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ABSTRACT We describe a novel scanning microwave limb sounder (SMLS) instrument that performs rapid
and broad azimuth conical scans of Earth’s limb while simultaneously scanning the limb in the vertical. This
azimuthal scanning capability gives dramatic improvement in temporal and spatial coverage over that of
previous limb sounding instruments. In a 1500-kilometer altitude, 52°-inclination Earth orbit, SMLS provides
6–8 vertical profile measurements separated by 1.9 hours every 24 hours everywhere between ±65° latitude,
and 2–4 such measurements everywhere between ±(65–82°). Horizontal resolution is ∼50×50 km. Vertical
resolution is ∼2 km for water vapor and cloud ice and ∼1–3 km for chemical species. In an equatorial orbit,
emphasizing the tropics and subtropics, SMLS produces profile measurements every 1.9 hours everywhere
between ±35° latitude. SMLS measurements address scientific issues of relevance to the upper troposphere,
stratosphere, mesosphere, and lower thermosphere regions of the atmosphere (heights from ∼10 km to
∼100 km).

INDEX TERMS Microwave limb sounding, microwave remote sensing, ozone monitoring, temperature
profiling, cloud ice measurements, pollution measurements, global climate variable, microwaves in climate
change.

I. INTRODUCTION
The microwave limb sounding technique [1] obtains atmo-
spheric vertical profile measurements by passively observing
natural thermal radiation as the instrument antenna field-of-
view (FOV) is vertically scanned through the atmospheric
limb. The two Microwave Limb Sounder (MLS) instruments
developed by the NASA Jet Propulsion Laboratory (JPL) have
provided 32 years of daily near-global atmospheric measure-
ments. The Upper Atmosphere Research Satellite (UARS)
MLS [2] was launched 15 September 1991 and operated in
orbit until 25 August 2001. The much-more-capable Earth
Observing System Aura satellite Microwave Limb Sounder

(EOS or Aura MLS) [3] was launched 15 July 2004 and, at
the time of writing, continues operating in orbit. Atmospheric
measurements are made at all times of day and night, includ-
ing in the presence of ice clouds and dense volcanic aerosol.

Measurements from Aura MLS include:
1) 16 chemical species in the upper troposphere, strato-

sphere and/or mesosphere [4],
2) Temperature in the stratosphere and mesosphere [4],
3) Geopotential height of pressure surfaces in the strato-

sphere and mesosphere [4],
4) Water content of ice clouds in the upper troposphere

[4],
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5) Wind in the mesosphere [5],
6) Gravity (buoyancy) waves in the mesosphere [6],
7) Geomagnetic field variations in the mesosphere and

lower thermosphere due to solar storms [7].
8) Information on bulk alignment of cirrus particles in

the upper troposphere [8].
These measurements have helped improve our understand-

ing of numerous atmospheric processes, especially strato-
spheric ozone depletion by chlorine. More than 1850 MLS-
related peer-reviewed scientific publications have been pro-
duced to date; a continually updated publication list is publicly
available online [9]. A summary of scientific results from
UARS MLS, and from Aura MLS until 2015, is in [10].

A limitation of the MLS technique, as deployed on satel-
lites to date, is that measurements are made only along the
suborbital track (Aura MLS) or along a track offset from
the suborbital (UARS MLS). The Scanning MLS (SMLS)
concept described here overcomes these limitations and pro-
vides multiple measurements with no inter-orbit gaps every 24
hours over most of the globe.1

II. TECHNIQUE
Novel features of the SMLS technique are:

1) broad and rapid azimuth conical scans of the instrument
field-of-view that are performed simultaneously with
the slower vertical scan, and

2) deployment in a higher orbit than previously used for
microwave limb sounders.

The combination of these features provides atmospheric
vertical profile measurements that overlap on many successive
orbits, covering most of the globe.

Fig. 1 shows the dramatic improvement in measurement
spatial coverage of SMLS over that of UARS and Aura
MLS. Fig. 2 shows how overlapping SMLS scan swaths from
successive orbits lead to multiple measurements at a given
location and give the greatly improved temporal coverage.

III. ILLUSTRATIVE MEASUREMENTS
We chose a 1500-km altitude, 52°-inclination, circular orbit
as an illustration of SMLS measurement capability. This 1.9-
hour-period orbit is a compromise between (1) higher orbits

1A large number of scanning microwave remote sensing instruments
have been implemented to date, starting with the cross-track Scanning
Microwave Atmospheric Sounder (SCAMS) for atmospheric measurements
on the NASA Nimbus-6 satellite launched in 1975 [11], and the
azimuth-conical-scanning Scanning Multichannel Microwave Sounder
(SMMR) for, primarily, surface measurements on the NASA Nimbus-7
satellite launched in 1978 [12]. Since 1978, cross-track scanning microwave
radiometers to measure atmospheric temperature profiles have been
continuously deployed on U.S. operational meteorological satellites
(see NOAA Satellite Information System, The Joint Polar Satellite
System (JPSS), https://www.noaasis.noaa.gov/POLAR/JPSS/jpss.html, and
National Environmental Satellite, Data, and Information Service, Advanced
Technology Microwave Sounder (ATMS), https://www.nesdis.noaa.gov/our-
satellites/currently-flying/joint-polar-satellite-system/advanced-technology-
microwave-sounder-atms). The unique aspect of the SMLS scan system is
that, for the first time, it combines conical azimuthal-scanning and vertical
limb scanning to obtain unprecedented spatial and temporal coverage for
limb sounding measurements.

FIGURE 1. Comparing measurements of UARS and Aura MLS (top) and
SMLS (bottom) for a small portion of an orbit. Each point shows the center
location of a profile measurement.

FIGURE 2. Example of individual SMLS scan swaths on successive orbits.
In this example, the atmosphere over Mexico City is repeatedly observed
on 8 successive orbits. The orbits are numbered sequentially, with orbit
number 2 (shown with a thicker line) being the orbit shown in Fig. 1.

requiring a larger antenna to provide a given vertical resolu-
tion and (2) lower orbits having poorer global coverage. The
inclination and right ascension of the orbit ascending node are
chosen to (1) favor measurements in the summer hemisphere
to better study global transport of air pollution lofted to the
upper troposphere by deep convection, which peaks during
the summer, (2) give measurements to ±82° latitude on each
orbit, and (3) have a coverage pattern that repeats annually.
The instrument concept, described later, scans ±65° in az-
imuth every 0.5 s. Fig. 3 shows, for this orbit, a sample of the
SMLS measurement swaths for 8 consecutive orbits. Fig. 4
shows the number of measurements around the globe for a
representative 24-hour period. Other orbits could be chosen
to optimize specific science objectives. An equatorial orbit to
emphasize the tropics and subtropics, for example, provides
profile measurements every 1.9 hours everywhere between
35° N and 35° S. The SMLS scans and measurement coverage
are in-orbit programmable.
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FIGURE 3. Example of SMLS measurement coverage (turquoise color) on successive orbits. Labels under each image give local times for this example
day’s measurements over Houston, Texas (red dot).

FIGURE 4. Example SMLS measurement coverage for a typical day.
Everywhere within a given color is measured the number of times per
24-hour period indicated by that color. Successive measurements are
separated in time by 1.9 hour. The coverage drifts in longitude each day as
the orbit plane precesses in response to Earth oblateness.

Fig. 5 shows atmospheric measurement capability for the
example SMLS instrument considered here, which measures
in two spectral bands: 180–280 GHz and 550–780 GHz.

The SMLS azimuth scanning capability should be espe-
cially valuable for improving our understanding of regional-
scale processes in the upper troposphere. These include
convective processes that play prominent roles both in cli-
mate feedback mechanisms and in depositing boundary layer
pollution into the upper troposphere, where it is transported
globally. The combination of fine temporal resolution and
full global coverage of vertically resolved measurements of
water vapor and cloud ice should be valuable for testing
and improving the representation of clouds in climate mod-
els. The SMLS regional-scale composition measurements are
also critical for stratosphere-troposphere exchange and upper-
troposphere and lower-stratosphere transport in the subtropics
and midlatitudes [15], [16]. These are needed for quantifying

the distribution of radiatively active trace gases where they
have largest radiative impact.

The SMLS FOV width at the tangent point is 30 km in
the horizontal, normal to the line of sight, and 0.5–1 km
in the vertical. Special ‘limb-tracking’ observations of Aura
MLS (whereby the limb tangent point is maintained at a fixed
altitude with respect to Earth’s surface for extended periods)
have shown that 50-km horizontal resolution (or better) along
the line-of-sight can be achieved with SMLS.

Measurement precision depends upon the specific measure-
ment (including spectral line width, which varies significantly
with atmospheric pressure, as well as line strength) and on the
time used to make it. Furthermore, precision and resolution
can be traded for each other, both through choice of scan
rate/range and through choices of smoothing parameters in
ground data processing algorithms. A ‘global coverage’ scan
mode, with individual radiance measurements at 20 points
in the vertical and every ∼50 km along the ±65° azimuth
scan arc, provides useful measurements of upper tropo-
spheric water vapor, cloud ice, and temperature. Measurement
times required for other upper tropospheric measurements are
shown in Fig. 6. Typical values for enhanced abundances of
boundary-layer pollution injected into the upper troposphere
(the injections of most interest) should be measurable with the
‘global coverage’ scan mode for CO, HCN, CH3CN, CH3OH,
H2CO, SO2, and NO. A ‘regional targeted’ scan mode (de-
scribed in the caption of Fig. 6) should allow additional
measurements of upper tropospheric O3, HNO3, and NO2.

Upper tropospheric composition measurements are made
from observations of spectral line emission in the 180–
280 GHz region. This spectral region also provides strato-
spheric information. Stratospheric, mesospheric, and lower
thermospheric measurements are made from observations in
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FIGURE 5. Atmospheric measurement capability for the example SMLS instrument considered here. Dotted lines are goals. Geomagnetic field
measurements observe solar storm disturbances. The ‘gravity waves’ indicated here are what atmospheric scientists usually call ‘buoyancy waves’ (they
are not Einstein’s gravitational waves!). Fig. 2 of [13] shows 25 ions, in decreasing order of detectability (on a per-ion basis), whose millimeter and
submillimeter spectra are in the JPL Spectral line Catalog [14].

the 550–780 GHz region (chosen to cover both the strong line
of H2O at 557 GHz and of O2 at 774 GHz). The spectral
lines chosen here for SMLS measurements were selected from
considerations of (1) line strength, (2) freedom from interfer-
ence, and (3) instrument simplification. This is the method
used for selection of spectral lines measured by Aura MLS.
Spectroscopic data used in selecting the targeted species lines
are from the JPL Spectral Line Catalog [14]. Pressure height
reference for measurements is obtained from the 233.946 GHz
O18O line for the low-frequency radiometer and from the
773.838 GHz O2 line for the high-frequency radiometer.

Aura MLS upper tropospheric measurements include wa-
ter vapor, cloud ice water content, O3, and CO [4]. These
species would also be measured by SMLS in the upper tro-
posphere, along with others. Fig. 7 illustrates the value of
the improved SMLS temporal and spatial coverage in the
upper troposphere by showing an example result from the
GEOS-CHEM atmospheric model [17] with the same hor-
izontal and temporal resolution as SMLS. This example is
enhanced formaldehyde (CH2O) being convectively injected
into the upper troposphere over the southeastern U.S. CH2O
is a proxy for volatile organic compound (VOC) emissions.
Quantifying biogenic emissions of VOCs is important for
improving our understanding of tropospheric radical chem-
istry that affects air quality. Strong biogenic emissions of the
VOC isoprene (C5H8) cause enhanced abundances of CH2O
to form. During summer, when VOC emissions peak, there is
also frequent deep convection that deposits enhanced CH2O
directly into the upper troposphere, as shown in Fig. 7. This
CH2O can be the primary source of HOx, which regulates
upper tropospheric O3 production, especially in the tropics
and subtropics. SMLS could measure the temporal and spatial

evolution of injections of CH2O and other boundary-layer
gases into the upper troposphere. These measurements would
be valuable for both directly quantifying the injections and
improving the models. They also should be valuable for
identifying the specific source locations and global transport
pathways for pollution injected into the upper troposphere.
Such information could be essential for supporting any future
international regulations curtailing emissions of pollution.

Aura MLS observations include volcanic injections of SO2

[18] and HCl [19] into the stratosphere. The 2022 eruption of
the undersea Hunga volcano is notable in that, in addition to
injecting a large (though not exceptional) amount of SO2 into
the stratosphere, it lofted an unprecedented amount of water
vapor [20]. Many studies of the consequences of this strato-
spheric moistening [21], [22] have relied heavily on Aura
MLS observations. Aura MLS measurements have also been
central to studies of pyro-convective injections of enhanced
HCN, CH3CN, CH3Cl, CH3OH, and, in some cases, H2O,
from the troposphere to the stratosphere [e.g., 23]. Aura MLS
tracked plumes of polluted air deposited in the stratosphere
by the 2019/2020 Australian New Year’s fires for ∼110 days
[24]. The subsequent widespread conversion of stratospheric
chlorine from reservoir to active forms was unprecedented
and not explicable by then state-of-the-art atmospheric chem-
istry models [25]. The SMLS described here measures all
these species and more with dramatically improved spatial
and temporal coverage, which would greatly aid tracking of
such plumes and better quantification of their dynamical and
chemical impacts in the stratosphere. The improved SMLS
spatial and temporal coverage would also greatly benefit stud-
ies of the vertical transport of polluted air into the Asian
summer monsoon anticyclone in the upper troposphere and
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FIGURE 6. Vertical bars show the SMLS measurement time needed for an upper tropospheric spectral line radiance signal-to-noise of 10 for various
species (taller bars indicate greater integration times needed for some species due to a combination of low abundance and intensity of the spectral lines
required for upper tropospheric measurements2). Colors of the bars give representative abundances of upper tropospheric species for different
situations. Blue is for typical or minimum abundances; pink for enhanced abundances that have been observed or inferred; brown for enhanced
boundary layer abundances that can be convectively transported to the upper troposphere; grey for soluble species that may reach the upper
troposphere less easily. This plot is for a tropical ‘background’ atmosphere and 9 km altitude; it includes 2–3× attenuation of the target molecule signals
by water vapor continuum, as well as spectral line wings of ‘interfering’ gases. For the tropical troposphere above 12 km, a region of considerable
interest, SMLS signals are typically 2–3× stronger than indicated here. Horizontal lines give SMLS individual measurement times. The thick solid line is for
the SMLS ‘global coverage’ scan mode described in the text, with 3 ms individual measurement time. The dashed horizontal line is for an SMLS ‘regional
targeted’ scan mode with, for example, 2000 km cross-track width and measurements at 5 points in the vertical every 50×50 km in the horizontal, giving
50 ms individual measurement time. A measurement has greater than 10× signal-to-noise if its bar is below the horizontal line. There is a continuum of
scan modes available, easily implemented by in-orbit programming of the scan. A ‘local targeted’ scan mode with measurements at 3 points in the
vertical and every 50×50 km in the horizontal over a 200 km cross-track width allows 1 s for each measurement. Because of the large dynamic range in
the abundance of many species, useful measurements can be obtained with a signal-to-noise of 3, which reduces the required measurement time 9×
from that shown here. The precision and spatial resolution of retrieved geophysical profiles ultimately depends on a range of factors, including
instrument noise temperature, scan range and rate, atmospheric molecular line strengths, and choices made in the geophysical product “retrieval”
calculations. Summary quantities shown here result from consideration of the degree to which molecular abundances contribute to observed radiances
(the “weighting function”) combined with radiance signal-to-noise, informed by experience with Aura MLS. Cloud ice measurements from ‘continuum’
emission, and temperature from O18O, are obtained in milliseconds.

lower stratosphere [26] and of the chemical and transport
processes affecting the air confined within that region during
northern summer.

The SMLS temporal and spatial resolution, and its global
coverage with no inter-orbit gaps, can test and improve our
understanding of other stratospheric processes such as (1)
the formation of polar stratospheric clouds, which cause en-
hanced ozone destruction in polar regions, (2) the dispersion
of depleted ozone from the stratospheric polar vortex to mid-
latitudes via narrow filaments, and (3) rapid transport and
anomalous mixing of trace gases (including O3, N2O, H2O,

2All the species in Fig. 6 have much stronger lines at higher frequencies,
which – due to increased water vapor attenuation at higher frequencies –
are not suitable for the SMLS upper tropospheric measurements. Active
microwave limb sounding, described in Appendices 4 and 5 of [13], has
the potential for upper tropospheric species measurements with much better
precision. Fig. 8 of [13] shows that active measurements with 2 m antenna
(half the size of the SMLS antenna described in this paper) has ∼15,000
times better signal-to-noise than passive for 180–280 GHz upper tropospheric
measurements such as those indicated in Fig. 6. Active microwave sounding,
however, has the disadvantage (for a minimum two-satellite active system) of
having much poorer vertical resolution and global coverage than SMLS.

CO, HCl, HNO3, others) during vortex disruptions caused by
sudden stratospheric warmings. SMLS – because of its ability
to make composition measurements in the presence of aerosol
– would be an invaluable component of observing systems
intended to track the impacts (intentional and inadvertent)
of intervention strategies to mitigate climate change through
injection of aerosols into the stratosphere. (See [13] for a new
instrument system concept whose primary objective is detect-
ing threats to the ozone layer.) The SMLS measurements also
could improve our understanding of mesospheric and lower
thermospheric processes such as (1) the breaking of gravity
waves and (2) the effects of solar storms on atmospheric
composition [27]. A ‘mini-SMLS’, using an appropriate high-
frequency radiometer and in a 1500-km polar orbit, gives
complete polar coverage (no inter-orbit measurement gaps)
every 1.9 hours.3 This would provide new information on
the dynamics and electrodynamics of the mesosphere and

3Size of the SMLS instrument described in this paper is driven by upper
tropospheric measurements. An instrument devoted to the mesosphere and
lower thermosphere could be one-tenth the size.
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FIGURE 7. GEOS-CHEM atmospheric model results for CH2O over the
southern U.S. on 11 July 2000. Colors give the abundance of CH2O in parts
per billion by volume (ppbv) with each row representing a different
altitude as indicated at the left. Each column is for the time at the bottom
of that column. Convective deposition into the upper troposphere (above
10 km) is seen at 14 UT. SMLS has approximately the same spatial and
temporal resolution as this model. SMLS precisions are indicated by
arrows on the color bars.

lower thermosphere and the impacts of solar storms on those
processes and regions. In addition to neutral chemical species,
many ions might be measurable (See Fig. 2 of [13]).

The various science issues mentioned above demand mea-
surements with varying degrees of precision and resolution.
Nevertheless, we are confident that the 50×50 km SMLS
spatial resolution represents a needed improvement in mea-
surement capability for these and other topics. Further studies,
including end-to-end simulations based on 3D model out-
put, can more fully quantify the degree to which SMLS
observations provide new insights into front-line questions in
atmospheric science.

IV. INSTRUMENT
Fig. 8 shows a generic SMLS signal flow block diagram. Limb
radiation, for the example instrument described in this paper,
is collected by an antenna system with a 4×2 m primary
reflector. The primary reflector surface, and that of follow-
ing secondary and tertiary reflectors, are circularly symmetric
about the azimuth scan axis [28]. A complete azimuth scan
is performed every 0.5 s by ±65o back-and-forth rotation of
a 10-cm mirror located at a beam waist following the tertiary
reflector. The vertical limb scan is accomplished by articu-
lating the complete antenna and azimuth scan mirror system,
totaling ∼200 kg (of which ∼100 kg is the primary antenna),
by ∼1o. A complete vertical scan is performed every 10 s to
give along-track sampling every 50 km (the orbital movement
of the field-of-view tangent point in 10 s).

The primary reflector has a 3.2 m high aperture as projected
in the vertical plane normal to the boresight direction (4 m to-
tal length) with a 2 m focal length. The equivalent focal length
for the complete optical path to the radiometer feed horns is
12 m. The FOV has the same size and shape for all elevation

and azimuth view angles, with a 25:1 aspect ratio at the limb
(cross-track:vertical). The ±65o azimuth scan range gives a
7700-km cross-track swath width for a 1500-km orbit. An
individual radiance measurement is made every 3 ms, giving
50 km cross-track sampling to match the along-track sam-
pling. Overscan in the vertical accounts for Earth’s oblateness
and changes in vertical scan range with azimuth. Calibration
is performed by viewing cold space and a calibration target
through a polarization grid. In-orbit programmable rotation of
this grid provides multi-point calibration.

Our example SMLS instrument has radiometers in two
spectral bands to produce the measurements shown in Fig. 5:
(1) 180–280 GHz mainly for the upper troposphere, and (2)
550–780 GHz for the stratosphere, mesosphere and lower
thermosphere. Local oscillator frequencies are programmable
in orbit to allow coverage of selected spectral regions within
these bands. State-of-the-art receiver noise temperatures for
SIS receivers for our 2005 study (see next paragraph) were
∼100 K for the 200 GHz band, and ∼200 K for the 600
GHz band (Fig. 15 of [29]. These values were used — with
an added 100 K to account for the noise introduced by the
thermal signal itself — in calculations of the signal-to-noise
estimates leading to the results shown in Fig. 6 and 7. Current
technology gives SIS receiver noise temperatures of ∼40K for
the 180–280 GHz band [30] and ∼100 K for the 570–780 GHz
band [31].

An unpublished conceptual design of SMLS was done
as part of a JPL mission study for NASA in 2005, when
the authors were together at JPL. It used superconductor-
insulator-superconductor (SIS) radiometers to allow useful
radiance measurements in milliseconds of measurement time.
Its estimated power consumption, including 180 W for the SIS
radiometer cooler, was 400 W (150 W less than that of Aura
MLS). The estimated mass was 450 kg (same as that of Aura
MLS) and data rate was 5 Mb/s (50× larger than for Aura
MLS, but reducible with data compression techniques).

Other work at JPL has addressed the design and per-
formance of the SMLS antenna. Given that the observing
frequencies cover essentially the same range as that em-
ployed for Aura MLS, the same optical surface precision
requirements are expected to be sufficient for SMLS. As
with Aura MLS, thermal gradients across the reflector sur-
face are a concern. Studies of these gradients have included
fabrication of a full-size primary reflector that was then
subjected to thermal testing and near-field-range calibration.
Thermal deformations were found to be less than a tenth of
a wavelength at 280 GHz (0.24 wavelengths at 660 GHz),
meeting requirements for rigidity. Measured and modeled
distortions agreed to within 14% [32]. A comparably large
(3.5 m diameter) antenna system operating at frequencies
from 500 GHz into the far infrared has already been demon-
strated on the orbiting Herschel Space Observatory [33]. The
SMLS antenna system is simpler than that used for Her-
schel, as the latter mission required a cooled antenna, whereas
for SMLS, only the SIS receiver components need to be
cooled.
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FIGURE 8. Generic SMLS signal path block diagram. The broad and rapid conical azimuth scan is performed by a small back-and-forth rapidly rotating
mirror placed at a beam waist. The azimuth scan mirror rotation axis coincides with the axis of symmetry of the overall antenna system, which is in the
nadir direction. Vertical scanning, slowly over a small angular range, is by up-and-down rotation of the entire antenna system about an axis that is
perpendicular to nadir and to the direction of orbital motion. The signal path between the antenna system and the calibration (cal) mirror is, for clarity,
shown here in the plane of the page, but it actually coincides with the vertical scan axis, which is orthogonal to the page. Routine calibration, using the
cal mirror, is done by views of a calibration target and ‘cold’ space through a programmable rotating polarization grid that selects the amount of each. A
‘zero-point’ calibration through the entire antenna is occasionally performed by vertically scanning the field-of-view tangent point to be well above the
atmosphere for views of cold space.

Since the 2005 study, significant improvements in
millimeter-wave solid-state source technology (amplifiers and
frequency multipliers) have made it possible to cover broader
spectral bandwidths and use fewer radiometers. For exam-
ple, a single amplifier module coupled with a Schottky diode
frequency tripler, now commercially available from Virginia
Diodes, Inc. [34], can drive the SMLS 550–780 GHz ra-
diometer. Radiometer performance has also improved since
the launch of Aura MLS. Space-ready room-temperature re-
ceiver noise temperatures (TR) in the 500–700 GHz frequency
range are now in the 1000–2000 K (double-sideband) range
[35] and drop by almost a factor of two if passively cooled
to 150 K [36], perhaps alleviating the need for more complex
and costly helium-cooled superconducting detectors used in
the 2005 study.

Fig. 9 shows an illustration of SMLS stowed for launch in
the payload module of a Delta-II launch vehicle and operat-
ing in orbit. A study was made to ensure that the radiation
environment of the 1500-km orbit does not stress the instru-
ment or mission designs. A companion instrument can be
accommodated by the launch vehicle, as studied in 2005.
An ultraviolet/visible instrument measuring pollution in the

FIGURE 9. Artist renditions of (left) SMLS stowed in the payload faring of
a Delta-II rocket and (right) deployed in orbit with SMLS looking into the
page. The SMLS primary reflector is stowed and deployed using a precision
hinge/latching mechanism.

lower troposphere, such as a follow-on to TROPOMI [37],
would be an excellent complement to SMLS. Their combined
measurement suite would provide tracking of pollution from
its surface sources to its spread around the globe and to the
upper troposphere and lower stratosphere.
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V. FUTURE POSSIBILITIES
Much better horizontal resolution than the ∼50×50 km of the
SMLS described here is needed to resolve convective-scale
processes in the upper troposphere. Such improvement in
resolution potentially could be obtained with a 180–280 GHz
conical-scanning antenna system having ∼1 km field-of view
width in both the vertical and horizontal planes at the limb tan-
gent point. Two SMLS-type instruments with such antennae
could be placed in adjacent orbits to nearly simultaneously
observe the same parcel of atmosphere with their respec-
tive line-of-sights crossing at an angle of, say, 45° or more.
Such a system could, in principle, provide measurements with
∼1 km resolution in all three spatial dimensions. Over the
last several years, designs and several important radiome-
ter components have been demonstrated for two-dimensional
planar integrated fly’s eye heterodyne array receivers [38].
Individually optimized beam forming lenses to mitigate wide
scan angle antenna gain loss and phase distortion have also
been demonstrated [39]. Further improvements are likely to be
forthcoming and may allow an electronically scanned phased
array receiver. Additional studies are needed to determine the
feasibility of such an instrument.
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