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ABSTRACT We derive a general expression for the mth-order intercept point (/Pm) of an analog RF receive
beamforming system comprising multiple inputs, an array of nonlinear elements, and a single output. Given
parallel inputs, the general /Pm expression includes the gain and nonlinearity of each element in the array as
well as both intrinsic and extrinsic loss factors and phase shifts. We then impose constraints on the calculation
of IPm by making certain assumptions about the statistical relationship between the phases of the distortion
signals at the output to obtain the coherent and incoherent mth-order output intercept points (OIPm), which
determine lower and upper bounds, respectively, on an actual measured output intercept point. Finally, we
present the results of a series of experiments and show that the OIP2 and OIP3 obtained from 36 independent
measurements all fall between the theoretical calculated bounds. These results will be of utility in the design,
analysis, and testing of analog phased-arrays, multi-channel receivers, and receive-mode beamformers.

INDEX TERMS Analog beamforming, distortion, intercept point, multi-channel receivers, output intercept
point, parallel inputs, phased-arrays, receive-mode beamformers.

I. INTRODUCTION

Many modern-day radar and telecommunications applica-
tions utilize beamforming that is performed in the digital
domain. Digital beamforming offers great flexibility and con-
trol [1], [2], [3], thereby enabling beam-steering to any desired
angle. Furthermore, signal processing techniques such as pre-
distortion and nonlinear equalization that minimize system
nonlinearity and in turn extend the dynamic range [2] can
be performed very efficiently in the digital domain. However,
digital beamforming systems have certain drawbacks such as
the inability to provide spatial filtering on receive to miti-
gate strong interferers in a dense signal environment [1], [4]
and high power consumption due to the analog-to-digital and
digital-to-analog converters [3].

In contrast, analog beamforming systems offer clear ad-
vantages for certain applications, especially those where
compactness [5], low power consumption [3], simplicity
[3], or wide bandwidths [3], [5] are needed. Recently
analog approaches have been considered for multifunction

wideband antenna systems for joint electronic warfare/radar
electronically-steered arrays [6]. In these applications, a small
amount of noise figure can be traded off for maximizing
dynamic range where intermodulation products clutter the
spectrum. This is especially useful for systems that expe-
rience high co-site interference or that put a premium on
wide bandwidth detection and signal sorting. In addition to
military needs, analog beamforming can also be advanta-
geous for some 5G applications [3], [5] where simplicity and
power efficiency are benefits while trading off adaptability
and reconfigurability. In general, certain systems can benefit
from keeping signals in the analog domain before eventual
transition to the digital domain. These benefits include near-
instantaneous beamforming with moderate angular rejection
or out-of-band rejection that are important in such applica-
tions as amplitude-based direction finding, main-beam power
gain, and retro-directive beamforming.

Both high dynamic range and high linearity are needed
in these applications where the analog receive beamformer
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(ARBF) must operate in a complex electromagnetic envi-
ronment and be subjected to multiple simultaneous signals.
Therefore, quantifying the nonlinear behavior of such a
system is important. The intercept point formulas for single-
input, single-output devices and serial cascades are well
known [7], [8], [9], [10]. These formulas are not applicable to
multiple-input, single-output systems, such as an ARBF sys-
tem, comprising a parallel array of channels each containing
a serial cascade of nonlinear devices. Thus, there is a need
for an analysis approach for ARBF systems. Importantly, dis-
tinguishing the assumptions of coherence versus incoherence
among distortion signals sets lower (worst case) and upper
(best case) bounds, respectively, on the nonlinear behavior of
a system, as will be described in detail below.

Previous works on ARBF systems were limited in that they
a) contain analyses that are restricted to coherent in-phase
distortion signals, or b) consider only second- and third-
order nonlinearity, or ¢) contain no nonlinearity analysis at
all. Rupakula et al. [11] derived third-order input intercept
points (/IP3) for receive-mode 5G arrays containing multiple
nonlinear elements in series on parallel channels but did not
consider any other nonlinearity order and did not consider
partially-incoherent addition of the distortion signals. Gatti et
al. [12] derived /IP3 equations for an active array antenna with
a receiver comprising a parallel array of channels, but only
where each channel comprised a single nonlinear element. No
other nonlinearity orders were considered nor was the case of
incoherent distortion signals. Holzman [13] derived mth-order
output intercept points (OIPm) of an active phased array an-
tenna but likewise only considered the case of each channel
containing a single nonlinear element and did not consider
the case of incoherent distortion signals. Recently, Bucholtz
et al. [14] derived the worst-case OIP2 and OIP3 as well as the
overall gain and the third-order spurious-free dynamic range
of an ARBF system using a power-series nonlinearity model
but did not consider the case of incoherent distortion signals.
Navarrini et al. [15] and Chen et al. [16] designed, fabricated,
and tested multi-channel receivers but did not analyze their
nonlinearity. Spoof et al. [17] and Mondich et al. [18] derived
noise figure equations for hybrid analog/digital and photonic
receive-mode beamforming systems, respectively, but did not
treat nonlinearity.

Hence, the goal of this work is to derive arbitrary-order
output intercept point equations for quantifying the nonlin-
ear behavior of ARBF systems. These include the general
expressions to arbitrary nonlinearity order for the actual out-
put intercept point, and the corresponding theoretical lower
and upper bound output intercept points. Typically the lower
(worst case) bound of the intercept point is of most prac-
tical interest. However, the most general expression for the
intercept point, one that contains all the relevant RF param-
eters, can be of practical utility at the design phase where
decisions on how to allocate various components must be
made while optimizing performance. In addition, the theo-
retical lower and upper bounds have practical utility as a
check on system measurement since any actual measurement
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of an intercept point must fall in between these theoretical
bounds.

The remainder of the paper is organized as follows. In
Section II we provide a brief review of the well-known output
intercept point approach for analyzing nonlinear RF behavior
and we lay the groundwork for analyzing an ARBF array. In
Section III we derive the general mth-order intercept point
(IPm) expression for the full ARBF system written in terms of
all the relevant system parameters. In this section we also ob-
tain OIPm expressions for the coherent and incoherent cases
and show that for a single channel these expressions reduce
to the well-known serial cascade equations. In Section IV
we evaluate the ARBF system OIPm expressions for m = 3
and consider the special cases of purely parallel and purely
serial arrays. We obtain expressions and plots for cases where
a) all the nonlinear elements in the array are identical, and
b) where all elements except one are identical. Case (a) is
helpful in understanding how OIP3 scales with array size
while case (b) quantifies the effect of one “bad” element on
array performance, where the “bad” element has low OIP3
and gain. In Section V we present experimental results for a 2
x 2 ARBF system comprising two channels each containing
two nonlinear elements and show that, for 36 independent
measurements of OIPm (m = 2, 3), all the results fall within
the theoretical calculated bounds given by the coherent and
incoherent expressions. Section VI is a summary and short
discussion of the results. Appendix I provides a glossary and
description of the large number of parameters that appear in
the general expressions. Appendix II lists some mathematical
identities that are useful in Sections III and IV. Appendix III
includes tables of experimental parameters corresponding to
the experimental results in Section V.

These results will be of practical use in the design, analysis,
and testing of analog phased-arrays, multi-channel receivers,
and receive-mode beamformers.

Il. BACKGROUND

In this section we review briefly the standard approach to
evaluating intercept points for a single nonlinear device and
for a single serial cascade of devices to establish nomenclature
and to define symbols.

Parameters and methods for quantifying the nonlinear be-
havior of RF devices comprising a single input and single
output are well-known and well-accepted by the RF commu-
nity. Useful among these parameters is the mth-order output
intercept point OIPm, obtained experimentally with the use
of a diagram such as the one shown in Fig. 1. Here, for a
defined RF input voltage, the output powers at a fundamental
frequency and an mth-order distortion frequency are together
plotted in the small-signal regime, the data plots are extrapo-
lated to higher power levels, and the point at which the two
plots intersect is defined as the OIPm of the device.

The same analysis can be applied to a single-input, single-
output system, such as a serial cascade of nonlinear elements
(NLEs), or stages, as shown in Fig. 2(a), to obtain the actual,
end-to-end OIPm of the array. In this case, the possibility
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FIGURE 1. Output power, P, versus input power, Pj,. Pr: extrapolated
small-signal output power of fundamental; Pp: extrapolated small-signal
output power of mth-order distortion; R: relative suppression between P
and Pp; Ppoise: output noise power.

arises to predict the end-to-end OIPm in terms of the OIPm
values of the individual components. If the RF properties,
including device phase shifts and inter-element delays and
losses are all known, then the calculation of the output inter-
cept point is relatively straightforward. However, the output
intercept point calculated in this fashion may not be “the
OIPm” as commonly accepted by the RF community. We call
the calculation containing the phase shifts the “/Pm” to avoid
any confusion with “the OIPm,” which is based on assump-
tions about the phase shifts and therefore does not explicitly
contain any phase terms. To conform to industry standards,
calculation of OIPm for a serial cascade implies that a sig-
nificant assumption has been made, namely, that at the output
the distortion signals—one from each device—are completely
coherent and are all exactly in phase. This assumption yields
the largest total distortion signal at the output and, hence,
the minimum or most pessimistic estimate of OIPm [7], [8],
[9], [10]. It is this most-conservative, coherent estimate that
is universally assumed when the OIPm of a serial cascade is
calculated in terms of the properties of the individual NLEs.
Also in use are two less common alternative assumptions
about the phases of the distortion signals. In one, the phases of
the distortion signals are assumed to be completely incoherent
[7]. This assumption gives rise to an estimate of OIPm that is
always larger than the in-phase coherent estimate. (The other,
perhaps least-common and least-used assumption is that the
distortion signals are coherent but all combine destructively,
that is, exactly out of phase [8]. However, this approach is
difficult to implement for systems comprising more than two
elements.) In an actual system, it is likely that the distortion
signals will be neither perfectly in phase nor perfectly incoher-
ent. Hence, the value of any actual measured intercept point
will lie in between the calculated minimum (coherent) and
maximum (incoherent) values. Note that although the output
of a serial cascade of, say, S elements contains the vector sum
of S individual distortion signals, it contains only one signal
at a fundamental frequency. Since only the total output power

at a particular frequency is relevant, the phase of this single
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FIGURE 2. (a) Single-input, single-output serial cascade of S nonlinear
elements (NLEs) or stages. (b) Analog receive beamforming (ARBF) system
comprising S NLEs in series on P parallel channels. The P parallel channel
inputs are combined in a perfectly linear summing junction, denoted by %,
to produce a single output. «, is an amplitude weighting factor that
accounts for intentionally applied weighting and the loss due to the
amplitude coupling coefficient associated with the employed signal
combination technique.

fundamental signal is of no consequence and, therefore, the
terms coherent and incoherent will refer only to the phases of
the distortion signals.

Consider now the ARBF system of Fig. 2(b), comprising P
parallel input channels, each containing S nonlinear elements
in series for a total of SP nonlinear elements. Here the output
consists of SP distortion signals and P fundamental signals
and so, in this case, the relative phases of the fundamental
signals at the single output must also be taken into account.

In this work we obtain expressions for the /Pm and OIPm of
the full ARBF system shown in Fig. 2(b) assuming that the RF
power gain and OIPm are known for each individual device,
along with the loss between devices, the coupling and excess
losses of the combiner, and any intentional channel weighting.
We make three different sets of assumptions regarding relative
RF phases at the output:

1) no global assumption regarding any output phases;

2) the fundamental signals are all coherent and exactly in
phase and the distortion signals are all coherent and
exactly in phase;

3) the fundamental signals are all coherent and exactly
in phase but the distortion signals are all completely
incoherent.

In order for the /Pm expression resulting from the first
set of assumptions to be utilized it is necessary that all the
relative phase differences be known a priori and, hence, this
expression will be of utility in a design phase. The sec-
ond assumption, the coherent assumption, conforms to the
industry-standard, worst-case estimate of OIPm and gives the
lower bound. The third assumption, the incoherent case, pro-
vides the upper bound on the overall O/Pm.

Before proceeding we clarify our use of the terms coherent
and incoherent. Let A¢ denote the phase difference between
two RF signals and consider the temporal average (cos A¢).
Consider first the case where the phase difference A¢ is fixed

for all time. Then the two signals are said to be coherent
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and (cos A¢) = cos A¢ can take any value between —1 and
+1, including zero, depending on the value of A¢. On the
other hand, if there is no fixed phase relationship between the
signals then the phase difference becomes a random variable.
In this case the average (cos A¢) can still take any value
between —1 and +1 depending on the probability distribution
of the random variable. In the special case where the phase
difference is uniformly distributed over the range [0, 27) then
(cos Ag) = 0. In this particular case the signals are said to be
incoherent. In all other cases the signals are said to be partially
coherent. Hence, the value of (cos A¢) alone does not deter-
mine coherence or incoherence. (For example, (cos A¢) = 0
occurs when the signals are either a) completely coherent
but with A¢ = /2 or b) completely incoherent.) Instead,
it is the probability distribution of the random variable A¢
that determines the coherence relationship between the two
signals. For the analysis presented here we assume that A¢ is
uniformly distributed when we consider the incoherent case.

In an actual system, the distortion signals will likely be
partially coherent since the noise in any NLE will likely be
uncorrelated to the noise in any other NLE. Hence, any actual
measurement of the output intercept point must lie between
the bounds set by the two extreme assumptions among the
distortion voltages: coherence (worst case) and incoherence
(best case). The 36 independent experimental measurements
reported in Section V are all consistent with this assertion.

Recall that /Pm denotes the output power at which the
fundamental and mth-order distortion powers are equal. As
noted above, a particular constraint must be imposed on the
phases of the distortion signals for /Pm to represent OIPm in
the case of a serial cascade or ARBF system. In the derivation
of IPm, it will be assumed that the input voltage to the de-
vice or system comprises two small-signal, equal-amplitude,
closely-spaced, incommensurate RF tones.

Let m represent the slope of the hypotenuse of the triangle
drawn with heavy-shaded sides in Fig. 1. From the ratio of
the change in P, (dBm) to the change in P;, (dBm) for the
same triangle we have

_ R(dB)+ IPm (dBm) — P (dBm)
o I1Pm (dBm) — Pr (dBm)

. 6]

where the relative suppression R between the extrapolated
small-signal fundamental and distortion output powers, Pr
and Pp, respectively, is R = Pr — Pp. From (1), we obtain

R (dB)
m— 1

IPm (dBm) = + Pr (dBm), )

which can be expressed in power as
I1Pm = rl/(m_l)pp, 3)

where r = pr/pp, and pr and pp are powers measured in
linear units (W). Inserting r into (3) and rearranging yields

Lz Y @
[Pmm—1) — 0 vr) o
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where Vi and Vp are the output voltage amplitudes of the
fundamental and the mth-order distortion, respectively, and
Zy is the real part of the output load impedance (resistance),
which is assumed to be matched to the source, to the NLE
input, and to the NLE output. Equation (4) is the general IPm
equation that will be applied to an ARBF system.

Noting that /Pm = OIPm for a single NLE with one input
and one output and using (4), the OIPm is

2m/(m—1)

orpm=—*t . (5)
27V

Subsequent analysis will make use of (5).

Our approach is as follows.

1) We first define the architecture of the analog array in
terms of P parallel channels each containing S NLEs.

2) We next derive the actual (no phase assumptions) in-
tercept point /Pm for nonlinear order m by summing
the linear voltages and the distortion voltages from each
NLE where each voltage is represented in phasor form.
This gives rise to a somewhat unwieldy expression
comprising dozens of parameters to account for all the
relevant voltages and phases in the system. A complete
list of the parameters is found in Appendix I along with
explanatory two figures.

3) In order to obtain the bounds we next invoke the as-
sumptions of 1) coherent distortion signals all exactly
in phase (lower bound), and 2) incoherent distortion
signals (upper bound).

4) We next evaluate both the coherent and incoherent
bounds for m = 3 in the simple limiting case of a parallel
array with a single NLE on each channel (Section IV-A).

5) Finally, we consider cases for m = 3 where one NLE in
the entire array is “bad” and evaluate the effect of the
position of this one “bad” NLE on the output intercept
point of the system for both the coherent and incoherent
bounds (Sections IV-B-IV-D).

1. ARBF SYSTEM
In this section we derive the general expression for the mth-
order intercept point /Pm of the analog receive beamforming
system shown in Fig. 2(b), from which we obtain the coherent
(worst case) and incoherent (best case) OIPm expressions.
Appendix I contains a complete list of all the parameters
that are used in the analysis in this section along with their
definitions and related figures. The reader may find the iden-
tities in Appendix II to be helpful in working through various
details of the calculations.

A. IPm

The general expression for the /Pm in (4) can be applied to
an ARBF system with P parallel inputs, S elements in series
on each of the P channels, and one output [Fig. 2(b)]. The
output thus comprises the sum of SP distortion signals and
P fundamental signals. To track the phases of signals as they
propagate through the system all voltages will be represented
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by complex phasors. Consequently, the voltages in (4) can be
generalized to

S P
Vo= )Y upsp 6)

s=1 p=1

and
P
Vi — va,p. (7
p=1

Here, vp s is the phasor representing the distortion voltage
at the output that originated in the NLE at location s on
channel p and v, is the phasor representing the fundamental
voltage at the output from channel p. We have found it benefi-
cial to treat the fundamental voltages in a manner analogous to
the distortion voltages and, provided we account for the gains
properly, we can write

VF,p = VF,sp (8)

for the fundamental voltage phasor at the output. With this
modification, and since the order of summation does not mat-
ter, the single-input, single-output equation (4) becomes, for
the ARBF system,

1 __ PD,ot
IPmm=1 — pm

tot

S ZP

_ —1UD,s

= (ZZO)(m D Z L Azp m/2
s=1 <‘Z§=1 UF,sp )

We have taken the perhaps unusual approach of performing
the sum over the p-index first followed by the sum over the
s-index as shown diagrammatically in Fig. 3. With this ap-
proach, the expressions for the coherent and incoherent OIPm
of the ARBF system can be written in a form analogous to that
of the familiar equations for a serial cascade, which is shown
in Section III-B.

At first glance, the expression on the second line of (9) may
look incorrect since it appears to yield S x P fundamental
voltages at the system output. However, upon insertion of
Ur,sp (defined in list of parameters in Appendix I) into (9),
(9) gives P fundamental voltages at the system output, which
is the correct result. The P fundamental voltages at the system
output correspond to the P input voltages to the system, one
per channel, where each channel input voltage has the same
amplitude Vj.

In the analysis that follows, it will be assumed that the
channels are phase matched between each of the inputs and
reference plane o/p A over the operating frequency range
of the system (see Fig. 15 in Appendix I) such that x, =
X, — X1 = 0 and that all phase imbalances between channels
occur between o/p A and the system output, which are ac-
counted for by v, and y,,. Taking this approach will simplify
the analysis by allowing the relative phases at the funda-

mental and distortion frequencies between channels p and
VOLUME 4, NO. 3, JULY 2024
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(b)

FIGURE 3. Reduction of ARBF system in Fig. 2(b) to (a) a serial cascade of
S equivalent NLEs (NLEeq,; to NLE.,s) with P inputs and P outputs, where
each input and output corresponds to the input and output of each of the
P NLEs in NLEqs, plus channel amplitude weighting factors and a
summing junction; and (b) further reduction of (a) to a single equivalent
NLE (NLEcg arsr) With P inputs and one output.

1 at the output to be treated the same way (i.e., with v,
and yp).

Prior to deriving the IPm of the ARBF system, we first
derive expressions for the distortion and fundamental output
powers.

The total distortion power from all S stages and P channels
at the system output is

TR 2
PD.tot = ﬁ Z Z UD,sp
0 s=1 p=1
1S P P
= A ZD?F + Z D;pDyy c0s &5 sq
0 =1 \ =1 ptg=1
| S P
+ 7 Z ZDSPDVP cos&p rp
0 s#Fr=1 \ p=1
P
+ Z Dxpqu Ccos %_sp,rq (10)
p#q=1

Equation (10) contains four sums resulting in a total of S° P
distortion power terms at the system output: 1) a first sum
with SP terms, where s = r and p = ¢, which accounts for
the distortion voltage from stage s on channel p mixing with
itself; 2) a second sum with S(P? — P) terms, where s = r
and p # ¢, which accounts for the distortion voltage from
stage s on channel p mixing with the distortion voltage from
stage s on channel g; 3) a third sum with (82 — S)P terms,
where s # r and p = ¢, which accounts for the distortion
voltage from stage s on channel p mixing with the distortion
voltage from stage r on channel p; and 4) a fourth sum with ($?

—S)(P? - P) terms, where s # r and p # g, which accounts for
525
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the mixing of the distortion voltage from stage s on channel p
with the distortion voltage from stage r on channel g.

The total fundamental power from all P channels at the
system output, obtained by setting x, = 0 for phase matched
channels between inputs 1 to P and o/p A, is

2

1 P
= — v
PF tot ZZ() pZ_; F,p

P
Z FspFsqcos ¥y g (11)

1 (&,
= 270 ZF spt
p=1 p#q=1

Equation (11) contains two sums yielding P? total funda-
mental power terms at the output of the system: 1) a first sum
with P terms, where p = g, which accounts for the mixing of
the fundamental voltage from channel p with itself; and 2) a
second sum with (P? — P) terms, where p # ¢, which accounts
for the mixing of the fundamental voltages from channels p
and q.

We can now obtain the general /Pm of the ARBF system.
From (9), (10), (11), and the definitions in Appendix I, we find

s P P
! Z 2p=1D 317 + 2 pzg=1 DspDsq €05 §5p.sq

=2z ’ , "
01 =1 <Zp:1 Fs%; + Zp;ﬁq:l FspFsq cos 1/’1),(1)

(s
S P P
Zzpzl DspDyp €08 Esp rp+d_ sq—1 DspDrg cOS ésp,rq-‘

P P "
s#r=1 (szl FspFrpt_psq—1 FspFrq cos V’zxq) J

12)

Equation (12) is a general result that can be used to compute
the IPm of an ARBF system if all of the system parameters are
known. Recall that it is also useful to estimate the value of
the intercept point by making certain global assumptions
about the relative phases in (12).

We first assume the channels are phase matched over the
operating frequency range of the system such that there is a
zero-relative phase difference between channels at the output,
thatis, yp, =y, = 0 and ¢, = 4, = 0, hence, yp 4 = Vp 4 =
0. With this assumption (12) becomes

S P P
1 Z Yot Dip o+ 2 psgmt DspDisq €08 95p g n

IPm = — 3
P m
(Zp:l F:VP>

27y

s=1

-1
m=1)

XS: 21};:1 DSpDrp Ccos (psp,rp+2§7éq:1 Dspqu Ccos (psp,rq
P m P m
s#r=1 (szl Fsp) (szl Frp)
(13)

Alternative global assumptions, the coherent and incoher-
ent cases, are analyzed next. Note that, in these cases, we are
justified in denoting the general IPm by the accepted definition
of OIPm.
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B. COHERENT & INCOHERENT OIPm
Since all the individual relative phase relationships in (13) are
usually unknown in practice, we will make assumptions about
the relative phases to predict the value of OIPm. The coherent
OIPm corresponds to the case ¢sp sg = @sp,rp = Psp,rqg =0,
that is, when the distortion voltages from stages r and s on
channels p and ¢ are all mutually coherent and all combine
perfectly in phase at the system output. This yields the lower
bound or worst-case OIPm of the ARBF system. In contrast,
the incoherent OIPm is obtained when ¢y 5g, @sp,rp, and
@sp,rq are assumed to be mutually incoherent and uniformly
distributed over [0, 2m) such that all the average values
(COS @sp,sq) = (COS Ysp, rp) = (COS @y rg) = 0. This results in
the upper bound or best-case OIPm of the ARBF system.
With these assumptions we find, for the coherent case,

s » —2/(m—1)
OIPm gy = i 3 Z;:‘ Do (14)
s=1 (Z[):l Fsp)
and, for the incoherent case,
s » ) —1/(m—1)
O1P ey = —— _Zp=t Py (15)

2m
=S

These expressions can be expanded using D;), =
VD,Sp\/gDTpal,, Fp = VF,.vangTpap, and further simplified
by making two additional assumptions: 1) the net linear
power gains at the distortion (and fundamental) frequencies
are the same on all channels, that is, gp s, = gp,s and
8F,sp = &F,s; and 2) the distortion (and fundamental) voltage
phasor amplitudes at the output of stage s are the same on all
channels, that is, Vp s, = Vp s and VF 5, = VF 5. Applying the
two additional simplifying assumptions to (14) and (15) and
using (5) yields

P s g1/2 —2/(m—1)
D,s
OIPmeo, = ZO‘P (Z O1Pm— D72 m/2>
)

p=1 s=1 gF,S
(16)
and
=) 1/Gn-1)
P n— -1/
(szl “P) > gD.s
OIPmincnh = 1 (m—1) .
(Zg—l 05,2;) -0 \ =, OIPmy 8k
(17)

Aside from the multiplicative factors containing the per-
channel voltage amplitude weighting factors o), (16) and (17)
are of the same form as the OIPm equations for a serial
cascade obtained under the coherent and incoherent assump-
tions. With P = o, = 1 and gps = grs = g = 1 G.. (16)

1

=5+
and (17) reduce to the well-known serial cascade equations

(71, (8], [9], [10].
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TABLE 1. Scaling of the ARBF System O/Pm With Channel Count P for Each
Combiner Type

Lossless Wilkinson Resistive
Combiner Combiner Combiner
Independent
2
OIPmc,p P P of P
OIPMineon pG@m-1)/(m-1) pm/(m-1) p1/(m-1)

From (16) and (17) it is seen that the dependence of OIPm
on channel count P depends on the nature of the signal com-
biner as shown in Table 1 assuming no intentionally applied
weighting (w, = 1) and identical channels. In practice, of
course, the scaling of O/Pm is limited by the power handling
of the signal combiner and therefore does not grow without
bound by simply adding more channels.

In the next section we consider the specific case m = 3
to provide further insight into the nonlinear behavior of an
ARBF system.

IV. LIMITING CASES OF ARBF SYSTEM OIPm
Due to its importance and familiarity, in this section we eval-
uate OIPm for third-order intermodulation distortion using
(14) and (15) as starting points. We also make the following
simplifying assumptions:
1) The combiner is a Wilkinson-type device and there is no
intentional weighting: ¢, = 1/+/P and w p=1.
2) Inter-element losses are neglected: Lp 5, = LF,sp = 1.
3) For any NLE, the RF power gains at the fundamental
and distortion frequencies are equal: Gpsp = Gr5p =
Gyp > 1.
The identities in Appendix II are helpful in obtaining the
following results.

A. PARALLEL ARRAY: S = 1; P = ARBITRARY; IDENTICAL
ELEMENTS

Consider a parallel array of P identical NLEs. From (14) and
(15), the coherent and incoherent OIP3 are, respectively,

OIP3 on.ident = P - OIP3, (18)

01P3incoh,idem = P3/2 - OIP3. (19)

The coherent OIP3 of the parallel array is enhanced by a
factor of P, whereas the incoherent OIP3 is enhanced by a
factor of P*2. Gatti [12], Holzman [13], and Bucholtz [14]
also obtained the same factor of P improvement in OIP3 for
the coherent case.

B. PARALLEL ARRAY: S = 1; P = ARBITRARY; 1-BAD
ELEMENT

We now consider a parallel array containing (P—1) identical,
“good” NLEs and one “bad” NLE with degraded gain and
OIP3. The “good” NLEs have a power gain of G and a third-
order output intercept point of OIP3. The “bad” NLE, located
at p = p, has a reduced power gain of y - G, (0 <y < 1),
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and a reduced third-order output intercept point of x - OIP3,
(0 < x < 1). The degradation in the OIP3 of the parallel array
due to one “bad” NLE can be quantified by the ratio of OIP3
for all identical, “good” NLEs to OIP3 for one “bad” NLE

(R1—paa = 1). Hence,
Ple-n+ ()]

[P~ D +y12]

. _ OIP3cohident =
1—bad ,coh = OIP3c0h»1*had

(20)

1/2
e (2)
OIPSincoh,ident P [(P 1) + (X2

R\ —bad,incon = =
ad ,incol 0[P3inc0h,lfbud [(P -+ )/1/2]3
(21)

Equations (20) and (21) are plotted in Figs. 4 and 5, re-
spectively, for § = 1 and P = 4, 8, and 16. The following
observations can be made: 1) the coherent case is somewhat
more forgiving of one “bad” NLE; 2) the reduction is inde-
pendent of the location p of the “bad” NLE; 3) the reduction
is independent of the starting values of G and OIP3; and
4) the effect of the “bad” NLE decreases as P grows.

C. SERIAL ARRAY: S = ARBITRARY; P = 1; 1-BAD ELEMENT
A serial array comprising (S—1) identical, “good” NLEs and
one “bad” NLE is analyzed in this section. The “bad” NLE, lo-
cated at s = o, has a reduced power gain (y -G, 0 <y < 1)
and reduced third-order output intercept  point
(x - OIP3, 0 < x < 1