address the limitations of smart cities, this article

explores the formidable potential of quantum artificial intelligence in the realm of smart cities. It does so by examining

aspects  such  as  intelligent  transportation,  urban  operation  assurance,  urban  planning,  and  information

communication,  showcasing a plethora of practical  achievements in the process.  In the foreseeable future,  Quantum

Artificial  Intelligence  (QAI)  is  poised  to  bring  about  revolutionary  development  to  smart  cities.  The  urgency  lies  in

developing quantum artificial  intelligence algorithms that  are compatible with quantum computers,  constructing an

efficient,  stable,  and  adaptive  hybrid  computing  architecture  that  integrates  quantum  and  classical  computing,

preparing quantum data as needed, and advancing controllable qubit hardware equipment to meet actual demands.

The  ultimate  goal  is  to  shape  the  next  generation  of  artificial  intelligence  that  possesses  common  sense  cognitive

abilities, robustness, excellent generalization capabilities, and interpretability.
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1    Introduction

Smart  city  is  a  product  of  the  new  generation  of

information  technology  and  economic  development,

which  is  constantly  evolving  and  expanding  its  scope

and meaning. The advancement of smart cities not only
promotes  the  innovation  and  improvement  of  urban
planning systems, but also enhances the economic and
technological  levels  of  the  society.  Artificial
Intelligence (AI) applications have led to an explosive
growth of data volume and an increasing complexity of
algorithm models,  which  demand powerful  computing
capabilities  to  support  them.  One  of  the  core
advantages  of  quantum  computing  is  its  high-speed
parallel  computing,  which  enables  an  exponential
increase of computing power. Quantum computing and
AI,  which  were  once  considered  incompatible  like
water  and oil,  have been integrated under  the  drive  of
science,  technology,  and  the  time,  creating  infinite
possibilities.

 
  Sumin  Wang, Ning  Wang, Tongyu  Ji, Yiyun  Shi,  and Chao

Wang are  with  the Joint  International  Research  Laboratory  of
Specialty  Fiber  Optics  and  Advanced  Communication,
Shanghai  University,  Shanghai  200444,  China. E-mail:
sumer_wang@shu.edu.cn; 25970264@qq.com; jty1997@shu.
edu.cn; shiyy29@shu.edu.cn; wangchao@shu.edu.cn.

  Sumin  Wang is  also  with  the School  of  Information
Engineering,  Ganzhou  Key  Laboratory  of  Cloud  Computing
and  Big  Data  Research,  Gannan  University  of  Science  and
Technology, Ganzhou 341000, China.

 * To whom correspondence should be addressed.
    Manuscript  received: 2023-07-06;  revised: 2023-10-17;

accepted: 2024-03-03

Intelligent  and  Converged  Networks ISSN  2708-6240
2024, 5(2): 116−133 DOI: 10.23919/ICN.2024.0009

 
©  All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.



1.1    Definition of quantum artificial intelligence

Quantum Artificial Intelligence (QAI) is the product of
the  fusion  of  quantum  mechanics  and  artificial
intelligence  technology.  On  one  hand,  the  powerful
quantum  advantage  is  used  to  accelerate  the  upgrade
and  evolution  of  AI.  On  the  other  hand,  some
algorithms  and  technologies  of  AI  also  help  solve
problems in the quantum field. Qizhi Yao, an expert in
quantum computing, and a winner of the Turing Prize,
believes  that  the  combination  of  quantum  computing
and artificial intelligence will be a major moment in the
future.  Using  quantum  algorithms  to  understand  or
create new intelligence will gain power beyond nature.
The algorithms used in QAI is the artificial intelligence
algorithm  with  quantum  effect,  such  as  Quantum
Annealing  (QA)  algorithm,  quantum  ant  colony
algorithm,  etc.  They  can  overcome  the  defects  of
traditional  artificial  intelligence  algorithm,  such  as
easily falling into local extreme value, poor robustness,
and relying on parameter training. By combining high-
resolution  datasets,  more  efficient  training,  and
hyperparametric  optimization,  QAI  can  use  traditional
AI to further develop advanced physics schemes[1].

A  large  number  of  research  teams  have  joined  the
quantum war, devoting themselves to the research and
development  of  quantum  artificial  intelligence.  In
2013,  Google,  the  National  Aeronautics  and  Space
Administration  (NASA),  and  the  Universities  Space
Research  Association  (USRA)  established  the
Quantum Artificial Intelligence Lab (QuAIL). In 2020,
the  University  of  Hong  Kong  and  the  California
Institute  of  Technology  founded  the  Hong  Kong
Quantum  AI  Laboratory.  In  the  same  year,  State
Atomic  Energy  Corporation  Rosatom  (ROSATOM)
and the Russian Quantum Research Center  announced
the  joint  establishment  of  Russia’s  first “quantum
artificial  intelligence” laboratory.  In  2022,  Japanese
Prime Minister Fumio Kishida stated that Japan would
formulate a national development strategy for quantum
and artificial intelligence technology.

1.2    Application of quantum computing in artificial
intelligence

The  unique  superposition  state  and  quantum
parallelism  of  quantum  make  it  exponentially  faster
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than  classical  computing.  Quantum  computing[2] is  to
perform  a  series  of  unitary  evolution  on  different
quantum  bits  in  quantum  states.  Quantum  bit  (also
called qubit)  is  the basic unit  of  quantum information.
Unlike  classical  bits,  qubits  can be in  either  the  or

 states, or a linear combination of the two, which is
called  a  superposition  state.  Quantum  parallelism[3]

refers to performing a unitary operation on 2n quantum
states  in  Hilbert  space,  which  is  equivalent  to  the
simultaneous  operating  on  all  computational  ground
states.  The  advantages  of  many  well-known  quantum
algorithms are exhibited by quantum parallelism, such
as  Deutsch–Jozsa  quantum  algorithm[4],  Shor
algorithm[5], and Grover quantum search algorithm[6].

Nowadays,  the  academic  community  has  regarded
artificial  intelligence,  which  was  once  incompatible
with  quantum  computing,  as  the  focus  of  quantum
computing.  Bringing  the  advantages  of  quantum
computing  to  the  field  of  artificial  intelligence  is
expected  to  lead  to  significant  advances  and  new
development  directions.  The  breakthrough
development  of  artificial  intelligence  has  three
elements:

(1) The core lies in the algorithm. The introduction
of  quantum computing  is  conducive  to  the  creation  of
better artificial intelligence algorithms.

(2)  The  foundation  lies  in  data. Quantum
memory[7, 8] uses quantum coherence, one storage unit
can  store N quantum  bits  at  the  same  time,  which  is
conducive to the storage of big data, the construction of
quantum  computer,  and  the  establishment  of  large-
scale  quantum  network.  With  the  advent  of  quantum
storage protocol,  the storage time of data can be up to
10  h,  laying  the  foundation  for  long-distance
communication.

(3) The advantage lies in the computing power. In
the  first  few  decades,  artificial  intelligence  has  been
limited  by  the  lack  of  hardware  computing  power,
while  quantum  computing  can  increase  the  hardware
computing power exponentially by taking advantage of
its  core  advantages  of  high-speed  parallel  computing.
This  speed  advantage  will  become  more  and  more
significant with the increase of quantum bits,  reaching
an  unparalleled  level  of  classical  computers  and
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effectively  improving  the  information  processing
ability of artificial intelligence.

Based on the improvement of the performance of the
above  three  elements  by  quantum  computing,  the
application  of  quantum  artificial  intelligence  is  no
longer limited to the theoretical algorithms of artificial
intelligence,  but  also  extends  to  the  application
scenarios  such  as  cryptography  design,  cryptography
breaking,  smart  city,  mobile  communication,  machine
learning,  chemical  and  pharmaceutical,  and
biomedicine,  accelerating  the  breakthrough  and
development  of  commercial  applications  in  various
fields.

1.3    Quantum computer

Although  semiconductor  technology  has  developed
exponentially  in  the  last  50  years,  this  state  of  affairs
cannot go on indefinitely and will eventually succumb
to  the  physical  rules.  The  long-held “Moore’s  law” is
coming to an end, and the “post-Moore era” is coming,
which  has  become  the  strategic  commanding  point
pursued by various countries.  People are  eager  to  find
more  reasonable  architectures,  more  advanced
materials,  and  more  effective  algorithms.  Quantum
computer  based  on  quantum  effect  provides  a
completely  different  computing  method  and
architecture from classical computer, which is expected
to  break through the  bottleneck of “Moore’s  law” and
become  an  important  development  direction  of  the
“post-Moore  era”.  The  quantum  computer  uses
quantum bits to encode information, and uses quantum
mechanics  principles  such  as  quantum  state  coherent
superposition  and  quantum  entanglement  to  realize
parallel  computing  through  quantum  logic  gates.
Current  quantum computers  are  divided  into  universal
quantum  computer  and  special-purpose  quantum
computer.
1.3.1    Universal quantum computer
As early  as  1985,  Dentsch[9],  a  theoretical  physicist  at
Oxford  University,  defined  the  quantum  Turing
machine  and  proposed  the  design  blueprint  of  the
world’s  first  universal  quantum  computer.  The
universal  quantum  computer  realizes  unitary
transformation  through  a  series  of  quantum  gate  to

make  two  controlled  qubits  interact.  The  whole
quantum  computing  process  is  the  time  evolution
process  of  coded  qubits.  The  mainstream  technology
routes  of  universal  quantum  computer  for  quantum
computing  include  superconducting  qubits,  ion  traps,
semiconductor  quantum  dots,  nuclear  magnetic
resonance, etc.

Universal quantum computer can realize all quantum
algorithms,  and  practical  and  effective  quantum
algorithms  are  helpful  to  develop  the  computing
potential of universal quantum computer. It is the Shor
algorithm[5] and  Grover  algorithm[6] that  brought  the
upsurge  of  quantum computer  research,  confirmed the
computing  advantages  of  quantum  computer,  and
promoted  the  accelerated  development  of  quantum
computer research.

However,  due  to  the  easy  decoherence  of  quantum
states, insufficient precision of quantum hardware, and
low  precision  of  quantum  error  correction,  the
development of universal quantum computer has made
slow  progress.  Until  today,  the  universal  quantum
computer  is  still  in  the  primary  stage  of  development,
and practical killer quantum applications have not been
developed yet.
1.3.2    Special-purpose quantum computer
Different  from  universal  quantum  computers
constructed with quantum gate circuits, special-purpose
quantum  computers  are  generally  quantum  computers
with quantum effects constructed for specific functions
based  on  unique  theories  and  models,  such  as  optical
lattice  quantum  simulators  constructed  with  ultracold
atom  schemes,  quantum  computing  prototypes
processing  Gaussian  Bose  sampling  with  optical
quantum  schemes,  etc.  Among  them,  the  most  typical
special-purpose  quantum  computer  belongs  to  the
commercialized  D-Wave  special-purpose  quantum
computer  with  strong  development  momentum  in
recent years. It is an adiabatic quantum computer[10, 11].
In  May  2011,  Canada’s  D-Wave  System  Company
released  the  world’s  first  commercial  quantum
computer, D-Wave One, which indicates the arrival of
the  practical  era  of  quantum  computer.  It  is  the  first
special-purpose  quantum  computer  since  D-Wave
released  4  qubits,  16  qubits,  and  28  qubits  quantum
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annealed  chips  earlier  this  year.  Since  then,  D-Wave
has  released  five  generations  of  quantum  computers,
including D-Wave Two, D-Wave 2X, D-Wave 2000Q,
and D-Wave Advantage. The basic component of each
generation  of  D-Waves  is  superconducting  quantum
bits (also known as SQUIDs), which are connected by
couplers  made  of  superconducting  rings.  The
performance parameters of each generation of D-Wave
quantum computer are shown in Table 1.

As  can  be  seen  in Table  1,  D-Wave’s  quantum
hardware is growing at a rapid rate, with the number of
qubits doubling almost every two years. This is known
as “Rose’s  law” in  quantum  computing  and  mimics
“Moore’s  law” in  semiconductor  processor
development. The latest Advantage system has become
the  only  commercially  designed  and  most  connected
commercial quantum computer in the world.

In  the  new  Pegasus  topology,  qubits  can  be
connected  to  another  15  qubits.  Compared  with
Chimera  topology,  qubits  can  only  be  connected  to
another  6  qubits,  and  its  connectivity  is  increased  by
2.5  times.  In  addition,  the  combination  of  more  than
double the number of qubits makes it possible to solve
larger  and  more  complex  problems  directly  on  the
Advantage  QPU.  According  to  the  Clarity  roadmap
released  by  D-Wave,  the  company  plans  to  launch
Advantage2  Quantum  systems  with  over  7000  qubits
by  the  end  of  2023  or  early  2024.  The  D-Wave
Advantage2  QPU  will  adopt  a  new  qubit  design  to
achieve 20 connections in the new topology.

D-Wave  quantum  computer  is  a  special-purpose
quantum  computer  with  quantum  effects,  which  uses
quantum  annealing  algorithm  to  search  the  global
minimum  of  the  objective  function  and  solve  specific
combinatorial  optimization  problems.  Quantum
annealing algorithm presents quantum tunneling effect,

which can cross the potential barrier of energy field at
near  absolute  zero  to  reach  the  energy  minimum with
greater  probability,  thus  further  approximating  the
global  optimum  solution.  D-Wave  performs  quantum
computation  based  on  two  core  models,  one  is  Ising
model,  and  the  other  is  Quadratic  Unconstrained
Binary  Optimization  (QUBO)  model.  The  target
Hamiltonian function can be expressed by Ising model
as Eq. (1):
 

EIsing{si} = −H
N∑

i=1

si+ J
∑
⟨i, j⟩

sis j (1)

si

s j

si si = 1−2xi

where H represents  the  weight  of  qubits, J represents
the  energy  coupling  strength  between  qubits,  and 
and  represent  the  binary  variable  Ising  spin.  By
transforming  in  Eq.  (1)  with ,  the
Hamiltonian function represented by the QUBO model
can be obtained:
 

EQUBO{xi} =
∑

i

Qiixi+
∑
i< j

Qi jxix j = xT ·Q · x (2)

where x represents  the  vector  containing N binary
variables,  and Q is  the N × N real  upper  triangular
matrix  describing  the  relationship  between  variables.
Equations (1) and (2) show that the Ising model and the
QUBO  model  are  equivalent.  In  general,  any
optimization  problem  that  the  objective  function  can
map to the Ising model or QUBO model can be solved
by using D-Wave.

As the world’s first commercial supplier of quantum
computers,  D-Wave’s  systems  are  already  being  used
by  some  of  the  world’s  most  advanced  organizations,
They  included  arms  giant  Lockheed  Martin,  Google,
Temporal  Defense  Systems  (TDS),  Volkswagen,
DENSO  Corporation;  Oak  Ridge  National  Laboratory
(ORNL),  Los  Alamos  National  Laboratory  (LANL),
NASA,  the  Germany  Forschungszentrum  Jülich,  and

 

Table 1    Performance parameters of D-Wave quantum computer.

Edition Number of
qubits Release time Coupler

per qubit
Graph

topology
Josephson
junction

Number of
couplers

D-Wave One 128 May 2011 6 Chimera 24 thousand 352
D-Wave Two 512 May 2013 6 Chimera 33 thousand 1472
D-Wave 2X 1024 August 2015 6 Chimera 128 thousand 3360

D-Wave 2000Q 2048 January 2017 6 Chimera 128.472 thousand 6016
D-Wave Advantage 5000+ September 2020 15 Pegasus 1 million+ 35 000+
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other  institutions;  Tohoku  University,  Virginia
Polytechnic  Institute  and  State  University,  University
of Southern California, and other universities.

More and more investors see D-Wave’s potential. In
2013,  Bezos  Expeditions,  an  investment  company
under  the  founder  of  Amazon,  and  In  Q  Tel,  an
investment  company  under  the  Central  Intelligence
Agency  (CIA),  invested  30  million  US  dollars  in  D-
Wave.  In  2015,  D-Wave  completed  a  round  of
financing  of  29  million  Canadian  dollars
(approximately  23.1  million  US  dollars).  In  2016,  D-
Wave  received  30  million  US  dollars  in  investment
from Fidelity Investment and the Public Sector Pension
Investment Board (PSP).  PSP Investments invested an
additional 50 million US dollars in D-Wave in 2018. In
2019,  Japan’s  NEC  Corporation  invested  10  million
US dollars in D-Wave and helped develop its software.
Besides,  Kensington  Technology  Group  and  180
Degree  Capital  Corp.  Company,  Goldman  Sachs,
Draper Fisher Jurvetson (DFJ), Business Development
Bank  of  Canada  (BDC),  Penderfund  Capital
Management,  and  International  Investment  &
Underwriting are all investors in D-Wave.

Thanks  to  D-Wave’s  powerful  quantum  computing
system,  advanced  quantum  products,  and  friendly
service  platform,  D-Wave  users  have  developed  over
250  early  applications  to  solve  problems  such  as
finance[12],  machine  learning[13],  mathematical
computing[14],  materials  science[15],  biochemistry[16],
layout planning[17], power energy[18], transportation[19],
and healthcare[20].

2    Collision  between  quantum  computing
and artificial intelligence

People  use  artificial  intelligence  to  optimize  the
performance  of  computer  algorithms  based  on  data  or
experience,  often  involving  a  large  number  of “input
output” pairs,  which  requires  artificial  intelligence
algorithms to  be  very efficient  in  processing these  big
data[21].  Facing the situation that the computing power
of classical computing is rapidly approaching the limit,
quantum  computing  is  often  used  to  solve  machine
learning  tasks  with  large  amounts  of  data  due  to  its
ability  to  manipulate  a  large  number  of  high-

dimensional  vectors.  Quantum  computing  methods
used  in  artificial  intelligence  can  be  divided  into  two
categories  due  to  the  difference  in  their  operating
equipment:

(1) Involving the preparation, storage, and operation
of  quantum states,  which are  used in  general  quantum
computer.

(2)  Based  on  the  principle  of  adiabatic  quantum
computation,  it  is  used  in  a  special-purpose  quantum
computer for D-Wave[22].

Quantum  artificial  intelligence  research  collaborates
quantum  algorithms  with  artificial  intelligence
algorithms  to  process  massive  data  tasks  in  order  to
achieve  exponential  acceleration  over  classical
algorithms.  In  addition,  QAI  methods  also  have  the
ability  to  enhance  intelligent  data  mining  and  provide
significant security advantages for data owners[23].

The  improvement  standard  of  quantum  artificial
intelligence to classical artificial intelligence is usually
measured  from  four  aspects:  computational
complexity,  sample  complexity,  robustness  to
environment,  and  model  complexity[24].  Researchers
have  studied  the  improvement  of  classical  artificial
intelligence by quantum computing from the aspects of
quantum  supervised  learning,  quantum  unsupervised
learning,  quantum  reinforcement  learning,  and
quantum deep learning. This section will also elaborate
quantum artificial intelligence from these four aspects.

2.1    Supervised learning

In  supervised  learning,  the  machine  uses  examples  of
known  labels  to  infer  functions  from  a  set  of  training
examples.  Unsupervised  learning  looks  for  hidden
structures in unlabelled data.  Among them, supervised
learning  can  be  divided  into  regression  analysis  and
statistical  classification.  In  order  to  solve  the
classification  problem,  in  2019,  IBM  team  used  the
space of quantum states as the feature space, proposed
two  quantum  algorithms  based  on  superconducting
processors.  They  conducted  a  large  number  of
verification  experiments,  achieved  a  breakthrough  in
supervised  machine  learning  for  image  recognition
tasks[25].  In  order  to  train  supervised  learning  of
quantum circuits,  Nghiem et  al.[26] proposed a  general
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framework based on embedding in 2020, and classified
two  different  types  of  methods,  implicit  and  explicit.
The authors described the implicit and explicit methods
of  quantum  supervised  learning  in  detail,  conducted
numerical simulation without noise and with noise, and
conducted  classification  tests  on  several  IBM  Q
devices.  The  test  results  show  that  both  explicit  and
implicit  methods  exhibit  good  classification  ability.
Common  algorithms  of  supervised  learning  include
Support  Vector  Machine  (SVM)  and  K-Nearest
Neighbors  (KNN).  Kernel-based  SVM  is  a  nonlinear
classification  method  suitable  for  classification  and
regression  problems.  Willsch  et  al.[13] replaced  the
linear  classifier  with  a  kernel-based  support  vector
machine,  expressed  the  problem  to  be  optimized  as  a
QUBO,  and  conducted  training  on  D-Wave  2000Q
quantum  computer.  The  authors  found  that  D-Wave
2000Q generates a different set of solutions, including
not only the global optimal solution, but also a number
of  sub-optimal  solution  distributions  that  are  close  to
the  optimal  solution.  Especially  in  the  case  of  limited
training  data,  the  performance  of  support  vector
machine is better than that of classical computer. Liu et
al.[27] strictly  proved that  the  heuristic  quantum kernel
method  can  achieve  end-to-end  exponential  quantum
acceleration for specific learning problems through the
classification problem constructed in 2021. The authors
constructed  a  series  of  datasets,  and  proved  that  no
classical  algorithm  can  classify  the  data  better  than
random  guess.  The  experimental  results  lay  a
theoretical foundation for applying quantum advantage
to machine learning.

2.2    Unsupervised learning

Unsupervised  learning  obtains  useful  information  of
new samples by training the model of dataset structure
used  for  learning.  It  is  suitable  for  the  lack  of  prior
knowledge  or  difficult  to  manually  label  categories.
However, because of this reason, unsupervised learning
sometimes has the problem of low efficiency and some
tasks  are  difficult  to  complete.  Researchers  have
introduced  quantum  computing  technology  into  the
improvement  and  optimization  of  common
unsupervised  learning,  such  as  clustering,  feature

extraction,  manifold  learning,  data  dimensionality
reduction, etc.

In  2018,  Neukart  et  al.[28] proposed  a  Quantum-
Assisted  Clustering  Analysis  (QACA)  based  on  the
topological characteristics of D-Wave 2000Q quantum
processor.  With  the  support  of  Quantum  Processing
Unit  (QPU),  optimization,  sampling  and  clustering
were  expressed  in  the  form  of  QUBO.  Experiments
show  that  QACA  is  equivalent  to  classical  clustering
algorithm  in  accuracy,  but  different  results  will  be
obtained  due  to  different  clustering  forms.  In  2019,
Moshkbar-Bakhshayesh  and  Pourjafarabadi[29]

proposed a  transient  identification method for  Nuclear
Power  Plants  (NPPs)  based  on  online  Dynamic
Quantum Clustering (DQC) using quantum mechanics.
Provide  data  for  each  event  to  DQC to  form a  cluster
independent  of  other  transients,  and  label  all  formed
clusters based on their associated transient names. With
the  passage  of  time,  each  new  data  are  finally  in  an
appropriate cluster, so that the type of transient can be
identified  online.  The  authors  used  Singular  Value
Decomposition  (SVD)  and  bipolar  representation  of
real  data  to  reduce  the  dimensionality  of  the  data  and
clearly display the positive and negative aspects of the
information.  The  results  indicate  that  DQC  is  suitable
for  classification  of  potential  wells  with  sufficient
spacing or transient situations with superimposed small
noise.

Unsupervised  learning  algorithm  has  the  problem
that it cannot complete in polynomial time when facing
some  large  datasets.  In  2020,  Shrivastava  et  al.[30]

analyzed the feasibility of quantum equivalent classical
machine  learning  algorithm to  enhance  the  computing
power of unsupervised learning algorithm. The authors
expounded  the  classical  unsupervised  learning
algorithms  such  as  principal  component  analysis,
manifold  embedding,  and  clustering  algorithm,  put
forward  the  equivalent  quantum  versions  of  these
algorithms,  and inferred the computational  complexity
through  mathematical  representation.  By  comparing
the  quantum  version  with  the  classical  version,  it  is
proved  that  the  quantum  unsupervised  learning
algorithm equivalent to the classical algorithm provides
a  secondary  acceleration  in  learning  efficiency  and  an
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exponential acceleration in computational complexity.
In  2021,  Deville  and  Deville[31] defined  the  general

concept  of  SIngle-Preparation  Quantum  Information
Processing  (SIPQIP).  It  is  used  as  a  general  quantum
information  processing  framework  for  processing
various  quantum  information  tasks  and  evaluating
numerical performance. The authors showed a concrete
example of applying the proposed method to the tasks
related  to  spintronics  and  proposed  two  quantum
system  structures  to  compensate  for  the  Heisenberg
coupling  between  qubits.  In  2022,  Schmitt  and
Lenarčič[32] introduced  a  method  for  analyzing  the
local  complexity  of  quantum  multi-body  based  on
machine  learning,  which is  composed of  unsupervised
learning and automatic encoder. Unsupervised learning
trains  the  expected  values  of  the  data  to  obtain
dimensionality  reduction,  revealing  the  existence  of
effective  low  dimensional  descriptions  for  multi  body
quantum states; automatic encoder extracts the physical
related  features  of  quantum multi-body by solving the
unsupervised learning task of local observation.

2.3    Reinforcement learning

With the introduction of AlphaGo and AlphaZero[33, 34]

which combine reinforcement learning, neural network,
and  Monte  Carlo  tree  search,  reinforcement  learning
has  become  an  important  example  in  artificial
intelligence,  and  its  theory  and  algorithm  have
developed  rapidly.  In  the  reinforcement  learning
framework,  agents  interact  with  the  environment  and
constantly  update  their  behaviors  according  to  the
rewards  they  get  to  maximize  their  benefits.
Reinforcement  learning  has  emerged  in  competitive
game, intelligent control,  health care,  natural language
processing,  and  other  practical  applications.  But  in  its
development,  there  are  many  problems  such  as  long
agent  training  time,  difficulty  in  designing  reward
functions, low sampling efficiency, and easy to fall into
local  suboptimal  solutions.  Therefore,  researchers  try
to  solve  or  reduce  the  above  defects  with  quantum
advantages.

In  2017,  Levit  et  al.[35] introduced  the  concept  of
Free Energy-based Reinforcement Learning (FERL) to
study  the  applicability  of  quantum  annealing  machine

in  reinforcement  learning.  And  it  is  used  in  D-Wave
2000Q  for  reinforcement  learning  of  grid-world
problem.  The  authors  used  the  ability  of  quantum
sampling  in  the  reinforcement  learning  task,  and
achieved  better  performance  than  deep  Q-Network
(DQN)  in  a  certain  scale  of  problems,  and  considered
that  it  could  be  extended  to  solve  larger-scale
reinforcement  learning  tasks.  In  2020,  Ayanzadeh  et
al.[36] combined  reinforcement  learning  (more
specifically,  learning  automata)  with  quantum
annealing  algorithm  and  proposed  Reinforcement
Quantum  Annealing  (RQA)  scheme  to  improve  the
quality  of  results  obtained  by  quantum  annealing.  In
this  scheme,  the  agent  maps the  Boolean Satisfiability
Problem  (SAT)  to  the  executable  Quantum  Machine
Instruction (QMI), interacts with the D-Wave quantum
computer,  and  attempts  to  iteratively  minimize  the
Hamiltonian  for  the  SAT  problem.  The  experimental
results  show  that  compared  with  the  latest  quantum
annealing technology, the RQA scheme can find better
solutions  with  fewer  samples.  In  2020,  Neumann  et
al.[37] introduced  multi-agent  reinforcement  learning
based  on  free  energy,  which  was  based  on  Suzuki-
Trotter  decomposition  and  Simulated  Quantum
Annealing  (SQA)  sampling.  On  this  basis,  the
algorithm was extended to  any number  of  agents  with
quantum Boltzmann machine to realize the modeling of
arbitrary  grid-world  problems.  The  experimental
results  show  that  quantum  annealing  can  improve  the
efficiency  of  reinforcement  learning,  and  can  find  a
high-fidelity scheme faster than classical reinforcement
learning. In order to clone the unknown quantum state
to  high  fidelity,  Shenoy  et  al.[38] cloned  the  unknown
environmental  state  to  the  agent  qubit  in  IBM’s
Quantum  Assembly  Language  (QASM)  simulator  in
2020  based  on  the  quantum  reinforcement  learning
protocol.  The  experimental  results  show  that  this
method  can  obtain  a  high  ratio  of  fidelity  when  there
are  only  limited  copies  of  the  equivalent  substate.  In
2021,  Saggio  et  al.[39] proposed  and  demonstrated  a
new  reinforcement  learning  protocol.  The  agent  can
accelerate  its  learning  speed  through  quantum
communication with the environment, realize quantum
acceleration,  and  achieve  optimal  control  of  the
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learning  process.  This  learning  protocol  is  realized  by
using  a  compact  and  fully  adjustable  integrated
nanophoton  processor  and  electronic  communication
wavelength subinterface.

2.4    Deep learning

The  concept  of  deep  learning  originates  from  the
research  of  artificial  neural  network,  which  uses
multiple  processing  layers  to  express,  learn,  classify,
and  recognize  data  features[40].  Because  of  its  strong
learning  ability,  strong  adaptability,  good  portability,
automatic  feature  extraction,  suitable  for  big  data
processing, and other advantages, deep learning has far
exceeded  the  performance  of  classical  machine
learning  in  some  applications.  It  has  been  applied  to
image processing, fault diagnosis, data mining, natural
language  processing,  character  recognition,  and  other
fields. However, it still has some defects, such as large
computation, poor interpretability, and complex model
design. Therefore, it is necessary to introduce quantum
technology to optimize traditional deep learning.

In 2016, Wiebe et al.[41] proved through experiments
that quantum computing could reduce the training time
of  deeply  restricted  Boltzmann  machines,  improve
training  efficiency,  provide  higher-quality  models  and
frameworks  than  classical  computing,  and  optimize
basic  objective  functions.  The  quantum  deep  learning
framework  proposed  by  the  authors  can  refine  the
mean field approximation to a state close to the desired
Gibbs  state,  and  process  it  in  parallel  on  multiple
quantum  processors  to  improve  computational  power.
To  evaluate  the  feasibility  of  using  D-Wave  as  a
machine  learning  sampler,  in  2020,  Sleeman  et  al.[42]

described a hybrid system that combines classical deep
convolutional  self-coding  neural  networks  quantum
annealing  Restricted  Boltzmann Machine  (RBM).  The
system  overcomes  the  limitations  of  D-Wave’s  finite
qubits and sampling only binary information, and uses
the  inherent  noise  and  quantum properties  of  D-Wave
to  map  the  original  data  representation  to  the
representation of quantum annealing processing. Based
on  Modified  National  Institute  of  Standards  and
Technology  (MNIST)  dataset  and  MNIST  Fashion
dataset,  the  authors  realized  image  compression,  and

used downstream classification method to evaluate and
confirm  the  performance  advantages  of  the  proposed
system. Autonomous Vehicles (AVs) under adversarial
attacks  may  misrecognize  traffic  signs,  jeopardizing
driving  safety.  In  2021,  Majumder  et  al.[43] used
classical quantum learning model and adversarial deep
learning  model  to  design  a  hybrid  classical  quantum
machine  learning  model  to  resist  adversarial  attacks.
The output of a classical processor is further processed
through a  quantum layer  made up of  various  quantum
gates.  The  mixed  model  has  better  elasticity  and
classification  accuracy  than  the  classical  model.
Quickly  and  accurately  analyzing  and  diagnosing
power  faults  can  avoid  power  outages  and  abnormal
changes in voltage and current. In 2021, Ajagekar and
You[44] proposed  a  hybrid  framework  for  identifying
power  system  faults  by  combining  conditional
Constrained  Boltzmann  Machine  (CRBM)  with  deep
network.  By  complementing  quantum  and  classical
techniques,  the  computational  complexity  of  classical
learning  algorithm  for  CRBM  networks  is  overcome.
An example study on the fault diagnosis framework of
hybrid  Quantum  Computing-Conditional  Restricted
Boltzmann  Machine  (QC-CRBM)  is  carried  out  on
IEEE  30-bus  test  system.  The  applicability  of  this
framework  is  proved.  Compared  with  traditional
training  methods  and  advanced  pattern  recognition
methods,  the  hybrid  QC-CRBM  fault  diagnosis
framework  also  shows  better  performance.  In  2023,
Higham and Bedford[45] combined  the  classical  neural
network  with  the  quadratic  binary  model,  constructed
the task to be classified into a quadratic binary model,
and sent this model to D-Wave for quantum annealing.
The  QPU solves  the  two obstacles  that  limit  the  scale
expansion:  the  number  of  variables  required  for  the
model  state  and  the  binary  property.  The  test  results
based on digital image data show that this method has
the  potential  to  accelerate  the  classification  task  by  at
least one order of magnitude.

Quantum artificial  intelligence  fills  the  gap  between
quantum  computing  theory  research  and  artificial
intelligence  application  science.  It  is  a  rapidly
developing  field  with  the  ability  to  develop  future  AI
applications.  With  the  development  of  quantum
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computing  technology,  various  research  fields  of
quantum  artificial  intelligence  are  expected  to  bring
revolutionary  changes  to  information  data  processing
in the future.

3    Quantum artificial  intelligence  empowers
smart city

Sensors  distributed  throughout  smart  cities  are
constantly  producing  data.  According  to  the  report
“Data  Age  2025:  The  Evolution  of  Data  to  Life
Critical” released  by  the  international  data  company
IDC,  the  amount  of  data  generated  globally  each  year
will  increase  from  33  zettabytes  in  2018  to  175
zettabytes.  It  is  equivalent  to  generating  491  exabytes
of  data  every  day.  Processing,  analyzing,  and  storing
these  data  pose  a  further  challenge  to  information
processing  technology.  Since  IBM  put  forward  the
concept of smart city in 2008, thanks to the support of
computer  technology,  communication  technology,
sensor  technology,  and  other  advanced  science  and
technology,  the  field  of  smart  city  has  made  great
progress  in  the  width  and  breadth  of  application
scenarios.  At  the  same  time,  there  are  still  many
problems  in  the  construction  of  smart  cities,  such  as
resource  dispersion,  imperfect  safety  system,
environmental  pollution,  and traffic  congestion,  which
have  become  bottlenecks  restricting  the  current  urban
development  and  transformation.  Human  beings  have
begun  to  focus  on  quantum  computing,  hoping  that
quantum  information  technology  can  bring  a  positive
impact on smart cities.

3.1    Intelligent transportation

Using  quantum  algorithm,  quantum  artificial
intelligence  has  shown  quantum  advantages  in  path
planning,  transportation  facilities  layout,  vehicle
operation  management,  driver  behavior,  and  other
issues[46].  Thanks to the commercial D-Wave quantum
computer, some intelligent transportation projects have
been  applied  in  practice.  For  example,  at  the  Web
Summit  conference  held  in  Lisbon  in  2019,
Volkswagen  Group  used  D-Wave  quantum  computer
to  conduct  quantum  navigation  tests  on  9  buses,
providing traffic guidance for thousands of passengers.

In  2020,  Wang  et  al.[47] built  a  Quantum  &  Brain-
Inspired  Hybrid-Computing Framework (QBIHCF) by
combining  quantum  annealing  algorithm,  brain-
inspired  cognitive  science,  and  classical  computing,
and  proposed  the  Quantum  &  Brain-Inspired
Clustering  Algorithm  (QBICA).  Quantum  annealing
algorithm  is  used  to  improve  search  efficiency,  and
brain-inspired  cognition  extracts  data  pattern  features
to  provide  search  direction  and  search  feedback.  By
comparing  the  experimental  results  with  K-means
algorithm, it is proved that QBIHCF architecture based
on  QBICA  can  realize  effective  traffic  diversion,
overcome the dependence on training samples and the
sensitivity  of  small  sample  data,  and  provide  a  new
idea for realizing robust quantum artificial intelligence.
In 2022, under the guidance of intuitive reasoning, the
research  group  introduced  selective  attention
mechanism  and  realized  the  asymptotically  optimal
location  of  public  parking  lot  by  using  the  quantum
tunneling effect of quantum annealing algorithm[48].

Universal  quantum  computer  has  not  been  applied
yet,  so  its  application  in  the  field  of  intelligent
transportation is mostly limited to using quantum states
and  quantum algorithms  to  improve  the  transportation
scheme.  In  2020,  Xiao  et  al.[49] adopted  the  quantum
secret  sharing  method  to  improve  communication
efficiency between vehicles, especially in the presence
of  potential  adversaries  and  malicious  vehicles.  This
scheme  encodes  traffic  control  information  in  an
orthogonal  quantum  state  and  periodically  shares  it
among  cooperating  cluster-head  vehicles.  In  the  same
year,  Zhang  et  al.[50] combined  quantum  genetic
algorithm with learning vector quantization in order to
accurately predict  the short-term flow of urban traffic.
Benefiting  from  the  advantages  of  Learning  Vector
Quantization (LVQ) neural  network’s  simple  structure
and  good  clustering  performance,  they  utilized
quantum  genetic  algorithm  to  compensate  for  the
shortcomings  of  LVQ  neural  network’s  sensitivity  to
initial values and susceptibility to local minima[50]. The
performance  advantages  of  the  Quantum  Genetic
Algorithm Learning  Vector  Quantization  (QGA-LVQ)
neural  network  have  been  confirmed  through
comparative experiments.
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3.2    Improve urban operation support capacity

Urban operation guarantee ability has always been one
of  the  main  indicators  to  measure  the  livability  and
wisdom  of  a  city.  It  is  also  an  important  item  in  the
overall  planning  of  urban  economic  and  social
development. Quantum technology has been applied to
medical  care,  logistics,  communications,  and  other
urban security.

(1) Medical security
In  order  to  build  a  more  efficient  medical

environment,  Naresh  et  al.[51] proposed  a  three-layer
medical  system  architecture  called  Intelligent  Medical
City  in  2020,  introducing  Multi-Agent  System (MAS)
to improve medical efficiency. Meanwhile,  in order to
protect  the  quality  of  electronic  healthcare  in  smart
cities and resist quantum-based attacks, Naresh et al.[51]

also  proposed  a  Quantum  Group  Key  Agreement
(QGKA)  based  on  Quantum  Diffie  Hellman  (QDH)
technology,  extended  QGKA  to  Dynamic  QGKA
(DQGKA) by adding join, and left protocols and other
operations.  By  comparing  this  protocol  with  existing
QGKA  protocols  in  terms  of  Qubit  Efficiency  (QE),
Unitary Operation (UO), Unitary Operation Efficiency
(UOE),  Key  Consistency  Check  (KCC),  and  Security
Against  Participant  (SAP)  attacks,  the  excellent
performance of this protocol was verified.

In the same year, in order to alleviate the scheduling
problem of doctors and nurses caused by the COVID-
19  pandemic,  Das  et  al.[52] described  the  objective
function as  Ising model  under  different  constraints  for
the  Nurse  Scheduling  Problem  (NSP),  the  Physician
Scheduling  Problem  (PSP)  and  the  Nurse-Physician
Scheduling  Problem  (NPSP).  And  it  is  converted  into
the  QUBO model.  The  solutions  obtained  by  classical
(simulated) temperers and D-Wave 2000Q forward and
reverse  temperers  are  compared  and  analyzed.  It  is
found  that  the  reverse  annealing  method  always  gives
the  best  output  for  each  scheduling  problem.  This
system can still provide accurate solutions for different
numbers  of  medical  staff,  with  great  flexibility  and
practicality.

(2) Logistics support
D-Wave is not only used in medical security, but also

in  logistics  support  system.  In  2020,  Japan’s
Groovenauts,  Inc.  cooperated  with  Mitsubishi  Estate
Co.,  Ltd.,  based  on  the  data  provided  by  Mitsubishi
Estate  and cloud service  MAGELLAN BLOCKS,  and
adopted a quantum hybrid solution formed by machine
learning  provided  by  MAGELLAN  BLOCKS  and  D-
Wave  quantum  computing  technology  to  optimize
garbage  collection  and  transportation  routes,  so  as  to
improve  operational  efficiency  and  reduce  carbon
dioxide emissions.

(3) Security guarantee
Target  tracking  technology  is  often  used  in  video

surveillance,  vehicle  control,  human-computer
interaction, and other problems in smart cities. Particle
filtering  is  one  of  the  common  methods  in  target
tracking,  which  inevitably  meets  the  problem  of
particle  degradation.  In  2020,  Liu  et  al.[53] introduced
quantum  genetic  algorithm  into  particle  filters  and
proposed Quantum Genetic and Particle Filter (QGPF)
algorithm. This algorithm not only solves this problem,
but also utilizes the parallelism of quantum to improve
real-time  tracking.  The  standard  Particle  Filter  (PF)
algorithm,  Particle  Swarm  Optimization  Filter
Algorithm  (PSOPF),  and  QGPF  are  simulated  and
compared through nonlinear target tracking model and
time  setting  model,  and  the  high  accuracy  and  good
numerical stability of QGPF algorithm are confirmed.

3.3    Sustainable urban planning

The  use  of  intelligent  control  methods  and  the
construction  of  smart  grids  on  information  platforms
has  become  an  important  support  for  the  construction
of  smart  cities.  In  today’s  increasingly  increasing
electricity  load,  understanding  the  electricity
characteristics  of  residents  can  help  urban  planners
more accurately grasp urban electricity information and
make more reasonable layouts.  As early as 2015,  Guo
et al.[54] aimed at the shortcomings of traditional Fuzzy
C-Means  (FCM)  in  power  load  pattern  extraction,
replaced  the  original  iterative  optimization  process  of
FCM  with  the  particle  swarm  optimization  based  on
quantum  coding.  This  method  has  obtained  more
reasonable clustering results,  laying the foundation for
more accurate and effective electricity identification.
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In  order  to  build  a  people-oriented  smart  city  and
satisfy people’s real life and spiritual aesthetics,  urban
landscape planning has  always  been an  important  part
of  urban  construction.  In  2020,  Yao  and  Ding[55]

introduced  an  improved  quantum  behaved  particle
swarm  optimization  (hybrid  improved  Quantum-
Behaved  Particle  Swarm  Optimization  (LTQPSO))  to
plan  the  path  for  the  typical  landscape  footpath
construction. The construction cost of landscape trail is
reduced.  LTQPSO  algorithm  avoids  the  precocious
convergence  problem  of  particle  swarm  optimization
algorithm,  and  enhances  the  global  search  capability
and  speeds  up  the  convergence  by  introducing  natural
selection  method into  the  traditional  position  updating
formula.

3.4    Information communication

Based  on  the  uncertainty  principle,  measurement
collapse,  and  non-cloning  theorem  in  quantum
mechanics,  quantum  provides  protection  for  the
security  of  information  communication  in  smart  cities
that  cannot  be  cracked  by  computation.  Quantum
communication  is  divided  into  quantum  teleportation
and  quantum  key  distribution.  The  former  utilizes
quantum  entanglement  effect,  while  the  latter  utilizes
quantum  non-cloning  and  measurement  randomness.
At  present,  many  aspects  of  quantum  communication,
such  as  the  design  and  optimization  of  quantum
communication  protocols,  are  still  in  the  manual
processing  stage,  which  prolongs  the  cycle  and
increases  the  cost.  The  introduction  of  artificial
intelligence technology is helpful to alleviate the above
problems  and  improve  the  performance  of  quantum
communication in smart  cities.  Although the universal
quantum  computer  has  not  yet  reached  the  level  of
practical  application,  it  has  become  more  mature  as  a
secure  and  reliable  information  communication,  and
researchers have carried out in-depth research on it.
3.4.1    Mobile communication
Benefiting  from  the  principles  of  quantum  mechanics
and the  unique properties  of  quantum teleportation[56],
quantum mobile communication has become one of the
direction  of  human  future  communication
development.  It  has  advantages  such  as  fast  speed,

large  capacity,  and  high  security  that  traditional
communication  methods  cannot  match.  At  the  same
time,  there  are  still  some  defects,  such  as  many
technical obstacles, high implementation difficulty, and
high  computational  complexity  which  hinder  its
development.

In  2013,  aiming  at  the  (Non-deterministic
Polynomial)-Hard  (NP-Hard)  problem  of
computational  complexity  of  maximum  likelihood
detection, Chao Wang’s team applied quantum Grover
algorithm  and  Grover–Long  algorithm  to  signal
detection  in  VBLAST  system[57].  The  MATLAB
simulation results show that the detection performance
of  Grover  algorithm  is  close  to  that  of  maximum
likelihood  detection  when  the  search  error  is  large.
When  the  search  error  is  small,  the  original  Grover
algorithm fails to search, while Grover–Long algorithm
can  still  approach  the  maximum  likelihood  detection
performance, and the computational complexity has the
effect  of  square  acceleration.  This  team  also  applied
quantum  ant  colony  algorithm  to  Multiple-Input
Multiple-Output  (MIMO)  system  in  2016,  and
proposed  a  signal  detection  scheme  of  MIMO  system
based  on  quantum  ant  colony  algorithm[58].  The
simulation  results  show  that  the  computational
complexity  of  the  scheme  is  polynomial  and  the
detection  performance  is  close  to  that  of  maximum
likelihood detection in  arbitrary  modulation mode.  On
16  August  2016,  China  successfully  launched  the
world’s  first  quantum  science  experiment  satellite
“Quantum  Experiments  at  Space  Scale”,  realizing
quantum  communication  between  the  satellite  and  the
ground[59−61].  With  the  quantum  satellite,  Chinese
researchers  have  successfully  carried  out  three  major
scientific  experiments:  quantum  entanglement
distribution,  quantum  key  distribution,  and  quantum
teleportation.
3.4.2    Quantum Internet
With  the  continuous  development  of  quantum
computer,  the  demand  for  quantum  Internet  that  can
provide  secure  communication  and  all  network
functions  of  traditional  Internet  is  increasingly  urgent.
Quantum  Internet  is  a  network  that  realizes  quantum
communication  between  any  two  quantum  devices  on
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earth  through  quantum  links  and  classical  quantum
devices[62].  Because the quantum Internet is controlled
by  the  quantum  mechanics  theorem,  there  are  no
corresponding  phenomena in  some classical  networks,
such  as  non-cloning  theorem,  quantum  entanglement,
decoherence,  quantum  teleportation,  quantum
measurement,  and  so  on,  which  bring  obstacles  and
challenges  to  the  design  of  the  quantum  Internet[63].
Quantum  Internet[64, 65] is  mainly  composed  of
quantum  channels,  quantum  repeaters,  and  terminal
nodes,  and  has  been  deployed  in  secure
communication,  quantum  sensor  networks,  clock
synchronization, and other applications.

In  order  to  optimize  the  construction  of  wireless
video  sensing  networks  in  smart  cities,  Fan  et  al.[66]

proposed a network optimization coverage algorithm in
2015.  Based  on  quantum  genetic  algorithm,  this
algorithm achieves the maximum effective coverage in
large  area  and  complex  monitoring  area  with  good
convergence  and  fast  operation  speed.  The  article
introduces two limit values of ideal node coverage and
ideal  node  weighted  coverage,  and  uses  relative
comparison  method  to  evaluate  and  support  the
experimental  results.  The  quantum  memory  failure
event  in  the  quantum  Internet  can  disrupt  several
entangled connections in the entangled network, which
may  have  serious  consequences  in  the  relay  network.
To address this issue, Gyongyosi and Imre[67] proposed
a  dynamic  adaptive  routing  method  suitable  for
practical quantum networks in 2019. This method finds
the shortest node-disjoint replacement path between the
source quantum node and the target quantum node, and
uses this replacement path as a temporary path until all
broken connections between the repeater nodes are re-
established.  The  shortest  path  is  determined  in  a
decentralized manner by an underlying graph covering
all  the information in the quantum network to provide
an  efficient  computational  solution.  In  the  same  year,
Gyongyosi  and  Imre[68] defined  a  method  to  realize
controlled entangled access in quantum Internet, which
can provide users with entangled access with different
priorities. This model uses the path between the source
node and the target node as the path cost function, and
takes  the  reliability  (probability)  of  entanglement

connection and the entanglement fidelity coefficient as
the  main  indicators  to  achieve  entanglement
discrimination.  This  scheme  can  be  applied  to
entangled  quantum  networks  of  quantum  Internet.
According  to  the  dynamics  of  entangled  quantum
networks,  in  2020,  Gyongyosi[69] developed  a
mathematical model that can characterize the stability,
fluctuation  properties,  and  dynamics  of  entangled
flows,  so  as  to  quantify  the  structure  of  entangled
networks  and  the  dynamics  of  entangled  flows  in
quantum  Internet.  This  study  provides  the  basic
definition  and  terminology  of  quantum  entangled
network  dynamics  in  quantum  Internet,  evaluates  and
quantifies the dynamics of entangled network structure
in  quantum  Internet,  proves  the  equilibrium  state  of
entangled  quantum  network  structure,  and  studies  the
influence  of  noise  on  the  stable  equilibrium  state  of
entangled  network.  Because  the  established  model  is
independent of the actual physical realization, it can be
applied  to  the  heterogeneous  structure  of  the  global
quantum  Internet.  In  order  to  solve  the  additional
complexity of entanglement distribution caused by the
introduction of quantum repeater, Goodenough et al.[70]

developed an algorithm in 2021, which can effectively
perform  heuristic  optimization  on  subsets  of  quantum
repeater  schemes  of  universal  repeater  platforms  in
different scenarios. Since this algorithm is not specific
to any specific experimental settings, it can be applied
to  three  experimental  quantum  repeaters,  such  as
information  processing  platform,  multiplexing  basic
pair  generation  platform,  and  the  combination  of  the
two  to  achieve  the  impact  on  the  entanglement
distribution  ability.  Moreover,  the  algorithm  can  also
be  used  to  explore  the  parameters  of  the  near
deterministic entanglement distribution on the repeater
chain.
3.4.3    Quantum routing
Quantum routing realizes the transmission of quantum
information in different quantum tunnels and quantum
networks  through  the  regulation  of  quantum  signal
transmission.  Quantum  routing  can  provide  path
selection  for  quantum  information  communication
without  changing  the  transmitted  quantum  state
information.  It  is  an  important  quantum device  in  full
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quantum network.
In 2019, Pant et al.[71] proposed an improved routing

protocol  that  could  generate  simultaneous
entanglement  among  multiple  pairs  of  users  in  a
quantum  network.  By  utilizing  the  diversity  of
multipath in the network, two users gain a great gain in
the  entanglement  rate.  In  addition,  the  authors  also
proposed and analyzed the  quantum repeater  protocol,
taking  into  account  the  channel  loss  between  repeater
nodes  and  the  probability  properties  of  Bell  state
measurement.  In  order  to  realize  quantum
entanglement  between  two  parties  of  remote
communication, Shi and Qian[72] studied entanglement
routing in the same year and proposed a new quantum
network entanglement routing model.  The model  aims
to  establish  remote  entanglement  for  a  pair  of  source
and  destination  through  multiple  hops,  reflecting  the
difference  between  quantum  networks  and  classical
networks. In addition, the authors proposed a Quantum
Contention-free  pAth  Selection  at  runTime (Q-CAST)
algorithm  based  on  the  unique  characteristics  of
quantum networks, which greatly increases the number
of  successful  long-range  entanglements.  In  2019,
Chakraborty  et  al.[73] studied  distributed  routing  in
quantum  Internet,  modified  existing  classical
distributed  routing  algorithms  to  develop  new  routing
algorithms  for  quantum  networks  containing  noisy
quantum  devices,  and  applied  these  algorithms  to
continuous  models  and  on-demand models.  To  reduce
network  delay  and  satisfy  entanglement  between  two
nodes  at  a  distance,  a  special  quantum  network  with
pre-shared entanglement link is proposed. At the same
time,  the  performance  of  routing  algorithms  in  ring,
grid,  and  recursively  generated  network  topologies  is
studied,  and  the  ring  and  grid  topologies  are
numerically simulated. Also in 2019, in order to solve
the network delay problem in multi-party simultaneous
communication,  Hahn  et  al.[74] proposed  a  method  of
realizing  remote  synchronous  communication  using
graph  state.  The  authors  discussed  how  to  find
algorithms that can be implemented in polynomial time
for  structured  resources  of  specific  classes  when  the
general problem is NP complete. All schemes are based
on  local  complementarity,  helping  to  reduce  the

number  of  measurements  required  in  quantum routing
schemes and achieve better performance than standard
repeater  schemes.  In  2021,  Bapat  et  al.[75] utilized
existing methods to quickly reverse the order of qubits
and  proposed  a  method  to  achieve  arbitrary
arrangement  of  qubits.  They  proposed  the  generic
divide and conquer with adaptive Tripartite Binary Sort
(TBS)  to  sort  binary  strings  algorithm[75].  Through
experiments,  the  authors  confirmed  that  the
performance  of  using  fast  state  reversal  primitives  for
routing  in  worst-case  and  average  scenarios  is  better
than  any  swap  based  protocol;  quantum  routing
algorithms  perform  better  than  any  exchange-based
protocol  in  both  worst-case  and  average  scenarios,
demonstrating the first quantum acceleration of unitary
quantum  routing.  Optical  quantum  routing  is  the
quantum  node  of  optical  quantum  networks,
responsible  for  providing  basic  data  processing  and
routing  functions.  In  the  same  year,  Li  et  al.[76]

proposed a method for achieving single photon routing
at  different  frequencies.  By  designing  the  number  of
embedded emitters,  the  structure  of  scatterers,  and the
cavity-emitter  interaction,  this  method  can  design  the
routing peak of photons and control the routing ability
of  photons  with  different  frequencies.  The  authors
conceived  a  quantum  photon  routing  scheme,  which
uses  the  terminal  channel  to  control  the  propagation
direction of photons.

4    Conclusion

The  rapid  development  of  artificial  intelligence  is
constrained by the massive amount of data computation
and  storage,  and  traditional  servers  cannot  satisfy  the
need for parallel computing power. Besides improving
the performance and efficiency of artificial intelligence
computing systems, it is also necessary to explore new
technologies  that  can  enhance  computing  power.
Quantum,  as  a  universal  technical  method,  has  great
adaptability.

When quantum is applied to computation, it becomes
quantum  computation;  when  quantum  is  applied  to
communication,  it  becomes  quantum  communication;
when  quantum  is  applied  to  artificial  intelligence,  it
forms  QAI.  QAI  benefits  from  the  strong  quantum
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advantages, which are expected to break the bottleneck
of AI and support the revolutionary development of AI
computing  power  and  storage.  Compared  with
traditional  artificial  intelligence,  quantum  artificial
intelligence can use quantum effects to improve search
efficiency  and  operation  speed,  and  overcome  the
drawback  that  traditional  algorithms  are  prone  to  get
stuck in local optima.

The integration  of  quantum computing  and artificial
intelligence  is  still  in  the  initial  stage,  and  it  faces
challenges at different levels:

(1)  Design  quantum  artificial  intelligence
algorithm

If  traditional  artificial  intelligence  algorithms  are
implemented  on  quantum  computers,  they  can  only
execute serial computations, which does not utilize the
quantum  advantages  of  the  hardware.  Therefore,  to
facilitate parallel computing and to harness the superior
computational  power  of  quantum  computing,  it  is
imperative  to  design  quantum  artificial  intelligence
algorithms that are tailored for quantum computers.

(2)  Build  a  hybrid  architecture  of  quantum-
classical computing

From the standpoint  of current technology, quantum
computing  cannot  entirely  supplant  traditional
computing.  Instead,  there  exists  a  state  of  mutual
enhancement,  parallel  advancement,  and  cross-
integration  between  the  two.  Viewing  the  quantum
processor as a co-processor to classical computing can
help  address  some  of  the  limitations  of  traditional
artificial  intelligence,  such  as  dependence  on  training
data, lack of robustness, and absence of cognition. The
construction of a hybrid model that combines quantum
and classical computing can lead to efficiencies where
the  whole  is  greater  than  the  sum  of  its  parts,  paving
the  way  for  exploration  into  deeper  and  broader
application fields.

(3) Preparing quantum datasets
Quantum  data,  characterized  by  entanglement  and

superposition,  differ  significantly  from  classical  data.
Storing  and  processing  such  data  with  a  traditional
computer  necessitates  an  exponential  amount  of
resources.  Therefore,  generating  the  required  quantum
data  using  quantum  computers  or  other  quantum

mechanical  equipment  has  become  a  primary  area  of
research in the era of big data.

(4)  Increase  the  number of  controllable  qubits  in
quantum computer

As of  now,  the  controllable  quantum bit  quantity  of
the  universal  quantum  computer  is  represented  by  the
127  quantum  bits  held  by  the  quantum  computer
“Eagle” developed  by  IBM.  For  the  special-purpose
quantum  computer,  the  D-Wave  Advantage  quantum
computer  announced  by  D-Wave  Company  contains
more than 5000 qubits. This is hundreds or even tens of
thousands  of  orders  of  magnitude  different  from  the
millions of qubits required to solve practical  problems
using quantum computing.

Artificial  intelligence  is  poised  to  transition  into  the
era of quantum artificial intelligence. The ripple effects
of  quantum  artificial  intelligence  across  various  fields
are  anticipated  to  break  through  existing  bottlenecks.
For instance, in the financial industry, it could enhance
transaction  efficiency  and  bolster  fraud  detection.  In
the realm of biomedicine, it could aid in understanding
molecular  structures  and  functions.  In  the  energy
sector, it could expedite the control and optimization of
energy  systems,  thereby  improving  energy  utilization
efficiency,  among  other  benefits.  Looking  ahead,
quantum  artificial  intelligence  is  expected  to  not  only
drive the development of applications and technologies
but  also  revolutionize  existing  architectures,  ushering
in  a  new  wave  of  scientific  and  technological
revolution.
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